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Abstract

A basic result of large deviations theory is Sanov’s theorem, which
states that the sequence of empirical measures of independent and iden-
tically distributed samples satisfies the large deviation principle with
rate function given by relative entropy with respect to the common
distribution. Large deviation principles for the empirical measures are
also known to hold for broad classes of weakly interacting systems.
When the interaction through the empirical measure corresponds to
an absolutely continuous change of measure, the rate function can be
expressed as relative entropy of a distribution with respect to the law
of the McKean-Vlasov limit with measure-variable frozen at that dis-
tribution. We discuss situations, beyond that of tilted distributions, in
which a large deviation principle holds with rate function in relative
entropy form.
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1 Introduction

Weakly interacting systems are families of particle systems whose compo-
nents, for each fixed number N of particles, are statistically indistinguishable
and interact only through the empirical measure of the N -particle system.
∗The author is grateful to Paolo Dai Pra for helpful comments, questions, and discus-
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The study of weakly interacting systems originates in statistical mechanics
and kinetic theory; in this context, they are often referred to as mean field
systems.

The joint law of the random variables describing the states of the N -
particle system of a weakly interacting system is invariant under permuta-
tions of components, hence determined by the distribution of the associated
empirical measure. For large classes of weakly interacting systems, the law
of large numbers is known to hold, that is, the sequence of N -particle empir-
ical measures converges to a deterministic probability measure as N tends
to infinity. The limit measure can often be characterized in terms of a limit
equation, which, by extrapolation from the important case of Markovian
systems, is called McKean-Vlasov equation [cf. McKean, 1966]. As with the
classical law of large numbers, different kinds of deviations of the prelimit
quantities (the N -particle empirical measures) from the limit quantity (the
McKean-Vlasov distribution) can be studied. Here we are interested in large
deviations.

Large deviations for the empirical measures of weakly interacting sys-
tems, especially Markovian systems, have been the object of a number of
works. The large deviation principle is usually obtained by transferring
Sanov’s theorem, which gives the large deviation principle for the empir-
ical measures of independent and identically distributed samples, through
an absolutely continuous change of measure. This approach works when
the effect of the interaction through the empirical measure corresponds to
a change of measure which is absolutely continuous with respect to some
fixed reference distribution of product form. Sanov’s theorem can then be
transferred using Varadhan’s lemma. In the case of Markovian dynamics,
such a change-of-measure argument yields the large deviation principle on
path space; see Léonard [1995a] for non-degenerate jump diffusions, Dai Pra
and den Hollander [1996] for a model of Brownian particles in a potential
field and random environment, and Del Moral and Guionnet [1998] for a
class of discrete-time Markov processes. An extension of Varadhan’s lemma
tailored to the change of measure needed for empirical measures is given in
Del Moral and Zajic [2003] and applied to a variety of non-degenerate weakly
interacting systems. The large deviation rate function in all those cases can
be written in relative entropy form, that is, expressed as relative entropy
of a distribution with respect to the law of the McKean-Vlasov limit with
measure-variable frozen at that distribution; cf. Remark 3.2 below.

In the case of Markovian dynamics, the large deviation principle on path
space can be taken as the first step in deriving the large deviation principle
for the empirical processes; cf. Léonard [1995a] or Feng [1994a,b]. In Daw-
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son and Gärtner [1987], the large deviation principle for the empirical pro-
cesses of weakly interacting Itô diffusions with non-degenerate and measure-
independent diffusion matrix is established in Freidlin-Wentzell form starting
from a process level representation of the rate function for non-interacting
Itô diffusions. The large deviation principle for interacting diffusions is then
derived by time discretization, local freezing of the measure variable and an
absolutely continuous change of measure with respect to the resulting prod-
uct distributions. A similar strategy is applied in Djehiche and Kaj [1995]
to a class of pure jump processes.

A different approach is taken in the early work of Tanaka [1984], where
the contraction principle is employed to derive the large deviation principle
on path space for the special case of Itô diffusions with identity diffusion
matrix. The contraction mapping in this case is actually a bijection. Using
the invariance of relative entropy under bi-measurable bijections, the rate
function is shown to be of relative entropy form. In Léonard [1995b], the
large deviation upper bound, not the full principle, is derived by variational
methods using Laplace functionals for certain pure jump Markov processes
that do not allow for an absolutely continuous change of measure. In Budhi-
raja et al. [2012], the path space Laplace principle for weakly interacting Itô
processes with measure-dependent and possibly degenerate diffusion matrix
is established based on a variational representation of Laplace functionals,
weak convergence methods and ideas from stochastic optimal control. The
rate function is given in variational form.

The aim of this paper is to show that the large deviation principle holds
with rate function in relative entropy form also for weakly interacting sys-
tems that do not allow for an absolutely continuous change of measure with
respect to product distributions. The large deviation principle in that form
is a natural generalization of Sanov’s theorem. Two classes of systems will
be discussed: noise-based systems to which the contraction principle is ap-
plicable, and systems described by weakly interacting Itô processes.

Remark 1.1. The random variables representing the states of the particles
will be assumed to take values in a Polish space. The space of probability
measures over a Polish space will be equipped, for simplicity, with the stan-
dard topology of weak convergence. Continuity of a functional with respect
to the topology of weak convergence might be a rather restrictive condition.
This restriction can be alleviated by considering the space of probability mea-
sures that satisfy an integrability condition (for instance, finite moments of a
certain order), equipped with the topology of weak(-star) convergence with
respect to the corresponding class of continuous functions [for instance, Sec-
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tion 2b) in Léonard, 1995a]. The results presented below can be adapted to
this more general situation.

The rest of this paper is organized as follows. In Section 2, we collect
basic definitions and results of the theory of large deviations in the con-
text of Polish spaces that will be used in the sequel; standard references for
our purposes are Dembo and Zeitouni [1998] and Dupuis and Ellis [1997].
In Section 3, we introduce a toy model of discrete-time weakly interacting
systems to illustrate the use of Varadhan’s lemma, which in turn yields,
at least formally, a representation of the rate function in relative entropy
form. In Section 4, a class of weakly interacting systems is presented to
which the contraction principle is applicable but not necessarily the usual
change-of-measure technique. The large deviation rate function is shown
to be of the desired form thanks to a contraction property of relative en-
tropy. In Section 5, we discuss the case of weakly interacting Itô diffusions
with measure-dependent and possibly degenerate diffusion matrix studied
in Budhiraja et al. [2012]. The variational form of the Laplace principle
rate function established there is shown to be expressible in relative entropy
form. As a by-product, one obtains a variational representation of relative
entropy with respect to Wiener measure. The Appendix contains two results
regarding relative entropy: the contraction property mentioned above, which
extends a well-known invariance property (Appendix A), and a direct proof
of the variational representation of relative entropy with respect to Wiener
measure (Appendix B). In Appendix C, easily verifiable conditions entailing
the hypotheses of the Laplace principle of Section 5 are given.

2 Basic definitions and results

Let S be a Polish space (i.e., a separable topological space metrizable with a
complete metric). Denote by B(S) the σ-algebra of Borel subsets of S and by
P(S) the space of probability measures on B(S) equipped with the topology
of weak convergence. For µ, ν ∈ P(S), let R(ν‖µ) denote the relative entropy
of ν with respect to µ, that is,

R(ν‖µ)
.
=


∫
S log

(
dν
dµ(x)

)
ν(dx) if ν absolutely continuous w.r.t. µ,

∞ else.

Relative entropy is well defined as a [0,∞]-valued function, it is lower semi-
continuous as a function of both variables, and R(ν‖µ) = 0 if and only if
ν = µ.
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Let (ξn)n∈N be a sequence of S-valued random variables. A rate function
on S is a lower semicontinuous function S → [0,∞]. Let I be a rate function
on S. By lower semicontinuity, the sublevel sets of I, i.e., the sets I−1([0, c])

for c ∈ [0,∞), are closed. A rate function is said to be good if its sublevel
sets are compact.

Definition 2.1. The sequence (ξn)n∈N satisfies the large deviation principle
with rate function I if for all B ∈ B(S),

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1

n
logP {ξn ∈ B}

≤ lim sup
n→∞

1

n
logP {ξn ∈ B} ≤ − inf

x∈cl(B)
I(x),

where cl(B) denotes the closure and B◦ the interior of B.

Definition 2.2. The sequence (ξn) satisfies the Laplace principle with rate
function I iff for all G ∈ Cb(S),

lim
n→∞

− 1

n
logE [exp (−n ·G(ξn))] = inf

x∈S
{I(x) +G(x)} ,

where Cb(S) denotes the space of all bounded continuous functions S → R.

Clearly, the large deviation principle (or Laplace principle) is a distribu-
tional property. The rate function of a large deviation principle is unique;
see, for instance, Lemma 4.1.4 in Dembo and Zeitouni [1998, p. 117]. The
large deviation principle holds with a good rate function if and only if the
Laplace principle holds with a good rate function, and the rate function is
the same; see, for instance, Theorem 4.4.13 in Dembo and Zeitouni [1998,
p. 146].

The fact that, for good rate functions, the large deviation principle im-
plies the Laplace principle is a consequence of Varadhan’s integral lemma;
see Theorem 3.4 in Varadhan [1966]. Another consequence of Varadhan’s
lemma is the first of the following two basic transfer results, given here as
Theorem 2.1; cf. Theorem II.7.2 in Ellis [1985, p. 52].

Theorem 2.1 (Change of measure, Varadhan). Let (ξn) be a sequence of S-
valued random variables such that (ξn) satisfies the large deviation principle
with good rate function I. Let (ξ̃n)n∈N be a second sequence of S-valued
random variables. Suppose that, for every n ∈ N, Law(ξ̃n) is absolutely
continuous with respect to Law(ξn) with density

dLaw(ξ̃n)

dLaw(ξn)
(x) = exp (n · F (x)) , x ∈ S,
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where F : S → R is continuous and such that

lim
L→∞

lim sup
n→∞

1

n
logE

[
1[L,∞)(F (ξn)) · exp (n · F (ξn))

]
= −∞.

Then (ξ̃n)n∈N satisfies the large deviation principle with good rate function
I − F .

The second basic transfer result is the contraction principle, given here
as Theorem 2.2; see, for instance, Theorem 4.2.1 and Remark (c) in Dembo
and Zeitouni [1998, pp. 126-127].

Theorem 2.2 (Contraction principle). Let (ξn) be a sequence of S-valued
random variables such that (ξn) satisfies the large deviation principle with
good rate function I. Let ψ : S → Y be a measurable function, Y a Polish
space. If ψ is continuous on I−1([0,∞)), then (ψ(ξn)) satisfies the large
deviation principle with good rate function

J(y)
.
= inf

x∈ψ−1(y)
I(x), y ∈ Y,

where inf ∅ =∞ by convention.

Let X1, X2, . . . be S-valued independent and identically distributed ran-
dom variables with common distribution µ ∈ P(S) defined on some prob-
ability space (Ω,F ,P). For n ∈ N, let µn be the empirical measure of
X1, . . . , Xn, that is,

µn(ω)
.
=

1

n

n∑
i=1

δXi(ω), ω ∈ Ω,

where δx denotes the Dirac measure concentrated in x ∈ S. Sanov’s theorem
gives the large deviation principle for (µn)n∈N in terms of relative entropy.
For a proof, see, for instance, Section 6.2 in Dembo and Zeitouni [1998,
pp. 260-266] or Chapter 2 in Dupuis and Ellis [1997, 39-52]. Recall that
P(S) is equipped with the topology of weak convergence of measures.

Theorem 2.3 (Sanov). The sequence (µn)n∈N of P(S)-valued random vari-
ables satisfies the large deviation principle with good rate function

I(θ)
.
= R (θ‖µ) , θ ∈ P(S).

We are interested in analogous results for the empirical measures of
weakly interacting systems. For N ∈ N, let XN

1 , . . . , X
N
N be S-valued ran-

dom variables defined on some probability space (ΩN ,FN ,PN ). Denote by
µN the empirical measure of XN

1 , . . . , X
N
N .
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Definition 2.3. The triangular array (XN
i )N∈N,i∈{1,...,N} is called a weakly

interacting system if the following hold:

(i) for each N ∈ N, XN
1 , . . . , X

N
N is a finite exchangeable sequence;

(ii) the family (µN )N∈N of P(S)-valued random variables is tight.

Recall that a finite sequence Y1, . . . , YN of random variables with values in
a common measurable space is called exchangeable if its joint distribution is
invariant under permutations of the components, that is, Law(Y1, . . . , YN ) =

Law(Yσ(1), . . . , Yσ(N)) for every permutation σ of {1, . . . , N}. A weakly in-
teracting system (XN

i ) is said to satisfy the law of large numbers if there
exists µ ∈ P(S) such that (µN ) converges to µ in distribution or, equiva-
lently, (PN ◦(µN )−1) converges weakly to δµ. Weakly interacting systems are
sometimes called mean field systems. In the situation of Theorem 2.3, set-
ting XN

i
.
= Xi, N ∈ N, i ∈ {1, . . . , N}, defines a weakly interacting system

that satisfies the law of large numbers, the limit measure being the common
sample distribution.

3 A toy model and the desired form of the rate
function

For N ∈ N, let (Y N
i (t))i∈{1,...,N},t∈{0,1} be an independent family of standard

normal real random variables on some probability space (Ω,F ,P). Let b :

R→ R be measurable; below we will assume b to be bounded and continuous.
Define real random variables XN

1 (t), . . . , XN
N (t), t ∈ {0, 1}, by

XN
i (0)

.
= Y N

i (0), XN
i (1)

.
= XN

i (0) +
1

N

N∑
j=1

b
(
XN
j (0)

)
+ Y N

i (1).(3.1)

We may interpret the variables XN
i (t) as the states of the components of an

N -particle system at times t ∈ {0, 1}. This toy model can be obtained as the
first two steps in a discrete time version of a system of weakly interacting
Itô diffusions; cf. the discussion following Example 4.3 below. Let µN be the
empirical measure of the N -particle system on “path space,” that is,

µNω
.
=

1

N

N∑
i=1

δXN
i (ω) =

1

N

N∑
i=1

δ(XN
i (0,ω),XN

i (1,ω)), ω ∈ Ω.

Notice that the components of XN are identically distributed and interact
only through µN since

1

N

N∑
j=1

b
(
XN
j (0)

)
=

∫
R2

b(x)dµN (x, x̃)
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and the variables Y N
i (t) are independent and identically distributed. The

sequence XN
1 , . . . , X

N
N of R2-valued random variables is exchangeable.

Let λN denote the empirical measure of Y N = (Y N
1 , . . . , Y N

N ). By Sanov’s
theorem, (λN )N∈N satisfies the large deviation principle with good rate func-
tion R(.‖γ0), where γ0 is the bivariate standard normal distribution. Follow-
ing the usual way of deriving the large deviation principle, we observe that,
for every N ∈ N, the law of µN is absolutely continuous with respect to the
law of λN . To see this, set, for y, ỹ ∈ RN , θ ∈ P(R2),

νN(y,ỹ)
.
=

1

N

N∑
i=1

δ(yi,ỹi), mb(θ)
.
=

∫
b(x)dθ(x, x̃),

νNy
.
=

1

N

N∑
i=1

δ(yi), mb(y)
.
=

(∫
b(x)νNy (dx), . . . ,

∫
b(x)νNy (dx)

)T

.

Define functions f : P(R2)×R→ R and F : P(R2)→ [−∞,∞) according to

f(θ, (y, ỹ))
.
= (y +mb(θ)) · ỹ −

1

2
|y +mb(θ)|2 ,

F (θ)
.
=

{∫
R2 f(θ, (y, ỹ))dθ(y, ỹ) if f(θ, . ) is θ-integrable,

−∞ otherwise.

Then the law of XN is absolutely continuous with respect to the law of Y N

with density given by

dLaw(XN )

dLaw(Y N )
(y, ỹ) = exp

(
〈y + mb(y), ỹ〉 − 1

2
|y + mb(y)|2

)
= exp

(
N · F

(
µN(y,ỹ)

))
.

(3.2)

Since µN = νN
(XN (0),XN (1))

and λN = νN
(Y N (0),Y N (1))

, it follows from Equa-
tion (3.2) that

(3.3)
dLaw(µN )

dLaw(λN )
(θ) = exp (N · F (θ)) , θ ∈ P(R2).

The densities given by Equation (3.3) are of the form required by Theo-
rem 2.1, the change of measure version of Varadhan’s lemma. Assume from
now on that b is bounded and continuous. Then F is upper semicontinuous
and the tail condition in Theorem 2.1 is satisfied. However, F is discontinu-
ous at any θ ∈ P(R2) such that F (θ) > −∞. Indeed, let η be the univariate
standard Cauchy distribution and set θn

.
= (1− 1

n)θ+ 1
nδ0⊗ η, n ∈ N. Then

θn → θ weakly, while F (θn) = −∞ for all n.
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Although Theorem 2.1 cannot be applied directly, an approximation ar-
gument based on Varadhan’s lemma could be used to show (cf. Remark 3.1
below) that the sequence of empirical measures (µN )N∈N satisfies the large
deviation principle with good rate function

(3.4) I(θ)
.
= R(θ‖γ0)− F (θ), θ ∈ P(R2).

The function I in (3.4) can be rewritten in terms of relative entropy as
follows. Define a mapping ψ : P(R2)× R2 → R2 by

(3.5) ψ(θ, (y, ỹ))
.
= (y, y +mb(θ) + ỹ).

For θ ∈ P(R2), let Ψγ0(θ) be the image measure of γ0 under ψ(θ, . ). Then
Ψγ0(θ) is equivalent to γ0 with density given by

dΨγ0(θ)

dγ0
(y, ỹ) = exp (f(θ, (y, ỹ))) .

If θ is not absolutely continuous with respect to Ψγ0(θ), then R(θ‖Ψγ0(θ)) =

∞ = R(θ‖γ0). If θ is absolutely continuous with respect to Ψγ0(θ), then

R
(
θ‖Ψγ0(θ)

)
=

∫
log

(
dθ

dΨγ0(θ)

)
dθ

=

∫
log

(
dθ

γ0

)
dθ −

∫
log

(
dΨγ0(γ0)

dγ0

)
dθ

= R
(
θ‖γ0

)
− F (θ).

Consequently, for all θ ∈ P(R2),

(3.6) I(θ) = R
(
θ‖Ψγ0(θ)

)
.

Notice that Ψγ0(θ) is the law of a one-particle system with measure variable
frozen at θ; Ψγ0(θ) can also be interpreted as the solution of the McKean-
Vlasov equation for the toy model with measure variable frozen at θ.

Remark 3.1. A version of Varadhan’s lemma (or Theorem 2.1) that allows
to rigorously derive the large deviation principle for (µN ) with rate function
in relative entropy form is provided by Lemma 1.1 in Del Moral and Zajic
[2003]. Observe that the density of Law(XN ) may be computed with respect
to product measures different from Law(Y N ) = ⊗Nγ0. A natural alternative
is the product⊗NΨγ0(µ∗), where µ∗ is the (unique) solution of the fixed point
equation µ = Ψγ0(µ); µ∗ can be seen as the McKean-Vlasov distribution of
the toy model. We do not give the details here. The results of Section 4,
based on different arguments, will imply that (µN )N∈N satisfies the large
deviation principle with good rate function I as given by Equation (3.6); see
Example 4.1 below.
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Remark 3.2. Equation (3.6) gives the desired form of the rate function in
terms of relative entropy. More generally, suppose that Ψ: P(S)→ P(S) is
continuous, where S is a Polish space. Then the function

J(θ)
.
= R

(
θ‖Ψ(θ)

)
, θ ∈ P(S),

is lower semicontinuous with values in [0,∞], hence a rate function, and it
is in relative entropy form. The lower semicontinuity of J follows from the
lower semicontinuity of relative entropy jointly in both its arguments and the
continuity of Ψ. If, in addition, range(Ψ)

.
= {Ψ(θ) : θ ∈ P(S)} is compact in

P(S), then the sublevel sets of J are compact and J is a good rate function.
Indeed, compactness of range(Ψ) implies tightness, and the compactness of
the sublevel sets of J , which are closed by lower semicontinuity, follows as
in the proof of Lemma 1.4.3(c) in Dupuis and Ellis [1997, pp. 29-31].

4 Noise-based systems

Let X , Y be Polish spaces. For N ∈ N, let XN
1 , . . . , X

N
N be X -valued random

variables defined on some probability space (ΩN ,FN ,PN ). Denote by µN the
empirical measure of XN

1 , . . . , X
N
N . We suppose that there are a probability

measure γ0 ∈ P(Y) and a Borel measurable mapping ψ : P(X )×Y → X such
that the following representation for the triangular array (XN

i )i∈{1,...,N},N∈N
holds: For each N ∈ N, there is a sequence Y N

1 , . . . , Y N
N of independent

and identically distributed Y-valued random variables on (ΩN ,FN ,PN ) with
common distribution γ0 such that for all i ∈ {1, . . . , N},

(4.1) XN
i (ω) = ψ

(
µNω , Y

N
i (ω)

)
, PN -almost all ω ∈ ΩN .

The above representation entails by symmetry that, forN fixed, the sequence
XN

1 , . . . , X
N
N is exchangeable. Representation (4.1) also implies that µN

satisfies the equation

(4.2) µN =
1

N

N∑
i=1

δψ(µN ,Y Ni ) PN -almost surely.

In order to describe the limit behavior of the sequence of empirical mea-
sures (µN )N∈N, define a mapping Ψ: P(Y)× P(X )→ P(X ) by

(4.3) (γ, µ) 7→ Ψγ(µ)
.
= γ ◦ ψ−1(µ, . ).

Thus Ψγ(µ) is the image measure of γ under the mapping Y 3 y 7→ ψ(µ, y).
Equivalently, Ψγ(µ) = Law(ψ(µ, Y )) with Y any Y-valued random variable
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with distribution γ. Limit points of (µN )N∈N will be described in terms of
solutions to the fixed point equation

(4.4) µ = Ψγ(µ).

Assume that there is a Borel measurable set D ⊂ P(Y) such that the
following properties hold:

(A1) Equation (4.4) has a unique fixed point µ∗(γ) for every γ ∈ D, and the
mapping D 3 γ 7→ µ∗(γ) ∈ P(X ) is Borel measurable.

(A2) For all N ∈ N,

⊗Nγ0

{
(y1, . . . , yN ) ∈ YN :

1

N

N∑
i=1

δyi ∈ D

}
= 1.

(A3) If γ ∈ P(Y) is such that R(γ‖γ0) < ∞, then γ ∈ D and µ∗|D is
continuous at γ .

Assumption (A2) implies that Equation (4.4) possesses a unique solution
for almost all (with respect to products of γ0) probability measures of em-
pirical measure form. Such probability measures are therefore in the domain
of definition of the mapping µ∗|D. According to Assumption (A3), also all
probability measures γ with finite γ0-relative entropy are in the domain of
definition of µ∗|D, which is continuous at any such γ in the topology of weak
convergence.

Theorem 4.1. Grant (A1) – (A3). Then the sequence (µN )N∈N satisfies the
large deviation principle with good rate function I : P(X )→ [0,∞] given by

I(η) = inf
γ∈D:µ∗(γ)=η

R
(
γ‖γ0

)
,

where inf ∅ =∞ by convention.

Proof. The assertion follows from Sanov’s theorem and the contraction prin-
ciple. To see this, let λN denote the empirical measure of Y N

1 , . . . , Y N
N . Then

for PN -almost all ω ∈ ΩN ,

(4.5) µNω =
1

N

N∑
i=1

δψ(µNω ,Y
N
i (ω)) = λNω ◦ ψ−1

(
µNω , .

)
= ΨλNω

(
µNω
)
.

Thus µN = ΨλN (µN ) with probability one. For PN -almost all ω ∈ ΩN , λNω ∈
D by Assumption (A2) and, by uniqueness according to (A1), µ∗(λNω ) = µNω .
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By Theorem 2.3 (Sanov), (λN )N∈N satisfies the large deviation principle with
good rate function R(.‖γ0). By Assumption (A3), µ∗(.) is defined and con-
tinuous on {γ ∈ P(Y) : R(γ‖γ0) <∞}. Theorem 2.2 (contraction principle)
therefore applies, and it follows that (µ∗(λ

N ))N∈N, hence (µN )N∈N, satisfies
the large deviation principle with good rate function

P(X ) 3 η 7→ inf
γ∈D:µ∗(γ)=η

R
(
γ‖γ0

)
.

The rate function of Theorem 4.1 can be expressed in relative entropy
form as in Remark 3.2. The key observation is the contraction property of
relative entropy established in Lemma A.1 in the appendix.

Corollary 4.2. Let I be the rate function of Theorem 4.1. Then for all
η ∈ P(X ),

I(η) = R
(
η‖Ψγ0(η)

)
.

Proof. Let η ∈ P(X ). The mapping P(Y) 3 γ 7→ Ψγ(η) ∈ P(X ) is Borel
measurable. Since {γ ∈ P(X ) : R(γ‖γ0) <∞} ⊂ D and inf ∅ =∞,

inf
γ∈D:µ∗(γ)=η

R
(
γ‖γ0

)
= inf
γ∈D:Ψγ(η)=η

R
(
γ‖γ0

)
= inf
γ∈P(Y):Ψγ(η)=η

R
(
γ‖γ0

)
.

By Lemma A.1, it follows that

inf
γ∈P(Y):Ψγ(η)=η

R
(
γ‖γ0

)
= R

(
η‖Ψγ0(η)

)
.

Example 4.1. Consider the toy model of Section 3. Suppose that b ∈ Cb(R).
Then θ 7→ mb(θ)

.
=
∫
b(x)dθ(x, x̃) is bounded and continuous as a mapping

P(R2)→ R. Observe that mb(θ) depends only on the first marginal of θ. Set
X .

= R2, Y .
= R2, let γ0 be the bivariate standard normal distribution, and

define ψ : P(R2)×R2 → R2 according to (3.5). Recalling Equation (3.1), one
sees that the toy model satisfies representation (4.1). Based on ψ, define Ψ

according to (4.3). Given any γ ∈ P(R2), the mapping µ 7→ Ψγ(µ) possesses
a unique fixed point µ∗(γ). To see this, suppose that θ ∈ P(R2) is a fixed
point, that is, θ = Ψγ(θ) = γ ◦ ψ(θ, . )−1. Let X = (X(0), X(1)), Y =

(Y (0), Y (1)) be two R2-valued random variables on some probability space
(Ω,F ,P) with distribution θ and γ, respectively. By the fixed point property,
Law(X) = Law(ψ(θ, Y )). By definition of ψ, Law(X(0)) = Law(Y (0)).
Since mb(θ) depends on θ = Law(X) only through its first marginal, which
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is equal to Law(X(0)) = Law(Y (0)), we have mb(θ) = mb(γ). It follows
that, for all B0, B1 ∈ B(R),

P (X(1) ∈ B1|X(0) ∈ B0) = P (Y (0) +mb(γ) + Y (1) ∈ B1|Y (0) ∈ B0) .

This determines the conditional distribution of X(1) given X(0) and, since
Law(X(0)) = Law(Y (0)), also the joint law of X(0) and X(1). In fact,
Law(X) = Ψγ(γ). Consequently, µ∗(γ)

.
= Ψγ(γ) is the unique solution of

Equation (4.4). By the extended mapping theorem for weak convergence
[Theorem 5.5 in Billingsley, 1968, p. 34] and since mb(.) ∈ Cb(P(R2)), the
mapping (γ, µ) 7→ Ψγ(γ) is continuous as a function P(R2) × P(R2) →
P(R2). It follows that the mapping γ 7→ µ∗(γ) = Ψγ(γ) is continuous.
Assumptions (A1) – (A3) are therefore satisfied with the choice D .

= P(R2).
By Corollary 4.2, the sequence of empirical measures (µN ) for the toy model
satisfies the large deviation principle with good rate function I given by
(3.6). Observe that the distribution γ0 need not be the bivariate standard
normal distribution for the large deviation principle to hold; it can be any
probability measure on B(R2).

Example 4.2. Consider the following variation on the toy model of Section 3
and Example 4.1. For N ∈ N, let (Y N

i (t))i∈{1,...,N},t∈{0,1} be independent
standard normal real random variables as above. Denote by γ0 the bivariate
standard normal distribution and let B ∈ B(R) be a γ0-continuity set, that
is, γ0(∂(B×R)) = 0, where ∂(B×R) is the boundary of B×R. Define real
random variables XN

1 (t), . . . , XN
N (t), t ∈ {0, 1}, by

XN
i (0)

.
= Y N

i (0), XN
i (1)

.
= XN

i (0) +
1

N

 N∑
j=1

1B(XN
j (0))

 · Y N
i (1).

For this new toy model, define ψ : P(R2)× R2 → R2 by

ψ(µ, (y, ỹ))
.
= (y, y + µ(B × R) · ỹ).

With this choice of ψ, representation (4.1) holds and ψ is measurable as
composition of measurable maps since µ 7→ µ(B × R) is measurable with
respect to the Borel σ-algebra induced by the topology of weak convergence.
Based on ψ, define Ψ according to (4.3). As in Example 4.1, one checks that
the fixed point equation (4.4) possesses a unique solution µ∗(γ)

.
= Ψγ(γ) for

every γ ∈ P(R2). However, if ∂(B × R) 6= ∅, then µ∗(.) is not continuous
on P(R2). On the other hand, if γ ∈ P(R2) is such that R(γ‖γ0) < ∞,
then γ is absolutely continuous with respect to γ0, so that B × R is also a
γ-continuity set. By the extended mapping theorem, it follows that µ∗(.) is
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continuous at any such γ. Assumptions (A1) – (A3) are therefore satisfied,
again with the choice D .

= P(R2), and Corollary 4.2 yields the large deviation
principle. In this example, if γ0(B×R) < 1, then the distribution of µN , the
empirical measure of XN

1 , . . . , X
N
N , is not absolutely continuous with respect

to λN , the empirical measure of Y N
1 , . . . , Y N

N . Indeed, in this case, the event
{νN(y,y) : y ∈ RN} ⊂ P(R2), where νN(y,y) is defined as in Section 3, has strictly
positive probability with respect to P ◦(µN )−1, while it has probability zero
with respect to P ◦(λN )−1.

Example 4.3 (Discrete time systems). Let T ∈ N. Let X0, Y0 be Polish
spaces, and let X , Y be the Polish product spaces X .

= (X0)T+1 and Y .
=

(Y0)T+1, respectively. Let

ϕ0 : Y0 → X0, ϕ : {1, . . . , T} × X0 × P(X0)× Y0 → X0

be measurable maps. Let γ0 ∈ P(Y) and, for N ∈ N, let Y N
1 , . . . , Y N

N be in-
dependent and identically distributed Y-valued random variables defined on
some probability space (ΩN ,FN ,PN ) with common distribution γ0. Write
Y N
i = (Y N

i (t))t∈{0,...,T} and define X -valued random variables XN
1 , . . . , X

N
N

with XN
i = (XN

i (t))t∈{0,...,T} recursively by

XN
i (0)

.
= ϕ0

(
Y N
i (0)

)
,

XN
i (t+ 1)

.
= ϕ

(
t+ 1, XN

i (t), µN (t), Y N
i (t+ 1)

)
, t ∈ {0, . . . , T−1},

(4.6)

where µN (t)
.
= 1

N

∑N
i=1 δXN

i (t) is the empirical measure of XN
1 , . . . , X

N
N at

marginal (or time) t. In analogy with (4.6), define ψ : P(X ) × Y → X
according to (µ, y) = (µ, (y0, . . . , yT )) 7→ ψ(µ, y)

.
= x with x = (x0, . . . , xT )

given by

x0
.
= ϕ0(y0),

xt+1
.
= ϕ

(
t+ 1, xt, µ(t), yt+1

)
, t ∈ {0, . . . , T−1},

(4.7)

where µ(t) is the marginal of µ ∈ P(X ) at time t. Then ψ is measurable as a
composition of measurable maps, and representation (4.1) holds. Based on
ψ, define Ψ according to (4.3). Using the recursive structure of (4.6) and the
components of ψ according to (4.7), one checks that the fixed point equation
(4.4) has a unique solution µ∗(γ) given any γ ∈ D .

= P(Y). To be more
precise, define functions ϕ̄t : P(X0)t×Y → X0, t ∈ {0, . . . , T}, recursively by

ϕ̄0(y)
.
= ϕ0(y0),

ϕ̄t
(
(α0, . . . , αt−1), y

) .
= ϕ

(
t, ϕ̄t−1((α0, . . . , αt−2), y), αt−1, yt

)
.

(4.8)
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Notice that ϕ̄t depends on y = (y0, . . . , yT ) ∈ Y only through (y0, . . . , yt).
Given γ ∈ P(Y), recursively define probability measures αt(γ) ∈ P(X0),
t ∈ {0, . . . , T}, according to

α0(γ)
.
= γ ◦ ϕ̄−1

0 ,

αt(γ)
.
= γ ◦ ϕ̄t

(
(α0(γ), . . . , αt−1(γ)), .

)−1
, t ∈ {1, . . . , T}.

(4.9)

The mapping P(Y) 3 γ 7→ αt(γ) ∈ P(X0) is measurable for every t ∈
{0, . . . , T}. Define Φ: P(X0)T × Y → X by
(4.10)

Φ
(
(α0, . . . , αT−1), y

) .
=
(
ϕ̄0(y), ϕ̄1(α0, y), . . . , ϕ̄T ((α0, . . . , αT−1), y)

)
.

Then the mapping γ 7→ γ ◦ Φ((α0(γ), . . . , αT−1(γ)), . )−1 is measurable and
provides the unique fixed point of Equation (4.4) with noise distribution
γ ∈ P(Y). In fact,

(4.11) µ∗(γ) = γ ◦ Φ
(
(α0(γ), . . . , αT−1(γ)), .

)−1
.

Writing µ∗(t, γ) for the t-marginal of µ∗(γ), we also notice that

µ∗(t, γ) = αt(γ) = γ ◦ ϕ̄t
(
(α0(γ), . . . , αt−1(γ)), .

)−1
.

If ϕ0, ϕ are continuous maps, then it follows by (4.11) and the extended
mapping theorem that µ∗(.) is continuous on D = P(Y), and Corollary 4.2
yields the large deviation principle for the sequence of “path space” empirical
measures (µN )N∈N.

Example 4.3 comprises a large class of discrete time weakly interacting
systems. The sequence of (X0)N -valued random variablesXN (0), . . . , XN (T )

given by (4.6) enjoys the Markov property if the (Y0)N -valued random vari-
ables Y N (0), . . . , Y N (T ) are independent (since Y N

1 , . . . , Y N
N are assumed

to be independent and identically distributed with common distribution γ0,
this amounts to requiring that γ0 be of product form, that is, γ0 = ⊗Tt=0νt
for some ν0, . . . , νT ∈ P(Y0)). In particular, discrete time versions of weakly
interacting Itô processes as considered in Section 5 are covered by Exam-
ple 4.3. More precisely, assuming coefficients of diffusion type and using
a standard Euler-Maruyana scheme for the system of stochastic differential
equations (5.1) and the corresponding limit equation (5.2), one would choose
T ∈ N and h > 0 so that h·T corresponds to the continuous time horizon, set
X0

.
= Rd, Y0

.
= Rd1 , define ϕ : {1, . . . , T}×Rd×P(X0)×Y0 → X0 according

to
ϕ(t, x, ν, y)

.
= x+ b̃

(
(t−1)h, x, ν

)
h+
√
h · σ̃

(
(t−1)h, x, ν

)
y,
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and set γ0
.
= ⊗T+1ν for some ν ∈ P(Rd1) with mean zero and identity

covariance matrix (in particular, ν .
= N(0, Idd1) the d1-variate standard nor-

mal distribution). In Section 5 we assume for simplicity that all component
processes have the same deterministic initial condition; this corresponds to
setting ϕ0 ≡ x0 for some x0 ∈ Rd. If the drift coefficient b and the dispersion
coefficient σ are continuous, then so is ϕ, and Corollary 4.2 applies.

Example 4.3 also applies to finite state discrete time weakly interact-
ing Markov chains, which arise as discrete time versions of the mean field
systems found, for instance, in the analysis of large communication net-
works, especially WLANs [cf. Duffy, 2010, for an overview]. In this sit-
uation, the functions ϕ0, ϕ are in general discontinuous in y ∈ Y0; yet
the hypotheses of Corollary 4.2 are still satisfied. To be more precise, let
S .

= {s1, . . . , sM} be a finite set, and let ι : S → {1, . . . ,M} be the natural
bijection between elements of S and their indices (thus ι(si) = i for every
i ∈ {1, . . . ,M}). The space of probability measures P(S) can be identified
with {p ∈ [0, 1]M :

∑M
k=1 pk = 1} endowed with the standard metric. For

t ∈ N0, let aij(t, . ) : P(S) → [0, 1], i, j ∈ {1, . . . ,M}, be measurable maps
such that, for every p ∈ P(S), A(t, p)

.
= (aij(t, p))i,j∈{1,...,M} is a transition

probability matrix on S ≡ {1, . . . ,M}. Let q ∈ P(S). Using the notation of
Example 4.3, fix T ∈ N, set X0

.
= S, Y0

.
= [0, 1], X .

= X T+1
0 , and Y .

= YT+1
0 ;

define ϕ : {1, . . . , T} × X0 × P(X0)× Y0 → X0 by

ϕ(t, x, p, y)
.
=

M∑
j=1

sj · 1(
∑j−1
k=1 aι(x)k(t−1,p),

∑j
k=1 aι(x)k(t−1,p)]

(y),

and let ϕ0 : Y0 → X0 be given by

ϕ0(y)
.
=

M∑
j=1

sj · 1(
∑j−1
k=1 qk,

∑j
k=1 qk]

(y).

Set γ0
.
= ⊗T+1λ[0,1] with λ[0,1] Lebesgue measure on B([0, 1]) = B(Y0). For

N ∈ N, let Y N
1 , . . . , Y N

N be independent and identically distributed Y-valued
random variables with common distribution γ0, and define X -valued random
variables XN

1 , . . . , X
N
N with XN

i = (XN
i (t))t∈{0,...,T} recursively by (4.6).

Observe that XN
1 (0), . . . , XN

N (0) are independent and identically distributed
with common distribution q. Moreover, for all t ∈ {0, . . . , T−1}, all z ∈ SN ,

(4.12)

PN

(
XN (t+ 1) = z

∣∣XN (0), . . . , XN (t)
)

=

N∏
i=1

aι(XN
i (t))ι(zi)

(t, µN (t))

= exp

(
N ·

∫
S

log
(
aι(x)ι(zi)(t, µ

N (t))
)
µN (t, dx)

)
,
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where log(0) = −∞, e−∞ = 0. It follows that (XN (t))t∈{0,...,T} is a Markov
chain with state space SN . Equation (4.12) also implies that (µN (t))t∈{0,...,T}
is a Markov chain with transition probabilities given by

PN

(
µN (t+ 1) =

1

N

N∑
i=1

δzi

∣∣∣XN (0), . . . , XN (t)

)

=
∑

z̃∈p(z)

exp

(
N ·

∫
S

log
(
aι(x)ι(z̃i)(t, µ

N (t))
)
µN (t, dx)

)
,

where p(z) indicates the set of elements of SN that arise by permuting the
components of z ∈ SN . For i ∈ {1, . . . , N}, again by (4.12), the process cou-
ple ((XN

i (t), µN (t)))t∈{0,...,T} is a Markov chain with state space S × P(S),
and its law does not depend on the component i. Define the function ψ

according to (4.7), and define Ψ according to (4.3). As in the more gen-
eral situation of Example 4.3, Equation (4.4) (i.e., the fixed point equation
Ψγ(µ) = µ) has a unique solution µ∗(γ) given any γ ∈ D .

= P(Y), represen-
tation (4.11) holds for µ∗(γ), and the mapping P(Y) 3 γ 7→ µ∗(γ) ∈ P(X )

is measurable. Let us assume that the maps p 7→ aij(t, p) are continuous
for all i, j ∈ {1, . . . ,M}, t ∈ N0. In order to verify the hypotheses of Corol-
lary 4.2, it then remains to check that µ∗(.) is continuous at any γ̃ ∈ P(Y)

such that R(γ̃|γ0) < ∞. To do this, take γ̃ ∈ P(Y) absolutely continuous
with respect to γ0, and let (γ̃n) ⊂ P(Y) be such that γ̃n → γ̃ as n → ∞.
Recall (4.8), the definition of the functions ϕ̄t, and (4.9), the definition of
the maps γ 7→ αt(γ). For t ∈ {0, . . . , T} set

Dt
.
=
{
y ∈ Y : ∃ (yn)n∈N ⊂ Y such that, as n→∞, yn → y but

ϕ̄t
(
(α0(γ̃n), . . . , αt−1(γ̃n)), yn

)
9 ϕ̄t

(
(α0(γ̃), . . . , αt−1(γ̃)), y

)}
.

By definition of ϕ̄0 and ϕ0, we have

D0 ⊆

{
y ∈ Y : y0 ∈

{
j∑

k=1

qk : j ∈ {0, . . . ,M}

}}
.

It follows that γ0(D0) = 0 and, since γ̃ is absolutely continuous with respect
to γ0, γ̃(D0) = 0. The extended mapping theorem implies that α0(γ̃n) →
α0(γ̃) as n→∞. Using this convergence, the definition of ϕ̄1 in terms of ϕ,
the continuity of p 7→ aij(t, p), and the fact that ϕ̄0 is continuous on Y \D0,
we find that

D1 ⊆ D0 ∪

{
y ∈ Y : y1 ∈

{
j∑

k=1

aι(ϕ̄0(y))k(0, α0(γ̃)) : j ∈ {0, . . . ,M}

}}
.
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Since ϕ̄0(y) depends on y only through y0 (in fact, ϕ̄0(y) = ϕ0(y0)), it follows
that γ0(D1) = 0, hence γ̃(D1) = 0. The extended mapping theorem in the
version of Theorem 5.5 in Billingsley [1968, p. 34] implies that α1(γ̃n) →
α1(γ̃) as n→∞. Proceeding by induction over t, one checks that

Dt ⊆ D0 ∪ . . . ∪Dt−1 ∪

{
y ∈ Y :

yt ∈

{
j∑

k=1

aι(ϕ̄t−1((α0(γ̃),...,αt−1(γ̃)),y))k(t− 1, αt−1(γ̃)) : j ∈ {0, . . . ,M}

}}

and, since ϕ̄t−1((α0(γ̃), . . . , αt−1(γ̃)), y) depends on y only through the com-
ponents (y0, . . . , yt−1), γ0(Dt) = 0 = γ̃(Dt), which implies that αt(γ̃n) →
αt(γ̃) as n→∞. Set D .

=
⋃T
t=0Dt and recall (4.10), the definition of Φ. Let

y ∈ Y, (yn)n∈N ⊂ Y be such that yn → y as n→∞. Then

Φ
(
(α0(γ̃n), . . . , αT−1(γ̃n)), yn

) n→∞−→ Φ
(
(α0(γ̃), . . . , αT−1(γ̃)), y

)
if y /∈ D.

Since γ0(D) = 0 = γ̃(D), the extended mapping theorem yields

γ̃n ◦ Φ
(
(α0(γ̃n), . . . , αT−1(γ̃n)), .

)−1 n→∞−→ γ̃ ◦ Φ
(
(α0(γ̃), . . . , αT−1(γ̃)), .

)−1
.

Recalling representation (4.11) we conclude that

µ∗(γ̃n)
n→∞−→ µ∗(γ̃),

which establishes continuity of µ∗(.) at any γ̃ with R(γ̃‖γ0) < ∞ since
any such γ̃ is absolutely continuous with respect to γ0. Under the as-
sumption that the maps p 7→ aij(t, p) are continuous, we have thus de-
rived the large deviation principle for (µN )N∈N with rate function η 7→
R(η‖Ψγ0(η)); here Ψγ0(η) coincides with the law of a time-inhomogeneous
S-valued Markov chain with initial distribution q and transition matrices
A(t, η(t)), t ∈ {0, . . . , T − 1}. The same arguments and a completely analo-
gous construction work for weakly interacting Markov chains with countably
infinite state space S. Notice that we need not require the transition proba-
bilities aij(t, p) to be bounded away from zero; in particular, whether aij(t, p)
is equal to zero or strictly positive may depend on the measure variable p.

5 Weakly interacting Itô processes

In this section, we consider weakly interacting systems described by Itô pro-
cesses as studied in Budhiraja et al. [2012]. We show that the Laplace
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principle rate function derived there in variational form can be expressed in
non-variational form in terms of relative entropy. We do not give the most
general conditions under which the results hold; in particular, we assume
here that all particles obey the same deterministic initial condition.

Let T > 0 be a finite time horizon, let d, d1 ∈ N, and let x0 ∈ Rd. Set X .
=

C([0, T ],Rd), Y .
= C([0, T ],Rd1), equipped with the maximum norm topol-

ogy. Let b, σ be predictable functionals defined on [0, T ]× X × P(Rd) with
values in Rd and Rd×d1 , respectively. For N ∈ N, let ((ΩN ,FN ,PN ), (FNt ))

be a stochastic basis satisfying the usual hypotheses and carrying N indepen-
dent d1-dimensional (FNt ))-Wiener processes WN

1 , . . . ,WN
N . The N -particle

system is described by the solution to the system of stochastic differential
equations

(5.1) dXN
i (t) = b

(
t,XN

i , µ
N (t)

)
dt+ σ

(
t,XN

i , µ
N (t)

)
dWN

i (t)

with initial condition XN
i (0) = x0, i ∈ {1, . . . , N}, where µN (t) is the em-

pirical measure of XN
1 , . . . , X

N
N at time t ∈ [0, T ], that is,

µN (t, ω)
.
=

1

N

N∑
i=1

δXN
i (t,ω), ω ∈ ΩN .

The coefficients b, σ in Equation (5.1) may depend on the entire history of
the solution trajectory, not only its current value as in the diffusion case.
In the diffusion case, in fact, one has b(t, ϕ, ν) = b̃(t, ϕ(t), ν), σ(t, ϕ, ν) =

σ̃(t, ϕ(t), ν) for some functions b̃, σ̃ defined on [0, T ]× Rd × P(Rd), and the
solution process XN is a Markov process with state space RN×d.

Denote by µN the empirical measure of (XN
1 , . . . , X

N
N ) over the time

interval [0, T ], that is, µN is the P(X )-valued random variable defined by

µNω
.
=

1

N

N∑
i=1

δXN
i (.,ω), ω ∈ ΩN

The asymptotic behavior of µN as N tends to infinity can be characterized
in terms of solutions to the “nonlinear” stochastic differential equation

(5.2) dX(t) = b
(
t,X,Law(X(t))

)
dt+ σ

(
t,X,Law(X(t))

)
dW (t)

with Law(X(0)) = δx0 , where W is a standard d1-dimensional Wiener pro-
cess defined on some stochastic basis. Notice that the law of the solution itself
appears in the coefficients of Equation (5.2). In the diffusion case, the cor-
responding Kolmogorov forward equation is therefore a nonlinear parabolic
partial differential equation, and it corresponds to the McKean-Vlasov equa-
tion of the weakly interacting system defined by (5.1).
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For the statement of the Laplace principle, we need to consider controlled
versions of Equations (5.1) and (5.2), respectively. For N ∈ N, let UN be the
space of all (FNt )-progressively measurable functions u : [0, T ]×ΩN → RN×d1
such that

EN

[
N∑
i=1

∫ T

0
|ui(t)|2dt

]
<∞,

where u = (u1, . . . , uN ) and EN denotes expectation with respect to PN .
Given u ∈ UN , the counterpart of Equation (5.1) is the system of controlled
stochastic differential equations

dX̄N
i (t) = b

(
t, X̄N

i , µ̄
N (t)

)
dt+ σ

(
t, X̄N

i , µ̄
N (t)

)
ui(t)dt

+ σ
(
t, X̄N

i , µ̄
N (t)

)
dWN

i (t),
(5.3)

with initial condition X̄N
i (0) = x0, where µ̄N (t) denotes the empirical mea-

sure of X̄N
1 , . . . , X̄

N
N at time t.

Let U be the set of quadruples ((Ω,F ,P), (Ft), u,W ) such that the pair
((Ω,F ,P), (Ft)) forms a stochastic basis satisfying the usual hypotheses,
W is a d1-dimensional (Ft)-Wiener process, and u is an Rd1-valued (Ft)-
progressively measurable process such that

E

[∫ T

0
|u(t)|2dt

]
<∞.

For simplicity, we may write u ∈ U instead of ((Ω,F ,P), (Ft), u,W ) ∈ U .
Given u ∈ U , the counterpart of Equation (5.2) is the controlled “nonlinear”
stochastic differential equation

dX̄(t) = b
(
t, X̄,Law(X̄(t))

)
dt+ σ

(
t, X̄,Law(X̄(t))

)
u(t)dt

+ σ
(
t, X̄,Law(X̄(t))

)
dW (t)

(5.4)

with initial condition Law(X̄(0)) = δx0 . A solution of Equation (5.4) under
u ∈ U is a continuous Rd-valued process X̄ defined on the given stochastic
basis and adapted to the given filtration such that the integral version of
Equation (5.4) holds with probability one. Denote by R1 the space of deter-
ministic relaxed controls with finite first moments, that is, R1 is the set of
all positive measures on B(Rd1 × [0, T ]) such that r(Rd1 × [0, t]) = t for all
t ∈ [0, T ] and

∫
Rd1×[0,T ] |y|r(dy×dt) < ∞. Equip R1 with the topology of

weak convergence of measures plus convergence of first moments. Let u ∈ U .
The joint distribution of (u,W ) can be identified with a probability measure
on B(R1 × Y). If X̄ is a solution of Equation (5.4) under u, then the joint
distribution of (X̄, u,W ) can be identified with a probability measure on
B(Z), where Z .

= X ×R1 × Y.
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Definition 5.1. Weak uniqueness of solutions is said to hold for Equa-
tion (5.4) if, whenever u, ũ ∈ U and X̄, X̃ are two solutions of Equation (5.4)
under u and ũ, respectively, such that P ◦X̄(0)−1 = P̃ ◦ X̃(0)−1, then
P ◦(X̄, u,W )−1 = P̃◦(X̃, ũ, W̃ )−1 as probability measures on B(X×R1×Y).

Notice that here we give a process version of what can be equivalently
formulated in terms of probability measures on B(Z). Indeed, any integrable
control process u corresponds to anR1-valued random variable. On the other
hand, since the control appears linearly in Equations (5.3) and (5.4), given
any adapted R1-valued random variable, one can find an integrable control
process that produces the same solution process X̄ [cf. Sections 2&6 in
Budhiraja et al., 2012].

Remark 5.1. In Budhiraja et al. [2012], weak uniqueness for Equation (5.4)
is required to hold over the class of all Θ ∈ P(Z) that correspond to a weak
solution of (5.4). This requirement is stronger than necessary. As can be seen
from the definition of the rate function and the proof of Theorem 3.1 (and
Theorem 7.1) there1, it suffices to have weak uniqueness for Equation (5.4)
over the class of all Θ ∈ P(Z) that correspond to a weak solution of (5.4)
and are such that∫

Z

∫
Rd1×[0,T ]

|y|2 r(dy × dt) Θ(dϕ× dr × dw) <∞.

This is equivalent to requiring weak uniqueness of solutions for Equation (5.4)
with respect to U as in Definition 5.1 above.

The Laplace principle given in Theorem 5.1 below is a version of The-
orem 7.1 in Budhiraja et al. [2012]; also cf. Theorem 3.1 and Remark 3.2
there. The following assumptions are sufficient for the Laplace principle to
hold:

(H1) The functions b(t, . , . ), σ(t, . , . ) are uniformly continuous and bounded
on sets B×P whenever B ⊂ X is bounded and P ⊂ P(Rd) is compact,
uniformly in t ∈ [0, T ].

(H2) For all N ∈ N, existence and uniqueness of solutions holds in the strong
sense for the system of N equations given by (5.1).

1In the notation of Budhiraja et al. [2012], it follows from the proof of Lemma 5.1
there and a version of Fatou’s lemma, that if Q is a limit point in the sense of con-
vergence in distribution of the sequence of P(Z)-valued random variables QN , then∫
Z

∫
Rd1×[0,T ]

|y|2r(dy × dt)Q(dϕ × dr × dw) < ∞ with probability one. As to the rate
function and the Laplace upper bound, notice that the class P∞ only contains measures
Θ ∈ P(Z) such that

∫
Z

∫
Rd1×[0,T ]

|y|2r(dy × dt)Θ(dϕ× dr × dw) <∞.
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(H3) Weak uniqueness of solutions holds for Equation (5.4).

(H4) If uN ∈ UN , N ∈ N, are such that

sup
N∈N

E

[
1

N

N∑
i=1

∫ T

0
|uNi (t)|2 dt

]
<∞,

then {µ̄N : N ∈ N} is tight as a family of P(X )-valued random vari-
ables, where µ̄N is the empirical measure of the solution to the system
of equations (5.3) under uN .

Theorem 5.1 (Budhiraja et al. [2012]). Grant (H1) – (H4). Then the se-
quence (µN )N∈N of P(X )-valued random variables satisfies the Laplace prin-
ciple with rate function I : P(X )→ [0,∞] given by

I(θ) = inf
u∈U :Law(X̄u)=θ

E

[
1

2

∫ T

0
|u(t)|2dt

]
,

where X̄u is a solution of Equation (5.4) over the time interval [0, T ] with
Law(X(0)) = δx0 , and inf ∅ =∞ by convention.

Remark 5.2. The function I of Theorem 5.1 is indeed a rate function, that
is, I is lower semicontinuous with values in [0,∞]. The following hypothesis,
which is analogous to the stability condition (H4), is sufficient to guarantee
goodness of the rate function.

(H’) If (un)n∈N ⊂ U is such that supn∈NEn

[∫ T
0 |un(t)|2dt

]
< ∞, then

{Law(X̄un) : n ∈ N} is tight in P(X ).

Under this additional assumption, I is a good rate function and the Laplace
principle implies the large deviation principle.

Consider the special case in which d = d1, x0 = 0, b ≡ 0, and σ ≡ Idd.
In this case, X = Y and µN is the empirical measure of N independent
Wiener processes WN

1 , . . . ,WN
N . Let γ0 be Wiener measure on B(Y). Since

Law(WN
i ) = γ0, Sanov’s theorem implies that the sequence (µN )N∈N satisfies

the large deviation /Laplace principle with good rate function R(.‖γ0). On
the other hand, by Theorem 5.1, (µN )N∈N satisfies the Laplace principle
with rate function

J(γ)
.
= inf

u∈U :Law(Ȳ u)=γ
E

[
1

2

∫ T

0
|u(t)|2dt

]
, γ ∈ P(Y),

where Ȳ u is the process given by

(5.5) Ȳ u(t)
.
=

∫ t

0
u(s)ds+W (t), t ∈ [0, T ].
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One checks that J : P(Y)→ [0,∞] has compact sublevel sets, hence is a good
rate function. It follows that J coincides with the rate function obtained from
Sanov’s theorem. Consequently, for all γ ∈ P(Y),

(5.6) R
(
γ‖γ0

)
= inf

u∈U :Law(Ȳ u)=γ
E

[
1

2

∫ T

0
|u(t)|2dt

]
.

Remark 5.3. Equation (5.6) provides a “weak” variational representation of
relative entropy with respect to Wiener measure. In Appendix B, we give
a direct proof of Equation (5.6). The variational representation is weak in
the sense that the underlying stochastic basis may vary. In particular, the
control process u may be adapted to a filtration that is strictly bigger than
the natural filtration of the Wiener process. Notice that expectation in (5.6)
is taken with respect to the probability measure of the stochastic basis that
comes with the control process u.

Remark 5.4. Representation (5.6) may be compared to the following re-
sult obtained by Üstünel [2009]. Take as stochastic basis the canonical
set-up; in our notation, ((Y,B(Y), γ0), (Bt)), where (Bt) is the canonical
filtration. Let W be the coordinate process. Thus W is a d1-dimensional
Wiener process under γ0 with respect to (Bt). Let u be an Rd1-valued (Bt)-
progressively measurable process such that Eγ0

[∫ T
0 |u(t)|2dt

]
< ∞. Con-

sider Ȳ u =
∫ .

0 u(s)ds + W (.). Since Ȳ u(., ω) =
∫ .

0 u(s, ω)ds + ω(.) for all
ω ∈ Y, Ȳ u induces a Borel measurable mapping Y → Y. Set γ .

= γ0◦(Ȳ u)−1.
By Theorem 8 in Üstünel [2009],

(5.7) R
(
γ‖γ0

)
≤ Eγ0

[
1

2

∫ T

0
|u(t)|2dt

]
.

Assume in addition that u is such that

E

[
exp

(
−
∫ T

0
u(t) · dW (t)− 1

2

∫ T

0
|u(t)|2dt

)]
= 1,

and that, for some Rd1-valued (Bt)-progressively measurable process v,

dγ

dγ0
= exp

(
−
∫ T

0
v(t) · dW (t)− 1

2

∫ T

0
|v(t)|2dt

)
γ0-a.s.

Theorem 7 in Üstünel [2009] then states that equality holds in (5.7) if and
only if Ȳ u is γ0-almost surely invertible as a mapping Y → Y with inverse
Ȳ v =

∫ .
0 v(s)ds + W (.). For similar results on abstract Wiener spaces see

Lassalle [2012]; Corollary 8 and Remark 4 in Section 7 therein might be
compared to Lemma B.1 in Appendix B here.
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Let us return to the general case. Given θ ∈ P(X ), denote by θ(t) the
marginal distribution of θ at time t and consider the stochastic differential
equation

(5.8) dX(t) = b
(
t,X, θ(t)

)
dt+ σ

(
t,X, θ(t)

)
dW (t).

Equation (5.8) results from freezing the measure variable in Equation (5.2)
at θ. We will assume existence and pathwise uniqueness for Equation (5.8).

(H5) Given any θ ∈ P(X ), weak existence and pathwise uniqueness hold for
Equation (5.8).

Based on representation (5.6) and the contraction property of relative
entropy, the rate function of Theorem 5.1 can be shown to be of relative
entropy form.

Theorem 5.2. Grant (H1) – (H5). Then the rate function I of Theorem 5.1
can be expressed in relative entropy form as

I(θ) = R
(
θ‖Ψ(θ)

)
, θ ∈ P(X ),

where Ψ(θ) is the law of the unique solution of Equation (5.8) under θ over
the time interval [0, T ] with initial condition X(0) = x0.

Remark 5.5. The hypotheses of Theorem 5.2 are satisfied if b, σ are locally
Lipschitz continuous with σ uniformly bounded and b of sub-linear growth
in the trajectory variable; see Appendix C. These sufficient conditions are
at the same time more restrictive and more general than the assumptions
made in Dawson and Gärtner [1987], where the large deviation principle
is derived for weakly interacting Itô diffusions. There the coefficients are
only required to be continuous, where continuity in the measure variable is
with respect to an inductive topology that is stronger than the topology of
weak convergence (but cf. Remark 1.1 above), and to satisfy a coercivity
condition that allows for sub-linear growth of the dispersion coefficient and
for super-linear growth of the drift vector in “stabilizing” directions. On the
other hand, in Dawson and Gärtner [1987] the diffusion matrix has to be
non-degenerate and independent of the measure variable, while here we can
have degeneracy of σσT as well as measure dependence. Lastly, since here
both b and σ are functions of the entire trajectory history, one can capture
systems with delay in the state dynamics.

Remark 5.6. Assumption (H5) can be weakened by requiring weak existence
and pathwise uniqueness of solutions to Equation (5.8) only for θ ∈ P(X )

such that I(θ) <∞. Those measures θ are, by definition of I, distributions
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of Itô processes. The function Ψ introduced in Theorem 5.2 would then be
defined only on the effective domain of I; for θ ∈ P(X ) with I(θ) =∞, one
can then choose Ψ(θ) in such a way that θ is not absolutely continuous with
respect to Ψ(θ) (for instance, by choosing between two Dirac measures).

Proof of Theorem 5.2. Let θ ∈ P(X ). By hypothesis, weak existence and
pathwise uniqueness hold for Equation (5.8). By a result originally due to
Yamada and Watanabe [1971] [also cf. Kallenberg, 1996], there is a Borel
measurable mapping ψθ : Rd × Y → X such that

(5.9) ψθ(x0,W ) = X P -almost surely

wheneverX is a solution of Equation (5.8) under θ over time [0, T ] with initial
condition X(0) = x0 on some stochastic basis ((Ω,F ,P), (Ft)) carrying a
d1-dimensional Wiener process W . For such a solution, Ψ(θ) = Law(X) by
definition. Set ψθ(.)

.
= ψθ(x0, . ), and let γ0 be Wiener measure on B(Y). By

Equation (5.9), Ψ(θ) = ψθ(γ0) = γ0 ◦ ψ−1
θ . By Lemma A.1, the contraction

property of relative entropy, and representation (5.6) it follows that

R
(
θ‖Ψ(θ)

)
= R

(
θ‖ψθ(γ0)

)
= inf

γ∈P(Y):ψθ(γ)=θ
R
(
γ‖γ0

)
= inf

γ∈P(Y):ψθ(γ)=θ
inf

u∈U :Law(Ȳ u)=γ
E

[
1

2

∫ T

0
|u(t)|2dt

]
= inf

u∈U :Law(ψθ(Ȳ u))=θ
E

[
1

2

∫ T

0
|u(t)|2dt

]
,

where Ȳ u is defined by (5.5). Let u ∈ U , and set X̃u .
= ψθ(Ȳ

u). Then, as a
consequence of Equation (5.9), X̃u solves

dX(t) = b
(
t,X, θ(t)

)
dt+ σ

(
t,X, θ(t)

)
u(t)dt+ σ

(
t,X, θ(t)

)
dW (t)

with initial distribution δx0 . If u is such that Law(ψθ(Ȳ
u)) = θ, then X̃u

is a solution of Equation (5.4) under u with initial distribution δx0 . By As-
sumption (H3), weak uniqueness holds for Equation (5.4), hence Law(X̃u) =

Law(X̄u) whenever X̄u is a solution of (5.4) under u with Law(X̄u(0)) = δx0 .
It follows that

R
(
θ‖Ψ(θ)

)
= inf

u∈U :Law(ψθ(Ȳ u))=θ
E

[
1

2

∫ T

0
|u(t)|2dt

]
= inf

u∈U :Law(X̄u)=θ
E

[
1

2

∫ T

0
|u(t)|2dt

]
= I(θ),

where I is the rate function of Theorem 5.1.
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Remark 5.7. Assuming in addition to (H1) – (H5) hypothesis (H’) of Re-
mark 5.2, Theorem 5.2 can be proved by applying both Sanov’s theorem and
Theorem 5.1 to the weakly interacting system given by equations (5.1) with
measure variable frozen at θ ∈ P(X ) and then evaluating the resulting rate
functions at θ.

A Contraction property of relative entropy

Let X , Y be Polish spaces. Denote by ΠX , ΠY the collection of all finite and
measurable partitions of X and Y, respectively. Recall that relative entropy
can be approximated in terms of finite sums; for η, ν ∈ P(X ),

(A.1) R(η‖ν) = sup
π∈ΠX

∑
A∈π

η(A) log

(
η(A)

ν(A)

)
,

see, for instance, Lemma 1.4.3(g) in Dupuis and Ellis [1997, p. 30]. For
ψ : Y → X measurable, γ ∈ P(Y), denote by ψ(γ)

.
= γ ◦ ψ−1 the image

measure of γ under ψ.
The following lemma extends the invariance property of relative entropy

under bijective bi-measurable mappings as given by Lemma E.2.1 in Dupuis
and Ellis [1997, p. 366] to arbitrary measurable transformations; also cf. The-
orem 2.4.1 in Kullback [1978, pp. 19-20], where the inequality that is implied
by Lemma A.1 is established.

Lemma A.1. Let ψ : Y → X be a Borel measurable mapping. Let η ∈ P(X ),
γ0 ∈ P(Y). Then

(A.2) R
(
η‖ψ(γ0)

)
= inf

γ∈P(Y):ψ(γ)=η
R
(
γ‖γ0

)
,

where inf ∅ =∞ by convention.

Proof. Suppose γ ∈ P(Y) is such that ψ(γ) = η. Then, by (A.1) and the
definition of image measure,

R
(
η‖ψ(γ0)

)
= sup

π∈ΠX

∑
A∈π

η(A) log

(
η(A)

ψ(γ0)(A)

)
= sup

π∈ΠX

∑
A∈π

γ(ψ−1(A)) log

(
γ(ψ−1(A))

γ0(ψ−1(A))

)
= sup

π∈ΠX

∑
B∈ψ−1(π)

γ(B) log

(
γ(B)

γ0(B)

)

≤ sup
π̂∈ΠY

∑
B∈π̂

γ(B) log

(
γ(B)

γ0(B)

)
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= R
(
γ‖γ0

)
,

where ψ−1(π) denotes the partition of Y induced by the inverse images of ψ.
More precisely, ψ−1(π)

.
= {ψ−1(A) : A ∈ π}. Notice that ψ−1(π) is indeed

a finite and measurable partition of Y since π is a finite and measurable
partition of X , inverse images under ψ are Borel measurable and ψ−1(A) ∩
ψ−1(Ã) = ∅ whenever A ∩ Ã = ∅. Since inf ∅ =∞, it follows that

R
(
η‖ψ(γ0)

)
≤ inf

γ∈P(Y):ψ(γ)=η
R
(
γ‖γ0

)
.

If R
(
η‖ψ(γ0)

)
= ∞, then the above inequality is necessarily an equality,

namely ∞ = ∞. Thus in order to show the opposite inequality, we may
assume that R

(
η‖ψ(γ0)

)
< ∞. Now R

(
η‖ψ(γ0)

)
< ∞ implies that η is

absolutely continuous with respect to ψ(γ0), hence possesses a density f .
=

dη
dψ(γ0) . Set

γ(C)
.
=

∫
C
f(ψ(y))γ0(dy), C ∈ B(Y).

Then γ is a probability measure having density f ◦ ψ with respect to γ0.
Using the integral transformation formula and definition of f , we have for
all A ∈ B(X ),

ψ(γ)(A) =

∫
Y
1ψ−1(A)(y) · f(ψ(y)) γ0(dy)

=

∫
Y
1A(ψ(y)) · f(ψ(y)) γ0(dy)

=

∫
X
1A(x) · f(x)ψ(γ0)(dx)

= η(A),

which means that ψ(γ) = η. Recalling that f ◦ ψ = dγ
dγ0

, f = dη
dψ(γ0) ,

R
(
γ‖γ0

)
=

∫
Y
f(ψ(y)) log

(
f(ψ(y))

)
γ0(dy)

=

∫
X
f(x) log

(
f(x)

)
ψ(γ0)(dx)

= R
(
η‖ψ(γ0)

)
,

which proves inequality “≥” in (A.2).

The proof of Lemma A.1 shows that the probability measure γ defined
by γ(dy)

.
= dη

dψ(γ0)(ψ(y))γ0(dy) attains the infimum in (A.2) whenever that
infimum is finite.
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B Relative entropy with respect to Wiener measure

Let Y be the Polish space C([0, T ],Rd) equipped with the maximum norm
topology. Let U be defined as in Section 5 with d1 = d. Thus U is the set of
quadruples ((Ω,F ,P), (Ft), u,W ) such that the pair ((Ω,F ,P), (Ft)) forms
a stochastic basis satisfying the usual hypotheses,W is a d-dimensional (Ft)-
Wiener process, and u is an Rd-valued (Ft)-progressively measurable process
with E

[∫ T
0 |u(t)|2dt

]
<∞. Given u ∈ U , define Ȳ u according to (5.5), that

is,

Ȳ u(t)
.
= W (t) +

∫ t

0
u(s)ds, t ∈ [0, T ].

The following result provides a variational representation of relative entropy
with respect to Wiener measure.

Lemma B.1. Let γ0 be Wiener measure on B(Y). Then for all γ ∈ P(Y),

(B.1) R
(
γ‖γ0

)
= inf

u∈U :Law(Ȳ u)=γ
E

[
1

2

∫ T

0
|u(t)|2dt

]
,

where inf ∅ =∞ by convention.

The proof of inequality “≤” in (B.1) relies on the lower semicontinuity of
relative entropy and the Donsker-Varadhan variational formula; it may be
confronted to the first part of the proof of Theorem 3.1 in Boué and Dupuis
[1998]. The proof of inequality “≥” exploits the variational formulation and
uses arguments contained in Föllmer [1985, 1986].

Proof of Lemma B.1. In order to prove inequality “≤” in (B.1), it suffices to
show that, for all u ∈ U ,

(B.2) R
(
Law(Ȳ u)‖γ0

)
≤ E

[
1

2

∫ T

0
|u(t)|2dt

]
.

Let u ∈ U , and set γ .
= Law(Ȳ u) = P ◦(Ȳ u)−1. In accordance with Def-

inition 3.2.3 in Karatzas and Shreve [1991, p. 132], a process v defined on
((Ω,F ,P), (Ft)) is called simple if there are N ∈ N, 0 = t0 < . . . < tN = T ,
and uniformly bounded Rd-valued random variables ξ0, . . . , ξN such that ξi
is Fti-measurable and

v(t, ω) = ξ0(ω)1{0}(t) +

N∑
i=0

ξi(ω)1(ti,ti+1](t).

By Proposition 3.2.6 in Karatzas and Shreve [1991, p. 134], there exists a
sequence (vn)n∈N of simple processes such that E

[∫ T
0 |u(t)− vn(t)|2dt

]
→ 0
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as n→∞. Let (vn)n∈N be such a sequence. For n ∈ N, set γn
.
= Law(Ȳ vn).

Then γn → γ in P(Y) since

E

[
sup
t∈[0,T ]

|Ȳ u(t)− Ȳ vn(t)|2
]
≤ T ·E

[∫ T

0
|u(t)− vn(t)|2dt

]
n→∞−→ 0.

Therefore, by the lower semicontinuity of R(.‖γ0),

R
(
Law(Ȳ u)‖γ0

)
= R

(
γ‖γ0

)
≤ lim inf

n→∞
R
(
γn‖γ0

)
= lim inf

n→∞
R
(
Law(Ȳ vn)‖γ0

)
.

On the other hand, E
[

1
2

∫ T
0 |vn(t)|2dt

]
→ E

[
1
2

∫ T
0 |u(t)|2dt

]
as n → ∞. It

is therefore enough to show that (B.2) holds whenever u is a simple process.
Thus assume that u is simple. Let Z be the FT -measurable (0,∞)-valued
random variable given by

Z
.
= exp

(
−
∫ T

0
u(s) · dW (s)− 1

2

∫ T

0
|u(s)|2ds

)
.

Notice that E[Z] = 1 since u is uniformly bounded. Define a probability
measure P̃ on (Ω,FT ) by

dP̃

dP

.
= Z.

By Girsanov’s theorem [Theorem 3.5.1 in Karatzas and Shreve, 1991, p. 191],
Ȳ u is an (Ft)-Wiener process with respect to P̃. By the Donsker-Varadhan
variational formula for relative entropy [Lemma 1.4.3(a) in Dupuis and Ellis,
1997, p. 29],

(B.3) R
(
γ‖γ0

)
= sup

g∈Cb(Y)

{∫
Y
g(y) γ(dy)− log

∫
Y
eg(y) γ0(dy)

}
.

Recall that γ = P ◦(Ȳ u)−1 and γ0 = P ◦W−1, but also γ0 = P̃◦(Ȳ u)−1 since
Ȳ u is a Wiener process under P̃ . Let Ẽ denote expectation with respect to
P̃. By the convexity of − log and Jensen’s inequality, for all g ∈ Cb(Y),∫
Y
g(y) γ(dy)− log

∫
Y
eg(y) γ0(dy)

= E
[
g(Ȳ u)

]
− logE [exp (g(W ))]

= E
[
g(Ȳ u)

]
− log Ẽ

[
exp

(
g(Ȳ u)

)]
= E

[
g(Ȳ u)

]
− logE

[
exp

(
g(Ȳ u)

)
· Z
]

= E
[
g(Ȳ u)

]
− logE

[
exp

(
g(Ȳ u)−

∫ T

0
u(t) · dW (t)− 1

2

∫ T

0
|u(t)|2dt

)]
≤ E

[
g(Ȳ u)

]
−E

[
g(Ȳ u)−

∫ T

0
u(t) · dW (t)− 1

2

∫ T

0
|u(t)|2dt

]
= E

[
1

2

∫ T

0
|u(t)|2dt

]
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since E
[∫ T

0 u(t) · dW (t)
]

= 0 as u is square integrable. In view of (B.3),
inequality (B.2) follows.

In order to prove inequality “≥” in (B.1), it suffices to consider proba-
bility measures with finite relative entropy with respect to Wiener measure.
Let γ ∈ P(Y) be such that R(γ‖γ0) < ∞. In particular, γ is absolutely
continuous with respect to γ0. We have to show that there exists u ∈ U
such that Law(Ȳ u) = γ and R(γ‖γ0) ≥ E

[
1
2

∫ T
0 |u(t)|2dt

]
. Let Y be the

coordinate process on the canonical space (Y,B(Y)), and let (Bt)t∈[0,T ] be
the canonical filtration (the natural filtration of Y ). Denote by (B̂t) the
γ0-augmentation of (Bt). Both γ0 and γ extend naturally to B̂T ⊃ B(Y).
Clearly, Y is a (B̂t)-Wiener process under γ0. Since R(γ‖γ0) < ∞, there is
a [0,∞)-valued B̂T -measurable random variable ξ such that

dγ

dγ0
= ξ, Eγ0 [ξ] = 1, Eγ [| log(ξ)|] = Eγ0 [| log(ξ)|ξ] <∞.

Set Z(t)
.
= Eγ0 [ξ|B̂t], t ∈ [0, T ]. By a version of Itô’s martingale repre-

sentation theorem [Theorem III.4.33 in Jacod and Shiryaev, 2003, p. 189],
there exists an Rd-valued (B̂t)-progressively measurable process v such that
γ0(
∫ T

0 |v(t)|2dt <∞) = 1 and

(B.4) Z(t) = 1 +

∫ t

0
v(s) · dY (s) for all t ∈ [0, T ], γ0-a.s.

In particular, Z is a continuous process. By the continuity and martingale
property of Z, and since Z(T ) = ξ,

γ

(
inf

t∈[0,T ]
Z(t) > 0

)
= 1.

Define an Rd-valued (B̂t)-progressively measurable process u by

(B.5) u(t)
.
=

1

Z(t)
· v(t) · 1{infs∈[0,t] Z(s)>0}, t ∈ [0, T ].

Thus u(t) = v(t)/Z(t) γ-almost surely. Applying Itô’s formula to calculate
log(Z(t)) (more precisely, Itô’s formula is applied to ϕε(Z(t)) with ϕε ∈
C2(R) such that ϕε(x) = log(x) for all x ≥ ε > 0), one checks that
(B.6)

Z(t) = exp

(∫ t

0
u(s) · dY (s)− 1

2

∫ t

0
|u(s)|2dt

)
for all t ∈ [0, T ], γ-a.s.

Set Ỹ (t)
.
= Y (t) −

∫ t
0 u(s)ds, t ∈ [0, T ]. Then Ỹ is a (B̂t)-Wiener process

with respect to γ. Clearly, Ỹ is continuous and (B̂t)-adapted. Since γ is
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absolutely continuous with respect to γ0, the quadratic covariation processes
of Y are the same with respect to γ0 as with respect to γ. Since

∫ .
0 u(t)dt

is a process of finite total variation with γ-probability one, it follows that
Ỹ has the same quadratic covariations under γ as Y under γ0. In view of
Lévy’s characterization of the Wiener process [Theorem 3.3.16 in Karatzas
and Shreve, 1991, p. 157], it suffices to check that Ỹ is a local martingale
with respect to (B̂t) and γ. But this follows from the version of Girsanov’s
theorem provided by Theorem III.3.11 in Jacod and Shiryaev [2003, pp. 168-
169] and the fact that, thanks to (B.4), the quadratic covariations of the
continuous processes Yi, i ∈ {1, . . . , d}, and Z are given by

[Yi, Z] (t) = 〈Yi, Z〉 (t) =

∫ t

0
vi(s)ds for all t ∈ [0, T ], γ0-a.s.,

and v(t) = u(t) · Z(t) γ-almost surely. For n ∈ N, define a (B̂t)-stopping
time τn by

τn
.
= inf

{
t ≥ 0 :

∫ t

0
|u(s)|2ds > n

}
∧ T.

Set

ξn
.
= exp

(∫ τn

0
u(s) · dY (s)− 1

2

∫ τn

0
|u(s)|2ds

)
.

Then ξn is well-defined with ξn > 0 γ0-almost surely (hence also γ-almost
surely). By Novikov’s criterion [Corollary 3.5.13 in Karatzas and Shreve,
1991, p. 199] and the version of Girsanov’s theorem cited in the first part of
the proof,

dγn
γ0

.
= ξn

defines a probability measure γn which is equivalent to γ0. As a consequence,
γ is absolutely continuous with respect to γn with density given by ξ/ξn. It
follows that

R
(
γ‖γ0

)
= Eγ [log(ξ)]

= Eγ

[
log

(
ξ

ξn

)]
+ Eγ [log(ξn)]

= R
(
γ‖γn

)
+ Eγ

[∫ τn

0
u(s) · dY (s)− 1

2

∫ τn

0
|u(s)|2ds

]
= R

(
γ‖γn

)
+ Eγ

[∫ τn

0
u(s) · dỸ (s)

]
+ Eγ

[
1

2

∫ τn

0
|u(s)|2ds

]
= R

(
γ‖γn

)
+ Eγ

[
1

2

∫ τn

0
|u(s)|2ds

]
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since Ỹ is a γ-Wiener process and
∫ T

0 1[0,τn](s) · |u(s)|2ds ≤ n by construc-
tion of τn. Since relative entropy is nonnegative and Eγ

[
1
2

∫ τn
0 |u(s)|2ds

]
→

Eγ

[
1
2

∫ T
0 |u(s)|2ds

]
in [0,∞] as n→∞ by monotone convergence, we obtain

(B.7) R
(
γ‖γ0

)
≥ Eγ

[
1

2

∫ T

0
|u(s)|2ds

]
.

Since R(γ‖γ0) < ∞ by assumption, also Eγ

[
1
2

∫ T
0 |u(s)|2ds

]
< ∞, which

together with (B.6) actually implies equality in (B.7).
Now we are in a position to choose ((Ω,F ,P), (Ft), u,W ) ∈ U such that

P ◦
(
W +

∫ .

0
u(s)ds

)−1

= γ and R
(
γ‖γ0

)
≥ E

[
1

2

∫ T

0
|u(s)|2ds

]
.

Take Ω
.
= Y, let F be the γ-completion of BT , and take P equal to γ,

extended to the additional null sets. Let (Ft) be the γ-augmentation of (Bt).
Notice that B̂t ⊆ Ft, t ∈ [0, T ], and that (Ft) satisfies the usual hypotheses.
Define the control process u according to (B.5), and set W .

= Ỹ . Then W is
an (Ft)-Wiener process under P and

P ◦
(
W +

∫ .

0
u(s)ds

)−1

= γ ◦
(
Ỹ +

∫ .

0
u(s)ds

)−1

= γ ◦ Y −1 = γ

since Y is the identity on Y = Ω. Finally, by (B.7),

R
(
γ‖γ0

)
≥ E

[
1

2

∫ T

0
|u(s)|2ds

]
,

where expectation is taken with respect to P = γ.

Remark B.1. Lemma B.1 allows to derive a version of Theorem 3.1 in Boué
and Dupuis [1998], the representation theorem for Laplace functionals with
respect to a Wiener process. The starting point here as there is the following
abstract representation formula for Laplace functionals [Proposition 1.4.2 in
Dupuis and Ellis, 1997, p. 27]. Let S be a Polish space, ν ∈ P(S). Then for
all f : S → R bounded and measurable,

(B.8) − log

∫
S
e−f(x)ν(dx) = inf

µ∈P(S)

{
R
(
µ‖ν

)
+

∫
S
f(x)µ(dx)

}
.

With S = Y, ν = γ0 Wiener measure as above, Equation (B.8) and Lemma B.1
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imply that

− log

∫
Y
e−f(y)γ0(dy)

= inf
γ∈P(Y)

{
inf

u∈U :Law(Ȳ u)=γ
E

[
1

2

∫ T

0
|u(t)|2dt

]
+

∫
Y
f(y)γ(dy)

}
= inf

γ∈P(Y)
inf

u∈U :Law(Ȳ u)=γ
E

[
1

2

∫ T

0
|u(t)|2dt+ f

(
Ȳ u
)]

= inf
u∈U

E

[
1

2

∫ T

0
|u(t)|2dt+ f

(
Ȳ u
)]
.

Let Ŵ be a standard d-dimensional Wiener process over time [0, T ] defined
on some probability space (Ω̂, F̂ , P̂). Since

∫
Y e
−f(y)γ0(dy) = EP̂

[
e−f(W )

]
,

it follows that for all f : S → R bounded and measurable,

(B.9) − logEP̂

[
e−f(W )

]
= inf

u∈U
E

[
1

2

∫ T

0
|u(t)|2dt+ f

(
Ȳ u
)]
.

The difference with the formula as stated in Boué and Dupuis [1998] lies in
the fact that the control processes there all live on the canonical space and
are adapted to the canonical filtration, while here the stochastic bases for
the control processes may vary; also cf. the related representation formula
in Budhiraja and Dupuis [2000], where the control processes are allowed to
be adapted to filtrations larger than that induced by the driving Wiener
process.

C Sufficient conditions for Hypotheses (H1) – (H5)

As in Section 5, let b, σ be predictable functionals on [0, T ] × X × P(Rd)
with values in Rd and Rd×d1 , respectively. Let dbL be the bounded Lipschitz
metric on P(Rd), that is,

dbL(ν, ν̃)
.
= sup

{∫
Rd
f(x)ν(dx)−

∫
Rd
f(x)ν̃(dx) : ‖f‖bL ≤ 1

}
,

where ‖.‖bL is defined for functions f : Rd → R by

‖f‖bL
.
= sup

x∈Rd
|f(x)|+ sup

x,y∈Rd:x 6=y

|f(x)− f(y)|
|x− y|

.

If X, Y are two Rd-valued random variables defined on the same probability
space, then

dbL
(
Law(X),Law(Y )

)
≤ E [|X − Y |] .

Consider the following local Lipschitz and growth conditions on b, σ.
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(L) For every M ∈ N there exists LM > 0 such that for all t ∈ [0, T ], all
ϕ, ϕ̃ ∈ X , all ν, ν̃ ∈ P(Rd),

|b(t, ϕ, ν)− b(t, ϕ̃, ν̃)|+ |σ(t, ϕ, ν)− σ(t, ϕ̃, ν̃)|

≤ LM

(
sup
s∈[0,t]

|ϕ(s)− ϕ̃(s)|+ dbL(ν, ν̃)

)

whenever sups∈[0,t] |ϕ(s)| ∨ |ϕ̃(s)| ≤M .

(G) There exist a constant K > 0 such that for all t ∈ [0, T ], all ϕ ∈ X , all
ν ∈ P(Rd),

|b(t, ϕ, ν)| ≤ K

(
1 + sup

s∈[0,t]
|ϕ(s)|

)
, |σ(t, ϕ, ν)| ≤ K.

The boundedness condition on σ is used only in the verification of Hypoth-
esis (H4).

Proposition C.1. Grant condition (L). Let ((Ω,F ,P), (Ft), u,W ) ∈ U .
Suppose that X, X̃ are solutions of Equation (5.4) over the time interval
[0, T ] under control u with initial condition X(0) = X̃(0) P-almost surely.
Then X, X̃ are indistinguishable, that is,

P
(
X(t) = X̃(t) for all t ∈ [0, T ]

)
= 1.

Proof. For M ∈ N define an (Ft)-stopping time τM by

τM (ω)
.
= inf

{
t ∈ [0, T ] : |X(t, ω)| ∨ |X̃(t, ω)| ∨

∫ t

0
|u(s, ω)|2ds ≥M

}

with inf ∅ = ∞. Observe that P (τM ≤ T ) → 0 as M → ∞ since X, X̃
are continuous processes and E

[∫ T
0 |u(s)|2ds

]
< ∞. Set θ(t) .

= Law(X(t)),

θ̃(t)
.
= Law(X̃(t)), t ∈ [0, T ]. Using Hölder’s inequality, Doob’s maximal

inequality, the Itô isometry, and condition (L), we obtain for M ∈ N, all
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t ∈ [0, T ],

E

[
sup
s∈[0,t]

∣∣∣X(s ∧ τM )− X̃(s ∧ τM )
∣∣∣2]

≤ 4T E

[∫ t∧τM

0

∣∣∣b(r,X, θ(r))− b(r, X̃, θ̃(r))∣∣∣2 dr]
+ 4E

[∫ t∧τM

0

∣∣∣σ(r,X, θ(r))− σ(r, X̃, θ̃(r))∣∣∣2 dr · ∫ t∧τM

0
|u(r)|2dr

]
+ 16E

[∫ t∧τM

0

∣∣∣σ(r,X, θ(r))− σ(r, X̃, θ̃(r))∣∣∣2 dr]
≤ 4T E

[∫ t∧τM

0

∣∣∣b(r,X, θ(r))− b(r, X̃, θ̃(r))∣∣∣2 dr]
+ (4M + 16)E

[∫ t∧τM

0

∣∣∣σ(r,X, θ(r))− σ(r, X̃, θ̃(r))∣∣∣2 dr]
≤ 8L2

M (T +M + 4)E

[∫ t∧τM

0

(
sup
s∈[0,r]

|X(s)− X̃(s)|2 + dbL(θ(r), θ̃(r))2

)
dr

]

≤ 16L2
M (T +M + 4)

∫ t

0
E

[
sup
s∈[0,r]

∣∣∣X(s ∧ τM )− X̃(s ∧ τM )
∣∣∣2] dr.

An application of Gronwall’s lemma yields that

E

[
sup
s∈[0,T ]

∣∣∣X(s ∧ τM )− X̃(s ∧ τM )
∣∣∣2] = 0,

hence P(X(t) = X̃(t) for all t ≤ τM ) = 1 for all M ∈ N. This implies the
assertion since τM ↗∞ as M →∞ P-almost surely.

Proposition C.1 says that under condition (L) pathwise uniqueness holds
for Equation (5.4) with respect to U . As in the classical case of uncontrolled
Itô diffusions, pathwise uniqueness implies uniqueness in law. The proof
of Proposition C.2 below is in fact analogous to that of Proposition 1 in
Yamada and Watanabe [1971]; also cf. Proposition 5.3.20 in Karatzas and
Shreve [1991, p. 309]).

Proposition C.2. Assume that pathwise uniqueness holds for Equation (5.4)
given any deterministic initial condition. Let ((Ω,F ,P), (Ft), u,W ) ∈ U ,
((Ω̃, F̃ , P̃), (F̃t), ũ, W̃ ) ∈ U be such that P ◦(u,W )−1 = P̃ ◦ (ũ, W̃ )−1 as
probability measures on B(R1 × Y). Suppose that X, X̃ are solutions of
Equation (5.4) over the time interval [0, T ] under control u and ũ, respec-
tively, with initial condition x0 P/P̃-almost surely. Then P ◦(X,u,W )−1 =

P̃ ◦ (X̃, ũ, W̃ )−1 as probability measures on B(Z).
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Proof (sketch). Set Ẑ .
= X×X×R1×Y and G .

= B(Ẑ). Let Ẑ = (Z, Z̃, ρ, Ŵ )

be the canonical process on Ẑ, and let (Gt)t∈[0,T ] be the canonical filtration
(i.e., the natural filtration of Z). Let R be the probability measure on
B(R1 × Y) given by

R
.
= P ◦(u,W )−1 = P̃ ◦ (ũ, W̃ )−1.

Let Q : R1×Y×B(X ) be a regular conditional distribution of Law(X,u,W )

given (u,W ); thus for all A ∈ B(R1 × Y), all B ∈ B(X ),

P (X ∈ B, (u,W ) ∈ A) =

∫
A
Q(r, w;B)R (d(r, w)) .

Analogously, let Q̃ : R1 × Y × B(X ) be a regular conditional distribution of
Law(X̃, ũ, W̃ ) given (ũ, W̃ ). Define P̂ ∈ P(Ẑ) by setting, for B, B̃ ∈ B(X ),
A ∈ B(R1 × Y),

P̂
(
B × B̃ ×A

)
.
=

∫
A
Q(r, w;B) · Q̃(r, w; B̃)R (d(r, w)) .

Let Ĝ be the P̂-completion of G, and denote by (Ĝt) the right continuous fil-
tration induced by the P̂-augmentation of (Gt). Then ((Ẑ, Ĝ, P̂), (Ĝt), ρ, Ŵ ) ∈
U , where (ρ, Ŵ ) are the last two components of the canonical process Ẑ. One
checks that

P̂ ◦ (Z, ρ, Ŵ )−1 = P ◦(X,u,W )−1, P̂ ◦ (Z̃, ρ, Ŵ )−1 = P̃ ◦ (X̃, ũ, W̃ )−1,

and that Z, Z̃ are solutions of Equation (5.4) over the time interval [0, T ]

under control ((Ẑ, Ĝ, P̂), (Ĝt), ρ, Ŵ ) ∈ U with initial condition x0 P̂-almost
surely, where ρ is being identified with the control process v(t)

.
=
∫
Rd1 yρt(dy).

By hypothesis, pathwise uniqueness holds for Equation (5.4) with determin-
istic initial condition; it follows that

P̂
(
Z(t) = Z̃(t) for all t ∈ [0, T ]

)
= 1,

which implies P ◦(X,u,W )−1 = P̃ ◦ (X̃, ũ, W̃ )−1.

The following lemma is used in the verification of Hypothesis (H4).

Lemma C.1. Let (Ω,F ,P), (Ft)) be a stochastic basis satisfying the usual
hypotheses, and let M be a continuous local martingale with respect to (Ft)
with quadratic variation 〈M〉. Suppose there exists a finite constant C > 0

such that for P-almost all ω ∈ Ω, all t, s ∈ [0, T ],

|〈M〉(t, ω)− 〈M〉(s, ω)| ≤ C · |t− s|.
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Then for every δ0 ∈ (0, T ],

E

[
sup

δ∈(0,δ0]
δ−1/4 · sup

t,s∈[0,T ]:|t−s|≤δ
|M(t)−M(s)|

]
≤ 192 ·

√
C · (e · T )1/4.

Proof. Since the assertion is about the behavior of M only up to time T ,
we may assume that limt→∞〈M〉(t) = ∞ P-almost surely. For s ≥ 0 set
τs

.
= inf{t ≥ 0 : 〈M〉(t) > s}. Then τs is an (Ft)-stopping time for every

s ≥ 0. By the Dambis-Dubins-Schwarz theorem [for instance, Theorem 3.4.6
in Karatzas and Shreve, 1991, p. 174], setting W (t, ω)

.
= M(τt(ω), ω), t ≥ 0,

ω ∈ Ω, defines a standard Wiener process with respect to the filtration (Fτt)
and for P-almost all ω ∈ Ω, all t ≥ 0,

M(t, ω) = W
(
〈M〉(t, ω), ω

)
.

Using the Garsia-Rodemich-Rumsey inequality one can show [cf. Appendix
in Fischer and Nappo, 2010] that for every p ≥ 1, every T̃ > 0, there exists
a p-integrable random variable ξp,T̃ such that E

[
|ξp,T̃ |

p
]
≤ 192p · pp/2 and

for P-almost all ω ∈ Ω, all t, s ∈ [0, T ] such that |t− s| ≤ T̃ /e,

|W (t, ω)−W (s, ω)| ≤ ξp,T̃ (ω) ·
√
|t− s| log

(
T̃
|t−s|

)
.

Clearly, x 7→ x log(T̃ /x) is increasing on (0, T̃ /e], limx→0+ x log(T̃ /x) = 0,
and (x log(T̃ /x))1/2 ≤ (T̃ · x)1/4 for all x ∈ (0, T̃ /e]. Since 〈M〉 is non-
decreasing with 〈M〉(0) = 0 and, by hypothesis, |〈M〉(t)−〈M〉(s)| ≤ C·|t−s|,
it follows that for P-almost all ω ∈ Ω, every δ ∈ (0, T ],

sup
t,s∈[0,T ]:|t−s|≤δ

|M(t, ω)−M(s, ω)|

= sup
t,s∈[0,T ]:|t−s|≤δ

∣∣W (〈M〉(t, ω), ω
)
−W

(
〈M〉(s, ω), ω

)∣∣
≤ sup

t,s∈[0,T ]:|t−s|≤δ
ξp,e·C·T (ω)

·
√
|〈M〉(t, ω)− 〈M〉(s, ω)| log

(
e·C·T

|〈M〉(t,ω)−〈M〉(s,ω)|

)
≤ sup

t,s∈[0,T ]:|t−s|≤δ
ξp,e·C·T (ω) ·

√
C ·
√
δ log

(
e·T
δ

)
≤
√
C · ξp,e·C·T (ω) · (e · T · δ)1/4 .

The assertion follows by choosing p equal to one, inserting the term contain-
ing the supremum over δ ∈ (0, δ0], and taking expectations.
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Proposition C.3. Conditions (L) and (G) entail hypotheses (H1) – (H5).

Proof. Hypothesis (H1) is an immediate consequence of conditions (L) and
(G). To verify Hypothesis (H2), let N ∈ N and define functions bN : [0, T ]×
XN → RN×d, σN : [0, T ]×XN → RN×d×N×d1 according to

bN (t,ϕ)
.
=
(
b
(
t, ϕ1, µ

N
ϕ(t)

)
, . . . , b

(
t, ϕN , µ

N
ϕ(t)

))T
,

σN (t,ϕ)
.
= diag

(
σ
(
t, ϕ1, µ

N
ϕ(t)

)
, . . . , σ

(
t, ϕN , µ

N
ϕ(t)

))
,

where µNϕ(t)
.
= 1

N

∑N
i=1 δϕi(t). Then bN , σN are the coefficients for the sys-

tem of N stochastic differential equations given by (5.1). Thanks to con-
ditions (L) and (G), bN , σN are locally Lipschitz continuous and of sub-
linear growth. The Itô existence and uniqueness theorem [for instance,
Theorem V.12.1 in Rogers and Williams, 2000, p. 132] thus yields pathwise
uniqueness and existence of strong solutions for the system of equations (5.1).
By Proposition C.1 in conjunction with condition (L), pathwise uniqueness
holds for Equation (5.4). By Proposition C.2, it follows that weak uniqueness
holds for Equation (5.4); hence Hypothesis (H3) is satisfied.

In order to verify Hypothesis (H4), let uN ∈ UN , N ∈ N, be such that
supN∈N

1
N

∑N
i=1 E

[∫ T
0 |u

N
i (t)|2dt

]
<∞. For N ∈ N, let µ̄N be the empirical

measure of the solution to the system of equations (5.3) under uN . We
have to show that {PN ◦(µ̄N )−1 : N ∈ N} is tight in P(P(X )). Choose
δ0 ∈ (0, 1 ∧ T ], and define a function G : P(X )→ [0,∞] by

G(θ)
.
=

∫
X

(
|ϕ(0)|+ sup

δ∈(0,δ0]
δ−1/4 · sup

t,s∈[0,T ]:|t−s|≤δ
|ϕ(t)− ϕ(s)|

)
θ(dϕ).

Then G is a tightness function, that is, G is measurable and the sublevel
sets {θ : G(θ) ≤ c}, c ∈ [0,∞), are compact in P(X ). This latter property
is a consequence of the Ascoli-Arzelà characterization of relatively compact
sets in P(X ) [for instance, Theorem 2.4.9 in Karatzas and Shreve, 1991,
p. 62], the Markov inequality and Fatou’s lemma. We are going to show that
supN∈NEN

[
G(µ̄N )

]
< ∞, which implies that {PN ◦(µ̄N )−1 : N ∈ N} is

tight. By construction, for N ∈ N,

G(µ̄N ) =
1

N

N∑
i=1

(∣∣X̄N
i (0)

∣∣+ sup
δ∈(0,δ0]

δ−1/4 · sup
t,s∈[0,T ]:|t−s|≤δ

∣∣X̄N
i (t)− X̄N

i (s)
∣∣)

= |x0|+
1

N

N∑
i=1

sup
δ∈(0,δ0]

δ−1/4 · sup
t,s∈[0,T ]:|t−s|≤δ

∣∣∣∫ t

s
b
(
r, X̄N

i , µ̄
N (r)

)
dr

+

∫ t

s
σ
(
r, X̄N

i , µ̄
N (r)

)
uNi (r)dr +

∫ t

s
σ
(
r, X̄N

i , µ̄
N (r)

)
dWN

i (r)
∣∣∣.
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Thanks to condition (G), for every i ∈ {1, . . . , N},

sup
δ∈(0,δ0]

δ−1/4 · sup
t,s∈[0,T ]:|t−s|≤δ

∣∣∣∣∫ t

s
b
(
r, X̄N

i , µ̄
N (r)

)
dr

∣∣∣∣ ≤ K (1 + ‖XN
i ‖∞

)
and, by Hölder’s inequality,

sup
δ∈(0,δ0]

δ−1/4 · sup
t,s∈[0,T ]:|t−s|≤δ

∣∣∣∣∫ t

s
σ
(
r, X̄N

i , µ̄
N (r)

)
uNi (r)dr

∣∣∣∣
≤
√
TK ·

√∫ T

0
|uNi (t)|2dt ≤

√
TK

(
1

2
+

1

2

∫ T

0
|uNi (t)|2dt

)
.

The process
∫ .

0 σ(r, X̄N
i , µ̄

N (r))dWN
i (r) is a vector of continuous local mar-

tingales which, thanks to condition (G), satisfy the hypothesis of Lemma C.1
with C = K2. It follows that there exists a finite constantKT > 0 depending
only on K and T such that

EN
[
G(µ̄N )

]
≤ |x0|+KT

(
1 +

1

N

N∑
i=1

EN
[
‖XN

i ‖∞
]

+
1

N

N∑
i=1

EN

[∫ T

0
|uNi (t)|2dt

])
.

Since supN∈N
1
N

∑N
i=1 E

[∫ T
0 |u

N
i (t)|2dt

]
< ∞ by hypothesis, it remains to

check that, for some finite constant K̂T > 0 depending only on K and T ,

1

N

N∑
i=1

EN
[
‖XN

i ‖∞
]
≤ K̂T

(
1 +

1

N

N∑
i=1

EN

[∫ T

0
|uNi (t)|2dt

])
.

But this follows by standard arguments involving localization along the stop-
ping times τNM

.
= inf{t ∈ [0, T ] : maxi∈{1,...,N} sups≤t |XN

i (s)| ≥M}, M ∈ N,
Hölder’s inequality, Doob’s maximal inequality, Itô’s isometry, condition (G),
and Gronwall’s lemma.

Hypothesis (H5) is again a consequence of the Itô existence and unique-
ness theorem since under conditions (L) and (G), given any θ ∈ P(X ), the
mappings (t, ϕ) 7→ b(t, ϕ, θ(t)), (t, ϕ) 7→ σ(t, ϕ, θ(t)) are predictable, locally
Lipschitz continuous, and of sub-linear growth.
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