Spectral stability and boundary homogenization for polyharmonic operators

Francesco Ferraresso

Joint work with Pier Domenico Lamberti

Kalamata 31.8.2015

Principal references

J. Arrieta, P.D.Lamberti,

Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems, preprint, online at arXiv:1502.04373v2 [math.AP]

F.F., P.D.LAMBERTI,

Spectral convergence of higher order operators on varying domains and polyharmonic boundary homogenization, in preparation.

Let Ω be a bounded open set in \mathbb{R}^N .

Let Ω be a bounded open set in \mathbb{R}^N . We consider elliptic operators of the type

$$Hu = (-1)^m \sum_{|\alpha|=|\beta|=m} D^{\alpha} (A_{\alpha\beta}(x)D^{\beta}u), \quad x \in \Omega,$$

Let Ω be a bounded open set in \mathbb{R}^N . We consider elliptic operators of the type

$$Hu = (-1)^m \sum_{|\alpha|=|\beta|=m} D^{\alpha} (A_{\alpha\beta}(x)D^{\beta}u), \quad x \in \Omega,$$

subject to homogeneous boundary conditions

Let Ω be a bounded open set in \mathbb{R}^N . We consider elliptic operators of the type

$$Hu = (-1)^m \sum_{|\alpha|=|\beta|=m} D^{\alpha} (A_{\alpha\beta}(x)D^{\beta}u), \quad x \in \Omega,$$

subject to homogeneous boundary conditions (Dirichlet, Neumann, Intermediate etc.)

Let Ω be a bounded open set in \mathbb{R}^N . We consider elliptic operators of the type

$$Hu = (-1)^m \sum_{|\alpha|=|\beta|=m} D^{\alpha} \left(A_{\alpha\beta}(x) D^{\beta} u \right), \quad x \in \Omega,$$

subject to homogeneous boundary conditions (Dirichlet, Neumann, Intermediate etc.)

Under suitable assumptions, the spectrum is discrete

$$\lambda_1[\Omega] \leq \lambda_2[\Omega] \leq \cdots \leq \lambda_n[\Omega] \leq \cdots$$

Let Ω be a bounded open set in \mathbb{R}^N . We consider elliptic operators of the type

$$Hu = (-1)^m \sum_{|\alpha|=|\beta|=m} D^{\alpha} (A_{\alpha\beta}(x)D^{\beta}u), \quad x \in \Omega,$$

subject to homogeneous boundary conditions (Dirichlet, Neumann, Intermediate etc.)

Under suitable assumptions, the spectrum is discrete

$$\lambda_1[\Omega] \leq \lambda_2[\Omega] \leq \cdots \leq \lambda_n[\Omega] \leq \ldots$$

Consider the functions

$$\Omega \mapsto \lambda_n[\Omega], \quad \Omega \to u_n[\Omega]$$

Let Ω be a bounded open set in \mathbb{R}^N . We consider elliptic operators of the type

$$Hu = (-1)^m \sum_{|\alpha|=|\beta|=m} D^{\alpha} (A_{\alpha\beta}(x)D^{\beta}u), \quad x \in \Omega,$$

subject to homogeneous boundary conditions (Dirichlet, Neumann, Intermediate etc.)

Under suitable assumptions, the spectrum is discrete

$$\lambda_1[\Omega] \leq \lambda_2[\Omega] \leq \cdots \leq \lambda_n[\Omega] \leq \ldots$$

Consider the functions

$$\Omega \mapsto \lambda_n[\Omega], \quad \Omega \to u_n[\Omega]$$

Are they continuous?

Dirichlet boundary conditions (clamped plate)

Dirichlet boundary conditions (clamped plate)

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \\ \frac{\partial u}{\partial n} = 0, & \text{on } \partial \Omega. \end{cases}$$

Dirichlet boundary conditions (clamped plate)

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \\ \frac{\partial u}{\partial n} = 0, & \text{on } \partial \Omega. \end{cases}$$

Neumann boundary conditions (free plate)

Dirichlet boundary conditions (clamped plate)

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \\ \frac{\partial u}{\partial n} = 0, & \text{on } \partial \Omega. \end{cases}$$

Neumann boundary conditions (free plate)

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ \nu \Delta u + (1 - \nu) \frac{\partial^2 u}{\partial n^2} = 0, & \text{on } \partial \Omega, \\ (1 - \nu) \text{div}_{\partial \Omega} (H u \cdot n) + \frac{\partial \Delta u}{\partial n} = 0, & \text{on } \partial \Omega, \end{cases}$$

Dirichlet boundary conditions (clamped plate)

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \\ \frac{\partial u}{\partial n} = 0, & \text{on } \partial \Omega. \end{cases}$$

Neumann boundary conditions (free plate)

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ \nu \Delta u + (1 - \nu) \frac{\partial^2 u}{\partial n^2} = 0, & \text{on } \partial \Omega, \\ (1 - \nu) \text{div}_{\partial \Omega} (H u \cdot n) + \frac{\partial \Delta u}{\partial n} = 0, & \text{on } \partial \Omega, \end{cases}$$

 ν is the Poisson coefficient of the material (0 < ν < 1/2).

Intermediate boundary conditions (hinged plate)

Intermediate boundary conditions (hinged plate)

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \\ \Delta u - k(x) \frac{\partial u}{\partial n} = 0, & \text{on } \partial \Omega \end{cases}$$

Intermediate boundary conditions (hinged plate)

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \\ \Delta u - k(x) \frac{\partial u}{\partial n} = 0, & \text{on } \partial \Omega \end{cases}$$

tricky case...

Intermediate boundary conditions (hinged plate)

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \\ \Delta u - k(x) \frac{\partial u}{\partial n} = 0, & \text{on } \partial \Omega \end{cases}$$

tricky case...see Babuška Paradox.

Polyharmonic operators

For $m \ge 1$, consider

$$(-1)^m \Delta^m u = \lambda u \quad \text{in } \Omega$$

Polyharmonic operators

For $m \ge 1$, consider

$$(-1)^m \Delta^m u = \lambda u$$
 in Ω

Dirichlet boundary conditions for this problem

$$\begin{cases} u = 0, & \text{on } \partial\Omega, \\ \frac{\partial^k u}{\partial n^k} = 0, & \text{on } \partial\Omega, \ 1 \le k \le m-1 \end{cases}$$

■ The coefficients $A_{\alpha\beta}$ are fixed

■ The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions

■ The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N

■ The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta}=A_{\beta\alpha}$

■ The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta}\xi_{\alpha}\xi_{\beta} \geq \theta |\xi|^2$

- The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge \theta |\xi|^2$
- $V(\Omega)$ is a closed subspace of $W^{m,2}(\Omega)$ containing $W_0^{m,2}(\Omega)$, compactly embedded into $L^2(\Omega)$

- The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge \theta |\xi|^2$
- $V(\Omega)$ is a closed subspace of $W^{m,2}(\Omega)$ containing $W_0^{m,2}(\Omega)$, compactly embedded into $L^2(\Omega)$

- The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge \theta |\xi|^2$
- $V(\Omega)$ is a closed subspace of $W^{m,2}(\Omega)$ containing $W_0^{m,2}(\Omega)$, compactly embedded into $L^2(\Omega)$

$$\int_{\Omega} \sum_{|\alpha| = |\beta| = m} \mathsf{A}_{\alpha\beta} \mathsf{D}^{\alpha} \mathsf{u} \mathsf{D}^{\beta} \varphi \, \mathsf{d} \mathsf{x} = \lambda \int_{\Omega} \mathsf{u} \varphi \mathsf{d} \mathsf{x}, \ \, \forall \varphi \in V(\Omega)$$

- The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge \theta |\xi|^2$
- $V(\Omega)$ is a closed subspace of $W^{m,2}(\Omega)$ containing $W_0^{m,2}(\Omega)$, compactly embedded into $L^2(\Omega)$

$$\int_{\Omega} \sum_{|\alpha| = |\beta| = m} A_{\alpha\beta} D^{\alpha} u D^{\beta} \varphi \, dx = \lambda \int_{\Omega} u \varphi dx, \quad \forall \varphi \in V(\Omega)$$

If
$$V(\Omega) = W_0^{m,2}(\Omega)$$

- The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge \theta |\xi|^2$
- $V(\Omega)$ is a closed subspace of $W^{m,2}(\Omega)$ containing $W_0^{m,2}(\Omega)$, compactly embedded into $L^2(\Omega)$

We consider the eigenvalue problem in the weak form

$$\int_{\Omega} \sum_{|\alpha|=|\beta|=m} \mathsf{A}_{\alpha\beta} \mathsf{D}^{\alpha} u \mathsf{D}^{\beta} \varphi \, \mathsf{d} x = \lambda \int_{\Omega} u \varphi \mathsf{d} x, \ \forall \varphi \in V(\Omega)$$

If $V(\Omega) = W_0^{m,2}(\Omega)$ we talk about Dirichlet boundary conditions

- The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge \theta |\xi|^2$
- $V(\Omega)$ is a closed subspace of $W^{m,2}(\Omega)$ containing $W_0^{m,2}(\Omega)$, compactly embedded into $L^2(\Omega)$

$$\int_{\Omega} \sum_{|\alpha|=|\beta|=m} \mathsf{A}_{\alpha\beta} \mathsf{D}^{\alpha} u \mathsf{D}^{\beta} \varphi \, \mathsf{d} x = \lambda \int_{\Omega} u \varphi \mathsf{d} x, \ \forall \varphi \in V(\Omega)$$

If
$$V(\Omega)=W_0^{m,2}(\Omega)$$
 we talk about Dirichlet boundary conditions If $V(\Omega)=W^{m,2}(\Omega)$

- The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge \theta |\xi|^2$
- $V(\Omega)$ is a closed subspace of $W^{m,2}(\Omega)$ containing $W_0^{m,2}(\Omega)$, compactly embedded into $L^2(\Omega)$

We consider the eigenvalue problem in the weak form

$$\int_{\Omega} \sum_{|\alpha| = |\beta| = m} A_{\alpha\beta} D^{\alpha} u D^{\beta} \varphi \, dx = \lambda \int_{\Omega} u \varphi dx, \quad \forall \varphi \in V(\Omega)$$

If $V(\Omega) = W_0^{m,2}(\Omega)$ we talk about Dirichlet boundary conditions If $V(\Omega) = W^{m,2}(\Omega)$ we talk about Neumann boundary conditions

- The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge \theta |\xi|^2$
- $V(\Omega)$ is a closed subspace of $W^{m,2}(\Omega)$ containing $W_0^{m,2}(\Omega)$, compactly embedded into $L^2(\Omega)$

We consider the eigenvalue problem in the weak form

$$\int_{\Omega} \sum_{|\alpha| = |\beta| = m} \mathsf{A}_{\alpha\beta} \mathsf{D}^{\alpha} u \mathsf{D}^{\beta} \varphi \, \mathsf{d} x = \lambda \int_{\Omega} u \varphi \, \mathsf{d} x, \ \forall \varphi \in V(\Omega)$$

If $V(\Omega) = W_0^{m,2}(\Omega)$ we talk about Dirichlet boundary conditions If $V(\Omega) = W^{m,2}(\Omega)$ we talk about Neumann boundary conditions If $V(\Omega) = W^{m,2}(\Omega) \cap W_0^{k,2}(\Omega)$ with 0 < k < m

Weak formulation of the problem

- The coefficients $A_{\alpha\beta}$ are fixed bounded real-valued functions defined on \mathbb{R}^N $A_{\alpha\beta} = A_{\beta\alpha}$ and $\sum_{|\alpha|=|\beta|=m} A_{\alpha\beta} \xi_{\alpha} \xi_{\beta} \ge \theta |\xi|^2$
- $V(\Omega)$ is a closed subspace of $W^{m,2}(\Omega)$ containing $W_0^{m,2}(\Omega)$, compactly embedded into $L^2(\Omega)$

We consider the eigenvalue problem in the weak form

$$\int_{\Omega} \sum_{|\alpha| = |\beta| = m} A_{\alpha\beta} D^{\alpha} u D^{\beta} \varphi \, dx = \lambda \int_{\Omega} u \varphi dx, \quad \forall \varphi \in V(\Omega)$$

If $V(\Omega) = W_0^{m,2}(\Omega)$ we talk about Dirichlet boundary conditions If $V(\Omega) = W^{m,2}(\Omega)$ we talk about Neumann boundary conditions If $V(\Omega) = W^{m,2}(\Omega) \cap W_0^{k,2}(\Omega)$ with 0 < k < m we talk about Intermediate boundary conditions

Give sufficient conditions which guarantee that for a family of perturbations Ω_{ϵ} , $\epsilon>0$, of Ω we have

Give sufficient conditions which guarantee that for a family of perturbations Ω_{ϵ} , $\epsilon > 0$, of Ω we have

$$H_{\Omega_{\epsilon}}^{-1}$$
 compact converges to H_{Ω}^{-1} as $\epsilon \to 0$

Give sufficient conditions which guarantee that for a family of perturbations Ω_{ϵ} , $\epsilon > 0$, of Ω we have

$$H_{\Omega_{\epsilon}}^{-1}$$
 compact converges to H_{Ω}^{-1} as $\epsilon \to 0$

This essentially means that

■ If
$$f_{\epsilon} \to f$$
 then $H_{\Omega_{\epsilon}}^{-1} f_{\epsilon} \to H_{\Omega}^{-1} f$

Give sufficient conditions which guarantee that for a family of perturbations Ω_{ϵ} , $\epsilon > 0$, of Ω we have

$$H_{\Omega_{\epsilon}}^{-1}$$
 compact converges to H_{Ω}^{-1} as $\epsilon \to 0$

This essentially means that

- If $f_{\epsilon} \to f$ then $H_{\Omega_{\epsilon}}^{-1} f_{\epsilon} \to H_{\Omega}^{-1} f$
- if f_{ϵ} is a bounded sequence then $H_{\Omega_{\epsilon}}^{-1}f_{\epsilon}$ has a convergent subsequence.

Give sufficient conditions which guarantee that for a family of perturbations Ω_{ϵ} , $\epsilon > 0$, of Ω we have

$$H_{\Omega_{\epsilon}}^{-1}$$
 compact converges to H_{Ω}^{-1} as $\epsilon \to 0$

This essentially means that

- If $f_{\epsilon} \to f$ then $H_{\Omega_{\epsilon}}^{-1} f_{\epsilon} \to H_{\Omega}^{-1} f$
- if f_{ϵ} is a bounded sequence then $H_{\Omega_{\epsilon}}^{-1}f_{\epsilon}$ has a convergent subsequence.

Importantly:

Give sufficient conditions which guarantee that for a family of perturbations Ω_{ϵ} , $\epsilon > 0$, of Ω we have

$$H_{\Omega_{\epsilon}}^{-1}$$
 compact converges to H_{Ω}^{-1} as $\epsilon \to 0$

This essentially means that

- If $f_{\epsilon} \to f$ then $H_{\Omega_{\epsilon}}^{-1} f_{\epsilon} \to H_{\Omega}^{-1} f$
- if f_{ϵ} is a bounded sequence then $H_{\Omega_{\epsilon}}^{-1}f_{\epsilon}$ has a convergent subsequence.

Importantly:

compact convergence ⇒ spectral convergence

Recall: for Intermediate boundary conditions

$$V(\Omega)=W^{2,2}(\Omega)\cap W_0^{1,2}(\Omega)$$

Recall: for Intermediate boundary conditions

$$V(\Omega)=W^{2,2}(\Omega)\cap W_0^{1,2}(\Omega)$$

We consider local perturbations of sets which are locally the subgraph of a function of class C^2

Recall: for Intermediate boundary conditions

$$V(\Omega) = W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$$

We consider local perturbations of sets which are locally the subgraph of a function of class C^2 : given $W \subset \mathbb{R}^{N-1}$

$$\Omega = \{(\bar{x}, x_N) : \bar{x} \in W, a < x_N < g(\bar{x})\}\$$

$$\Omega_{\epsilon} = \{(\bar{x}, x_N) : \bar{x} \in W, \quad a < x_N < g_{\epsilon}(\bar{x})\}$$

Recall: for Intermediate boundary conditions

$$V(\Omega) = W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$$

We consider local perturbations of sets which are locally the subgraph of a function of class C^2 : given $W \subset \mathbb{R}^{N-1}$

$$\Omega = \{(\bar{x}, x_N) : \bar{x} \in W, a < x_N < g(\bar{x})\}\$$

$$\Omega_{\epsilon} = \{(\bar{x}, x_N) : \bar{x} \in W, \quad a < x_N < g_{\epsilon}(\bar{x})\}$$

Theorem

Assume that $||g_{\epsilon} - g||_{C^1(\bar{W})} \to 0$ as $\epsilon \to 0$ and $||g_{\epsilon}||_{C^2(\bar{W})} < M$ for all $\epsilon > 0$, then the compact convergence holds.

Lemma

Suppose that
$$V(\Omega) = W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$$
.

Lemma

Lemma

Lemma

- \blacksquare (ii) $\lim_{\epsilon \to 0} \kappa_{\epsilon} = 0$;

Lemma

- $(i) \kappa_{\epsilon} > ||g_{\epsilon} g||_{\infty}, \quad \forall \epsilon > 0;$
- \blacksquare (ii) $\lim_{\epsilon \to 0} \kappa_{\epsilon} = 0$;

Lemma

Suppose that $V(\Omega) = W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$. If for all $\epsilon > 0$ there exists $\kappa_{\epsilon} > 0$ such that

- \blacksquare (ii) $\lim_{\epsilon \to 0} \kappa_{\epsilon} = 0$;

Then $H_{V(\Omega_{\epsilon})}^{-1} \to H_{V(\Omega)}^{-1}$ with respect to the compact convergence.

Lemma

Suppose that $V(\Omega) = W^{m,2}(\Omega) \cap W_0^{k,2}(\Omega)$ for some $1 \le k < m$. If for all $\epsilon > 0$ there exists $\kappa_{\epsilon} > 0$ such that

- \blacksquare (ii) $\lim_{\epsilon \to 0} \kappa_{\epsilon} = 0$;

Then $H^{-1}_{V(\Omega_{\epsilon})} \to H^{-1}_{V(\Omega)}$ with respect to the compact convergence.

Oscillating boundaries

Oscillating boundaries

We take
$$\Omega = W \times]-1,0[$$
 with $W \subset \mathbb{R}^{N-1}$ and

$$\Omega_{\epsilon} = \left\{ (\bar{x}, x_N) : \ \bar{x} \in W, \ -1 < x_N < g_{\epsilon} \equiv \epsilon^{\alpha} g \left(\frac{\bar{x}}{\epsilon} \right) \right\}$$

Oscillating boundaries

We take
$$\Omega = W \times]-1,0[$$
 with $W \subset \mathbb{R}^{N-1}$ and

$$\Omega_{\epsilon} = \left\{ (\bar{x}, x_N) : \ \bar{x} \in W, \ -1 < x_N < g_{\epsilon} \equiv \epsilon^{\alpha} g \left(\frac{\bar{x}}{\epsilon} \right) \right\}$$

where $\alpha > 0$, and $g : \mathbb{R}^{N-1} \to \mathbb{R}$ is a periodic smooth positive function (with period Y, say the unit cell in \mathbb{R}^{N-1})

Theorem (Spectral convergence)

Theorem (Spectral convergence)

Let $m\geq 2$, and let $H_{\Omega_{\epsilon},l}$ be the operator $(-1)^m\Delta^m+\mathbb{I}$ on Ω_{ϵ}

Theorem (Spectral convergence)

Let $m \ge 2$, and let $H_{\Omega_{\epsilon},l}$ be the operator $(-1)^m \Delta^m + \mathbb{I}$ on Ω_{ϵ} with strong intermediate boundary conditions

$$V(\Omega_{\epsilon}) = W^{m,2}(\Omega_{\epsilon}) \cap W_0^{m-1,2}(\Omega_{\epsilon}).$$

Theorem (Spectral convergence)

Let $m \ge 2$, and let $H_{\Omega_{\epsilon},l}$ be the operator $(-1)^m \Delta^m + \mathbb{I}$ on Ω_{ϵ} with strong intermediate boundary conditions

$$V(\Omega_{\epsilon}) = W^{m,2}(\Omega_{\epsilon}) \cap W_0^{m-1,2}(\Omega_{\epsilon}).$$

Let also $H_{\Omega,D}$ be the same operator with Dirichlet boundary conditions on $W \times \{0\}$ and intermediate boundary conditions on the rest of $\partial\Omega$.

Theorem (Spectral convergence)

Let $m \ge 2$, and let $H_{\Omega_{\epsilon},l}$ be the operator $(-1)^m \Delta^m + \mathbb{I}$ on Ω_{ϵ} with strong intermediate boundary conditions

$$V(\Omega_{\epsilon}) = W^{m,2}(\Omega_{\epsilon}) \cap W_0^{m-1,2}(\Omega_{\epsilon}).$$

Let also $H_{\Omega,D}$ be the same operator with Dirichlet boundary conditions on $W \times \{0\}$ and intermediate boundary conditions on the rest of $\partial\Omega$. Then:

■ [Spectral stability] If $\alpha > 3/2$, then $H_{\Omega_{\epsilon},I}^{-1} \xrightarrow{C} H_{\Omega,I}^{-1}$.

Theorem (Spectral convergence)

Let $m \ge 2$, and let $H_{\Omega_{\epsilon},l}$ be the operator $(-1)^m \Delta^m + \mathbb{I}$ on Ω_{ϵ} with strong intermediate boundary conditions

$$V(\Omega_{\epsilon}) = W^{m,2}(\Omega_{\epsilon}) \cap W_0^{m-1,2}(\Omega_{\epsilon}).$$

Let also $H_{\Omega,D}$ be the same operator with Dirichlet boundary conditions on $W \times \{0\}$ and intermediate boundary conditions on the rest of $\partial\Omega$. Then:

- [Spectral stability] If $\alpha > 3/2$, then $H_{\Omega_{\epsilon,l}}^{-1} \xrightarrow{C} H_{\Omega,l}^{-1}$.
- [Instability] If $\alpha < 3/2$, then $H_{\Omega_c,l}^{-1} \xrightarrow{C} H_{\Omega,D}^{-1}$.

Strategy:

■ fix $\varphi \in V(\Omega)$ and a suitable diffeomorphism $\Phi_{\epsilon} : \Omega_{\epsilon} \to \Omega$

- fix $\varphi \in V(\Omega)$ and a suitable diffeomorphism $\Phi_{\epsilon} : \Omega_{\epsilon} \to \Omega$
- use $\varphi(\Phi_{\epsilon}(x))$ as test function in the weak formulation of the perturbed problem in Ω_{ϵ}

- fix $\varphi \in V(\Omega)$ and a suitable diffeomorphism $\Phi_{\epsilon} : \Omega_{\epsilon} \to \Omega$
- use $\varphi(\Phi_{\epsilon}(x))$ as test function in the weak formulation of the perturbed problem in Ω_{ϵ}
- use the unfolding method from homogenization theory to pass to the limit as $\epsilon \to 0$.

- fix $\varphi \in V(\Omega)$ and a suitable diffeomorphism $\Phi_{\epsilon} : \Omega_{\epsilon} \to \Omega$
- use $\varphi(\Phi_{\epsilon}(x))$ as test function in the weak formulation of the perturbed problem in Ω_{ϵ}
- use the unfolding method from homogenization theory to pass to the limit as $\epsilon \to 0$.
- find a limit problem; a new strange term (*) appears!

- fix $\varphi \in V(\Omega)$ and a suitable diffeomorphism $\Phi_{\epsilon} : \Omega_{\epsilon} \to \Omega$
- use $\varphi(\Phi_{\epsilon}(x))$ as test function in the weak formulation of the perturbed problem in Ω_{ϵ}
- use the unfolding method from homogenization theory to pass to the limit as $\epsilon \to 0$.
- find a limit problem; a new strange term (*) appears!
- characterize (*) in terms of a microscopic problem for an auxiliary function.

Strategy:

- fix $\varphi \in V(\Omega)$ and a suitable diffeomorphism $\Phi_{\epsilon} : \Omega_{\epsilon} \to \Omega$
- use $\varphi(\Phi_{\epsilon}(x))$ as test function in the weak formulation of the perturbed problem in Ω_{ϵ}
- use the unfolding method from homogenization theory to pass to the limit as $\epsilon \to 0$.
- find a limit problem; a new strange term (*) appears!
- characterize (*) in terms of a microscopic problem for an auxiliary function.

Limit problem for the biharmonic operator

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \Gamma, \\ \Delta u - K(U) \frac{\partial u}{\partial n} = 0, & \text{on } \Gamma \end{cases}$$

and for the triharmonic operator:

$$\begin{cases} \Delta^3 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \Gamma, \\ \nabla u = 0, & \text{on } \Gamma, \\ \Delta(\partial_{X_N} u) - K(V) \Delta u = 0, & \text{on } \Gamma \end{cases}$$

and for the triharmonic operator:

$$\begin{cases} \Delta^3 u = \lambda u, & \text{in } \Omega, \\ u = 0, & \text{on } \Gamma, \\ \nabla u = 0, & \text{on } \Gamma, \\ \Delta(\partial_{x_N} u) - K(V) \Delta u = 0, & \text{on } \Gamma \end{cases}$$

where K(U), K(V) are respectively

$$K(U)=\int_{Y\times (-\infty,0)}|D^2U|^2dy,\quad K(V)=\int_{Y\times (-\infty,0)}|D^3V|^2dy;$$

in particular they are not zero!

The functions U and V are the solutions of a suitable PDE, which catches the microscopic behaviour of the system.

The functions *U* and *V* are the solutions of a suitable PDE, which catches the microscopic behaviour of the system.

For example, the function V solves

$$\begin{cases} \Delta^3 V = 0, & \text{in } Y \times (-\infty, 0), \\ V(\bar{y}, 0) = 0, & \text{on } Y, \\ \frac{\partial V}{\partial y_N} = g(\bar{y}), & \text{on } Y, \\ \frac{\partial^3 V}{\partial y_N^3} = 0, & \text{on } Y. \end{cases}$$

and is periodic in the first N-1 coordinates.

Thank you for your attention

If $\alpha=3/2$, the limit problem for $\Delta^m+\mathbb{I}$ with strong intermediate b.c. satisfies the following b.c. on W:

If $\alpha = 3/2$, the limit problem for $\Delta^m + \mathbb{I}$ with strong intermediate b.c. satisfies the following b.c. on W:

$$\begin{cases} u = 0, \\ \frac{\partial^k u}{\partial x_N^k} = 0, \\ \frac{\partial^m u}{\partial x_N^m} - K \frac{\partial^{m-1} u}{\partial x_N^{m-1}} = 0. \end{cases}$$
 for any $k \le m - 2$

where the factor K is given by

$$K = -\int_Y B_{m-2}(V)\mathrm{d}\bar{y} = \int_{Y\times (-\infty,0)} |D^m V|^2\,\mathrm{d}y,$$

If $\alpha = 3/2$, the limit problem for $\Delta^m + \mathbb{I}$ with strong intermediate b.c. satisfies the following b.c. on W:

$$\begin{cases} u = 0, \\ \frac{\partial^k u}{\partial x_N^k} = 0, \\ \frac{\partial^m u}{\partial x_N^m} - K \frac{\partial^{m-1} u}{\partial x_N^{m-1}} = 0. \end{cases}$$
 for any $k \le m - 2$

where the factor K is given by

$$K = -\int_{Y} B_{m-2}(V) \mathrm{d}\bar{y} = \int_{Y \times (-\infty,0)} |D^{m}V|^{2} \, \mathrm{d}y,$$

and the function V satisfies the following

$$\begin{cases} \Delta^m V = 0, & \text{in } Y \times (-\infty, 0), \\ V(\bar{y}, 0) = 0, & \frac{\partial^k V}{\partial y_N^k} = 0, & \text{on } Y, \text{ for all } 1 \le k \le m - 3, \\ \frac{\partial^{m-2} V}{\partial y_N^{m-2}} = g(\bar{y}), & \text{on } Y, \\ \frac{\partial^m V}{\partial y_N^m} = 0, & \text{on } Y, \end{cases}$$