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Abstract

The large deviation principle in the small noise limit is derived for
solutions of possibly degenerate Itô stochastic differential equations
with predictable coefficients, which may depend also on the large de-
viation parameter. The result is established under mild assumptions
using the Dupuis-Ellis weak convergence approach. Applications to
certain systems with memory and to positive diffusions with square-
root-like dispersion coefficient are included.
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1 Introduction

Freidlin-Wentzell estimates for Itô stochastic differential equations of diffu-
sion type are concerned with large (order one) deviations of solutions to

(1.1) dXε
t = b(Xε

t ) dt+
√
ε σ(Xε

t ) dWt

from their small noise limit as the noise parameter ε > 0 tends to zero. The
small noise limit here is the deterministic dynamical system given by the
ordinary differential equation

(1.2) dϕt = b(ϕt)dt.
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In (1.1) and (1.2) above, the solutions are Rd-valued, b is a vector field
Rd → Rd, σ a matrix-valued function Rd → Rd×m, andW an m-dimensional
standard Brownian motion, which serves as a model for noise. Solutions of
(1.1) and (1.2) are usually considered over a finite time interval, say [0, T ],
with the same deterministic initial condition Xε

0 = x = ϕ0.
Large deviations are quantified in terms of the large deviation principle;

see, for instance, Section 1.2 in Dembo and Zeitouni [1998]. Let us recall
the definition in the context of Polish spaces (i.e., topological spaces that
are separable and compatible with a complete metric). Let X be a Polish
space. A rate function on X is a lower semicontinuous function X → [0,∞].
A rate function is said to be good if its sublevel sets are compact. The large
deviation principle is said to hold for a family (ξε)ε>0 of X -valued random
variables with rate function I if for all Γ ∈ B(X ),

− inf
x∈Γ◦

I(x) ≤ lim inf
ε→0+

ε logP (ξε ∈ Γ)

≤ lim sup
ε→0+

ε logP (ξε ∈ Γ) ≤ − inf
x∈cl(Γ)

I(x),

where cl(Γ) denotes the closure and Γ◦ the interior of Γ. We will also need
the following alternative characterization. The Laplace principle is said to
hold for a family (ξε)ε>0 of X -valued random variables with rate function I
if for all F ∈ Cb(X ) (i.e., F bounded and continuous),

lim
ε→0+

−ε logE

[
exp

(
−1

ε
F (ξε)

)]
= inf

x∈X
{I(x) + F (x)} .

If the rate function I is good, then the Laplace principle holds with rate
function I if and only if the large deviation principle holds with rate function
I; see, for instance, Section 1.2 in Dupuis and Ellis [1997].

Various sets of assumptions on the coefficients b, σ in (1.1) are known
to imply that the large deviation principle holds for the family (Xε)ε>0 of
C([0, T ],Rd)-valued random variables. In the non-degenerate case, that is,
if d = m and the matrix-valued function σσT is uniformly positive definite,
the large deviation principle holds if, for instance, b and σ are bounded and
uniformly continuous; the rate function then takes the form

Ix(ϕ) =
1

2

∫ T

0
(ϕ̇s − b(s, ϕs))T(σσT)−1(s, ϕs)(ϕ̇s − b(s, ϕs)) ds

whenever ϕ ∈ C([0, T ],Rd) is absolutely continuous with ϕ0 = x, and
Ix(ϕ) = ∞ otherwise; see Theorem 5.3.1 in Freidlin and Wentzell [1998,
pp. 154-155]. In the general case of possibly degenerate diffusion matrix, the
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rate function Ix can be expressed as

(1.3) Ix(ϕ)
.
= inf
{f∈L2:ϕ=x+

∫ ·
0(b(ϕs)+σ(ϕs)fs)ds}

1

2

∫ T

0
|ft|2dt,

where inf ∅ =∞ by convention; see, for instance, Section 5.6 of Dembo and
Zeitouni [1998], where b, σ are assumed to be globally Lipschitz continuous
and σ is bounded. In Baldi and Caramellino [2011], building on an older
work by Baldi and Chaleyat-Maurel [1988], which in turn improves on results
obtained by Priouret [1982], the large deviation principle with rate function
given by (1.3) is established for locally Lipschitz continuous coefficients b, σ
satisfying a sublinear growth condition. The result in Baldi and Caramellino
[2011] is actually more general, see the discussion in Section 4 below. The
three works just mentioned all use a method of proof due to Azencott [1980].
The idea is to show that when

√
εW is close to a path ψ =

∫ .
0 ftdt, where

f ∈ L2([0, T ],Rm), then the probabilities that Xε deviates from the solution
ϕ to the the integral equation

(1.4) ϕt = x+

∫ t

0
b(ϕs)ds+

∫ t

0
σ(ϕs)fsds, t ∈ [0, T ],

are exponentially small in ε. This can be interpreted as a quasi-continuity
property of the Itô solution map associated with b, σ. To verify the quasi-
continuity property, assuming that Equation (1.4) is well-posed given any
“control” f ∈ L2([0, T ],Rm), one first establishes, using a discretization ar-
gument applied to Equation (1.1) and exponential martingale inequalities,
the quasi-continuity property for the zero control and time dependent drift
coefficients; the estimate is then transferred to controls in L2 and the original
coefficients using a change of measure based on Girsanov’s theorem.

In this paper, we study small noise large deviations for possibly degener-
ate Itô stochastic differential equations with coefficients b, σ that may depend
on time and the past of the solution trajectory (predictable coefficients) as
well as on the large deviation parameter ε; cf. Equation (2.1) below. This
general setting has also been studied in Puhalskii [2004]. The proof of the
large deviation principle there is based on Puhalskii’s weak convergence ap-
proach to large deviations, which builds on idempotent probability theory
and convergence in terms of maxingale problems, the idempotent analogues
of martingale problems; see Puhalskii [2001]. The assumptions needed in
Puhalskii [2004] to establish the large deviation principle are very mild, the
main assumption being that Luzin weak uniqueness holds for the idempotent
Itô stochastic differential equation associated with the predictable coefficients
b, σ; sufficient conditions in terms of regularity and growth properties of b,
σ are provided.
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The approach we follow here in establishing the large deviation principle,
actually through the Laplace principle, is the weak convergence approach in-
troduced by Dupuis and Ellis [1997] and adapted to the study of stochastic
systems driven by finite-dimensional Brownian motion in Boué and Dupuis
[1998]. The approach, or more precisely the variational formula for Laplace
functionals which is its starting point, has been extended to stochastic sys-
tems driven by infinite-dimensional Brownian motion and/or a Poisson ran-
dom measure in Budhiraja and Dupuis [2000] and Budhiraja et al. [2008,
2011]. Using that approach in the present situation, it is straightforward
to prove the large deviation principle for solutions of Equation (1.1) when
the coefficients are globally Lipschitz continuous; see Section 4.2 in Boué
and Dupuis [1998] or, for the case of finite-dimensional jump diffusions, Sec-
tion 4.1 in Budhiraja et al. [2011]. Here, we obtain the large deviation
principle for predictable coefficients under much weaker hypotheses, which
can be summarized as follows: continuity of the coefficients in the state vari-
able; strong existence and uniqueness for the (stochastic) prelimit equations;
uniqueness for a controlled version of the (deterministic) limit equation; sta-
bility of the prelimit solutions under L2-bounded perturbations in terms of
tightness of laws. An advantage of the weak convergence method is that
the large deviation principle can be derived in a unified way under mild
conditions with no need for resorting to discretization arguments or expo-
nential probability estimates. Instead, one uses ordinary tightness and weak
convergence for a family of controlled versions of the original processes.

The rest of this paper is organized as follows. Section 2 is dedicated
to the statement and proof of the large deviation principle under general
hypotheses. In Section 3, we verify the hypotheses for coefficients that are
locally Lipschitz continuous with sublinear growth at infinity but may depend
on the past as well as the large deviation parameter ε. This result yields,
as an application, the large deviation principle obtained in Mohammed and
Zhang [2006] for a class of systems with memory or delay; see Section 4.1.
The approach used here actually allows to easily handle more general delay
models than the point delay studied in Mohammed and Zhang [2006]; cf.
Remark 4.1 below. In Section 4.2, we derive the large deviation principle for
a class of positive Itô diffusions with dispersion coefficient of square-root type
such as, for example, the Cox-Ingersoll-Ross (CIR) process, which serves as
a model for interest rates in mathematical finance. The result is essentially
the same as the large deviation principle for positive diffusions obtained in
Baldi and Caramellino [2011]; it might be confronted to Theorem 1.3 in
Donati-Martin et al. [2004], which also covers degenerate cases (zero initial
condition or drift vanishing in zero). The appendix contains the variational
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formula for Laplace functionals of Brownian motion obtained in Boué and
Dupuis [1998] as well as two related technical results.

2 General large deviation principle

Let d,m ∈ N, and let T > 0. For n ∈ N, set Wn .
= C([0, T ],Rn) and

endow Wn with the standard topology of uniform convergence. For ε > 0,
let bε and b be functions mapping [0, T ]×Wd to Rd, and σε and σ functions
mapping [0, T ]×Wd to Rd×m. Let (Wm,B, θ) be the canonical probability
space with Wiener measure θ, and let W be the coordinate process. Thus
W is an m-dimensional standard Brownian motion with respect to θ. Let
(Gt) be the θ-augmented filtration generated by W , and letM2[0, T ] denote
the space of Rm-valued square-integrable (Gt)-predictable processes.

Fix x ∈ Rd. For ε > 0, we consider the Itô stochastic differential equation

(2.1) dXε
t = bε(t,X

ε) dt+
√
ε σε(t,X

ε) dWt,

and with v ∈M2[0, T ] its controlled counterpart

(2.2) dXε,v
t = bε(t,X

ε,v) dt+ σε(t,X
ε,v)vt dt+

√
ε σε(t,X

ε,v) dWt,

both over the time interval [0, T ] and with initial condition Xε,v
0 = Xε

0 = x.
Observe that if ε = 0, then Equation (2.1) becomes a deterministic functional
equation, namely

(2.3) ϕt = x+

∫ t

0
b(s, ϕ) ds.

Similarly, if ε = 0 and we pick v = f ∈ L2([0, T ];Rm), then Equation (2.2)
reduces to

(2.4) ϕt = x+

∫ t

0
b(s, ϕ) ds+

∫ t

0
σ(s, ϕ)fs ds.

Let us introduce the following assumptions:

H1 The coefficients b and σ are predictable. Moreover, b(t, ·), σ(t, ·) are
uniformly continuous on compact subsets ofWd, uniformly in t ∈ [0, T ],
and t 7→ σ(t, ϕ) is in L2([0, T ];Rd) for any ϕ ∈ Wd.

H2 The coefficients bε, σε are predictable maps such that bε → b and σε → σ

as ε→ 0 uniformly on [0, T ]×Wd.

H3 For all ε > 0 sufficiently small, pathwise uniqueness and existence in the
strong sense hold for Equation (2.1).
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H4 For any f ∈ L2([0, T ];Rm), Equation (2.4) has a unique solution so that
the map

Γx : L2([0, T ];Rm) −→Wd

which takes f ∈ L2[0, T ] to the solution of Equation (2.4) is well de-
fined.

H5 For all N ∈ N, the map Γx is continuous when restricted to

SN
.
=

{
f ∈ L2([0, T ],Rm) :

∫ T

0
|fs|2ds ≤ N

}
endowed with the weak topology of L2[0, T ].

H6 If {εn} ⊂ (0, 1] is such that εn → 0 as n→∞ and {vn}n∈N ⊂M2[0, T ]

is such that, for some constant N > 0,

sup
n∈N

∫ T

0
|vns (ω)|2 ds ≤ N for θ-almost all ω ∈ Wm,

then {Xεn,vn}n∈N is tight as a family of Wd-valued random variables
and

sup
n∈N

∫ T

0
E
[
|σ(s,Xεn,vn)|2

]
ds <∞.

Remark 2.1. We shall see in Section 3 that assumption H2 can be weak-
ened. Specifically, we shall require uniform convergence of bε, σε to b and σ,
respectively, only on bounded subsets of Wd.

Remark 2.2. As will be clear from the proof of Theorem 2.1, existence of
solutions to Equation (2.4) is a consequence of hypotheses H1–H3 and H6.
Thus hypothesis H4 reduces to the requirement of uniqueness of solutions for
the deterministic integral equation (2.4).

Remark 2.3. The spaces SN
.
= {f ∈ L2([0, T ],Rm) :

∫ T
0 |fs|

2ds ≤ N},
N ∈ N, introduced in Hypothesis H5 are compact Polish spaces when endowed
with the weak topology of L2[0, T ]. Continuity of the restriction of Γx to SN
as required by H5 is needed only to guarantee that the rate function has
compact sublevel sets, and accordingly is good.

Theorem 2.1. Grant H1–H6. Then the family {Xε}ε>0 of solutions of the
stochastic differential equation (2.1) with initial condition Xε

0 = x satisfies
the Laplace principle with good rate function Ix :Wd → [0,∞] given by

Ix(ϕ) = inf
{f∈L2([0,T ];Rm):Γx(f)=ϕ}

1

2

∫ T

0
|ft|2 dt

whenever {f ∈ L2([0, T ];Rm) : Γx(f) = ϕ} 6= ∅, and Ix(ϕ) =∞ otherwise.
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Proof of the lower bound. The first step in proving Theorem 2.1 is the Laplace
principle lower bound. We have to show that for any bounded and continuous
function F :Wd → R,

(2.5) lim inf
ε→0+

−ε logE

[
e−

F (Xε)
ε

]
≥ inf

ϕ∈Wd
{F (ϕ) + Ix(ϕ)}.

It suffices to prove that any sequence {εn}n∈N ⊂ (0, 1] such that εn → 0 as
n→∞ has a subsequence for which the above limit relation holds.

Let {εn}n∈N ⊂ (0, 1] be such that εn → 0. By assumption H3, for any
n ∈ N, Xn .

= Xεn is a strong solution of Equation (2.1). Hence there exists
a measurable map hn : Wm → Wd such that Xn = hn(W ) θ-almost surely.
Representation formula (A.3) in the appendix applies and yields

(2.6) − εn logE

[
e−

F (Xn)
εn

]
= −εn logE

[
e−

F◦hn(W )
εn

]
= εn inf

v∈M2[0,T ]
E

[
1

2

∫ T

0
|vs|2 ds+

1

εn
F ◦ hn

(
W +

∫ ·

0
vs ds

)]
= inf

v∈M2[0,T ]
E

[
1

2

∫ T

0
|vs|2 ds+ F ◦ hn

(
W +

1
√
εn

∫ ·

0
vs ds

)]
.

Fix δ > 0. We claim that there exists a constant N > 0 such that for
every n ∈ N there exists vn ∈M2[0, T ] such that

∫ T
0 |v

n
s |2ds ≤ N and

(2.7) − εn logE

[
e−

F (Xn)
εn

]
≥ E

[
1

2

∫ T

0
|vns |2 ds+ F ◦ hn

(
W +

1
√
εn

∫ ·

0
vns ds

)]
− δ.

Indeed, by the definition of infimum, for any n ∈ N there exists un ∈
M2[0, T ] such that

− εn logE

[
e−

F (Xn)
εn

]
≥ E

[
1

2

∫ T

0
|uns |2 ds+ F ◦ hn

(
W +

1
√
εn

∫ ·

0
uns ds

)]
− δ

2
.

Setting M .
= ‖F‖∞, it follows that

(2.8) sup
n∈N

E

[
1

2

∫ T

0
|uns |2 ds

]
≤ 2M +

δ

2
<∞.

For N ∈ N define the stopping time

τnN
.
= inf

{
t ∈ [0, T ] :

∫ t

0
|uns |2 ds ≥ N

}
∧ T.
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The processes un,Ns
.
= uns ·1[0,τnN ](s) belong toM2[0, T ] with

∫ T
0 |u

n,N
s |2 ds ≤

N . By Chebychev’s inequality and (2.8),

θ
(
un 6= un,N

)
≤ θ

(∫ T

0
|uns |2 ds ≥ N

)
≤ 4M + δ

N
.

This observation implies that

(2.9) − εn logE

[
e−

F (Xn)
εn

]
≥ E

[
1

2

∫ T

0
|un,Ns |2 ds+ F ◦ hn

(
W +

1
√
εn

∫ ·

0
un,Ns ds

)]
− 2M(4M + δ)

N
− δ

2
.

In view of (2.9), to verify the claim, we take N big enough so that

2M(4M + δ)

N
<
δ

2

and set, for n ∈ N, vn .
= un,N .

Choose N and {vn} ⊂ M2[0, T ] according to the claim, δ > 0 being fixed.
Thanks to hypothesis H3 and Lemma A.1 in the appendix, the controlled
stochastic equation

dXn,vn

t = bεn(t,Xn,vn) dt+ σεn(t,Xn,vn)vnt dt+
√
εnσεn(t,Xn,vn) dWt

possesses a unique strong solution with Xn,vn

0 = x, and

(2.10) hn
(
W +

1
√
εn

∫ ·

0
vns ds

)
= Xn,vn θ-a.e.

It follows that, for any n ∈ N, we can rewrite (2.7) to obtain

−εn logE

[
e−

F (Xn)
εn

]
≥ E

[
1

2

∫ T

0
|vns |2 ds+ F (Xn,vn)

]
− δ,

where Xn,vn is the unique strong solution of Equation (2.2) with ε = εn and
control v = vn.

Next we check that {(Xn,vn , vn)}n∈N is tight as a family of random vari-
ables with values in Wd × SN . Since both SN and Wd are Polish spaces, it
suffices to show that {Xn,vn}n∈N is tight as a family of Wd-valued random
variables and {vn}n∈N is tight as a family of SN -valued random variables.
But tightness of {Xn,vn}n∈N follows by assumption H6, while tightness of
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{vn} is automatic since SN is compact. Therefore, possibly taking a subse-
quence, we have that (Xn,vn , vn) converges in distribution to a Wd × SN -
valued random variable (X, v) defined on some probability space (Ω,F ,P).
Let us denote by EP expectation with respect to the measure P. We are
going to show that X satisfies

(2.11) Xt = x+

∫ t

0
b(s,X) ds+

∫ t

0
σ(s,X)vs ds P-a.s.

To do so, for t ∈ [0, T ], consider the map Ψt :Wd × SN → R defined by

Ψt(ϕ, v)
.
=

∣∣∣∣ϕ(t)− x−
∫ t

0
b(s, ϕ(s)) ds−

∫ t

0
σ(s, ϕ(s))vs ds

∣∣∣∣ ∧ 1.

Clearly, Ψt is bounded. Moreover, Φt is continuous. Indeed, let ϕn → ϕ in
Wd and fn → f in SN with respect to the weak topology of L2. The set
C .

= {ϕn : n ∈ N}∪{ϕ} is a compact subset ofWd. Therefore, by assumption
H1, there exist moduli of continuity ρb and ρσ mapping [0,∞[ into [0,∞[ such
that |b(s, ϕ)−b(s, ψ)| ≤ ρb(‖ϕ−ψ‖∞) and |σ(s, ϕ)−σ(s, ψ)| ≤ ρσ(‖ϕ−ψ‖∞)

for all s ∈ [0, T ] and all ϕ,ψ ∈ C. Using Hölder’s inequality and the fact
that ‖fn‖L2 ≤

√
N , we find

|Ψt(ϕ
n, fn)−Ψt(ϕ, f)|

≤ |ϕnt − ϕt|+
∫ t

0
|b(s, ϕn)− b(s, ϕ)| ds

+

∫ t

0
|σ(s, ϕ)− σ(s, ϕn)| · |fns | ds+

∣∣∣∣∫ t

0
σ(s, ϕ) (f − fns ) ds

∣∣∣∣
≤ ‖ϕn − ϕ‖∞ + T · ρb(‖ϕn − ϕ‖∞) +

√
N · T · ρσ(‖ϕn − ϕ‖∞)

+

∣∣∣∣∫ t

0
σ(s, ϕ) (fs − fns ) ds

∣∣∣∣ .
The terms involving ‖ϕ − ϕn‖∞ in the above display go to zero as n →
∞. Thanks to hypothesis H1, the function σ(·, ϕ) is in L2[0, T ]; since fn

converges weakly to f , the rightmost term of the previous display goes to
zero as well. This shows that Ψt is continuous. Since (Xn,vn , vn) converges
in distribution to (X, v) and Ψt is bounded and continuous, the continuous
mapping theorem for weak convergence implies that

(2.12) lim
n→∞

E
[
Ψt(X

n,vn , vn)
]

= EP [Ψt(X, v)] .

If we show that the limit in (2.12) is actually zero, then, by definition of Ψt,
X will satisfy Equation (2.11) P-almost surely for all t ∈ [0, T ]. Since X has
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continuous paths, it follows that X satisfies Equation (2.11) for all t ∈ [0, T ],
P-almost surely. Observe that

E[Ψt(X
n,vn , vn)] ≤ E

[∫ t

0
|bεn(s,Xn,vn)− b(s,Xn,vn)| ds

]
+ E

[∫ t

0
|σεn(s,Xn,vn)− σ(s,Xn,vn)| · |vns | ds

]
+
√
εnE

[∣∣∣∫ t

0
σεn(s,Xn,vn) dWs

∣∣∣] .
Using the uniform convergence of σε to σ and of bε to b on [0, T ] × Wd

according to H2, we get

E[Ψt(X
n,vn , vn)] ≤ t‖bεn − b‖∞

+ ‖σεn − σ‖∞E

[∫ T

0
|vns | ds

]
+
√
εn

√∫ t

0
E [|σεn(s,Xn,vn)|2] ds,

which goes to zero as n → ∞. The last term in the above display tends to
zero since

sup
n∈N

∫ t

0
E
[
|σεn(s,Xn,vn)|2

]
ds ≤ 2 sup

n∈N

∫ T

0
E
[
|σ(s,Xn,vn)|2

]
ds

+ 2 sup
n∈N

∫ T

0
E
[
|σεn(s,Xn,vn)− σ(s,Xn,vn)|2

]
ds

≤ 2T sup
n∈N
‖σεn − σ‖2∞ + 2 sup

n∈N

∫ T

0
E
[
|σ(s,Xn,vn

. )|2
]
ds,

which is finite thanks to hypothesis H6 (and H2). Recalling (2.12), we have
shown that

lim
n→∞

E[Ψt(X
n,vn , vn)] = EP[Ψt(X, v)] = 0.

Thus X satisfies Equation (2.11) for all t ∈ [0, T ], P-almost surely. If f ∈
L2([0, T ];Rm), then applying the same argument to the (constant) sequence
of deterministic control processes vn = f , one finds that Equation (2.4)
possesses a solution. The existence part of hypothesis H4 is therefore a
consequence of hypotheses H1, H2, H3, and H6.

The mapping SN 3 f →
∫ T

0 |fs|
2ds ∈ R is nonnegative and lower semi-

continuous (with respect to the weak L2-topology on SN ). Since the tra-
jectories of vn are in SN for all n ∈ N and vn converges in distribution to
v, a version of Fatou’s lemma (Theorem A.3.12 in Dupuis and Ellis [1997,
p. 307]) entails that

lim inf
n→∞

E

[∫ T

0
|vns |2 ds

]
≥ EP

[∫ T

0
|vs|2 ds

]
.
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Using this inequality and the continuous mapping theorem (recalling that F
is bounded and continuous) we find that

lim inf
n→∞

− εn logE

[
e−

F (Xn)
εn

]
≥ lim inf

n→∞
E

[
1

2

∫ T

0
|vns |2 ds+ F (Xn,vn)

]
− δ

≥ EP

[
1

2

∫ T

0
|vs|2 ds+ F (Xv)

]
− δ

≥ inf
{(f,ϕ)∈L2×Wd:ϕ=Γx(f)}

{
1

2

∫ T

0
|fs|2 ds+ F (ϕ)

}
− δ

≥ inf
ϕ∈Wd

{Ix(ϕ) + F (ϕ)} − δ.

The second but last inequality is obtained by evaluating the random variable
inside the expectation ω by ω. Since δ was arbitrary, the lower bound follows.

Proof of the upper bound. We now prove the Laplace principle upper bound,

(2.13) lim sup
ε→0

−ε logE
[
e−

F (Xε)
ε

]
≤ inf

ϕ∈Wd
{Ix(ϕ) + F (ϕ)}

for F : Wd → R bounded and continuous. As for the lower bound, it
suffices to show that any sequence {εn}n∈N ⊂ (0, 1] such that εn → 0 has a
subsequence for which the limit in (2.13) holds.

Fix δ > 0. If the infimum in (2.13) is not finite, the inequality is triv-
ially satisfied; hence we may assume that the infimum is finite. Since F is
bounded, there exists ϕ ∈ Wd such that

(2.14) Ix(ϕ) + F (ϕ) ≤ inf
ψ∈Wd

{Ix(ψ) + F (ψ)}+
δ

2
<∞.

For such ϕ, choose ṽ ∈ L2([0, T ];Rm) such that

1

2

∫ T

0
|ṽs|2 ds ≤ Ix(ϕ) +

δ

2
,

and ϕ = Γx(ṽ). This choice is possible by the definition of Ix and since
Ix(ϕ) < ∞. Let {εn}n∈N ⊂ (0, 1] be such that εn → 0 as n → ∞. For
n ∈ N, let Xn,ṽ be the unique strong solution of Equation (2.2) with ε = εn
and (deterministic) control v = ṽ. Then the family {(Xn,ṽ, ṽ)}n∈N is tight.
Therefore, possibly taking a subsequence, (Xn,ṽ, ṽ) converges in distribution

11



to a random variable (X, ṽ) defined on some probability space (Ω,F ,P). As
in the proof of the lower bound, it follows that, P-almost surely,

Xt = x+

∫ t

0
b(s,X) ds+

∫ t

0
σ(s,X)ṽs ds for all t ∈ [0, T ].

The above integral equation, which is deterministic since ṽ ∈ L2([0, T ];Rm)

is deterministic, coincides with Equation (2.4). The solution to that equation
is unique by assumption H4, hence X = Γx(ṽ) = ϕ P-almost surely. Using
representation (2.6), we obtain

lim sup
n→∞

− εn logE

[
e−

F (Xεn )
εn

]
= lim sup

n→∞
inf

v∈M2[0,T ]
E

[
1

2

∫ T

0
|vs|2 ds+ F ◦ hn

(
W +

1
√
εn

∫ ·

0
vs ds

)]
≤ lim sup

n→∞
E

[
1

2

∫ T

0
|ṽs|2 ds+ F (Xn,ṽ)

]
=

1

2

∫ T

0
|ṽs|2 ds+ lim

n→∞
E
[
F (Xn,ṽ)

]
≤ Ix(ϕ) +

δ

2
+ lim
n→∞

E
[
F (Xn,ṽ)

]
.

Since F is bounded and continuous and Xn,ṽ converges in distribution to
X = ϕ, we have limn→∞E[F (Xn,ṽ)] = F (ϕ). Thanks to (2.14), we can end
the above chain of inequalities by

Ix(ϕ) +
δ

2
+ F (ϕ) ≤ inf

ψ∈Wd
{Ix(ψ) + F (ψ)}+ δ.

Since δ > 0 is arbitrary, the proof of the Laplace principle upper bound is
complete.

Goodness of the rate function. To prove that Ix is actually a good rate func-
tion, it remains to check that Ix has compact sublevel sets. This follows from
the compactness of SN for any N > 0, and by the continuity on these sets
of the map Γx, which takes v to the unique solution of Equation (2.4), ac-
cording to assumption H5. Indeed {ϕ ∈ Wd : Ix(ϕ) ≤ N} =

⋂
ε>0 Γx(SN+ε)

is the intersection of compact sets, hence compact.

3 Locally Lipschitz continuous coefficients

In this section we show that hypotheses H1–H6 hold in the important case of
locally Lipschitz continuous coefficients which are predictable and satisfy a

12



sublinear growth condition. With the notation of Section 2, let us introduce
the following assumptions:

A1 b and σ satisfy a sublinear growth condition. Specifically, there exists
M > 0 such that for all t ∈ [0, T ], all ϕ ∈ Wd,

|b(t, ϕ)| ∨ |σ(t, ϕ)| ≤M

(
1 + sup

s∈[0,t]
|ϕs|

)
.

A2 b and σ are locally Lipschitz continuous. Specifically, for any R > 0

there exists LR > 0 such that for all t ∈ [0, T ], all ϕ, ϕ̃ ∈ Wd with
sups∈[0,t] |ϕs| ∨ |ϕ̃s| ≤ R,

|b(t, ϕ)− b(t, ϕ̃)| ∨ |σ(t, ϕ)− b(t, ϕ̃)| ≤ LR sup
s∈[0,t]

|ϕs − ϕ̃s|.

A3 bε and σε enjoy property A1 (with the same constant M as b, σ) as well
as property A2.

A4 bε, σε converge as ε→ 0 to b and σ, respectively, uniformly on bounded
subsets of [0, T ]×Wd.

Remark 3.1. We distinguish between hypotheses A1–A2 and A3 since A3 is
not needed to verify H4 and H5. Observe that A4 is not exactly H2, indeed
the convergence is not on the whole Wd, but on the bounded subsets of Wd.

Remark 3.2. Assumption A2 implies that if 0 ≤ t ≤ T and ϕ,ψ ∈ Wd are
such that ϕs = ψs for all s ∈ [0, t], then b(t, ϕ) = b(t, ψ) and the process
{b(t, ·)}t≥0 is adapted to the canonical filtration. In particular, if {b(t, ·)}t≥0

is càdlàg, then b is also predictable. The same remark is also true for σ.

Theorem 3.1. Grant A1–A4. Then the family {Xε}ε>0 of solutions of the
stochastic differential equation (2.1) with initial condition Xε

0 = x satisfies
the Laplace principle with good rate function Ix :Wd → [0,∞] given by

Ix(ϕ) = inf
{f∈L2([0,T ];Rm):ϕ=Γx(f)}

1

2

∫ T

0
|ft|2 dt

whenever {f ∈ L2([0, T ];Rm) : ϕ = Γx(f)} 6= ∅, and Ix(ϕ) =∞ otherwise.

To prove Theorem 3.1 it is enough to show that hypotheses H1–H6 of
Theorem 2.1 are entailed by assumptions A1–A4. As mentioned above, we
will not be able to prove H2. Instead, we are going to show that in this
special setting H2 is not really needed; this discussion is postponed to the
end of the section.
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Hypotheses H1, H3. H1 is satisfied, in fact b(t, ·) and σ(t, ·) are uniformly
continuous on bounded subsets of Wd, uniformly in t ∈ [0, T ] because of
assumption A2. Moreover σ(·, ϕ) belongs to L2[0, T ] for any ϕ ∈ Wd since

sup
t∈[0,T ]

|σ(t, ϕ)|2 ≤ 2M2(1 + ‖ϕ‖2∞)

as a consequence of A1. Assumption A3 implies that pathwise uniqueness
and existence of strong solutions hold for Equation (2.1); see, for instance,
Theorem 12.1 in Rogers and Williams [2000, p. 132].

Hypotheses H4, H5. In view of Remark 2.2, to verify H4 it suffices to show
that, given any f ∈ L2([0, T ],Rm), there is a unique solution ϕ ∈ C([0, T ],Rd)
of Equation (2.4). Moreover, for ϕ we have the growth estimate

(3.1) sup
0≤s≤t

|ϕt|2 ≤
(
3|x|2 + 6M2t2 + 6M2t‖f‖2

)
e6M2t(t+‖f‖2), t ∈ [0, T ].

To verify that uniqueness holds, let ϕ,ψ ∈ C([0, T ],Rd) be solutions of
Equation (2.4). Then for t ∈ [0, T ],

|ϕt − ψt| ≤
∫ t

0
|b(s, ϕ)− b(s, ψ)| ds+

∫ t

0
|σ(s, ϕ)− σ(s, ψ)| · |fs| ds.

By taking the square, using Hölder’s inequality and the local Lipschitz con-
tinuity according to A2, we obtain for R > 0 big enough (since ϕ, ψ are
bounded),

|ϕt − ψt|2 ≤ 2L2
R

(
T + ‖f‖2

)
·
∫ t

0
sup
u∈[0,s]

|ϕu − ψu|2 ds.

Gronwall’s inequality now entails that ‖ϕ − ψ‖∞ = 0, which yields unique-
ness. Similarly, also using the sublinear growth condition A1, one finds that

|ϕt|2 ≤ 3|x|2 + 3t

∫ t

0
|b(s, ϕ)|2 ds+ 3

(∫ t

0
|σ(s, ϕ)| · |fs| ds

)2

≤ 3|x|2 + 6M2
(
t+ ‖f‖2

) ∫ t

0

(
1 + sup

0≤u≤s
|ϕu|2

)
ds

≤ 3|x|2 + 6M2t2 + 6M2t‖f‖2 + 6M2
(
t+ ‖f‖2

) ∫ t

0
sup

0≤u≤s
|ϕu|2 ds.

An application of Gronwall’s inequality now yields the growth estimate (3.1).
In order to establish H5, we have to show that, given any N ∈ N, the

map Γx defined in H4 is continuous when restricted to SN . Recall that SN

14



is a compact Polish space. Take {fn} ⊂ SN such that fn → f weakly, and
define ϕn .

= Γx(fn), ϕ .
= Γx(f). Then for t ∈ [0, T ],

ϕnt − ϕt =

∫ t

0
(b(s, ϕn)− b(s, ϕ)) ds

+

∫ t

0
(σ(s, ϕn)− σ(s, ϕ)) fns ds+

∫ t

0
σ(s, ϕ) (fns − fs) ds.

Since ‖fn‖2 ≤ N , estimate (3.1) yields that R .
= supn∈N ‖ϕn‖∞ ∨ ‖ϕ‖∞ is

finite. Therefore, using A2,

sup
u∈[0,t]

|ϕnu − ϕu| ≤ LR
∫ t

0
sup
u∈[0,s]

|ϕnu − ϕu| ds

+ LR

∫ t

0
sup
u∈[0,s]

|ϕnu − ϕu| · |fns | ds+ sup
u∈[0,T ]

∣∣∣∣∫ u

0
σ(s, ϕ) (fns − fs) ds

∣∣∣∣ .
Set ∆n

σ
.
= supu∈[0,T ]

∣∣∫ u
0 σ(s, ϕ) (fns − fs) ds

∣∣. By Hölder’s inequality and
since ‖fn‖2 ≤ N for all n ∈ N, it follows that

sup
u∈[0,t]

|ϕnu − ϕu|2 ≤ 3L2
R(t+N)

∫ t

0
sup
u∈[0,s]

|ϕnu − ϕu|2 ds+ 3(∆n
σ)2.

An application of Gronwall’s lemma yields

‖Γx(fn)− Γx(f)‖∞ = sup
t∈[0,T ]

|ϕnt − ϕt|2 ≤ 3(∆n
σ)2e3L2T (T+N).

In order to establish continuity of Γx on SN , it remains to check that ∆n
σ

goes to zero as n → ∞. Thanks to assumption A1, the function σ(·, ϕ) is
in L∞[0, T ]. It follows that σ(·, ϕ)fn converges weakly to σ(·, ϕ)f in L2.
Moreover, the family {σ(·, ϕ)fn}n∈N is bounded in L2 with respect to the
L2-norm. Hence ∫ t

0
σ(s, ϕ)fns ds

n→∞−→
∫ t

0
σ(s, ϕ)fs ds,

uniformly in t ∈ [0, T ], which implies ∆n
σ → 0 as n→∞.

Hypothesis H6. Let {εn}n∈N ⊂ (0, 1] be such that εn → 0 as n → ∞, and
let {vn}n∈N ⊂M2[0, T ] be such that, for some constant N > 0,

sup
n∈N

∫ T

0
|vns (ω)|2 ds < N for θ-almost all ω ∈ Wm.

For n ∈ N, let Xn,vn be the solution of Equation (2.2) with ε = εn, control
v = vn, and initial condition x. Observe that if ε ≤ 1, then

√
εσε has
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sublinear growth at infinity with constant M , thanks to A3. By Lemma A.2
in the appendix, it follows that for all p ≥ 2,

(3.2) sup
n∈N

E

[
sup
t∈[0,T ]

|Xn,vn
t |p

]
≤ C(1 + |x|p)

for some finite constant C = Cp(T,N,M). Estimate (3.2), together with the
sublinear growth at infinity of σ (according to A1), implies in particular that

sup
n∈N

∫ T

0
E
[
|σ(s,Xn,vn)|2

]
ds <∞.

It remains to verify that the family {Xn,vn}n∈N is tight. In view of the
Kolmogorov tightness criterion (for instance, Theorem 13.1.8 in Revuz and
Yor [1999, pp. 517-518]), it suffices to show that there exist strictly positive
constants α, β, γ such that for all t, s ∈ [0, T ],

sup
n∈N

E
[
|Xn,vn

t −Xn,vn
s |α

]
≤ β|t− s|γ+1.

Without loss of generality, let s < t. Set K .
= 2p−1Mp(T + C(1 + |x|p)).

Exploiting the sublinear growth, we obtain for all n ∈ N,

E [|Xn,vn
t −Xn,vn

s |p] ≤ 3p−1(t− s)p−1E

[∫ t

s
|bεn(u,Xn,vn)|p du

]
+ 3p−1E

[(∫ t

s
|σεn(u,Xn,vn)| · |vn| du

)p]
+ 3p−1(εn)

p
2E

[∣∣∣∣∫ t

s
σεn(u,Xn,vn) dWu

∣∣∣∣p]
≤ 3p−1K

(
(t− s)p +N

p
2 (t− s)

p
2 + cp(εn)

p
2 (t− s)

p
2

)
≤ (t− s)

p
2 · 3p−1 ·K

(
T
p
2 +N

p
2 + (εn)

p
2

)
.

The hypotheses of Kolmogorov’s criterion are therefore satisfied if we choose
p > 2 and set α .

= p, β .
= 3p−1K

(
T
p
2 +N

p
2 + 1

)
, γ .

= p
2 − 1 > 0.

Hypothesis H2 modified. In the proof of Theorem 2.1, hypothesis H2 is only
needed to show that for all t ∈ [0, T ],

lim
n→∞

E
[
Ψt(X

n,vn , vn)
]

= 0,

where Ψt :Wd × SN → R is defined by

Ψt(ϕ, v)
.
=

∣∣∣∣ϕt − x− ∫ t

0
b(s, ϕ) ds−

∫ t

0
σ(s, ϕ)vs ds

∣∣∣∣ ∧ 1.
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We show that the same conclusion holds if we assume A3 and A4. Define
bRε : [0, T ]×Wd → Rd by

bRε (s, ϕ)
.
=

{
bε(s, ϕ) if supu∈[0,s] |ϕu| ≤ R,
bε
(
s, R
‖ϕ‖∞ϕ

)
otherwise.

In the same way, define σRε , σR, and bR. It is clear that the functions
just defined are globally Lipschitz and bounded. Thanks to assumption A4,
bRε → bR and σRε → σR uniformly on [0, T ]×Wd. In analogy with Ψt, set

ΨR
t (ϕ, v)

.
=

∣∣∣∣ϕt − x− ∫ t

0
bR(s, ϕ) ds−

∫ t

0
σR(s, ϕ)vs ds

∣∣∣∣ ∧ 1.

Observe that if supu∈[0,t] |ϕu| ≤ R, then ΨR
t (ϕ, v) = Ψt(ϕ, v). Now consider

the family {XR,n} of solutions to the equation

dXR,n
t = bRεn(t,XR,n) dt+ σRεn(t,XR,n)vnt dt+

√
εnσ

R
εn(t,XR,n) dWt,

with XR,n
0 = x. The same argument as in Theorem 2.1 yields

lim
n→∞

E
[
ΨR
t (XR,n, vn)

]
= 0.

For R > 0, n ∈ N, let τnR denote the time of first exit of Xn,vn from the
open ball of radius R centered at the origin. By the locality of the stochastic
integral,

P
(
XR,n
t = Xn,vn

t for all t ≤ τnR
)

= 1.

On the event {t < τnR} we have Ψt(X
n,vn , vn) = ΨR

t (XR,n, vn). It follows
that

(3.3) E
[
Ψt(X

n,vn , vn)
]

= E
[
1t<τnR ·Ψt(X

n,vn , vn)
]

+ E
[
1t≥τnR ·Ψt(X

n,vn , vn)
]

≤ E
[
ΨR
t (XR,n, vn)

]
+ P(t ≥ τnR).

Using the sublinear growth condition and the estimate of Lemma A.2, we
find that for all n ∈ N,

P (t ≥ τnR) = P
(

sup
0≤s≤t

|XR,n
t | ≥ R

)
≤ C2(T,N,M)(1 + |x|2)

R2

.
=

C

R2
.

Taking upper limits on both sides of (3.3), we obtain

lim sup
n→∞

E
[
Ψt(X

n,vn , vn)
]
≤ lim sup

n→∞
P(t ≥ τnR) ≤ C

R2
.
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Since R > 0 has been chosen arbitrarily, it follows that

lim
n→∞

E
[
Ψt(X

n,vn , vn)
]

= 0.

The job of assumption H2 is therefore carried out by A3 and A4.

Example 3.1 (Freidlin-Wentzell estimates). Let b̄, σ̄ be measurable func-
tions from [0, T ] × Rd to Rd and Rd×m, respectively. Assume that b̄, σ̄ are
locally Lipschitz continuous and satisfy a sublinear growth condition, uni-
formly in the time variable; that is, for every R > 0 there exists LR > 0 such
that for all t ∈ [0, T ], all y, z ∈ Rd with |y|, |z| ≤ R,

|b̄(t, y)− b̄(t, z)| ≤ LR|y − z|, |σ̄(t, y)− σ̄(t, z)| ≤ LR|y − z|,

and there exists a constant M > 0 such that for all t ∈ [0, T ], all y ∈ Rd,

|b̄(t, x)| ≤M(1 + |x|), |σ̄(t, x)| ≤M(1 + |x|).

Let Xε be the unique strong solution of the stochastic differential equation

dXε
t = b̄(t,Xε

t ) dt+
√
ε σ̄(t,Xε

t ) dWt

over the time interval [0, T ] with initial condition Xε
0 = x. Set b(t, ϕ)

.
=

b̄(t, ϕt), σ(t, ϕ)
.
= σ̄(t, ϕt). Then b, σ satisfy assumptions A1–A4. By Theo-

rem 3.1, the family {Xε}ε>0 satisfies the large deviation principle with rate
function Ix :Wd → [0,∞] given by

(3.4) Ix(ϕ) = inf
{f∈L2([0,T ];Rm):ϕt=x+

∫ t
0 b̄(s,ϕs) ds+

∫ t
0 σ̄(s,ϕs)fs ds}

1

2

∫ T

0
|ft|2 dt

whenever {f ∈ L2([0, T ];Rm) : ϕt = x+
∫ t

0 b̄(s, ϕs) ds+
∫ t

0 σ̄(s, ϕs)fs ds} 6= ∅,
and Ix(ϕ) =∞ otherwise.

Remark 3.3. If σ̄ is a square matrix such that a(t, y)
.
= σ̄(t, y)σ̄(t, y)T is

uniformly positive definite, then Equation (3.4) simplifies to

Ix(ϕ) =
1

2

∫ T

0
(ϕ̇s − b̄(s, ϕs))

T
a−1(s, ϕs)(ϕ̇s − b̄(s, ϕs)) ds

whenever ϕ ∈ Wd is absolutely continuous on [0, T ] with ϕ0 = x, and Ix(ϕ) =

∞ otherwise.

18



4 Two applications

In Subsection 4.1, we apply Theorem 3.1 to derive the large deviation prin-
ciple for stochastic systems with memory or delay established in Mohammed
and Zhang [2006]. They consider systems with point delay. Their proof
is based on a discretization argument analogous to the method of steps
for proving properties (including existence of solutions) of delay differen-
tial equations. This allows to derive the large deviation principle for Itô
processes with delay from the (well established) large deviation principle for
Itô diffusions with time dependent coefficients. The coefficients are assumed
to be globally Lipschitz.

In Subsection 4.2, we go back to Theorem 2.1 to derive the large devia-
tion principle obtained by Baldi and Caramellino [2011] for a class of positive
Itô diffusions with dispersion coefficient σ of square-root type. In that work,
as mentioned in the introduction, a general large deviation principle is es-
tablished for the diffusion case (the coefficients may actually depend on the
parameter ε). The assumptions can be summarized as follows [cf. Baldi and
Caramellino, 2011, A.2.3 and Theorem 2.4]: assumptions on b, σ in terms of
Equation (2.4) equivalent to our hypotheses H4 and H5, including existence
of solutions; local Lipschitz continuity of bε, σε for ε > 0 as well as strong exis-
tence (and uniqueness) of solutions for the corresponding prelimit equations;
the quasi-continuity property (assumption A.2.3(c) there), which relates the
prelimit solutions to solutions of the limit equation (2.4). All assumptions
are verified for locally Lipschitz continuous coefficients with sublinear growth
at infinity when bε, σε converge to b, σ uniformly on compacts. Although
the diffusion coefficient σ in the case of positive diffusions is locally Lips-
chitz only on R\{0}, Proposition 4.1, which is Proposition 3.11 in Baldi and
Caramellino [2011], allows to invoke the large deviation principle for locally
Lipschitz coefficients. Here, we use their result only to check that uniqueness
holds for the controlled deterministic limit equation (Equation (4.5) below).

4.1 Systems with memory

Let b̄ : [0, T ] × Rd × Rd → Rd and σ̄ : [0, T ] × Rd × Rd → Rd×m be Borel
measurable functions. Let us make the following assumptions, which are
those of Mohammed and Zhang [2006].

Q1 The functions b̄, σ̄ satisfy a global Lipschitz condition; that is, there

19



exists a constant L > 0 such that for all x1, x2, y1, y2 ∈ Rd, all t ∈ [0, T ],

|b̄(s, x1, y1)− b̄(s, x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|),
|σ̄(s, x1, y1)− σ̄(s, x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|).

Q2 The functions b̄(·, x, y), σ̄(·, x, y) are continuous on [0, T ], uniformly in
x, y ∈ Rd.

Let τ ∈]0, T [ and ψ ∈ C([−τ, 0],Rd); τ will be the length of the (fixed)
point delay and ψ the initial segment. For ε > 0, consider the stochastic
delay differential equation

(4.1) dXε
t = b̄(t,Xε

t , X
ε
t−τ ) dt+

√
ε σ̄(t,Xε

t , X
ε
t−τ ) dWt,

over t ∈ [0, T ] and with initial condition Xε
s = ψs for all s ∈ [−τ, 0]. Denote

by Cψ the set of all continuous functions ϕ : [−τ, T ]→ Rd such that ϕs = ψs
for all s ∈ [−τ, 0]. Let Gψ be the map L2([0, T ],Rm) → Cψ which takes
f ∈ L2([0, T ],Rm) to the unique solution of the integral equation
(4.2)

ϕt =

{
ψ0 +

∫ t
0 b̄(s, ϕs, ϕs−τ ) ds+

∫ t
0 σ̄(s, ϕs, ϕs−τ )fs ds if t ∈]0, T ],

ψt if t ∈ [−τ, 0].

Theorem 4.1. Grant Q1 and Q2. Then the map Gψ is well defined and the
family {Xε}ε>0 of solutions of the stochastic delay differential equation (4.1)
with initial condition Xε

s = ψs for s ∈ [−τ, 0] satisfies the large deviation
principle with good rate function Iψ : Cψ → [0,∞] given by

Iψ(ϕ) = inf
{f∈L2([0,T ];Rm):ϕ=Gψ(f)}

1

2

∫ T

0
|ft|2 dt

whenever {f ∈ L2([0, T ];Rm) : ϕ = Gψ(f)} 6= ∅, Iψ(ϕ) =∞ otherwise.

Proof. Define a function Φ:Wd → Cψ according to

Φ[ϕ](s)
.
=

{
ψs · 1[−τ,0](s) + ϕs · 1]0,T ](s) if ϕ0 = ψ0,

ψs · 1[−τ,0](s) + ψ0 · 1]0,T ](s) otherwise.

Define mappings b, σ from [0, T ] × Wd to Rd and to Rd×m, respectively,
according to

b(s, ϕ)
.
= b̄(s, ϕs, ψs−τ ) · 1[0,τ [(s) + b̄(s, ϕs, ϕs−τ ) · 1[τ,T ](s),

σ(s, ϕ)
.
= σ̄(s, ϕs, ψs−τ ) · 1[0,τ [(s) + σ̄(s, ϕs, ϕs−τ ) · 1[τ,T ](s),

20



and consider the stochastic differential equation

(4.3) dY ε
t = b(t, Y ε) dt+

√
ε σ(t, Y ε) dWt

over [0, T ] with initial condition Y ε
0 = ψ0. We show that the functions b

and σ enjoy assumptions A1–A4 of Section 3. Since the coefficients do not
depend on ε, it suffices to verify A1 and A2. We check the assumptions
only for b, the work for σ being completely analogous. Let us start with A1.
Thanks to Q1 we have

|b̄(t, x, y)| ≤ L(|x|+ |y|) + |b̄(t, 0, 0)|.

By Q2 it follows that supt∈[0,T ] |b̄(t, 0, 0)| <∞. Let ϕ ∈ Wd. Then

|b(s, ϕ)| ≤

{
L(|ϕs|+ |ψs−τ |) + |b̄(s, 0, 0)| if s ∈ [0, τ [,

L(|ϕs|+ |ϕs−τ |) + |b̄(s, 0, 0)| if s ∈ [τ, T ].

Set M .
= 2L ∨ (supt∈[0,T ] |b̄(t, 0, 0)| + sups∈[−τ,0] L|ψs|). Then |b(s, ϕ)| ≤

M(1 + supt∈[0,s] |ϕt|), which yields A1. Next we verify A2. Let ϕ, ϕ̃ ∈ Wd.
Then, thanks to Q1,

|b(s, ϕ)− b(s, ϕ̃)| ≤

{
L|ϕs − ϕ̃s| if s ∈ [0, τ [,

L (|ϕs − ϕ̃s|+ |ϕs−τ − ϕ̃s−τ |) if s ∈ [τ, T ].

Thus b(t, ·) is globally Lipschitz continuous with constant 2L, uniformly in
t ∈ [0, T ].

Since b, σ satisfy both A1 and A2, Theorem 3.1 applies and yields that the
family {Y ε}ε>0 of solutions of Equation (4.3) with initial condition Y ε

0 = ψ0

satisfies the large deviation principle with good rate function J :Wd → [0,∞]

given by

J(ϕ) = inf
{f∈L2([0,T ];Rm):ϕ=Γ(f)}

1

2

∫ T

0
|ft|2 dt,

where inf ∅ =∞ by convention and Γ
.
= Γψ0 as in H4. In particular, Γ is well

defined as the mapping L2([0, T ],Rm)→Wd that takes f ∈ L2([0, T ],Rm) to
the unique solution of Equation (2.4), that is, to the unique solution ϕ ∈ Wd

of the integral equation

ϕt = x+

∫ t

0
b(s, ϕ) ds+

∫ t

0
σ(s, ϕ)fs ds, t ∈ [0, T ].

Now let ϕ ∈ Cψ. Then ϕ solves the integral equation (4.2) with f ∈
L2([0, T ],Rm) if and only if ϕ|[0,T ] = Γ(f). Recalling the definition of b,
σ, it follows that Equation (4.2) has a unique solution and that the mapping
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G is well defined. Moreover, for every ε > 0, Equation (4.1) possesses a
unique strong solution Xε with initial segment ψ, and Xε = Φ[Y ε] θ-almost
surely.

Set Cψ0

.
= {ϕ ∈ Wd : ϕ0 = ψ0}. Observe that the effective domain of

J , namely DJ
.
= {ϕ ∈ Wd : J(ϕ) < ∞}, is contained in Cψ0 . The map

Φ is continuous on Cψ0 (in fact a continuous bijection Cψ0 → Cψ). Since
the processes Y ε take values in Cψ0 and Xε = Φ[Y ε], it follows by the
contraction principle (see, for instance, Theorem 4.2.1 with Remark (c) in
Dembo and Zeitouni [1998, pp. 126-127]) that the family {Xε}ε>0 satisfies
the large deviation principle with good rate function I : Cψ → [0,∞] given
by

I(ϕ̄) = inf
{
J(ϕ) : ϕ ∈ Wd such that Φ[ϕ] = ϕ̄

}
= J(ϕ̄|[0,T ])

= inf
{f∈L2([0,T ];Rm):ϕ̄|[0,T ]=Γ(f)}

1

2

∫ T

0
|ft|2 dt

= inf
{f∈L2([0,T ];Rm):ϕ̄=G(f)}

1

2

∫ T

0
|ft|2 dt.

Remark 4.1. A closer look at the proof above shows that we can generalize
without any effort the result of Mohammed and Zhang [2006]. We can assume
the coefficients to be locally Lipschitz continuous and depend on ε as well,
provided that a sublinear growth condition is satisfied and that b̄ε → b and
σ̄ε → σ. In particular the uniform continuity condition Q2 is no longer
needed, and it suffices to assume predictability of the coefficients. With the
approach used here, the large deviation analysis can be performed in the same
way also for other delay models such as distributed delay or dependence on the
running maximum; in those cases the coefficients could be (locally) Lipschitz
functions of expressions like∫ 0

−τ
g(ψs)ds,

∑
s∈J

gs(ψs), max
s∈[−τ,0]

g(ψs),

where g, gs are suitable functions, J ⊂ [−τ, 0] a countable set. These gener-
alizations would be difficult to obtain with a method-of-steps approach.

4.2 Positive diffusions with Hölder dispersion coefficient

In this subsection, we derive the large deviation principle for a class of scalar
Itô diffusions where the dispersion coefficient σ is positive away from zero
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and Hölder continuous with exponent γ ≥ 1
2 . We can rely on the work by

Baldi and Caramellino [2011] in proving uniqueness for the deterministic
limit system (2.4) as required by Hypothesis H4, see Proposition 4.1 below;
then we invoke Theorem 2.1.

Let W denote a one-dimensional Brownian motion. Slightly changing
notation, let x0 > 0 be the initial condition and consider, for ε > 0, the
scalar stochastic differential equation

(4.4) dXε
t = b̄(Xε

t ) dt+
√
εσ̄(Xε

t ) dWt

with Xε
0 = x0. We make the following assumptions on the coefficients b̄, σ̄,

which we take independent of ε for the sake of simplicity.

R1 The dispersion coefficient σ̄ : R→ [0,∞) is locally Lipschitz continuous
on R \ {0}, has sublinear growth at infinity, σ̄(0) = 0, while σ̄(x) > 0

for all x 6= 0. Moreover, there exists a continuous increasing function
ρ : (0,∞)→ (0,∞) such that

∫∞
0+ ρ

−2(u) du = +∞ and

|σ̄(x)− σ̄(y)| ≤ ρ(|x− y|) for all x, y ∈ R, x 6= y.

R2 The drift coefficient b̄ : R → R is locally Lipschitz continuous, has
sublinear growth at infinity, and b̄(0) > 0.

Condition R1 is satisfied, in particular, if σ̄(x) =
√
|x|. The large devia-

tion principle will be derived from Theorem 2.1. To this end, set

σ(s, ϕ)
.
= σ̄(ϕs), b(s, ϕ) = b̄(ϕs), (s, ϕ) ∈ [0, T ]×W1.

Let us check that hypotheses H1–H6 hold for b, σ. Since b̄, σ̄ are continuous,
b, σ are predictable with b(t, ·), σ(t, ·) uniformly continuous on all bounded
subsets of W1, uniformly in t ∈ [0, T ]. Moreover, given any ϕ ∈ W1, σ(·, ϕ)

is bounded by M(1 + ‖ϕ‖∞) for some M independent of ϕ thanks to the
sublinear growth condition, hence square-integrable. Thus H1 holds. Hy-
pothesis H2 is clearly satisfied as bε ≡ b and σε ≡ σ. Under R1 and R2,
pathwise uniqueness holds for Equation (4.4) (or (2.1) with b, σ as above);
this follows from Theorem 1 in Yamada and Watanabe [1971]. Continuity
and sublinear growth of the coefficients implies existence of a weak solu-
tion (for instance, Theorems 2.3 and 2.4 in Ikeda and Watanabe [1989]),
which together with pathwise uniqueness actually implies that any solution
is strong (Corollary 3 in Yamada and Watanabe [1971] or Theorem IX.1.7 in
Revuz and Yor [1999, p. 368]). Accordingly, hypothesis H3 holds. The fact
that hypothesis H4 holds is a consequence of Remark 2.2 and Proposition 4.1
stated next, which can be proved exactly as Proposition 3.11 in Baldi and
Caramellino [2011].
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Proposition 4.1. Grant R1 and R2. Let f ∈ L2([0, T ]). Then uniqueness
of solutions holds for the integral equation

(4.5) ϕt = x0 +

∫ t

0
b̄(ϕs) ds+

∫ t

0
σ̄(ϕs)fs ds.

Moreover, for every N > 0 there exists η > 0 such that inft∈[0,T ] ϕt ≥ η

whenever ϕ is a solution of (4.5) and ‖f‖L2 < N .

Proposition 4.1 also implies that hypothesis H5 is satisfied. The map Γx
which takes f ∈ SN to the unique solution of the integral equation

ϕt = x+

∫ t

0
b(ϕs) ds+

∫ t

0
σ(ϕs)fs ds

coincides with the map defined by replacing σ with a function which is
locally Lipschitz on the whole R and equals σ out of a sufficiently small
neighborhood of zero. Indeed, there exists ξ > 0 such that, for all f ∈ SN ,
Γx(f) ≥ ξ. Therefore, Γx is continuous from SN endowed with the weak
topology of L2, as a consequence of what we have shown in Section 3 in the
case of locally Lipschitz continuous coefficients.

Finally, by assumptions R1 and R2, the coefficients b, σ have sublin-
ear growth at infinity. Based on this property, we can argue exactly as in
Section 3 to show that H6 holds.

Theorem 4.2. Grant R1 and R2. Then the family {Xε}ε>0 of solutions
of the stochastic differential equation (4.4) with initial condition x0 satisfies
the large deviation principle with good rate function I : C([0, T ],R)→ [0,∞]

given by

I(ϕ) =
1

2

∫ T

0

(ϕ̇t − b̄(ϕt))2

σ̄2(ϕt)
dt

whenever ϕ is absolutely continuous on [0, T ] such that ϕ0 = x0 and (ϕ̇ −
b̄)/σ̄(ϕ) ∈ L2([0, T ],R), and I(ϕ) =∞ otherwise.

Proof. We have already checked that R1 and R2 imply H1–H6. Theorem 2.1
therefore yields the large deviation principle for the family {Xε}ε>0 with
good rate function J = Jx0 given by

J(ϕ) = inf
{f∈L2([0,T ],R):ϕt=x0+

∫ t
0 b̄(ϕs) ds+

∫ t
0 σ̄(ϕs)fs ds}

1

2

∫ T

0
|ft|2 dt

whenever {f ∈ L2([0, T ],R) : ϕt = x0 +
∫ t

0 b̄(ϕs) ds+
∫ t

0 σ̄(ϕs)fs ds} 6= ∅, and
I(ϕ) = ∞ otherwise. In particular, J(ϕ) < ∞ if and only if ϕ solves (4.5)
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for some f ∈ L2([0, T ],R). Let ϕ ∈ W1 be such that J(ϕ) < ∞. Then ϕ

solves (4.5) for some f ∈ L2([0, T ],R), hence

ϕ̇t = b(ϕt) + σ(ϕt)ft for almost every t ∈ [0, T ],

and ϕ is absolutely continuous on [0, T ] with ϕ0 = x0. By Proposition 4.1,
ϕt > 0 for all t ∈ [0, T ], thus σ̄(ϕt) 6= 0, hence

ϕ̇t − b̄(ϕt)
σ̄(ϕt)

= ft

for almost every t ∈ [0, T ]. It follows that

1

2

∫ T

0
|ft|2 dt =

1

2

∫ T

0

(ϕ̇t − b̄(ϕt))2

σ̄2(ϕt)
dt,

which implies J(ϕ) = I(ϕ). On the other hand, if ϕ ∈ W1 is absolutely
continuous on [0, T ] with ϕ0 = x0 such that

∫ T
0

(ϕ̇t−b̄(ϕt))2
σ̄2(ϕt)

dt <∞, then

ft
.
=
ϕ̇t − b̄(ϕt)
σ̄(ϕt)

is well defined as an element of L2([0, T ],R) and ϕ solves (4.5) with control
f . It follows also in this case that J(ϕ) = I(ϕ).

A Appendix

As above, let (Wm,B, θ) be the canonical probability space form-dimensional
Brownian motion over the time interval [0, T ], and let (Gt) be the θ-augmented
filtration generated by the coordinate process W . Let M2[0, T ] denote the
space of all Rm-valued square-integrable (Gt)-predictable processes. The-
orem 3.1 in Boué and Dupuis [1998] provides the following representation
for Laplace functionals of the Brownian motion W . For all F : Wm → R
bounded and measurable,
(A.1)

− logE
[
e−F (W )

]
= inf

v∈M2[0,T ]
E

[
1

2

∫ T

0
|vs|2 ds+ F

(
W +

∫ ·

0
vs ds

)]
,

where E denotes expectation with respect to the Wiener measure θ.
Let b(·, ·) and σ(·, ·) be predictable functions from [0, T ]×Wd to Rd and

to Rd×m, respectively. Fix x ∈ Rd, and consider the stochastic differential
equation

(A.2) dXt = b(t,X) dt+ σ(t,X) dWt
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for t ∈ [0, T ] and with initial condition X0 = x. Suppose that Equation (A.2)
has a strong solution. Then there exists a B(Wm)\B(Wd)-measurable func-
tion h :Wm →Wd such that X = h[W ] θ-almost surely; for instance, Theo-
rem 10.4 in Rogers and Williams [2000, p. 126]. Hence, for any F :Wd → R
bounded and measurable, F ◦h is a bounded and measurable map fromWm

into R. By representation formula (A.1) for Brownian motion, it follows that

(A.3) − logE
[
e−F (X)

]
= − logE

[
e−F◦h(W )

]
= inf

v∈M2[0,T ]
E

[
1

2

∫ T

0
|vs|2 ds+ F ◦ h

(
W +

∫ ·

0
vs ds

)]
.

For v ∈M2[0, T ], consider the controlled stochastic differential equation

(A.4) dXv
t = b(t,Xv) dt+ σ(t,Xv)vt dt+ σ(t,Xv) dWt

for t ∈ [0, T ] and with initial condition Xv
0 = x. If strong existence and path-

wise uniqueness hold for Equation (A.2), then the term F ◦h
(
W +

∫ ·
0 vs ds

)
in (A.3) can be rewritten in terms of solutions to Equation (A.4). We only
need that identity for control processes v with deterministically bounded L2-
norm. Lemma A.1 should be compared to Theorem 4.1 in Boué and Dupuis
[1998].

Lemma A.1. Let v ∈M2[0, T ] be such that
∫ T

0 |vs|
2ds ≤ N θ-almost surely

for some N > 0. Suppose that strong existence and pathwise uniqueness hold
for Equation (A.2) with initial condition X0 = x. Then Equation (A.4) has
a unique strong solution Xv with Xv

0 = x and

h

(
W +

∫ ·

0
vs ds

)
= Xv θ-a.s.

Proof. Define the process

W̃t
.
= Wt +

∫ t

0
vs ds, t ∈ [0, T ].

Since
∫ t

0 |vs|
2 ds ≤ N θ-almost surely, Girsanov’s theorem is applicable; ac-

cordingly, there exists a measure γ over Wm equivalent to θ such that W̃
is a (Gt)-Brownian motion on [0, T ] (for instance, Theorem 5.2 in Karatzas
and Shreve [1991, p. 191]). With respect to the measure γ the controlled
equation (A.4) becomes

(A.5) dXv
t = b(t,Xv) dt+ σ(t,Xv) dW̃t.

Uniqueness of solutions to Equation (A.4) follows by assumption of pathwise
uniqueness for Equation (A.2). Indeed, if X and Y are two solutions of
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the Equation (A.4) with respect to W and θ, then they are solutions of
Equation (A.5) with respect to γ and W̃ . By pathwise uniqueness, X, Y are
indistinguishable.

We now prove existence of solutions. For continuous and (Gt)-adapted
processes Z, define the map Ψ(Z) :Wm →Wd according to

Ψ(Z)(ω)
.
= x+

∫ ·

0
b(s, h[Z(ω)])ds+

(∫ ·

0
σ(s, h[Z(ω)])dZs

)
(ω).

The map Ψ(Z) is certainly well defined when Z is given by

Zt(ω)
.
= W̃t(ω) = ω(t) +

∫ t

0
vs(ω)ds

with v ∈M2[0, T ]. In this situation, for θ-almost all ω ∈ Wm,

(A.6) Ψ(W̃ )(ω) = x+

∫ ·

0
b(s, h[W̃ (ω)])ds

+

∫ ·

0
σ(s, h[W̃ (ω)])vs(ω)ds+

(∫ ·

0
σ(s, h[W̃ ])dWs

)
(ω),

where W is the coordinate process on Wm. Since h[W ] is a solution of
Equation (A.2), by construction we have

h[W (ω)] = Ψ(W )(ω) for θ-almost all ω ∈ Wm.

By Theorem 10.4 in Rogers and Williams [2000, p. 126], h(W̃ ) satisfies

h[W̃ ] = x+

∫ ·

0
b(s, h[W̃ ])ds+

∫ ·

0
σ(s, h[W̃ ])dW̃s γ-a.s.

Since γ is equivalent to θ, it follows that

h[W̃ ] = Ψ(W̃ ) θ-a.s.

Thanks to (A.6), this implies that, θ-almost surely,

h[W̃ ]t = Ψ(W̃ )t

= x+

∫ t

0
b(s, h[W̃ ])ds+

∫ t

0
σ(s, h[W̃ ])vsds+

∫ t

0
σ(s, h[W̃ ])dWs,

showing that h[W̃ ] is a strong solution of Equation (A.4) with respect to
W and θ. We have already seen that pathwise uniqueness holds for Equa-
tion (A.4). It follows that

h

(
W +

∫ ·

0
vs ds

)
= Xv θ-a.s.

for any solution Xv of (A.4) with Xv
0 = x.
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The following lemma provides a growth estimate if the coefficients b, σ
satisfy a sublinear growth condition. The proof uses only standard arguments
including localization along times of first exit, the Burkholder-Davis-Gundy
inequality, and Gronwall’s lemma.

Lemma A.2. Let v ∈M2[0, T ] be such that
∫ T

0 |vs|
2ds ≤ N θ-almost surely

for some N > 0. Assume that b, σ are such that, for some M > 0,

|b(t, ϕ)| ∨ |σ(t, ϕ)| ≤M

(
1 + sup

s∈[0,t]
|ϕs|

)

for all t ∈ [0, T ], all ϕ ∈ Wd. If Xv is a solution of Equation (A.4) with
Xv

0 = x, then for all p ≥ 2,

E

[
sup
t∈[0,T ]

|Xv
t |p
]
≤ Cp(T,N,M) (1 + |x|p) ,

where Cp(T,N,M) is non-decreasing in each of its three arguments.
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