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Abstract

As a main step in the numerical solution of control problems in continuous time,

the controlled process is approximated by sequences of controlled Markov chains,

thus discretising time and space. A new feature in this context is to allow for delay

in the dynamics. The existence of an optimal strategy with respect to the cost

functional can be guaranteed in the class of relaxed controls. Weak convergence of

the approximating extended Markov chains to the original process together with

convergence of the associated optimal strategies is established.

1 Introduction

A general strategy for rendering control problems in continuous time acces-
sible to numerical computation is the following: Taking as a starting point
the original dynamics, construct a family of control problems in discrete time
with discrete state space and discretised cost functional. Standard numeri-
cal schemes can be applied to �nd an optimal control and to calculate the
minimal costs for each of the discrete control problems. The important point
to establish is then whether the discrete optimal controls and minimal costs
converge to the continuous-time limit as the mesh size of the discretisation
tends to zero. If that is the case, then the discrete control problems are a valid
approximation to the original problem.

Approximation schemes for non-delay stochastic control problems in continu-
ous time implementing the general strategy just outlined are well established,
see Kushner and Dupuis (2001). The method yields convergence results un-
der very general conditions. After submission we learned about the work by
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Kushner (2005) on approximating control problems for re�ected stochastic de-
lay di�erential equations. In the non-delay case Krylov (2000) derived rates of
convergence for approximation schemes by exploiting �ne analytical properties
of the associated Bellman equations.

The dynamics of the control problem we are interested in are described by a
stochastic delay di�erential equation (SDDE). Thus, the future evolution of
the dynamics may depend not only on the present state, but also on the past
evolution. For an exposition of the general theory of SDDEs see Mohammed
(1984) or Mao (1997). The development of numerical methods for SDDEs has
attracted much attention recently, see Buckwar (2000), Hu et al. (2004) and
the references therein. In Calzolari et al. (2005) a rate of convergence for a
segment-wise Euler scheme is obtained (Proposition 4.2 ibid.) and is used in a
non-linear �ltering problem for approximating the state process, which is given
by an SDDE. Numerical procedures for deterministic control with delayed
dynamics have already been used in applications, see Boucekkine et al. (2005)
for the analysis of an economic growth model. The algorithm proposed there
is based on the discretisation method studied here, but no formal proof of
convergence is given.

The mathematical analysis of stochastic control problems with time delay in
the state equation has been the object of recent works, see e. g. Elsanosi et al.
(2000) for certain explicitly available solutions, Øksendal and Sulem (2001)
for the derivation of a maximum principle and Larssen (2002) for the dynamic
programming approach. Although one can invoke the dynamic programming
principle to derive a Hamilton-Jacobi-Bellman equation for the value function,
such an equation will in general be a non-linear partial di�erential equation
on a functional state space. The analytical methods for the non-delay case do
not simply carry over to this in�nite-dimensional setting. Another approach
to treat stochastic control problems with delay is based on representing the
state equation as an evolution equation in Hilbert space, see Bensoussan et al.
(1992).

The class of control problems is speci�ed in Section 2. In Section 3 we prove
the existence of optimal strategies for those problems in the class of relaxed
controls. Section 4 introduces the approximating processes and provides a
tightness result. Finally, in Section 5 the discrete control problems are de�ned
and the convergence of the minimal costs and optimal strategies is shown.

2 The control problem

We consider the control of a dynamical system given by a one-dimensional
stochastic delay di�erential equation (SDDE) driven by a Wiener process.
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Both drift and di�usion coe�cient may depend on the solution's history a
certain amount of time into the past. Let r > 0 denote the delay length,
i. e. the maximal length of dependence on the past. For simplicity, we restrict
attention to the case, where only the drift term can be directly controlled.

Typically, the solution process of an SDDE does not enjoy the Markov prop-
erty, while the segment process associated with that solution does. For a real-
valued càdlàg function (i. e., right-continuous function with left-hand limits) ψ
living on the time interval [−r,∞) the segment at time t ∈ [0,∞) is de�ned to
be the function ψt : [−r, 0] → R given by ψt(s) := ψ(t+s). Thus, the segment
process (Xt)t≥0 associated with a real-valued càdlàg process (X(t))t≥−r takes
its values in D0 := D([−r, 0]), the space of all real-valued càdlàg functions on
the interval [−r, 0]. There are two natural topologies on D0. The �rst is the
one induced by the supremum norm. The second is the Skorohod topology of
càdlàg convergence (e. g. Billingsley, 1999). The main di�erence between the
Skorohod and the uniform topology lies in the di�erent evaluation of conver-
gence of functions with jumps, which appear naturally as initial segments and
discretised processes. For continuous functions both topologies coincide. Sim-
ilar statements hold for D∞ := D([−r,∞)) and D̃∞ := D([0,∞)), the spaces
of all real-valued càdlàg functions on the intervals [−r,∞) and [0,∞), respec-
tively. The spaces D∞ and D̃∞ will always be supposed to carry the Skorohod
topology, while D0 will canonically be equipped with the uniform topology.

Let (Γ, dΓ) be a compact metric space, the space of control actions. Denote
by b the drift coe�cient of the controlled dynamics, and by σ the di�usion
coe�cient. Let (W (t))t≥0 be a one-dimensional standard Wiener process on
a �ltered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions,
and let (u(t))t≥0 be a control process, i. e. an (Ft)-adapted measurable process
with values in Γ. Consider the controlled SDDE

dX(t) = b
(
Xt, u(t)

)
dt + σ(Xt) dW (t), t ≥ 0. (1)

The control process u(.) together with its stochastic basis including the Wiener
process is called an admissible control if, for every deterministic initial condi-
tion ϕ ∈ D0, Equation (1) has a unique solution which is also weakly unique.
Write Uad for the set of admissible controls of (1). The stochastic basis coming
with an admissible control will often be omitted in the notation.

A solution in the sense used here is an adapted càdlàg process de�ned on
the stochastic basis of the control process such that the integral version of
Equation (1) is satis�ed. Given a control process together with a standard
Wiener process, a solution to Equation (1) is unique if it is indistinguishable
from any other solution almost surely satisfying the same initial condition. A
solution is weakly unique if it has the same law as any other solution with the
same initial distribution and satisfying Equation (1) for a control process on
a possibly di�erent stochastic basis so that the joint distributions of control
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and driving Wiener process are the same for both solutions. Let us specify the
regularity assumptions to be imposed on the coe�cients b and σ:

(A1) Càdlàg functionals: the mappings

(ψ, γ) 7→
[
t 7→ b(ψt, γ), t ≥ 0

]
, ψ 7→

[
t 7→ σ(ψt), t ≥ 0

]
de�ne measurable functionals D∞ × Γ → D̃∞ and D∞ → D̃∞, respec-
tively, where D∞, D̃∞ are equipped with their Borel σ-algebras.

(A2) Continuity of the drift coe�cient: there is an at most countable subset of
[−r, 0], denoted by Iev, such that for every t ≥ 0 the function de�ned by

D∞ × Γ 3 (ψ, γ) 7→ b(ψt, γ)

is continuous on Dev(t)× Γ uniformly in γ ∈ Γ, where

Dev(t) := {ψ ∈ D∞ | ψ is continuous at t+ s for all s ∈ Iev}.

(A3) Global boundedness: |b|, |σ| are bounded by a constant K > 0.
(A4) Uniform Lipschitz condition: There is a constant KL > 0 such that for

all ϕ, ϕ̃ ∈ D0, all γ ∈ Γ

|b(ϕ, γ)− b(ϕ̃, γ)| + |σ(ϕ)− σ(ϕ̃)| ≤ KL · sup
s∈[−r,0]

|ϕ(s)− ϕ̃(s)|.

(A5) Ellipticity of the di�usion coe�cient: σ(ϕ) ≥ σ0 for all ϕ ∈ D0, where
σ0 > 0 is a positive constant.

Assumptions (A1) and (A4) on the coe�cients allow us to invoke Theorem V.7
in Protter (2003: p.253), which guarantees the existence of a unique solution
to Equation (1) for every piecewise constant control attaining only �nitely
many di�erent values. The boundedness Assumption (A3) poses no limitation
except for the initial conditions, because the state evolution will be stopped
when the state process leaves a bounded interval. Assumption (A2) allows us
to use �segmentwise approximations� of the solution process, see the proof of
Proposition 1. The assumptions imposed on the drift coe�cient b are satis�ed,
for example, by

b(ϕ, γ) := f
(
ϕ(r1), . . . , ϕ(rn),

∫ 0

−r
ϕ(s)w1(s)ds, . . . ,

∫ 0

−r
ϕ(s)wm(s)ds

)
· g(γ),

(2)
where r1, . . . , rn ∈ [−r, 0] are �xed, f , g are bounded continuous functions and
f is Lipschitz, and the weight functions w1, . . . , wm lie in L1([−r, 0]). Apart
from the control term, the di�usion coe�cient σ may have the same structure
as b in (2).

We consider control problems in the weak formulation (cf. Yong and Zhou,
1999: p. 64). Given an admissible control u(.) and a deterministic initial seg-
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ment ϕ ∈ D0, denote by X
ϕ,u the unique solution to Equation (1). Let I be

a compact interval with non-empty interior. De�ne the stopping time τ T̄
ϕ,u of

�rst exit from the interior of I before time T̄ > 0 by

τ T̄
ϕ,u := inf{t ≥ 0 | Xϕ,u(t) /∈ int(I)} ∧ T̄ . (3)

In order to de�ne the costs, we prescribe a cost rate k : R× Γ → [0,∞) and a
boundary cost g : R → [0,∞) which we take to be (jointly) continuous bounded
functions. Let β ≥ 0 denote the exponential discount rate. Then de�ne the
cost functional on D0 × Uad by

J(ϕ, u) := E
(∫ τ

0
exp(−βs) · k

(
Xϕ,u(s), u(s)

)
ds + g

(
Xϕ,u(τ)

))
, (4)

where τ = τ T̄
ϕ,u. Our aim is to minimize J(ϕ, .). We introduce the value function

V (ϕ) := inf{J(ϕ, u) | u ∈ Uad}, ϕ ∈ D0. (5)

The control problem now consists in calculating the function V and �nding
admissible controls that minimize J . Such control processes are called optimal
controls or optimal strategies.

3 Existence of optimal strategies

In the class Uad of admissible controls it may happen that there is no optimal
control (cf. Kushner and Dupuis, 2001: p. 86). A way out is to enlarge the class
of controls, allowing for so-called relaxed controls, so that the existence of an
optimal (relaxed) control is guaranteed, while the in�mum of the costs over
the new class coincides with the value function V as given by (5).

A deterministic relaxed control is a positive measure ρ on B(Γ× [0,∞)), the
Borel σ-algebra on Γ× [0,∞), such that

ρ(Γ× [0, t]) = t for all t ≥ 0. (6)

For each G ∈ B(Γ), the function t 7→ ρ(G × [0, t]) is absolutely continuous
with respect to Lebesgue measure on [0,∞) by virtue of property (6). Denote
by ρ̇(., G) any Lebesgue density of ρ(G× [0, .]). The family of densities ρ̇(., G),
G ∈ B(Γ), can be chosen in a Borel measurable way such that ρ̇(t, .) is a
probability measure on B(Γ) for each t ≥ 0, and

ρ(B) =
∫ ∞

0

∫
Γ
1{(γ,t)∈B} ρ̇(t, dγ) dt for all B ∈ B(Γ× [0,∞)).

Denote byR the space of deterministic relaxed controls which is equipped with
the weak-compact topology induced by the following notion of convergence: a
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sequence (ρn)n∈N of relaxed controls converges to ρ ∈ R if and only if∫
Γ×[0,∞)

g(γ, t) dρn(γ, t)
n→∞−→

∫
Γ×[0,∞)

g(γ, t) dρ(γ, t) for all g ∈ Cc(Γ× [0,∞)),

where Cc(Γ × [0,∞)) is the space of all real-valued continuous functions on
Γ × [0,∞) having compact support. Under the weak-compact topology, R is
a (sequentially) compact space.

Suppose (ρn)n∈N is a convergent sequence in R with limit ρ. Given T > 0,
let ρn|T denote the restriction of ρn to the Borel σ-algebra on Γ × [0, T ], and
denote by ρ|T the restriction of ρ to B(Γ × [0, T ]). Then ρn|T , n ∈ N, ρ|T are
all �nite measures and (ρn|T ) converges weakly to ρ|T .

A relaxed control process is an R-valued random variable R such that the
mapping ω 7→ R(Γ× [0, t])(ω) is Ft-measurable for all t ≥ 0, G ∈ B(Γ). For a
relaxed control process R Equation (1) takes on the form

dX(t) =
(∫

Γ
b(Xt, γ) Ṙ(t, dγ)

)
dt + σ(Xt) dW (t), t ≥ 0, (7)

where (Ṙ(t, .))t≥0 is the family of derivative measures associated with R.
The family (Ṙ(t, .)) can be constructed in a measurable way (cf. Kushner,
1990: p. 52). A relaxed control process together with its stochastic basis in-
cluding the Wiener process is called admissible relaxed control if, for every
deterministic initial condition, Equation (7) has a unique solution which is
also weakly unique. Any ordinary control process u can be represented as a
relaxed control process by setting

R(B) :=
∫ ∞

0

∫
Γ
1{(γ,t)∈B} δu(t)(dγ) dt, B ∈ B(Γ× [0,∞)),

where δγ is the Dirac measure at γ ∈ Γ. Denote by Ûad the set of all admissible

relaxed controls. Instead of (4) we de�ne a cost functional on D0 × Ûad by

Ĵ(ϕ,R) := E
(∫ τ

0

∫
Γ
exp(−βs) · k

(
Xϕ,R(s), γ

)
Ṙ(s, dγ) ds + g

(
Xϕ,R(τ)

))
,

(8)
where Xϕ,R is the solution to Equation (7) under the relaxed control process
R with initial segment ϕ and τ is de�ned in analogy to (3). Instead of (5) as
value function we have

V̂ (ϕ) := inf{Ĵ(ϕ,R) | R ∈ Ûad}, ϕ ∈ D0. (9)

The cost functional Ĵ depends only on the joint distribution of the solution
Xϕ,R and the underlying control process R, since τ , the time horizon, is a
deterministic function of the solution. The distribution of Xϕ,R, in turn, is
determined by the initial condition ϕ and the joint distribution of the control
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process and its accompanying Wiener process. Letting the time horizon vary,
we may regard Ĵ as a function of the law of (X,R,W, τ), that is, as being
de�ned on a subset of the set of probability measures on B(D∞ ×R× D̃∞ ×
[0,∞]). Notice that the time interval has been compacti�ed. The domain of
de�nition of Ĵ is determined by the class of admissible relaxed controls for
Equation (7), the de�nition of the time horizon and the distributions of the
initial segments X0.

The idea in proving existence of an optimal strategy is to check that Ĵ(ϕ, .)
is a (sequentially) lower semi-continuous function de�ned on a (sequentially)
compact set. It then follows from a theorem by Weierstraÿ that Ĵ(ϕ, .) at-
tains its minimum at some point of its compact domain (cf. Yong and Zhou,
1999: p. 65). The following proposition gives the analogue of Theorem 10.1.1 in
Kushner and Dupuis (2001: pp. 271-275) for our setting. We present the proof
in detail, because the identi�cation of the limit process is di�erent from the
classical case.

Proposition 1 Assume (A1) � (A4). Let ((RM ,WM))M∈N be any sequence of
admissible relaxed controls for Equation (7), where (RM ,WM) is de�ned on
the �ltered probability space (ΩM ,FM , (FM

t ),PM). Let XM be a solution to (7)
under control (RM ,WM) with deterministic initial condition ϕM ∈ D0, and
assume that (ϕM) tends to ϕ uniformly for some ϕ ∈ D0. For each M ∈ N,
let τM be an (FM

t )-stopping time. Then ((XM , RM ,WM , τM))M∈N is tight.

Denote by (X,R,W, τ) a limit point of the sequence ((XM , RM ,WM , τM))M∈N.
De�ne a �ltration by Ft := σ(X(s), R(s),W (s), τ1{τ≤t}, s ≤ t), t ≥ 0. Then
W (.) is an (Ft)-adapted Wiener process, τ is an (Ft)-stopping time, (R,W )
is an admissible relaxed control, and X is a solution to Equation (7) under
(R,W ) with initial condition ϕ.

PROOF. Tightness of (XM) follows from the Aldous criterion (cf. Billingsley,
1999: pp. 176-179): given M ∈ N, any bounded (FM

t )-stopping time ν and
δ > 0 we have

EM

(∣∣∣XM(ν + δ)−XM(ν)
∣∣∣2 ∣∣∣ FM

ν

)
≤ 2K2δ(δ + 1)

as a consequence of Assumption (A3) and the Itô isometry. Notice that XM(0)
tends to X(0) as M goes to in�nity by hypothesis. The sequences (RM) and
(τM) are tight, because the value spaces R and [0,∞], respectively, are com-
pact. The sequence (WM) is tight, since all WM induce the same measure. Fi-
nally, componentwise tightness implies tightness of the product (cf. Billingsley,
1999: p. 65).

By abuse of notation, we do not distinguish between the convergent subse-
quence and the original sequence and assume that ((XM , RM ,WM , τM)) con-
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verges weakly to (X,R,W, τ). The random time τ is an (Ft)-stopping time
by construction of the �ltration. Likewise, R is (Ft)-adapted by construction,
and it is indeed a relaxed control process, because R(Γ × [0, t]) = t, t ≥ 0,
P-almost surely by weak convergence of the relaxed control processes (RM) to
R. The process W has Wiener distribution and continuous paths with prob-
ability one, being the limit of standard Wiener processes. To check that W
is an (Ft)-Wiener process, we use the martingale problem characterization of
Brownian motion. To this end, for g ∈ Cc(Γ×[0,∞)), ρ ∈ R de�ne the pairing

(g, ρ)(t) :=
∫
Γ×[0,t]

g(γ, s) dρ(γ, s), t ≥ 0.

Notice that real-valued continuous functions on R can be approximated by
functions of the form

R 3 ρ 7→ H̃
(
(gj, ρ)(ti), (i, j) ∈ Np × Nq

)
∈ R,

where p, q are natural numbers, {ti | i ∈ Np} ⊂ [0,∞), and H̃, gj, j ∈ Nq, are
suitable continuous functions with compact support and NN := {1, . . . , N}
for any N ∈ N. Let t ≥ 0, t1, . . . , tp ∈ [0, t], h ≥ 0, g1, . . . , gq be functions in
Cc(Γ× [0,∞)), and H be a continuous function of 2p+p·q+1 arguments with
compact support. Since WM is an (FM

t )-Wiener process for each M ∈ N, we
have for all f ∈ C2

c(R)

EM

(
H

(
XM(ti), (gj, R

M)(ti),W
M(ti), τ

M1{τM≤t}, (i, j) ∈ Np × Nq

)
·
(
f

(
WM(t+ h)

)
− f

(
WM(t)

)
− 1

2

t+h∫
t

∂2f

∂x2

(
WM(s)

)
ds

))
= 0.

By the weak convergence of ((XM , RM ,WM , τM))M∈N to (X,W,R, τ) we see
that

E
(
H

(
X(ti), (gj, R)(ti),W (ti), τ1{τ≤t}, (i, j) ∈ Np × Nq

)
·
(
f

(
W (t+ h)

)
− f

(
W (t)

)
− 1

2

t+h∫
t

∂2f

∂x2

(
W (s)

)
ds

))
= 0

for all f ∈ C2
c(R). AsH, p, q, ti, gj vary over all possibilities, the corresponding

random variables H(X(ti), (gj, R)(ti),W (ti), τ1{τ≤t}, (i, j) ∈ Np × Nq) induce
the σ-algebra Ft. Since t ≥ 0, h ≥ 0 were arbitrary, it follows that

f
(
W (t)

)
− f

(
W (0)

)
− 1

2

t∫
0

∂2f

∂x2

(
W (s)

)
ds, t ≥ 0,

is an (Ft)-martingale for every f ∈ C2
c(R). Consequently,W is an (Ft)-Wiener

process.
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It remains to show that X solves Equation (7) under control (R,W ) with
initial condition ϕ. Notice that X has continuous paths on [0,∞) P-almost
surely, because the process (X(t))t≥0 is the weak limit in D̃∞ of continuous
processes. Fix T > 0. We have to check that P-almost surely

X(t) = ϕ(0) +
∫ t

0

∫
Γ
b(Xs, γ) Ṙ(s, dγ) ds+

∫ t

0
σ(Xs) dW (s) for all t ∈ [0, T ].

By virtue of the Skorohod representation theorem (cf. Billingsley, 1999: p. 70)
we may assume that the processes (XM , RM ,WM), M ∈ N, are all de�ned
on the same probability space (Ω,F ,P) as (X,R,W ) and that convergence of
((XM , RM ,WM)) to (X,R,W ) is P-almost sure. Since X, W have continuous
paths on [0, T ] and (ϕM) converges to ϕ in the uniform topology, one �nds
Ω̃ ∈ F with P(Ω̃) = 1 such that for all ω ∈ Ω̃

sup
t∈[−r,T ]

∣∣∣XM(t)(ω)−X(t)(ω)
∣∣∣ M→∞−→ 0, sup

t∈[−r,T ]

∣∣∣WM(t)(ω)−W (t)(ω)
∣∣∣ M→∞−→ 0,

and also RM(ω) → R(ω) in R. Let ω ∈ Ω̃. We �rst show that

∫ t

0

∫
Γ
b
(
XM

s (ω), γ
)
ṘM(s, dγ)(ω) ds

M→∞−→
∫ t

0

∫
Γ
b
(
Xs(ω), γ

)
Ṙ(s, dγ)(ω) ds

uniformly in t ∈ [0, T ]. As a consequence of Assumption (A4), the uniform
convergence of the trajectories on [−r, T ] and property (6) of the relaxed
controls, we have∫

Γ×[0,T ]

∣∣∣b(XM
s (ω), γ

)
− b

(
Xs(ω), γ

)∣∣∣ dRM(γ, s)(ω)
M→∞→ 0.

By Assumption (A2), we �nd a countable set Aω ⊂ [0, T ] such that the map-
ping (γ, s) 7→ b(Xs(ω), γ) is continuous in all (γ, s) ∈ Γ × ([0, T ] \ Aω). Since
Aω is countable we have R(ω)(Γ×Aω) = 0. Hence, by the generalized mapping
theorem (cf. Billingsley, 1999: p. 21), we obtain for each t ∈ [0, T ]∫

Γ×[0,t]
b
(
Xs(ω), γ

)
dRM(γ, s)(ω)

M→∞→
∫
Γ×[0,t]

b
(
Xs(ω), γ

)
dR(γ, s)(ω).

The convergence is again uniform in t ∈ [0, T ], as b is bounded and RM ,
M ∈ N, R are all positive measures with mass T on Γ× [0, T ]. De�ne càdlàg
processes CM , M ∈ N, on [0,∞) by

CM(t) := ϕM(0) +
∫
Γ×[0,t]

b(XM
s , γ) dRM(γ, s), t ≥ 0,

and de�ne C in analogy to CM with ϕ, R, X in place of ϕM , RM , XM ,
respectively. From the above, we know that CM(t) → C(t) holds uniformly
over t ∈ [0, T ] for any T > 0 with probability one. De�ne operators FM :
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D̃∞ → D̃∞, M ∈ N, mapping càdlàg processes to càdlàg processes by

FM(Y )(t)(ω) := σ

[−r, 0] 3 s 7→

Y (t+s)(ω) if t+s ≥ 0,

ϕM(t+s) else

 , t ≥ 0, ω ∈ Ω,

and de�ne F in the same way as FM with ϕM replaced by ϕ. Observe that
XM solves

XM(t) = CM(t) +
∫ t

0
FM(XM)(s−) dWM(s), t ≥ 0.

Denote by (X̂(t))t≥0 the unique solution to

X̂(t) = C(t) +
∫ t

0
F (X̂)(s−) dW (s), t ≥ 0,

and set X̂(t) := ϕ(t) for t ∈ [−r, 0). Assumption (A4) and the uniform
convergence of (ϕM) to ϕ imply that FM(X̂) converges to F (X̂) uniformly
on compacts in probability (convergence in ucp). Theorem V.15 in Protter
(2003: p. 265) yields that (XM) converges to X̂ in ucp, that is

sup
t∈[0,T ]

∣∣∣XM(t)− X̂(t)
∣∣∣ M→∞−→ 0 in probability P for any T > 0.

Therefore, X is indistinguishable from X̂. By de�nition of C and F , this
implies that X̂ solves Equation (7) under control (R,W ) with initial condition
ϕ, and so does X.

If the time horizon were deterministic, then the existence of optimal strategies
in the class of relaxed controls would be clear. Given an initial condition ϕ ∈
D0, one would select a sequence ((RM ,WM))M∈N such that (Ĵ(ϕ,RM)) con-
verges to its in�mum. By Proposition 1, a suitable subsequence of ((RM ,WM))
and the associated solution processes would converge weakly to (R,W ) and
the associated solution to Equation (7). Taking into account (8), the de�nition
of the costs, this in turn would imply that Ĵ(ϕ, .) attains its minimum value
at R or, more precisely, (X,R,W ).

A similar argument is still valid, if the time horizon depends continuously on
the paths with probability one under every possible solution. That is to say,
the mapping

τ̂ : D∞ → [0,∞], τ̂(ψ) := inf{t ≥ 0 | ψ(t) /∈ int(I)} ∧ T̄ , (10)

is Skorohod continuous with probability one under the measure induced by any
solution Xϕ,R, R any relaxed control. This is indeed the case if the di�usion
coe�cient σ is bounded away from zero as required by Assumption (A5), cf.
Kushner and Dupuis (2001: pp. 277-281).

10



By introducing relaxed controls, we have enlarged the class of possible strate-
gies. The in�mum of the costs, however, remains the same for the new class.
This is a consequence of the fact that stochastic relaxed controls can be arbi-
trarily well approximated by piecewise constant ordinary stochastic controls
which attain only a �nite number of di�erent control values. A proof of this
assertion is given in Kushner (1990: pp. 59-60) in case the time horizon is �nite,
and extended to the case of control up to an exit time in Kushner and Dupuis
(2001: pp. 282-286). Notice that nothing hinges on the presence or absence of
delay in the controlled dynamics. Let us summarize our �ndings.

Theorem 2 Assume (A1) � (A5). Given any deterministic initial condition
ϕ ∈ D0, the relaxed control problem determined by (7) and (8) possesses an
optimal strategy, and the minimal costs are the same as for the original control
problem.

4 Approximating chains

In order to construct �nite-dimensional approximations to our control prob-
lem, we discretise time and state space. In the non-delay case a random time
grid permits simpler proofs. Since in the delay case the segment process must
be well approximated, a deterministic grid is natural and preferable, but calls
for proof techniques deviating from the classical way adopted by Kushner and
Dupuis (2001) or Kushner (2005). Denote by h > 0 the mesh size of an equidis-
tant time discretisation starting at zero. Let Sh :=

√
hZ be the corresponding

state space, and set Ih := I ∩ Sh. Notice that Sh is countable and Ih is �nite.
Let Λh : R → Sh be a round-o� function. We will simplify things even further
by considering only mesh sizes h = r

M
for some M ∈ N, where r is the delay

length. The number M will be referred to as discretisation degree.

The admissible controls for the �nite-dimensional control problems correspond
to piecewise constant processes in continuous time. A time-discrete process
u = (u(n))n∈N0 on a stochastic basis (Ω,F , (Ft),P) with values in Γ is a
discrete admissible control of degreeM if u takes on only �nitely many di�erent
values in Γ and u(n) is Fnh-measurable for all n ∈ N0. Denote by (ū(t))t≥0 the
piecewise constant càdlàg interpolation to u on the time grid. We call a time-
discrete process (ξ(n))n∈{−M,...,0}∪N a discrete chain of degree M if (ξ(n)) takes
its values in Sh and ξ(n) is Fnh-measurable for all n ∈ N0. In analogy to ū, write
(ξ̄(t))t≥−r for the càdlàg interpolation to the discrete chain (ξ(n))n∈{−M,...,0}∪N.
We denote by ξ̄t the D0-valued segment of ξ̄(.) at time t ≥ 0.

Let ϕ ∈ D0 be a deterministic initial condition, and suppose we are given
a sequence of discrete admissible controls (uM)M∈N, that is u

M is a discrete
admissible control of degree M on a stochastic basis (ΩM ,FM , (FM

t ),PM) for

11



each M ∈ N. In addition, suppose that the sequence (ūM) of interpolated
discrete controls converges weakly to some relaxed control R. We are then
looking for a sequence approximating the solution X of Equation (7) under
control (R,W ) with initial condition ϕ, where the Wiener process W has to
be constructed from the approximating sequence. Given M -step or extended
Markov transition functions pM : SM+1

h × Γ × Sh → [0, 1], M ∈ N, we de�ne
a sequence of approximating chains associated with ϕ and (uM) as a family
(ξM)M∈N of processes such that ξM is a discrete chain of degree M de�ned on
the same stochastic basis as uM , provided the following conditions are ful�lled
for h = hM := r

M
tending to zero:

(i) Initial condition: ξM(n) = Λh(ϕ(nh)) for all n ∈ {−M, . . . , 0}.
(ii) Extended Markov property: for all n ∈ N0, all x ∈ Sh

PM

(
ξM(n+1) = x

∣∣∣ FM
nh

)
= pM

(
ξM(n−M), . . . , ξM(n), uM(n), x

)
.

(iii) Local consistency with the drift coe�cient:

µξM (n) := EM

(
ξM(n+1)− ξM(n)

∣∣∣ FM
nh

)
= h · b

(
ξ̄M
nh, u

M(n)
)

+ o(h) =: h · bh
(
ξ̄M
nh, u

M(n)
)
.

(iv) Local consistency with the di�usion coe�cient:

EM

((
ξM(n+1)−ξM(n)−µξM (n)

)2∣∣∣ FM
nh

)
= h·σ2(ξ̄M

nh)+o(h) =: h·σ2
h(ξ̄

M
nh).

(v) Jump heights: there is a positive number Ñ , independent ofM , such that

sup
n
|ξM(n+ 1)− ξM(n)| ≤ Ñ

√
hM .

It is straightforward, under Assumptions (A3) and (A5), to construct a se-
quence of extended Markov transition functions such that the jump height and
the local consistency conditions can be ful�lled. Assuming that the bounding
constant K from (A3) is a natural number, we may de�ne the functions pM

for all M ∈ N big enough by, for example,

pM(Z(−M), . . . , Z(0), γ, x) :=



1
2K2σ(Z̄) +

√
h

2K
b(Z̄, γ), if x = Z(0) +K

√
h,

1
2K2σ(Z̄)−

√
h

2K
b(Z̄, γ), if x = Z(0)−K

√
h,

1− 1
K2σ(Z̄) if x = Z(0)

0 else,

where h = hM , Z = (Z(−M), . . . , Z(0)) ∈ SM+1
h , γ ∈ Γ, x ∈ Sh, and Z̄ ∈ D0

is the piecewise constant interpolation associated with Z. The family (pM)
as just de�ned, in turn, is all we need in order to construct a sequence of
approximating chains associated with any given ϕ, (uM).

12



We will represent the interpolation ξ̄M as a solution to an equation corre-
sponding to Equation (1) with control process ūM and initial condition ϕM ,
where ϕM is the piecewise constant Sh-valued càdlàg interpolation to ϕ, that
is ϕM = ξ̄M

0 . De�ne the discrete process (LM(n))n∈N0 by L
M(0) := 0 and

ξM(n) = ϕM(0) +
n−1∑
i=0

h · bh
(
ξ̄M
ih , u

M(i)
)

+ LM(n), n ∈ N.

Observe that LM is a martingale in discrete time with respect to the �ltration
(FM

nh). Setting

εM
1 (t) :=

b t
h
c−1∑

i=0

h · bh
(
ξ̄M
ih , ū

M(ih)
)
−

∫ t

0
b
(
ξ̄M
s , ū

M(s)
)
ds, t ≥ 0,

the interpolated process ξ̄M can be represented as solution to

ξ̄M(t) = ϕM(0) +
∫ t

0
b
(
ξ̄M
s , ū

M(s)
)
ds + LM(b t

h
c) + εM

1 (t), t ≥ 0.

With T > 0, we have for the error term

EM

(
supt∈[0,T ]

∣∣∣εM
1 (t)

∣∣∣) ≤
bT

h
c−1∑

i=0

hEM

(∣∣∣bh(
ξ̄M
ih , u

M(i)
)
− b

(
ξ̄M
ih , u

M(i)
)∣∣∣)

+ K · h +
∫ hbT

h
c

0
EM

(∣∣∣b(ξ̄M
hb s

h
c, ū

M(s)
)
− b

(
ξ̄M
s , ū

M(s)
)∣∣∣) ds,

which tends to zero as M goes to in�nity by Assumptions (A2), (A3), dom-
inated convergence and the de�ning properties of (ξM). Moreover, |εM

1 (t)| is
bounded by 2K ·T for all t ∈ [0, T ] and all M big enough, whence also

EM

(
supt∈[0,T ]

∣∣∣εM
1 (t)

∣∣∣2) M→∞−→ 0.

The discrete-time martingale LM can be rewritten as a discrete stochastic
integral. De�ne (WM(n))n∈N0 by setting WM(0) := 0 and

WM(n) :=
n−1∑
i=0

1

σ(ξ̄M
ih )

(
LM(i+1)− LM(i)

)
, n ∈ N.

Using the piecewise constant interpolation W̄M of WM , the process ξ̄M can
be expressed as the solution to

ξ̄M(t) = ϕM(0) +
∫ t

0
b
(
ξ̄M
s , ū

M(s)
)
ds +

∫ t

0
σ

(
ξ̄M
hb s−

h
c

)
dW̄M(s) + εM

2 (t),

(11)
where the error terms (εM

2 ) converge to zero as (εM
1 ) before.
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We are now prepared for the convergence result, which should be compared
to Theorem 10.4.1 in Kushner and Dupuis (2001: p. 290). The proof is similar
to that of Proposition 1. We merely point out the main di�erences.

Proposition 3 Assume (A1) � (A5). For each M ∈ N, let τM be a stopping
time with respect to the �ltration generated by (ξ̄M(s), ūM(s), W̄M(s), s ≤ t).
Let RM denote the relaxed control representation of ūM . Suppose (ϕM) con-
verges to ϕ uniformly on [−r, 0]. Then ((ξ̄M , RM , W̄M , τM))M∈N is tight.

For a limit point (X,R,W, τ) set Ft := σ
(
X(s), R(s),W (s), τ1{τ≤t}, s ≤ t

)
,

t ≥ 0. Then W is an (Ft)-adapted Wiener process, τ is an (Ft)-stopping time,
(R,W ) is an admissible relaxed control, and X is a solution to Equation (7)
under (R,W ) with initial condition ϕ.

PROOF. The main di�erences in the proof are establishing the tightness of
(W̄M) and the identi�cation of the limit points. We calculate the order of
convergence for the discrete-time previsible quadratic variations of (WM):

〈WM〉n =
n−1∑
i=0

E
(
(WM(i+1)−WM(i))2

∣∣∣ FM
ih

)
= nh + o(h)

n−1∑
i=0

1

σ2(ξ̃M
ih )

for allM ∈ N, n ∈ N0. Taking into account Assumption (A5) and the de�nition
of the time-continuous processes W̄M , we see that 〈W̄M〉 tends to Id[0,∞) in
probability uniformly on compact time intervals. By Theorem VIII.3.11 of
Jacod and Shiryaev (1987: p. 432) we conclude that (W̄M) converges weakly
in D̃∞ to a standard Wiener process W . That W has independent increments
with respect to the �ltration (Ft) can be seen by considering the �rst and
second conditional moments of the increments of WM for each M ∈ N and
applying the conditions on local consistency and the jump heights of (ξM).

Suppose ((ξ̄M , RM , W̄M)) is weakly convergent with limit point (X,R,W ).
The remaining di�erent part is the identi�cation of X as a solution to (7)
under the relaxed control (R,W ) with initial condition ϕ. Notice that X is
continuous on [0,∞) because of the condition on the jump heights of (ξM),
cf. Theorem 3.10.2 in Ethier and Kurtz (1986: p. 148). Let us de�ne càdlàg
processes CM , C on [0,∞) by

CM(t) := ϕM(0) +
∫ t

0
b
(
ξ̄M
s , ū

M(s)
)
ds + εM

2 (t), t ≥ 0,

C(t) := ϕ(0) +
∫
Γ×[0,t]

b(Xs, γ) dR(s, γ), t ≥ 0.

Then C, CM are bounded on compact time intervals uniformly in M ∈ N.
Invoking Skorohod's representation theorem, one establishes weak convergence
of (CM) to C as in the proof of Proposition 1.
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The sequence (W̄M) is of uniformly controlled variations, hence a good se-
quence of integrators in the sense of Kurtz and Protter (1991), because the
jump heights are uniformly bounded and W̄M is a martingale for eachM ∈ N.
We have weak convergence of (W̄M) to W . The results in Kurtz and Protter
(1991) guarantee weak convergence of the corresponding adapted quadratic
variation processes, that is ([W̄M , W̄M ]) tends to [W,W ] in DR([0,∞)), where
the square brackets indicate the adapted quadratic (co-)variation. Convergence
also holds for the sequence of process pairs (W̄M , [W̄M , W̄M ]) in DR2([0,∞)),
see Theorem 36 in Kurtz and Protter (2004).

We now know that each of the sequences (ξ̄M), (CM), (W̄M), ([W̄M , W̄M ])
is weakly convergent in DR([0,∞)). Actually, we have weak convergence for
the sequence of process quadruples (ξ̄M , CM , W̄M , [W̄M , W̄M ]) in DR4([0,∞)).
To see this, notice that each of the sequences (ξ̄M + CM), (ξ̄M + W̄M),
(ξ̄M +[W̄M , W̄M ]), (CM +W̄M), (CM +[W̄M , W̄M ]), and (W̄M +[W̄M , W̄M ]) is
tight inDR([0,∞)), because the limit processes C,X,W , and [W,W ] = Id[0,∞)

are all continuous on [0,∞). According to Problem 22 in Ethier and Kurtz
(1986: p. 153) this implies tightness of the quadruple sequence in DR4([0,∞)).
Since the four component sequences are all weakly convergent, the four-dimen-
sional sequence must have a unique limit point, namely (X,C,W, [W,W ]). By
virtue of Skorohod's theorem, we may again work under P-almost sure con-
vergence. Since C, X, W , [W,W ] are all continuous, it follows that CM → C,
ξ̄M → X, W̄M → W , [W̄M , W̄M ] → [W,W ] uniformly on compact subinter-
vals of [0,∞) with probability one. De�ne the mapping F : D0 × D̃∞ → D̃∞
by

F (ϕ, x)(t) := σ

[−r, 0] 3 s 7→

x(t+s) if t+s ≥ 0,

ϕ(t+s) else

 , t ≥ 0.

For M ∈ N, let FM be the mapping from D̃∞ to D̃∞ given by FM(x) :=
F (ϕM , x). Let HM : D̃∞ → D̃∞ be the càdlàg interpolation operator of degree
M , that is HM(x) is the piecewise constant càdlàg interpolation to x ∈ D̃∞
along the time grid of mesh size r

M
starting at zero. De�ne F̄M : D̃∞ → D̃∞

by
F̄M(x)(t) := F

(
ϕM , HM(x)

)(
btcM

)
, t ≥ 0,

where btcM := r
M
bM

r
tc. If ψ ∈ D∞, we will take F

M(ψ), F̄M(ψ) and F (ψ) to
equal FM(x), F̄M(x) and F (ϕ, x), respectively, where x is the restriction of ψ
to [0,∞). Equation (11) translates to

ξ̄M(t) = CM(t) +
∫ t

0
F̄M(ξ̄M)(s−)dW̄M(s), t ≥ 0.

Let ξ̂ be the unique càdlàg process solving

ξ̂(s) = ϕ(s), s ∈ [−r, 0), ξ̂(t) = C(t) +
∫ t

0
F (ξ̂)(s−)dW (s), t ≥ 0.
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Fix T > 0. Since ξ̄M converges to X as M goes to in�nity uniformly on
compacts with probability one, it is enough to show that

E
(

sup
t∈[−r,T ]

∣∣∣ξ̂(t)− ξ̄M(t)
∣∣∣2) M→∞−→ 0. (∗)

First observe that

E
(

sup
t∈[0,T ]

∣∣∣C(t)− CM(t)
∣∣∣2) M→∞−→ 0, sup

t∈[−r,0)

∣∣∣ξ̂(t)− ξ̄M(t)
∣∣∣2 M→∞−→ 0,

because C is uniformly bounded on compact time intervals and ϕ is càdlàg
and continuous on [−r, 0). Given ε > 0, by standard estimates and Gronwall's
lemma we �nd that there is a positive number M0 = M0(ε) such that

E
(

sup
t∈[0,T ]

∣∣∣∣∫ t

0
F (ξ̂)(s−)dW (s)−

∫ t

0
F̄M(ξ̄M)(s−)dW̄M(s)

∣∣∣∣2)
≤ 76Tε(K2+ 1) exp

(
4K2

LT
)

for allM ≥M0.

This yields (∗) and the assertion follows.

If we consider approximations along all equidistant partitions of [−r, 0], then
the hypothesis about the uniform convergence of the initial conditions implies
that ϕ must be continuous on [−r, 0] \ {0}. In case ϕ has jumps at positions
locatable on one of the equidistant partitions, the convergence results continue
to hold when we restrict to a sequence of re�ning partitions.

5 Convergence of the minimal costs

The objective behind the introduction of sequences of approximating chains
was to obtain a device for approximating the value function V of the original
problem. The idea now is to de�ne, for each discretisation degree M ∈ N, a
discrete control problem with cost functional JM so that JM is an approxi-
mation of the cost functional J of the original problem in the following sense:
Given a suitable initial segment ϕ ∈ D0 and a sequence of discrete admissible
controls (uM) such that (ūM) weakly converges to a relaxed control R, we
have J(ϕ, uM) → Ĵ(ϕ,R) as M tends to in�nity, where Ĵ is the relaxed cost
functional de�ned in (8). Under the assumptions introduced above, it will fol-
low that also the value functions associated with the discrete cost functionals
converge to the value function of the original problem.

Fix M ∈ N, and let h := r
M
. Denote by UM

ad the set of discrete admissible
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controls of degree M . De�ne the cost functional of degree M by

JM
(
ϕ, u

)
:= E

Nh−1∑
n=0

exp(−βnh) · k
(
ξ(n), u(n)

)
· h + g

(
ξ(Nh)

) , (12)

where ϕ ∈ D0, u ∈ UM
ad is de�ned on the stochastic basis (Ω,F , (Ft),P) and

(ξ(n)) is a discrete chain of degree M de�ned according to pM and u with
initial condition ϕ. The discrete exit time step Nh is given by

Nh := min{n ∈ N0 | ξ(n) /∈ Ih} ∧ b T̄
h
c. (13)

Denote by τ̄M := h · Nh the exit time for the corresponding interpolated
processes. The value function of degree M is de�ned as

V M(ϕ) := inf
{
JM

(
ϕ, u

) ∣∣∣ u ∈ UM
ad

}
, ϕ ∈ D0. (14)

We are now in a position to state the result about convergence of the minimal
costs. Proposition 4 and Theorem 5 are comparable to Theorems 10.5.1 and
10.5.2 in Kushner and Dupuis (2001: pp. 292-295). Let us suppose that the
initial condition ϕ ∈ D0 and the sequence of partitions of [−r, 0] are such that
the discretised initial conditions converge to ϕ uniformly on [−r, 0].

Proposition 4 Assume (A1) � (A5). If the sequence (ξ̄M , ūM , W̄M , τ̄M) of in-
terpolated processes converges weakly to a limit point (X,R,W, τ), then X is
a solution to Equation (7) under relaxed control (R,W ) with initial condition
ϕ, τ is the exit time for X as given by (3), and we have

JM(ϕ, uM)
M→∞−→ Ĵ(ϕ,R).

PROOF. The convergence assertion for the costs is a consequence of Propo-
sition 3, the fact that, by virtue of Assumption (A5), the exit time τ̂ de�ned
in (10) is Skorohod-continuous, and the de�nition of JM and J (or Ĵ).

Theorem 5 Assume (A1) � (A5). Then we have limM→∞ V M(ϕ) = V (ϕ).

PROOF. First notice that lim infM→∞ V M(ϕ) ≥ V (ϕ) as a consequence of
Propositions 3 and 4. In order to show lim supM→∞ V M(ϕ) ≤ V (ϕ) choose a
relaxed control (R,W ) so that Ĵ(ϕ,R) = V (ϕ) according to Proposition 1.
Given ε > 0, one can construct a sequence of discrete admissible controls (uM)
such that ((ξ̄M , ūM , W̄M , τ̄M)) is weakly convergent, where (ξ̄M), (W̄M), (τ̄M)
are constructed as above, and

lim sup
M→∞

|JM(ϕ, uM)− Ĵ(ϕ,R)| ≤ ε.
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The existence of such a sequence of discrete admissible controls is guaranteed,
cf. the discussion at the end of Section 3. By de�nition, V M(ϕ) ≤ JM(ϕ, uM)
for each M ∈ N. Using Proposition 4 we �nd that

lim sup
M→∞

V M(ϕ) ≤ lim sup
M→∞

JM(ϕ, uM) ≤ V (ϕ) + ε,

and since ε was arbitrary, the assertion follows.
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