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Abstract

We introduce a simple class of mean field games with absorbing
boundary over a finite time horizon. In the corresponding N -player
games, the evolution of players’ states is described by a system of
weakly interacting Itô equations with absorption on first exit from
a bounded open set. Once a player exits, her/his contribution is re-
moved from the empirical measure of the system. Players thus interact
through a renormalized empirical measure. In the definition of solu-
tion to the mean field game, the renormalization appears in form of
a conditional law. We justify our definition of solution in the usual
way, that is, by showing that a solution of the mean field game induces
approximate Nash equilibria for the N -player games with approxima-
tion error tending to zero as N tends to infinity. This convergence is
established provided the diffusion coefficient is non-degenerate. The
degenerate case is more delicate and gives rise to counter-examples.
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1 Introduction

Mean field games (MFGs, henceforth) were introduced by Lasry and Lions
[2006a,b, 2007] and, independently, by Huang et al. [2006], as limit models for
symmetric nonzero-sum non-cooperative N -player games with interaction of
mean field type as the number of players tends to infinity. The limit relation
is commonly understood in the sense that a solution of the MFG allows to
construct approximate Nash equilibria for the corresponding N -player games
if N is sufficiently large; see, for instance, Huang et al. [2006], Kolokoltsov
et al. [2011], Carmona and Delarue [2013], and Carmona and Lacker [2015].
This approximation result is useful from a practical point of view since the
model of interest is commonly the N -player game with N very large so that
a direct computation of Nash equilibria is not feasible.

The purpose of this paper is to study N -player games and related MFGs
in the presence of an absorbing set. Thus, a player is eliminated from the
N -player game as soon as her/his private state process leaves a given open
set O ⊂ Rd, the set of non-absorbing states, which is the same for all players.
We carry out our study for a simple class of continuous-time models with
Itô-type dynamics with mean field interaction over a bounded time horizon.
More specifically, the vector of private states XN = (XN

1 , . . . , X
N
N ) in the

N -player game is assumed to evolve according to

XN
i (t) = XN

i (0) +

∫ t

0

(
ui(s,X

N ) + b̄

(
t,XN

i (t),

∫
Rd
w(y)πN (s, dy)

))
ds

+ σWN
i (t), t ∈ [0, T ], i ∈ {1, . . . , N},

(1.1)

where u = (u1, . . . , uN ) is a vector of feedback strategies with full state infor-
mation (to be specified below), WN

1 , . . . ,WN
N are independent d-dimensional

Wiener processes defined on some filtered probability space, σ is some dis-
persion matrix, which we assume to be constant for simplicity, and b̄, w are
given deterministic functions. Moreover, πN (t, ·) is the (random) empirical
measure of the players’ states at time t that have not left O, that is,

πN (t, ·) .
=


1

N̄N (t)

∑N
j=1 1

[0,τ
XN
j )

(t) · δXN
j (t)(·) if N̄N (t) > 0,

δ0(·) if N̄N (t) = 0,

where N̄N (t)
.
=
∑N

j=1 1
[0,τ

XN
j )

(t) is the number of players still in the game

at time t and
τX

N
j
.
= inf

{
t ∈ [0, T ] : XN

j (t) /∈ O
}
,
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denotes the time of first exit of XN
j from O, with the convention inf ∅ =∞.

By definition, πN (t, ·) equals the Dirac measure in 0 ∈ Rd if all players have
left O by time t. The choice of δ0 in this case is arbitrary and has no impact
on the game; this will be clear from the definition of the cost functionals JNi
below. Heuristically, when some player exits the set O, he/she does not con-
tribute anymore to the empirical measure πN (t, ·), which is computed with
respect to the “survivors” only. Notice that the controls appear linearly in
(1.1) only for the sake of simplicity. Even though more general dependencies
could be considered, we do not aim at giving the minimal set of assumptions
under which our results hold true.

Each player wants to minimize expected costs according to a given cost
functional over the random time horizon determined as the minimum be-
tween the player’s time of first exit from O and the overall time horizon
T . More precisely, player i evaluates a strategy vector u = (u1, . . . , uN )

according to

JNi (u)
.
= E

[∫ τNi

0
f

(
s,XN

i (s),

∫
Rd
w(y)πN (s, dy), ui

(
s,XN

))
ds

+ F
(
τNi , X

N
i (τNi )

)]
,

where XN is the solution of Eq. (1.1) under u and τNi
.
= τX

N
i ∧T is the (ran-

dom) duration of the game for player i. Notice that the cost coefficients f , F
are the same for all players. As in the dynamics, we have mean field interac-
tion in the costs through the renormalized empirical measures πN (t, ·). For
simplicity, we only consider finite-dimensional dependencies on the measure
variable, namely through integrals of the vector-valued function w. More
details on the setting with all the technical assumptions will be given in the
next sections.

The presence of an absorbing set can be motivated by economic models
for credit risk and corporate finance. There, the players can be interpreted as
interacting firms striving to maximize some objective functional, for instance
the expected value of discounted future dividends, or as banks controlling
their rate of borrowing/lending to a central bank as in the systemic risk
model proposed by Carmona et al. [2015]. Within both contexts, the ab-
sorbing boundary can be naturally seen as a default barrier as in structural
models for credit risk. In this paper, we concentrate on the mathematical
properties of this family of games, while we postpone their possible applica-
tions to future research.

For our class of games, we focus on the construction of approximate Nash
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equilibria for the N -player games through solutions of the corresponding
MFG. Our main contributions are as follows:

• We introduce the limit model corresponding to the above N -player
games as N → ∞, namely the MFG with absorption. For a solution
of the MFG, the renormalized empirical measures πN (t, ·) are replaced
by a flow of conditional laws; see Definition 4.1.

• Under a non-degeneracy condition on the dispersion matrix σ, we prove
that any regular feedback solution of the MFG induces a sequence of
approximate Nash equilibria for the N -player games with approxima-
tion error tending to zero as N →∞; see Theorem 5.1. Here, “regular”
means that the optimal feedback strategy is (almost surely) continuous
with respect to the state variable.

• Under the same non-degeneracy condition on σ, we prove existence of
a solution in feedback form to the MFG with absorption; see Theo-
rem 6.2. Moreover, under some additional conditions, we show that
the optimal feedback strategies are Markovian and continuous in the
state variable; see Proposition 6.1 and Corollary 6.3. In that situation,
we briefly sketch what would be the PDE approach to mean field games
with absorption.

• In the degenerate case, i.e. when σ may vanish, we provide a counter-
example where the solution of the limit MFG is not even nearly optimal
(in the sense of inducing approximate Nash equilibria) for the N -player
games. This is in contrast with what happens in the absence of an
absorbing set.

The proof of Theorem 5.1 on approximate Nash equilibria is based on
weak convergence arguments, controlled martingale problems and a reformu-
lation of the original dynamics and costs using path-dependent coefficients;
see, in particular, (3.2) and (5.4). This allows to work with solutions de-
fined over the entire time interval [0, T ]. The resulting description of the
systems should be compared to the set-up used in Carmona and Lacker
[2015]. There, questions of existence and uniqueness of solutions finite hori-
zon MFGs with non-degenerate noise and functional coefficients are studied
through probabilistic methods, and approximate Nash equilibria are con-
structed from the MFG. Nonetheless, the results of Carmona and Lacker
[2015] cannot be applied directly to our situation, due in part to different
continuity assumptions. What is more, approximate Nash equilibria are con-
structed there only for dynamics without mean field interaction [Carmona
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and Lacker, 2015, Theorem 4.2]; this assumption implies an independence
property not warranted in more general situations. The use of martingale
problems in proving convergence to the McKean-Vlasov limit and propa-
gation of chaos for weakly interacting systems has a long tradition; see,
for instance, Funaki [1984], Oelschläger [1984], or Méléard [1996]. In those
works, the N -particle systems are usually assumed to be fully symmetric,
and the dynamics of all particles are determined by the same coefficients.
Here, we have to study the passage to the many player (particle) limit also
in the presence of a deviating player, which destroys the symmetry of the
prelimit systems. The absorbing boundary introduces a discontinuity into
the dynamics so that a single deviating player might have a non-negligible
effect on the limit behavior of the N -player empirical measures. This is the
reason why we give a detailed proof of convergence in Appendix A.

The proof of Theorem 6.2 on existence of a feedback solution for the
limit MFG is based on results on BSDEs with random terminal horizon as
in Darling and Pardoux [1997], Briand and Hu [1998] and the use of the
Brouwer-Schauder-Tychonov fixed point theorem applied to a suitable map
in the same spirit as Carmona and Lacker [2015]. For the continuity of
the optimal feedback strategy, we rely on the classical PDE approach to
optimal control and adapt to our setting the proof of a regularity result due
to Fleming and Rishel [1975].

For the counter-example (given in Section 7), we consider systems with
dispersion coefficient σ equal to zero; the only source of randomness comes
from the initial conditions. We construct, for a specific choice of the initial
distribution, a feedback solution of the MFG that is Lipschitz continuous
in the state variable and such that the induced strategy vectors are not
asymptotically optimal for the corresponding N -player games. The reason
for this non-convergence is a change in the controllability of the individual
player dynamics between limit and prelimit systems in conjunction with the
discontinuity of the costs introduced by the absorbing boundary. Also notice
that the initial distribution we choose is singular with respect to Lebesgue
measure. The counter-example thus holds little surprise from the point of
view of optimal control theory. In the context of MFGs without absorption,
on the other hand, the connection between solutions of the limit MFG and
approximate Nash equilibria for the N -player games is known to be robust
and persists even for systems with fully degenerate noise; see Theorem 2.11
in Lacker [2016] for a general result in this direction. From this point of
view, the counter-example seems to be interesting.
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Related literature. Mean-field models similar to ours have been studied
before in different contexts. In a first group of papers, such as Giesecke et al.
[2013], Spiliopoulos et al. [2014], Giesecke et al. [2015], a point process model
of correlated defaults timing in a portfolio of firms has been introduced.
More specifically, a firm defaults with some intensity which follows a mean-
reverting jump-diffusion process that is driven by several terms, one of them
being the default rate in the pool. This naturally induces a mean-field among
the default intensities: every time one firm defaults a jump occurs in the
default rate of the pool and hence in the intensities of the survivors. The
effects of defaults fade away with time. A law of large number (LLN) for the
default rate as the number N of firms goes to infinity is proved in Giesecke
et al. [2013], while other results on the loss from default are analyzed in the
companion papers Spiliopoulos et al. [2014], Giesecke et al. [2015]. Similar
results been obtained in the interacting particle models proposed by Cvitanić
et al. [2012] and by Dai Pra et al. [2009], where the effect of defaults on the
survivors is permanent.

Apart from the fact that their setting is not controlled, the main differ-
ence between our model and theirs is that whenever, in our model, some
diffusion is absorbed and the conditional empirical measure is updated ac-
cordingly, the diffusions still in O are affected by it in a continuous way
since the empirical measure appears only in the drift coefficient. Moreover,
while in the setting of Giesecke, Spiliopoulos and coauthors the intensities
can have a common noise, this is not included in our model for the sake of
simplicity.

More recently, Hambly and Ledger [2016], motivated by various applica-
tions from large credit portfolios to neuroscience, have proposed a system of
N uncontrolled diffusions that are killed as soon as they go negative. Fur-
thermore, their coefficients are functions of the current proportional loss,
which is defined as the proportion out of N of killed diffusion. They prove a
LLN for the empirical measure of the population using some energy estimates
in combination with weak convergence techniques.

Two more papers, which are related to ours, are those by Delarue et al.
[2015a,b]. Motivated by applications in neuroscience, these authors study
the well-posedness of an integrate-and-fire model and its approximation via
particle systems. Mathematically speaking, they look at a nonlinear scalar
SDE with a jump component responsible for resetting trajectories as soon as
they hit a given threshold (occurrence of a “spike”) and a singular drift term
of mean field type (the “nonlinear” interaction) depending on the average
number of spikes before current time. When the nonlinear interaction is too
strong, any solution can have a blow-up in finite time. In our model, we
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could have a similar cascade effect, which would correspond to a situation
when all players get absorbed before the finite horizon T . Investigating such
a phenomenon in our setting is interesting on its own but goes beyond the
scope of this paper.

In the applied literature, MFGs with absorption at zero have been re-
cently considered in Chan and Sircar [2015a,b] within the context of oligopolis-
tic models with exhaustible resources. A common feature that their model
shares with ours is that they also keep track of the fraction of active players
remaining at time t, which appears in the objective functions (through the
control) but not in the state variable. Moreover, they look at some partic-
ular cases, which are relevant from an economic perspective, and perform
some asymptotic expansions corresponding to the case of “small competi-
tion”. A rigorous study addressing existence and uniqueness issues in Chan
and Sircar’s model has been subsequently done by Graber and Bensoussan
[2016].

The last work we mention here is by Bensoussan et al. [2014] and bears a
different relation to ours. There, the authors construct Nash equilibria using
PDE methods for a class of stochastic differential games with a varying
number of players (the dynamics are not of mean field type). While the
maximum number of players is prescribed, players may leave the game (be
pushed out or “die”), and new players may join. In our case, we only allow
players to leave (through absorption). A natural extension of our model
would include a mechanism by which players enter the game.

Structure of the paper. The rest of this paper is organized as follows.
Section 2 introduces some terminology and notation and sets the main as-
sumptions on the dynamics as well as on the cost functionals. Section 3
describes the setting of N -player games with absorption, while Section 4
introduces the corresponding MFG. In Section 5, one of the main results,
namely the construction of approximate Nash equilibria for the N -player
game from a solution of the limit problem, is stated and proved. Section 6
contains the results on the existence of (regular) feedback solutions for the
MFG, in particular those with Markov feedback controls, as well as a sketch
of the PDE approach to mean field games with absorption. In Section 7, we
provide the aforementioned counter-example in the case of degenerate noise.
The technical results used in the paper are all gathered in the Appendix, in-
cluding the aforementioned propagation-of-chaos-type results in Appendix A
and a uniqueness result for McKean-Vlasov equations in Appendix B.
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2 Preliminaries and assumptions

Let d ∈ N, which will be the dimension of the space of private states, noise
values, as well as control actions. The spaces Rn with n ∈ N are equipped
with the standard Euclidean norm, always indicated by |.|. Choose T > 0,
the finite time horizon.

For S a Polish space, let P(S) denote the space of probability measures
on B(S), the Borel sets of S. For s ∈ S, let δs indicate the Dirac measure
concentrated in s. Equip P(S) with the topology of weak convergence of
probability measures. Then P(S) is again a Polish space.

Set X .
= C([0, T ],Rd), which can be seen as the space of individual state

trajectories. As usual, equip X with the topology of uniform convergence,
which turns it into a Polish space. Let ‖ · ‖X denote the supremum norm on
X . Denote by X̂ the coordinate process on X :

X̂(t, ϕ)
.
= ϕ(t), t ∈ [0, T ], ϕ ∈ X .

Let (Gt) be the canonical filtration in B(X ), that is,

Gt
.
= σ

(
X̂(s) : 0 ≤ s ≤ t

)
, t ∈ [0, T ].

Given N ∈ N, we will use the usual identification of XN = ×NX with
the space C([0, T ],RN ·d); XN , too, will be equipped with the topology of
uniform convergence. We call a function u defined on [0, T ]×XN with values
in some measurable space progressively measurable if u is measurable and,
for every t ∈ [0, T ], all ϕ, ϕ̃ ∈ XN ,

u(t,ϕ) = u(t, ϕ̃) whenever ϕ(s) = ϕ̃(s) for all s ∈ [0, t].

Let Γ be a closed subset of Rd, the set of control actions, or action space.
Let O ⊂ Rd be an open set, the set of non-absorbing states. For Y an

Rd-valued process defined on some probability space (Ω,F ,P) over the time
interval [0, T ], let

τY (ω)
.
= inf {t ∈ [0, T ] : Y (t, ω) /∈ O} , ω ∈ Ω,

denote the random time of first exit of Y from O, with the convention
inf ∅ = ∞. Clearly, if Y has continuous trajectories and is adapted to
some filtration (Ft) in F , then τY is an (Ft)-stopping time. In this case,
τY = inf {t ∈ [0, T ] : Y (t) ∈ ∂O}, where ∂O denotes the boundary of O.

Let d0 ∈ N, and let w : Rd → Rd0 ,

b̄ : [0, T ]× Rd × Rd0 → Rd, σ ∈ Rd×d,
f : [0, T ]× Rd × Rd0 × Γ→ [0,∞), F : [0, T ]× Rd → [0,∞).
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The function w will denote an integrand for the measure variable in the
drift and the running costs, respectively, b̄ a function of the drift integral, σ
the dispersion coefficient of the dynamics, while f , F quantify the running
and terminal costs, respectively. Notice that the dispersion coefficient σ
is a constant matrix and that the cost coefficients f , F are non-negative
functions. Let us make the following assumptions:

(H1) Boundedness and measurability: w, b̄, f , F are Borel measurable func-
tions uniformly bounded by some constant K > 0.

(H2) Continuity: w, f , F are continuous, and b̄(t, ·, ·) is continuous, uni-
formly in t ∈ [0, T ].

(H3) Lipschitz continuity of b̄: there exists L̄ > 0 such that for all x, x̃ ∈ Rd,
y, ỹ ∈ Rd0 ,

sup
t∈[0,T ]

∣∣b̄(t, x, y)− b̄(t, x̃, ỹ)
∣∣ ≤ L̄ (|x− x̃|+ |y − ỹ|) .

(H4) Action space: Γ ⊂ Rd is compact and convex (and non-empty).

(H5) State space: O ⊂ Rd is non-empty, open, and bounded such that ∂O
is a C2-manifold.

The results of Sections 5 and 6 will be established under the following
additional assumption:

(ND) Non-degeneracy: σ is a matrix of full rank.

3 N-player games

Let N ∈ N be the number of players. Denote by XN
i (t) the private state of

player i at time t ∈ [0, T ]. The evolution of the players’ states depends on the
strategies they choose as well as the initial distribution of states, which we
indicate by νN (thus, νN ∈ P(RN×d)). We assume that supp(νN ) ⊂ ×NO
and that νN is symmetric in the sense that

νN ◦ s−1 = νN

for all maps s : (Rd)N → (Rd)N of the form (x1, . . . , xN ) 7→ (xp(1), . . . , xp(N))

for some permutation p of (1, . . . , N).
Here, we consider players using feedback strategies with full state in-

formation (up to the current time). Thus, let UN denote the set of all
progressively measurable functions u : [0, T ] × XN → Γ. Elements of UN
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represent individual strategies. A vector (u1, . . . , uN ) of individual strate-
gies is called a strategy vector or strategy profile. Given a strategy vector
u = (u1, . . . , uN ) ∈ ×NUN , consider the system of equations

XN
i (t) = XN

i (0) +

∫ t

0

(
ui(s,X

N ) + b̄

(
s,XN

i (s),

∫
Rd
w(y)πN (s, dy)

))
ds

+ σWN
i (t), t ∈ [0, T ], i ∈ {1, . . . , N},

(3.1)

where XN = (XN
1 , . . . , X

N
N ), WN

1 , . . . ,WN
N are independent d-dimensional

Wiener processes defined on some filtered probability space (Ω,F , (Ft),P)

and πN (t, ·) is the empirical measure of the players’ states at time t that
have not left O, that is,

πNω (t, ·) .
=


1

N̄N
ω (t)

∑N
j=1 1

[0,τ
XN
j (ω))

(t) · δXN
j (t,ω)(·) if N̄N

ω (t) > 0,

δ0(·) if N̄N
ω (t) = 0,

where

N̄N
ω (t)

.
=

N∑
j=1

1
[0,τ

XN
j (ω))

(t), ω ∈ Ω.

It will be convenient to rewrite (3.1) as a system of particles interacting
through their unconditional empirical measure on the path space. To this
end, set τ .

= τ X̂ , that is,

τ(ϕ)
.
= inf {t ∈ [0, T ] : ϕ(t) /∈ O} , ϕ ∈ X ,

and define b : [0, T ]×X × P(X )× Γ→ Rd by
(3.2)

b(t, ϕ, θ, γ)
.
=

γ + b̄
(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)∫

1[0,τ(ϕ̃))(t)θ(dϕ̃)

)
if θ(τ > t) > 0,

γ + b̄ (t, ϕ(t), w(0)) if θ(τ > t) = 0.

Then b is measurable and progressive in the sense that, for all t ∈ [0, T ], all
γ ∈ Γ,

b(t, ϕ, θ, γ) = b(t, ϕ̃, θ̃, γ) whenever ϕ|[0,t] = ϕ̃|[0,t] and θ|Gt = θ̃|Gt .

The solutions of (3.1) are thus equivalently described by:

XN
i (t) = XN

i (0) +

∫ t

0
b
(
s,XN

i , µ
N , ui(s,X

N )
)
ds+ σWN

i (t),

t ∈ [0, T ], i ∈ {1, . . . , N},
(3.3)
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whereWN
1 , . . . ,WN

N are independent d-dimensional Wiener processes defined
on some filtered probability space (Ω,F , (Ft),P), and µN is the empirical
measure of the players’ state trajectories, that is,

µNω (B)
.
=

1

N

N∑
j=1

δXN
j (·,ω)(B), B ∈ B(X ), ω ∈ Ω.

A solution of Eq. (3.1) (equivalently, of Eq. (3.3)) under u ∈ ×NUN with
initial distribution νN is therefore a triple ((Ω,F , (Ft),P),WN ,XN ) where
(Ω,F , (Ft),P) is a filtered probability space satisfying the usual hypotheses,
WN = (WN

1 , . . . ,WN
N ) a vector of independent d-dimensional (Ft)-Wiener

processes, and XN = (XN
1 , . . . , X

N
N ) a vector of continuous Rd-valued (Ft)-

adapted processes such that Eq. (3.1) (resp. Eq. (3.3)) holds P-almost surely
with strategy vector u and P ◦(XN (0))−1 = νN .

Let UNfb be the set of all strategy vectors u ∈ ×NUN such that Eq. (3.1)
under u with initial distribution νN possesses a solution that is unique in
law. If the non-degeneracy assumption (ND) holds in addition to (H1) – (H5),
then Eq. (3.1) is well posed given any strategy vector:

Proposition 3.1. Grant (ND) in addition to (H1) – (H5). Then UNfb =

×NUN .

Proof. Let u ∈ ×NUN . The system of equations (3.3) can be rewritten as one
stochastic differential equation with state space RN×d driven by an N × d-
dimensional standard Wiener process with drift coefficient bu : [0, T ]×XN →
RN×d given by

bu(t,ϕ)

.
=

b
t, ϕ1,

1

N

N∑
j=1

δϕj , u1(s,ϕ)

 , . . . , b

t, ϕN , 1

N

N∑
j=1

δϕj , uN (s,ϕ)

T

and non-degenerate constant diffusion coefficient. Notice that bu is bounded
and progressive with respect to the natural filtration in B(XN ). Existence of
a weak solution and uniqueness in law are now a consequence of Girsanov’s
theorem and the Stroock-Varadhan martingale problem; cf. V.27 in Rogers
and Williams [2000, pp. 177-178].

The i-th player evaluates a strategy vector u = (u1, . . . , uN ) ∈ UNfb ac-
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cording to the cost functional

JNi (u)
.
= E

[∫ τNi

0
f

(
s,XN

i (s),

∫
Rd
w(y)πN (s, dy), ui

(
s,XN

))
ds

+ F
(
τNi , X

N
i (τNi )

)]
,

where XN = (XN
1 , . . . , X

N
N ) and ((Ω,F , (Ft),P),WN ,XN ) is a solution of

Eq. (3.1) under u with initial distribution νN ,

τNi (ω)
.
= τX

N
i (ω) ∧ T, ω ∈ Ω,

the random time horizon for player i ∈ {1, . . . , N}, and πN (·) the conditional
empirical measure process induced by (XN

1 , . . . , X
N
N ). The cost functional is

well defined, and it is finite thanks to assumption (H1).
Given a strategy vector u = (u1, . . . , uN ) and an individual strategy

v ∈ UN , let [u−i, v]
.
= (u1, . . . , ui−1, v, ui+1, . . . , uN ) indicate the strategy

vector that is obtained from u by replacing ui, the strategy of player i, with
v.

Definition 3.1. Let ε ≥ 0. A strategy vector u = (u1, . . . , uN ) ∈ UNfb
is called an ε-Nash equilibrium for the N -player game if for every i ∈
{1, . . . , N}, every v ∈ UN such that [u−i, v] ∈ UNfb,

(3.4) JNi (u) ≤ JNi
(
[u−i, v]

)
+ ε.

If u is an ε-Nash equilibrium with ε = 0, then u is called a Nash equilib-
rium.

According to Definition 3.1, we consider the Nash equilibrium property
with respect to feedback strategies with full state information (i.e., the states
of the vector of individual processes up to current time).

4 Mean field games

LetM denote the space of measurable flows of measures, that is,

M .
=
{
p : [0, T ]→ P(Rd) : p is Borel measurable

}
.

Given a flow of measures p ∈ M and a feedback strategy u ∈ U1, consider
the equation

X(t) = X(0) +

∫ t

0

(
u(s,X) + b̄

(
s,X(s),

∫
Rd
w(y)p(s, dy)

))
ds

+ σW (t), t ∈ [0, T ],

(4.1)
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where W is a d-dimensional Wiener process defined on some filtered proba-
bility space (Ω,F , (Ft),P).

Let Ufb denote the set of all feedback strategies u ∈ U1 such that Eq. (4.1)
possesses a solution that is unique in law given any initial distribution with
support contained in O.

Proposition 4.1. Grant (ND) in addition to (H1) – (H5). Then Ufb = U1.

Proof. Existence and uniqueness in law are again a consequence of Girsanov’s
theorem; cf. Proposition 3.1.

The costs associated with a strategy u ∈ Ufb, a flow of measures p, and
an initial distribution ν ∈ P(Rd) with support in O are given by

J(ν, u; p)
.
= E

[∫ τ

0
f

(
s,X(s),

∫
Rd
w(y)p(s, dy), u(s,X)

)
ds

+ F (τ,X(τ))

]
,

where ((Ω,F , (Ft),P),W,X) is a solution of (4.1) under u with initial dis-
tribution ν, and τ .

= τX ∧ T the random time horizon.
We will measure the minimal costs with respect to a class of stochastic

open-loop strategies. To this end, let A denote the set of all quadruples
((Ω,F , (Ft),P), ξ, α,W ) such that (Ω,F , (Ft),P) is a filtered probability
space satisfying the usual hypotheses, ξ an F0-measurable random variable
with values in O, α a Γ-valued (Ft)-progressively measurable process, and
W a d-dimensional (Ft)-Wiener process. Any strategy u ∈ Ufb, together
with an initial distribution, induces an element of A.

Given ((Ω,F , (Ft),P), ξ, α,W ) ∈ A and a flow of probability measures
p ∈M, consider the stochastic integral equation

X(t) = ξ +

∫ t

0

(
α(s) + b̄

(
s,X(s),

∫
Rd
w(y)p(s, dy)

))
ds

+ σW (t), t ∈ [0, T ].

(4.2)

Thanks to (H3), X is determined through Eq. (4.2) with P-probability one;
in particular, X is defined on the given stochastic basis. The minimal costs
associated with a flow of measures p and an initial distribution ν ∈ P(Rd)
with support in O are now given by

V (ν; p)
.
= inf

((Ω,F ,(Ft),P),ξ,α,W )∈A:P ◦ξ−1=ν

E

[∫ τ

0
f

(
s,X(s),

∫
Rd
w(y)p(s, dy), α(s)

)
ds+ F (τ,X(τ))

]
,
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where X is the process determined by ((Ω,F , (Ft),P), ξ, α,W ) via Eq. (4.2),
and τ .

= τX ∧ T the random time horizon.

Remark 4.1. Since any admissible feedback strategy induces a stochastic
open-loop strategy, we always have

inf
u∈Ufb

J(ν, u; p) ≥ V (ν; p).

If the non-degeneracy assumption (ND) holds in addition to (H1) – (H5), if b̄
is continuous also in the time variable, and if the flow of measures p is such
that the mapping t 7→

∫
w(y)p(t, dy) is continuous, then

inf
u∈Ufb

J(ν, u; p) = V (ν; p).

This follows, for instance, from the results of El Karoui et al. [1987]; see,
in particular, Proposition 2.6 and Remark 2.6.b) as well as Theorem 6.7
and Section 7 therein. Alternatively, one may use time discretization and
discrete-time dynamic programming in analogy to Lemma 4.3 in Fischer
[2017].

The notion of solution we consider for the mean field game is the follow-
ing:

Definition 4.1. A feedback solution of the mean field game is a triple (ν, u, p)

such that

(i) ν ∈ P(Rd) with supp(ν) ⊂ O, u ∈ Ufb, and p ∈M;

(ii) optimality property: strategy u is optimal for p and initial distribution
ν, that is,

J(ν, u; p) = V (ν; p);

(iii) conditional mean field property: if ((Ω,F , (Ft),P),W,X) is a solution
of Eq. (4.1) with flow of measures p, strategy u, and initial distribution
ν, then p(t) = P

(
X(t) ∈ · | τX > t

)
for every t ∈ [0, T ] such that

P
(
τX > t

)
> 0.

5 Approximate Nash equilibria from the mean field
game

Throughout this section, we assume that the non-degeneracy condition (ND)
holds. If we have a feedback solution of the mean field game that satisfies a
mild regularity condition, then we can construct a sequence of approximate
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Nash equilibria for the corresponding N -player game. This approximation
result is the content of Theorem 5.1 below.

In order to state the regularity condition, we set, for ν ∈ P(Rd) with
support in O,

(5.1) Θν
.
= Law

(
(ξ + σW (t))t∈[0,T ]

)
,

whereW is a d-dimensional Wiener process and ξ an independent Rd-valued
random variable with distribution ν. Clearly, Θν is well-defined as an element
of P(X ).

The proof of Theorem 5.1 below relies on the convergence, uniqueness
and regularity results given in the Appendix. The following subsets of prob-
ability measures will play an important role as they characterize the possible
distributions of the limit processes. For c ≥ 0, let Qν,c be the set of all laws
θ ∈ P(X ) such that θ = P ◦X−1 where

(5.2) X(t)
.
= ξ +

∫ t

0
v(s)ds+ σW (t), t ∈ [0, T ],

W is an Rd-valued (Ft)-Wiener process defined on some filtered probability
space (Ω,F , (Ft),P), ξ is an Rd-valued F0-measurable random variable with
distribution P ◦ξ−1 = ν, and v is an Rd-valued (Ft)-progressively measurable
bounded process with ‖v‖∞ ≤ c. Clearly, Qν,0 = {Θν}. Also note that Qν,c
is compact and that any measure θ ∈ Qν,c is equivalent to Θν ; see Lemmata
C.1 and C.2, respectively, in the Appendix.

We recall that a sequence of symmetric probability measures (νN )N∈N,
with νN ∈ P(RN ·d) for all N , is called ν-chaotic for some ν ∈ P(Rd) if,
for each k ∈ N and for any choice of bounded and continuous functions
ψi : Rd → R, i ∈ {1, . . . , k}, we have

lim
N→∞

∫
RN·d

k∏
i=1

ψi(xi) dνN (x1, . . . , xN ) =
k∏
i=1

∫
Rd
ψi(xi)ν(dxi).

Theorem 5.1. Grant (ND) in addition to (H1) – (H5). Suppose the sequence
of initial distributions (νN )N∈N is ν-chaotic for some ν ∈ P(Rd) with support
in O. If (ν, u, p) is a feedback solution of the mean field game such that, for
Lebesgue-almost every t ∈ [0, T ],

Θν ({ϕ ∈ X : u(t, ·) is discontinuous at ϕ}) = 0,

then

uNi (t,ϕ)
.
= u(t, ϕi), t ∈ [0, T ], ϕ = (ϕ1, . . . , ϕN ) ∈ XN , i ∈ {1, . . . , N},
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defines a strategy vector uN = (uN1 , . . . , u
N
N ) ∈ UNfb. Moreover, for every

ε > 0, there exists N0 = N0(ε) ∈ N such that uN is an ε-Nash equilibrium
for the N -player game whenever N ≥ N0.

Proof. Let (ν, u, p) be a feedback solution of the mean field game according
to Definition 4.1; such a solution exists by hypothesis. For N ∈ N, consider
the strategy uN = (uN1 , . . . , u

N
N ) as in the statement. By Proposition 3.1,

UNfb = ×NUN ; in particular, uN is a feedback strategy vector in UNfb.
Let ε > 0. By symmetry, it is enough to verify the ε-Nash property for

player one only. Thus, we have to show that there exists N0 = N0(ε) ∈ N
such that for all N ≥ N0,

(5.3) JN1 (uN ) ≤ inf
v∈UN

JN1
(
[uN,−1, v]

)
+ ε.

Step 1. We rewrite the system dynamics and costs in such way that
we can apply the convergence, uniqueness and regularity results of the Ap-
pendix. In accordance with (3.2), the definition of b from Section 3, set, for
(t, ϕ, θ) ∈ [0, T ]×X × P(X ),

b̂(t, ϕ, θ)
.
= b (t, ϕ, θ, u(t, ϕ))

=

u(t, ϕ) + b̄
(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)∫

1[0,τ(ϕ̃))(t)θ(dϕ̃)

)
if θ(τ > t) > 0,

u(t, ϕ) + b̄ (t, ϕ(t), w(0)) if θ(τ > t) = 0,

(5.4)

where τ(ϕ)
.
= inf{t ≥ 0 : ϕ(t) /∈ O}. Then, thanks to hypotheses (H1) and

(H4), b̂ is Borel measurable, progressive, and bounded. Thus, the measura-
bility and boundedness assumptions (M) and (B) of the Appendix hold for b̂.
Moreover, assumption (C) and (L) of the Appendix, the conditions of almost
continuity and of partial Lipschitz continuity, respectively, are satisfied for
this choice of b̂; see Section D in the Appendix.

Let ((Ω,F , (Ft),P),W,X) be a solution of Eq. (4.1) with flow of measures
p, feedback strategy u, and initial distribution ν; such a solution exists and
determines a unique measure

θ∗
.
= P ◦X−1.

Notice that θ∗ ∈ Qν,K whenever K ≥ ‖b̂‖∞. In terms of θ∗ and the canon-
ical process X̂, we can rewrite the costs associated with strategy u, flow of
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measures p, and initial distribution ν as

J(ν, u; p) = Eθ∗

[∫ τ

0
f

(
s, X̂(s),

∫
Rd
w(y)p(s, dy), u(s, X̂)

)
ds

+ F
(
τ, X̂(τ)

)]
,

where τ .
= τ X̂ ∧ T . Define f̂ : [0, T ]×X × P(X )→ R by

f̂(t, ϕ, θ)
.
=

f
(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)∫

1[0,τ(ϕ̃))(t)θ(dϕ̃)
, u(t, ϕ)

)
if θ(τ > t) > 0,

f (t, ϕ(t), w(0), u(t, ϕ)) if θ(τ > t) = 0,

and a function Ĝ : X × P(X )→ R by

(5.5) Ĝ(ϕ, θ)
.
=

∫ τ(ϕ)∧T

0
f̂ (s, ϕ, θ) ds+ F

(
τ(ϕ) ∧ T, ϕ(τ(ϕ) ∧ T )

)
.

Then
J(ν, u; p) = Eθ∗

[
Ĝ(X̂, θ∗)

]
.

The function Ĝ is bounded thanks to hypothesis (H1). Moreover, since
θ∗ ∈ Qν,K for K ≥ ‖b̂‖∞ and thanks to (H2),

Θν

(
ϕ ∈ X : ∃ (ϕn, θn) ⊂ X × P(X ) such that Ĝ(ϕn, θn) 6→ Ĝ(ϕ, θ∗)

while (ϕn, θn)→ (ϕ, θ∗)
)

= 0,
(5.6)

To be more precise, one checks that f̂ satisfies condition (C) as does b̂; see
Section D of the Appendix. Eq. (5.6) is then a consequence of the domi-
nated convergence theorem, the continuity of F and Part (b) of Lemma C.3.
Eq. (5.6) says that Ĝ is Θν ⊗ δθ∗-almost surely continuous. By Lemma C.2,
any θ ∈ Qν,c, c ≥ 0, is equivalent to Θν . It follows that Ĝ is θ ⊗ δθ∗-almost
surely continuous given any θ ∈ Qν,c, any c ≥ 0.

Recall that (ν, u, p) is a feedback solution of the mean field game. Thanks
to the conditional mean field property in Definition 4.1 and the construction
of b̂ according to (5.4), we have an alternative characterization of θ∗, namely
as a McKean-Vlasov solution of Eq. (A.3); see Definition A.1 in Section A
of the Appendix. By Proposition B.1 in Section B of the Appendix and
since b̂ satisfies assumption (L) there, we actually have that θ∗ is the unique
McKean-Vlasov solution of Eq. (A.3) with initial distribution ν.

Step 2. For N ∈ N, let ((ΩN ,FN , (FNt ),PN ),WN ,XN ) be a solution
of Eq. (3.3) under strategy vector uN with initial distribution νN . Let µN
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denote the associated empirical measure on the path space X . We are going
to show that

lim
N→∞

JN1 (uN ) = J(ν, u; p).

To this end, for N ∈ N, set

b̃N (t,ϕ, θ)
.
= b̂(t, ϕ1, θ), (t,ϕ, θ) ∈ [0, T ]×XN × P(X ),

where b̂ is given by (5.4). From Step 1 we know that b̂ satisfies the con-
tinuity assumptions (C) and (L) of the Appendix as well as the measur-
ability and boundedness assumptions (M) and (B), respectively. Assump-
tions (M) and (B) also apply to the coefficients b̃N . Assumptions (ND) and
(I) of the Appendix (non-degeneracy of the diffusion matrix and chaotic-
ity of the initial distributions) hold by hypothesis. Moreover, we have that
((ΩN ,FN , (FNt ),PN ),WN ,XN ) is a solution of Eq. (A.1) with initial dis-
tribution νN . We can therefore apply Lemmata A.1 and A.2 to the sequence
of empirical measures (µN )N∈N; in combination with Proposition B.1, this
yields

PN ◦
(
µN
)−1 N→∞−→ δθ∗ in P(P(X )),

where θ∗ is the measure identified in Step 1 as the unique McKean-Vlasov
solution of Eq. (A.3) with initial distribution ν.

Symmetry of the coefficients, chaoticity of the initial distributions, and
the Tanaka-Sznitman theorem [Proposition 2.2 in Sznitman, 1991] now imply
that

(5.7) PN ◦
(
XN

1 , µ
N
)−1 N→∞−→ θ∗ ⊗ δθ∗ in P(X × P(X )),

Recalling (5.5) and since uN1 (t,ϕ) = u(t, ϕ1), we can rewrite the costs
associated with uN as

JN1 (uN ) = EPN

[
Ĝ
(
XN

1 , µ
N
)]
.

By Step 1, we know that Ĝ is bounded and, since θ∗ ∈ Qν,K for K ≥
‖b̂‖∞, also that Ĝ is θ∗ ⊗ δθ∗-almost surely continuous. By the mapping
theorem [Theorem 5.1 in Billingsley, 1968, p. 30], convergence according to
(5.7) therefore implies that

JN1 (uN ) = EPN

[
Ĝ
(
XN

1 , µ
N
)] N→∞−→ Eθ∗

[
Ĝ(X̂, θ∗)

]
= J(ν, u; p).

Step 3. For N ∈ N \ {1}, choose vN1 ∈ UN such that

JN1
(
[uN,−1, vN1 ]

)
≤ inf

v∈UN
JN1
(
[uN,−1, v]

)
+ ε/2.
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Let ((Ω̃N , F̃N , (F̃Nt ), P̃N ), W̃
N
, X̃

N
) be a solution of Eq. (3.3) under the

strategy vector [uN,−1, vN1 ] with initial distribution νN . Let µ̃N denote the
associated empirical measure on path space. We are going to show that

lim inf
N→∞

JN1 ([uN,−1, vN1 ]) ≥ V (ν; p).

To this end, redefine b̃N , for N ∈ N \ {1}, by

b̃N (t,ϕ, θ)
.
= b

(
t, ϕ1, θ, v

N
1 (t,ϕ)

)
, (t,ϕ, θ) ∈ [0, T ]×XN × P(X ).

Assumptions (M), (B), (ND), and (I) of the Appendix continue to hold. With
the new definition of the coefficient b̃N , ((Ω̃N , F̃N , (F̃Nt ), P̃N ), W̃

N
, X̃

N
) is

a solution of Eq. (A.1) with initial distribution νN . As in Step 2, we can
apply Lemmata A.1 and A.2 in combination with Proposition B.1, but now
to the sequence of empirical measures (µ̃N )N∈N. This yields

(5.8) P̃N ◦
(
µ̃N
)−1 N→∞−→ δθ∗ in P(P(X )),

where θ∗ is still the unique McKean-Vlasov solution of Eq. (A.3) with initial
distribution ν found in Steps 1 and 2.

Now, interpret the feedback controls of the first player as stochastic open-
loop relaxed controls. To this end, let R .

= RΓ be the set of Γ-valued
deterministic relaxed controls over [0, T ]; see Appendix E. For N ∈ N, let
ρ̃N1 be the stochastic relaxed control induced by the feedback strategy vN1 ,
that is, ρ̃N1 is the R-valued (F̃Nt )-adapted random variable determined by

ρ̃N1,ω
(
B × I

) .
=

∫
I
δvN1 (t,X̃N

1 (·,ω))(B)dt, B ∈ B(Γ), I ∈ B([0, T ]), ω ∈ Ω̃N .

Let Arel denote the set of all quadruples ((Ω,F , (Ft),P), ξ, ρ,W ) such
that (Ω,F , (Ft),P) is a filtered probability space satisfying the usual hy-
potheses, ξ an F0-measurable random variable with values in O, ρ an R-
valued (Ft)-adapted random variable, and W a d-dimensional (Ft)-Wiener
process. Using the convergence of (µ̃N ) according to (5.8) and weak con-
vergence arguments analogous to those of Section A in the Appendix, one
verifies that the sequence

(5.9)
(
P̃N ◦

(
X̃N

1 , ρ̃
N
1 , W̃

N
1 , µ̃N

)−1
)
N∈N

is tight in P(X ×R×X ×P(X ))

and that its limit points are concentrated on measures P ◦(X, ρ,W )−1⊗ δθ∗
where ((Ω,F , (Ft),P), ξ, ρ,W ) ∈ Arel for some F0-measurable Rd-valued
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random variable ξ with P ◦ξ−1 = ν, and X is a continuous (Ft)-adapted
process satisfying

X(t) = ξ +

∫
Γ×[0,t]

γ ρ(dγ, ds) +

∫ t

0
b̄

(
s,X(s),

∫
Rd
w(y)p(s, dy)

)
ds

+ σW (t), t ∈ [0, T ],

(5.10)

with flow of measures p given by

p(t)
.
= θ∗

(
X̂(t) ∈ · | τ X̂ > t

)
, t ∈ [0, T ].

Notice thatX is uniquely determined (with P-probability one) by Eq. (5.10).
The stochastic relaxed control in (5.10) actually corresponds to an ordinary
stochastic open-loop control, namely to the Γ-valued process

(5.11) α(t, ω)
.
=

∫
Γ
γρ̇s,ω(dγ), (t, ω) ∈ [0, T ]× Ω.

The process X is therefore the unique solution of Eq. (4.2) corresponding to
((Ω,F , (Ft),P), ξ, α,W ) ∈ A and the flow of measures p induced by θ∗.

In analogy with Step 1, define f̄ : [0, T ]×X × P(X )× Γ→ R by

f̄(t, ϕ, θ, γ)
.
=

f
(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)∫

1[0,τ(ϕ̃))(t)θ(dϕ̃)
, γ
)

if θ(τ > t) > 0,

f (t, ϕ(t), w(0), u(t, ϕ)) if θ(τ > t) = 0,

and a function Ḡ : X × P(X )×R → R by

Ḡ(ϕ, θ, r)
.
=

∫
Γ×[0,T ]

1[0,τ(ϕ)∧T )(s) · f̄ (s, ϕ, θ, γ) r(dγ, ds)

+F
(
τ(ϕ) ∧ T, ϕ(τ(ϕ) ∧ T )

)
.

(5.12)

Then
JN1 ([uN,−1, vN1 ]) = EP̃N

[
Ḡ
(
X̃N

1 , µ̃
N , ρ̃N1

)]
.

The function Ḡ is bounded thanks to hypothesis (H1). By (H2) and argu-
ments analogous to those of Step 1, one checks that

Θν

(
ϕ ∈ X : ∃ r ∈ R, (ϕn, θn, rn) ⊂ X × P(X )×R such that

Ĝ(ϕn, θn, rn) 6→ Ĝ(ϕ, θ∗, r) while (ϕn, θn, rn)→ (ϕ, θ∗, r)
)

= 0,
(5.13)

By Lemma C.2, any θ ∈ Qν,c, c ≥ 0, is equivalent to Θν . In view of (5.13), it
follows that Ḡ is Q-almost surely continuous given any Q ∈ P(X×P(X )×R)

such thatQ◦π−1
X×P(X ) = θ⊗δθ∗ for some θ ∈ Qν,c, some c ≥ 0, where πX×P(X )
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denotes the projection of X ×P(X )×R onto its first two components. Using
the mapping theorem of weak convergence, we conclude that

lim inf
N→∞

JN1 ([uN,−1, vN1 ]) ≥ inf
((Ω,F ,(Ft),P),ξ,ρ,W )∈Arel:P ◦ξ−1=ν

E
[
Ḡ (X, θ∗, ρ)

]
.

It remains to check that

inf
((Ω,F ,(Ft),P),ξ,ρ,W )∈Arel:P ◦ξ−1=ν

E
[
Ḡ (X, θ∗, ρ)

]
= V (ν; p).

Inequality “≥” holds by definition of Ḡ and because A ⊆ Arel if one identifies
ordinary stochastic open-loop controls with the induced stochastic relaxed
controls. The opposite inequality is a consequence of what is called “chat-
tering lemma”, i.e., the fact that relaxed controls can be approximated by
ordinary controls; see, for instance, Theorem 3.5.2 in Kushner [1990, p. 59] or
Section 4 in El Karoui et al. [1987]. In our situation, the stochastic relaxed
control in Eq. (5.10) corresponds to an ordinary stochastic open-loop control.
If the running costs f are additive convex in the control, then inequality “≤”
can be verified more directly by using (5.11) and Jensen’s inequality.

Step 4. For every N ∈ N \ {1},

JN1 (uN )− inf
v∈UN

JN1 ([uN,−1, v])

≤ JN1 (uN )− J(ν, u; p) + J(ν, u; p)− JN1 ([uN,−1, vN1 ]) + ε/2.

By Steps 2 and 3, there exists N0 = N0(ε) such that for all N ≥ N0,

JN1 (uN )− J(ν, u; p) + V (ν; p)− JN1 ([uN,−1, vN1 ]) ≤ ε/2.

Since (ν, u; p) is a solution of the mean field game, J(ν, u; p) = V (ν; p). It
follows that for all N ≥ N0,

JN1 (uN )− inf
v∈UN

JN1 ([uN,−1, v]) ≤ ε,

which establishes (5.3).

6 Existence of solutions

Throughout this section, hypotheses (H1) – (H5) as well as (ND) are in force.
Under these and some additional assumptions, we show that, given any initial
distribution, a feedback solution of the mean field game exists in the sense
of Definition 4.1; see Theorem 6.2 in Subsection 6.2. To prove Theorem 6.2,
we use a BSDE to approach to the control problem for fixed flow of measures
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(Subsection 6.1) and a fixed point argument, both in the spirit of Carmona
and Lacker [2015].

In Subsection 6.3, we provide conditions that guarantee the existence
of a feedback solution to the mean field game with continuous Markovian
feedback strategy; see Corollary 6.3. Such a solution satisfies, in particular,
the requirements of Theorem 5.1.

As above, let ν ∈ P(Rd) with support in O denote the initial distribution.
Since ν will be fixed, the dependence on ν will often be omitted in the
notation.

6.1 Optimal controls for a given flow of measures

Let p ∈ M be a given flow of measures, and define the corresponding flow
mp of means by

(6.1) mp(t)
.
=

∫
Rd
w(y)p(t, dy), t ∈ [0, T ].

Recall that X̂ denotes the canonical process on the path space X .
=

C([0, T ];Rd) (equipped with the sup-norm topology). Also recall (5.1), the
definition of Θν . Set Ω

.
= X , X .

= X̂, let F be the Θν-completion of the
Borel σ-algebra B(X ), and set P .

= Θν (extended to all null sets). Let (Ft)
be the P-augmentation of the filtration generated by X. Lastly, set

ξ(ω)
.
= X(0, ω), W (t, ω)

.
= σ−1 (X(t, ω)− ξ(ω)) , (t, ω) ∈ [0, T ]× Ω,

which is well-defined thanks to (ND). Then (Ω,F , (Ft),P) is a filtered proba-
bility space satisfying the usual assumptions,W a d-dimensional (Ft)-Wiener
process, and ξ an F0-measurable random variable with law ν independent of
W . Moreover, by construction,

(6.2) X(t) = ξ + σW (t), t ∈ [0, T ],

and P ◦X−1 = Θν .
Let U denote the set of all Γ-valued (Ft)-progressively measurable pro-

cesses. The filtration (Ft) is the P-augmentation of the filtration generated
by X. Any feedback strategy u ∈ Ufb therefore induces an element of U
through ut

.
= u(t,X), t ∈ [0, T ]. On the other hand, given u ∈ U , we can

find a progressive functional u ∈ U1 such that u(·, X) = u· LebT ⊗P-almost
surely, where LebT denotes Lebesgue measure on [0, T ]. Lastly, by Proposi-
tion 4.1 and (ND), Ufb = U1. We can therefore identify elements of U with
those of Ufb, and vice versa.
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Let u ∈ U . By Girsanov’s theorem and the boundedness of b̄, there exists
a probability measure Pp,u ∼ P and a Pp,u-Wiener process W p,u such that

dX(t) =
(
ut + b̄ (t,X(t),mp(t))

)
dt+ σdW p,u(t).

The costs associated with u are then given by

Jp(u)
.
= Ep,u

[∫ τ

0
f (t,X(t),mp(t),ut) dt+ F (τ,Xτ )

]
.

If u ∈ Ufb = U1 is such that u(·, X) = u· LebT ⊗ P-almost surely, then (cf.
Section 4)

Jp(u) = J(ν, u; p).

Since elements of U can be identified with those of Ufb, and vice versa, we
have

V p .
= inf

u∈U
Jp(u) = inf

u∈Ufb
J(ν, u; p).

In view of Remark 4.1, if p is such that t 7→ mp(t) is continuous, then

V p = V (ν; p).

Define the Hamiltonian h and the minimized Hamiltonian H as follows

h(t, x,m, z, γ)
.
= f(t, x,m, γ) + z · σ−1b(t, x,m, γ),

H(t, x,m, z)
.
= inf

γ∈Γ
h(t, x,m, z, γ),

where b(t, x,m, γ)
.
= γ+ b̄(t, x,m). The set in which the infimum is attained

is denoted by

A(t, x,m, z)
.
= {γ ∈ Γ : h(t, x,m, z, γ) = H(t, x,m, z)} .

This set is nonempty since Γ is compact and the function h is continuous in
γ thanks to (H4) and (H2), respectively.

Now, consider the following BSDE with random terminal date τ .
= τX∧T :

Y p(t) = F (τ,X(τ)) +

∫ T

t
H (s,X(s),mp(s), Z

p(s))1(s<τ)ds

−
∫ T

t
Zp(s)dW (s),

(6.3)

whereX follows the forward dynamics (6.2) andW is a Wiener process under
P as before. As in Darling and Pardoux [1997], we adopt the convention that
for any solution to the BSDE above:

1(s>τ)Y (s) = F (τ,X(τ)), 1(s>τ)Z(s) = 0, 1(s>τ)H(s, x,m, z) = 0.
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Observe that since the driver is Lipschitz in z and does not depend on y,
assumptions (4), (5), (7) and (21) in Darling and Pardoux [1997] are satisfied.
Moreover, their assumption (25) is also fulfilled due to the fact that the
terminal time τ , the terminal value F , the drift b̄ and the running cost f
are all bounded; cf. (H1). Hence Theorem 3.4 of Darling and Pardoux [1997]
applies, yielding that the BSDE (6.3) has a unique solution (Y p, Zp) in the
space of all progressively measurable processes K .

= (Y, Z) with values in
Rd × Rd×d such that

E

[∫ τ∧T

0
|K(t)|2dt

]
<∞.

For each u ∈ U we can proceed in a similar way to get existence and unique-
ness (in the same space of processes as above) of the solution (Y p,u, Zp,u) to
the following BSDE

Y p,u(t) = F (τ,X(τ)) +

∫ T

t
h (s,X(s),mp(s), Z

p,u(s),us)1(s<τ)ds

−
∫ T

t
Zp,u(s)dW (s).

(6.4)

Changing measure from P to Pp,u we obtain

Y p,u(t) = F (τ,X(τ)) +

∫ T

t
f (s,X(s),mp(s), us)1(s<τ)ds

−
∫ T

t
Zp,u(s)dW p,u(s).

Hence, taking conditional expectation with respect to Pp,u and Ft on both
sides, we have

Y p,u(t) = Ep,u

[
F (τ,X(τ)) +

∫ T

t
f (s,X(s),mp(s), us)1(s<τ)ds | Ft

]
,

which implies E[Y p,u(0)] = Ep,u[Y p,u(0)] = Jp(u). The first equality is due
to the fact that the law of ξ is the same under both probability measures.

SinceH ≤ h and the forward state variableX is the same for both BSDEs
(6.3) and (6.4) (so that they both have the same random terminal time), we
can apply Darling and Pardoux [1997, Corollary 4.4.2] yielding Y p

t ≤ Y p,u
t

a.s. for all t ∈ [0, T ]. This implies that E[Y p(0)] ≤ E[Y p,u(0)] = Jp(u) for
all u ∈ U , and therefore E[Y p(0)] ≤ V p.

By a standard measurable selection argument, there exists a measurable
function û : [0, T ]× Rd × Rd0 × Rd×d → Γ such that

û(t, x,m, z) ∈ A(t, x,m, z) for all (t, x,m, z).
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Hence, letting

(6.5) up
t
.
= û (t,X(t),mp(t), Z

p(t)) ,

the uniqueness of the solution of BSDEs with random terminal time as in
Darling and Pardoux [1997, Theorem 3.4] gives Y p(t) = Y p,up

(t), which in
turn implies V p = Jp(up).

6.2 Existence of solutions of the mean field game

We are going to apply the Brouwer-Schauder-Tychonoff fixed point theorem
[for instance, Aliprantis and Border, 2006, 17.56 Corollary], which we recall
for the reader’s convenience:

Theorem 6.1 (Brouwer-Schauder-Tychonoff). Let K be a nonempty com-
pact convex subset of a locally convex Hausdorff space, and let Ψ : K → K
be a continuous function. Then the set of fixed points of Ψ is compact and
nonempty.

We need to identify a suitable space K and a good function Ψ in order
to apply the fixed theorem above to our setting and obtain the existence of
a solution to the mean field game.

In addition to (H1) – (H5) and (ND), let us make the following assump-
tions:

Assumptions 6.1.

(i) The coefficients b̄ and f are continuous (jointly in all their variables).

(ii) The set A(t, x,m, z) is a singleton for all (t, x,m, z) ∈ [0, T ] × Rd ×
Rd0 × Rd×d.

By Assumption 6.1(ii), the function û appearing in (6.5) is uniquely
determined. Moreover, û is continuous:

Lemma 6.1. The function û is continuous (jointly in all its variables).

Proof. Assumption 6.1(i) implies that the (pre-)Hamiltonian h is (jointly)
continuous. The continuity of û now follows from Berge’s Maximum The-
orem [for instance, Aliprantis and Border, 2006, Theorem 17.31], Assump-
tion 6.1(ii) and the compactness of Γ according to (H4).

We will apply the fixed point theorem to a restriction of the mapping

(6.6) Ψ: P(X ) 3 µ 7→ Pµ ◦X−1 ∈ P(X )
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where Pµ .
= Ppµ,ûµ according to Subsection 6.1 with pµ and ûµ defined as

follows:

pµ(t, ·) .
= µ

(
X(t) ∈ · | τX > t

)
,(6.7a)

ûµt
.
= upµ

t = û

(
t,X(t),

∫
w(y)pµ(t, dy), Zpµ(t)

)
, t ∈ [0, T ].(6.7b)

Thanks to Assumption 6.1(ii), the optimal control process ûµ is unique
LebT ⊗ P-almost surely. Let Eµ denote expectation with respect to µ (not
Pµ!).

Now, we need to specify the subspace of P(X ) with the right properties
for applying the fixed point theorem. Recall the definition of Qν,c with c ≥ 0

from Section 5. Choose K > 0 such that K ≥ ‖b‖∞, and set

K .
= Qν,K .

Then K is non-empty and convex, and it is compact with respect to the
topology inherited from P(X ) (i.e., the topology of weak convergence of
measures), see Lemma C.1 in the Appendix. Moreover, K can be seen as a
subset of the dual space Cb(X )∗, where Cb(X ) is the space of all continuous
bounded functions on X . The dual space Cb(X )∗, equipped with the weak*
topology σ(Cb(X )∗,Cb(X )), is a locally convex topological vector space,
inducing the weak convergence on P(X ) ⊃ K.

If µ ∈ K, then the flow of conditional means induced by µ is continuous:

Lemma 6.2. Let µ ∈ K. Then the mapping t 7→ mµ(t)
.
=
∫
w(y)pµ(t, dy)

is continuous, where pµ is the flow of conditional measures induced by µ

according to (6.7a).

Proof. By Lemma C.2, inft∈[0,T ] µ(τX > t) > 0. Therefore and by construc-
tion, for every t ∈ [0, T ],

mµ(t) =
1

µ(τX > t)
Eµ

[
w(X(t))1[0,τX)(t)

]
.

Let t ∈ [0, T ], and let (tn) ⊂ [0, T ] be such that tn → t as n → ∞. For
ω ∈ Ω, the mapping s 7→ 1[0,τX(ω))(s) is discontinuous only at s = τX(ω). By
part (c) of Lemma C.3, µ

(
τX = t

)
= 0. Since w is bounded and continuous

and X has continuous trajectories, we have with µ-probability one,

1[0,τX)(tn)
n→∞−→ 1[0,τX)(t), w (X(tn))1[0,τX)(tn)

n→∞−→ w (X(t))1[0,τX)(t).

The dominated convergence theorem now implies limn→∞m(tn) = m(t).
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In order to apply Theorem 6.1 above, we have to show that Ψ: K → K is
(sequentially) continuous. Let (µn) be a sequence in K converging to some
measure µ ≡ µ∞ ∈ K. We want to show that Ψ(µn)→ Ψ(µ) in K ⊂ P(X ).
To ease the notation, we set

pn
.
= pµ

n
, Zn

.
= Zpn , unt

.
= upn

t , 1 ≤ n ≤ ∞.

We proceed as in Carmona and Lacker [2015, Proof of Theorem 3.5] and
show that

(6.8) H(Pµ | Pµn)
n→∞−→ 0,

where H(· | ·) denotes the relative entropy:

H(µ̃ | µ̄)
.
=


∫

log
(
dµ̃
dµ̄

)
dµ̃ if µ̃ absolutely continuous w.r.t. µ̄

∞ otherwise.

Observe that (6.8) implies Ψ(µn) → Ψ(µ) in the topology of weak conver-
gence as well as in the topology of convergence in total variation.

In our situation, denoting by E(·) the stochastic exponential of a local
martingale, we have

dPµn

dPµ
= E

(∫ ·
0
σ−1 (b(t,X(t),mn(t), unt )− b(t,X(t),m∞(t), u∞t ))1[0,τX)(t)

dW p∞(t)

)
(T ),

where mn denotes the flow of means induced by pn according to (6.1):

mn(t)
.
=

∫
w(y)pn(t, dy), 1 ≤ n ≤ ∞.

Since σ−1b is bounded, we obtain

H(Pµ | Pµn) = −EPµ
[
log

dPµn

dPµ

]
=

1

2
EPµ

[∫ τ

0

∣∣σ−1b (t,X(t),mn(t),unt )− σ−1b (t,X(t),m∞(t),u∞t )
∣∣2 dt] .

By (H2), the map b(t, x, ·, ·) is continuous for all (t, x). Hence, we can con-
clude by an application of the bounded convergence theorem provided we
show that

(6.9) (mn, un)
n→∞−→ (m∞,u∞) in LebT ⊗Pµ-measure.
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First, we show that

(6.10) mn n→∞−→ m∞ in LebT -measure.

By Lemma C.2, infn∈N∪{∞} inft∈[0,T ] µ
n
(
τX > t

)
> 0. Hence, by construc-

tion, for every t ∈ [0, T ],

mn(t) =
1

µn(τX > t)
Eµn

[
w(X(t))1[0,τX)(t)

]
, n ∈ N.

The mapping 1[0,τX)(t) is µ-almost surely continuous for each fixed t by
part (d) of Lemma C.3. By hypothesis, w is bounded and continuous. The
mapping theorem [Theorem 5.1 in Billingsley, 1968, p. 30] therefore implies
that

Eµn
[
w(X(t))1[0,τX)(t)

]
→ Eµ

[
w(X(t))1[0,τX)(t)

]
,

as well as µn(τX > t)→ µ(τX > t). This gives that mn(t)→ m∞(t) for all
t, hence mn → m∞ pointwise and in LebT -measure.

Next, let us check that

(6.11) lim
n→∞

E

[∫ T

0
|Zn(t)− Z∞(t)|2 dt

]
= 0.

To this end, we use a stability result for BSDEs with random terminal time
as in Briand and Hu [1998, Theorem 2.4]. According to that result, in order
to get the convergence (6.11), it suffices to show that

E

[∫ τ

0
|H(s,X(s),mn(s), Z∞(s))−H(s,X(s),m∞(s), Z∞(s))|2ds

]
n→∞−→ 0.

Since the functions f and b in the definition of the minimized Hamiltonian
H are bounded and the controls take values in a compact set, we easily have

|H(s,X(s),mn(s), Z∞(s))−H(s,X(s),m∞(s), Z∞(s))|2 ≤ c1 +c2|Z∞(s)|2,

where c1, c2 are some positive constants. Moreover, E[
∫ τ

0 |Z
∞(t)|2dt] < ∞

(cf. Darling and Pardoux [1997, Theorem 3.4]). We can therefore apply
the dominated convergence theorem to obtain (6.11). The convergence in
LebT ×Pµ-measure follows from the equivalence Pµ ∼ P.

In view of (6.10), in order to establish (6.9), it remains to show that
unt → u∞t Pµ-almost surely for all t ∈ [0, T ]. Notice that for all n ∈ N∪{∞}

ûnt = û (t,X(t),mn(t), Zn(t)) .

By Lemma 6.1, û is jointly continuous in all its variables. Equations (6.10)
and (6.11) together imply that (mn, Zn)→ (m∞, Z∞) in LebT×Pµ-measure.
It follows that ûn → û∞ in LebT ×Pµ-measure as well.

Now, we can state and prove the main result of this section.
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Theorem 6.2. Under (H1) – (H5), (ND), and Assumptions 6.1, there exists
a feedback solution of the mean field game.

Proof. In view of the discussion above, we can apply Theorem 6.1 (the
Brouwer-Schauder-Tychonoff fixed point theorem) to the map Ψ : K → K.
Thus, there exists µ ∈ K such that Ψ(µ) = µ. Let p

.
= pµ be the flow of

conditional measures induced by the fixed point µ according to (6.7a). Let
mp be the flow of (conditional) means induced by p according to (6.1), and
let (Y p, Zp) be the unique solution of the BSDE (6.3). Notice that Zp is
progressively measurable with respect to (Ft), the P-augmentation of the
filtration generated by the canonical process X = X̂. Hence we can find
u ∈ U1 such that

u(·, X) = û (·, X(·),mp(·), Zp(·)) LebT ⊗P-almost surely.

Recalling the discussion of Subsection 6.1 and the fact that in our situation
U1 = Ufb, we see that

J(ν, u; p) = V p.

The flow of means mp is continuous thanks to Lemma 6.2. This implies, by
Remark 4.1, that V p = V (ν; p). The triple (ν, u, p) therefore satisfies the
optimality property of Definition 4.1. By construction of Ψ and the fixed
point property of µ, (ν, u, p) also satisfies the conditional mean field property
of Definition 4.1. It follows that (ν, u, p) is a feedback solution of the mean
field game.

6.3 Continuity of optimal controls

Here, we work under all the hypotheses of the previous subsections plus a
couple of additional assumptions to be introduced below. Let p ∈ M be a
flow of measures such that the induced flow of means mp is continuous, that
is, we assume that the mapping

t 7→ mp(t)
.
=

∫
Rd
w(y)p(t, dy)

is continuous. From Lemma 6.2 we know that this is the case if p is the flow
of measures induced by some µ ∈ K.

The aim here is to show that û(·, X(·),mp(·), Zp(·)), the optimal con-
trol process appearing in (6.5), corresponds to a Markovian feedback strat-
egy that is continuous both in its time and its state variable. In view of
Lemma 6.1 and the continuity of mp, it suffices to show that Zp(t) can be
expressed as a continuous function of time t and the forward state variable
X(t).
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Set, for (t, x, z) ∈ [0, T ]× Rd × Rd×d,

h̃(t, x, z)
.
= h(t, x,m(t), z, û(t, x,mp(t), z)).

Notice that h̃(t, x, z) = H(t, x,mp(t), z). Moreover, by Assumptions 6.1,
Lemma 6.1, and the continuity of mp, we have that h̃ is continuous (jointly
in all its variables). By (H1) and (H4), h̃(·, ·, z) is bounded for each z ∈ Rd×d.

Consider the following BSDE under P:

(6.12) Y (t) = F (τ,X(τ))+

∫ T

t
h̃ (s,X(s), Z(s))1(s<τ)ds−

∫ T

t
Z(s)dW (s),

with the same convention regarding times exceeding τ as in Subsection 6.1.
The BSDE above possesses a unique L2-solution (Y,Z), which coincides
with the unique solution (Y p, Zp) of the BSDE (6.3). To prove the continu-
ity property, we adopt the following procedure: first, we consider the PDE
corresponding to the BSDE (6.12) and prove some regularity implying, in
particular, the continuity of the gradient of the solution; second, we provide
a verification argument essentially identifying the solution of the PDE and
its gradient with the unique solution (Y,Z) of (6.12). This is performed in
the proof of the next proposition. Before that, we have to introduce some
notation on Sobolev and Hölder-type norms.

Set D .
= [0, T ) × O, and let ∂pD

.
= ([0, T ) × ∂O) ∪ ({T} × Ō) be the

parabolic boundary of D. Moreover, let A denote the (parabolic) Dynkin
operator associated with X under P, that is,

A .
= ∂t +

1

2
Tr(a∂2

xx),

where a .
= σσT. Let Lλ(D) denote the space of λ-th power integrable func-

tions on D, with ‖ · ‖λ,D norm in Lλ(D). For 1 < λ < ∞, let Hλ(D)

denote the space of functions ψ that together with their generalized partial
derivatives ∂tψ, ∂xiψ, ∂xixjψ, i, j = 1, . . . , n, are in Lλ(D). In Hλ(D) let us
introduce the norm (of Sobolev type)

(6.13) ‖ψ‖(2)
λ,D

.
= ‖ψ‖λ,D + ‖∂tψ‖λ,D +

d∑
i=1

‖∂xiψ‖λ,D +

d∑
i,j=1

‖∂xixjψ‖λ,D.

Let us also consider Hölder-type norms as follows. For 0 < α ≤ 1, let

‖ψ‖D
.
= sup

(t,x)∈D
|ψ(t, x)|,

|ψ|αD
.
= ‖ψ‖D + sup

x,y∈Ō,t∈[0,T ]

|ψ(t, x)− ψ(t, y)|
|x− y|α

+ sup
s,t∈[0,T ],x∈Ō

|ψ(s, x)− ψ(t, x)|
|s− t|α/2

.
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Finally, we let

|ψ|1+α
D

.
= |ψ|αD +

d∑
i=1

|∂xiψ|αD.

Assumptions 6.2.

(i) b̄, f belong to C0,1([0, T ]× (Ō×Rd0)) and C0,1([0, T ]× (Ō×Rd0×Γ)),
respectively. Thus, b ∈ C0,1([0, T ]× (Ō × Rd0 × Γ)).

(ii) F (T, ·) ∈ C2(Ō) and F (t, x) = F̃ (t, x) for all t ∈ [0, T ] and x ∈ ∂O,
where F̃ ∈ C1,2(D̄). Moreover, for some λ > d+2

2 ,

‖F‖(2)
λ,∂pD

<∞.

Assumption 6.2(ii) on the terminal costs F corresponds to assumption
(E7) in Fleming and Rishel [1975, Appendix E].

Proposition 6.1. Grant (H1) – (H5), (ND) as well as Assumptions 6.1 and
6.2. The optimal control is then given by

up
t = û(t,X(t),mp(t), ∂xϕ(t,X(t))σ), t ∈ [0, τ ],

where the function ϕ is the unique solution in Hλ(D) of the Cauchy problem

−Aϕ− h̃(·, ϕ, ∂xϕσ) = 0 on D, ϕ = F on ∂pO,(6.14)

and it satisfies

(6.15) ‖ϕ‖(2)
λ,D ≤M

(
‖f‖λ,D + ‖F‖(2)

λ,∂pD

)
,

with constant M depending only on bounds on b and σ on D. Moreover,

(6.16) |ϕ|1+α
D ≤M ′‖ϕ‖(2)

λ,D, α = 1− d+ 2

λ
,

for some constant M ′ depending on D and λ.
As a consequence, the function (t, x) 7→ û(t, x,m(t), ∂xϕ(t, x)σ) is con-

tinuous over [0, T ]× Ō.

Proof. First, consider the Cauchy problem (6.14). The existence and unique-
ness of a solution in Hλ(D) satisfying the estimate (6.15) can be found in
Fleming and Rishel [1975, Appendix E, Proof of Theorem VI.6.1, pp. 208-
209]. Observe that our assumptions together with the continuity of h̃ imply
the hypotheses (6.1)–(6.3) in Fleming and Rishel [1975, p. 167], with the ex-
ception of (6.3)(b). In fact, in our setting the drift b and the running cost
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f are only continuous in t and not necessarily C1; cf. Assumption 6.2(i).
However, a careful inspection of the proof by Fleming and Rishel shows that
we can apply their approximation argument excluding the last sentence.
Hence, there exists a non-increasing sequence (ϕn) converging pointwise to
the unique solution ϕ ∈ Hλ(D) of the Cauchy problem (6.14). Moreover,
each ϕn satisfies the inequality (6.15). Using Ladyz̆enskaja et al. [1968,
p. 80, p. 342], the estimate (6.15) gives (6.16) if λ > d + 2, and in this case
α = 1 − d+2

λ where the constant M ′ depends on D and λ. Notice that the
upper bounds in (6.15) and (6.16) are both uniform in n. Therefore, letting
n→∞, we have that the solution ϕ satisfies the same bounds. In particular,
(6.16) yields that the gradient ∂xϕ is well-defined in the classical sense and
it is continuous on D.

To complete the proof, it suffices to show that the pair of processes
(ϕ(t,X(t)), ∂xϕ(t,X(t))σ)t∈[0,τ ] coincides with the unique L2 solution of the
BSDE (6.12). We use a verification argument based on a generalization
of Itô’s formula as in Krylov [1980, Theorem 1, Sect. 2.10]. Applying that
formula between t and τ , on the random set {t ≤ τ}, we have with P-
probability one

ϕ(τ,X(τ)) = ϕ(t,X(t)) +

∫ τ

t
Aϕ(s,X(s))ds

+

∫ τ

t
∂xϕ(s,X(s))σdW (s).

Being ϕ a solution in Hλ(D) of the Cauchy problem (6.14), we have (by
re-arranging the terms)

ϕ(t,X(t)) = F (τ,X(τ))−
∫ τ

t
h̃(s,X(s), ∂xϕ(s,X(s))σ)ds

−
∫ τ

t
∂xϕ(s,X(s))σdW (s),

which gives, by uniqueness of the solution (Y, Z) of the BSDE (6.12), that

Y (t) = ϕ(t,X(t)), Z(t) = ∂xϕ(t,X(t))σ,

on the event {t ≤ τ} for all t ∈ [0, T ].

Proposition 6.1 and Theorem 6.2 yield (together with Lemma 6.2) the
following corollary. Observe that the control actions can be chosen in an
arbitrary way when the state process is outside cl(O).
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Corollary 6.3. Grant (H1) – (H5), (ND) as well as Assumptions 6.1 and
6.2. Then there exist a feedback solution of the mean field game (ν, u, p) and
a continuous function ũ : [0, T ]× Rd → Γ such that

u(t, ϕ) = ũ(t, ϕ(t)) for all (t, ϕ) ∈ [0, T ]×X .

In particular, u is continuous on [0, T ]×X .

We end this section by sketching the PDE approach to mean field games
with absorption. For simplicity, we only consider a setting analogous to that
of Lasry and Lions [2006b], where the dynamics are of calculus-of-variation-
type with additive noise and the running costs split into two parts, one
depending on the control, the other on the measure variable. Thus, we
assume that

σ ≡ σ Idd, b̄(t, x, y) ≡ 0, f(t, x, y, γ) = f0(t, x, γ) + f1(t, x, y)

for some scalar constant σ > 0 and suitable functions f0 : [0, T ]×Rd×Γ→ R
and f1 : [0, T ]×Rd×Rd0 → R. Let us also assume that the initial distribution
ν is absolutely continuous with respect to Lebesgue measure with densitym0.

Let (ν, u, p) be a solution according to Corollary 6.3, and let ũ be the
associated Markov feedback strategy.

Set H(t, x, z)
.
= maxγ∈Γ {−γ · z − f0(t, x, γ)}. Let V be the unique solu-

tion of the Hamilton-Jacobi Bellman equation
(6.17)

−∂tV −
σ2

2
∆V +H(t, x,∇V ) = f1

(
t, x,

∫
w(y)p(t, dy)

)
in [0, T )×O

with boundary condition V (t, x) = F (t, x) in {T}× cl(O)∪ [0, T )× ∂O, and
let m be the unique solution of the Kolmogorov forward equation

(6.18) ∂tm−
σ2

2
∆m+ div (m(t, x) · ũ(t, x)) = 0 in (0, T ]×O

with initial condition m(0, x) = m0(x) and boundary condition m(t, x) = 0

in (0, T ]× ∂O. Then

ũ(t, x) = −DzH (t, x,∇V (t, x)) , p(t, dx) =
m(t, x)∫

Om(t, y)dy
dx.(6.19)

A non-standard feature in (6.19) is the renormalization by the factor
1/
∫
Om(t, y)dy. This is related to the fact that m(t, ·) will be the density

of a sub-probability measure, not necessarily a probability measure if t >
0. Relationship (6.19) clearly allows to eliminate the measure flow p from
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Eq. (6.17) and the feedback control ũ from Eq. (6.18), yielding a coupled
system of (backward) Hamilton-Jacobi Bellman equation and Kolmogorov
forward equation. This gives the PDE system for the mean field game with
absorption.

7 A counterexample

If the diffusion coefficient is degenerate and no additional controllability as-
sumptions are made, then a regular feedback solution of the mean field game
need not induce a sequence of approximate Nash equilibria with vanishing
error.

The following (counter-)example is constructed in such a way that, for a
certain initial condition, the individual state processes of the N -player games
cannot leave the set O of non-absorbing states before terminal time, while
this is possible in the mean field game limit. Exit before terminal time can
actually occur only at one fixed instant, if at all. With the choice of the
costs we make, leaving before terminal time is preferable. The individual
strategies that the solution of the mean field game induces in the N -player
games will therefore push the state processes towards the boundary if they
start from certain initial points, but will fail to make them exit (for N odd,
the probability of exit equals zero, for N even it will tend to zero as N →∞).
The failure to leave the set O in the N -player games will produce costs that
are higher than those of an alternative individual response strategy which
does not try to make its state process exit.

To achieve the described effect, we choose deterministic state dynamics;
the only source of randomness comes from the initial conditions. Individual
states will have three components, where one component (the third) cor-
responds to time, while the second component simply keeps its own initial
condition. Only the first component is controlled; its evolution is driven,
apart from the control, by an average over the second component of the
states of all players (a mean with respect to the measure variable in the
limit). That interaction term is responsible for the different controllabil-
ity of the N -player systems with respect to the limit system. Notice that
the construction also relies on the particular choice of the initial conditions,
which are singular with respect to Lebesgue measure. To be specific, consider
the following data for our systems:

• dimensions: d = 3, d0 = 1;

• time horizon: T = 2;
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• set of control actions: Γ
.
=
{
γ ∈ R3 : γ1 ∈ [−1, 1], γ2 = 0 = γ3

}
;

• set of non-absorbing states

O
.
=
{
x ∈ R3 :− 4 < x1 , −2 < x2 < 2 , −1 < x3 <

11

5
,

x1 < 1 + ex3−1
}

• measure integrand: w bounded Lipschitz and such that w(x) = x2 for
all x ∈ cl(O);

• drift function:

b̄(t, x, y)
.
=

−|y| ∧ 1
4

0

1

 , (t, x, y) ∈ [0, 2]× R3 × R;

• dispersion coefficient: σ ≡ 0;

• running costs: f ≡ 1;

• terminal costs: F non-negative bounded Lipschitz and such that

F (t, x) = 1 +
x3

12
· x1 for all (t, x) ∈ [0, 2]× cl(O).

Remark 7.1. The set of non-absorbing states O defined above has a boundary
that is only piecewise smooth. Let B ⊂ R3 be the line segment given by

B
.
=
{
x ∈ R3 : x1 = 2 , −1 ≤ x2 ≤ 1 , x3 = 1

}
.

As will become clear below, the (counter-)example works for any bounded
open set O as long as O contains{

x ∈ R3 : −1 ≤ x2 ≤ 1 , 0 ≤ x3 ≤ 2 , −1− 5

4
x3 ≤ x1 ≤ 1 + x3

}
\B,

while B ∩ O = ∅ (hence B ⊂ ∂O). There are bounded open sets with this
property and smooth (C2 or even C∞) boundary.

Let ρ denote the Rademacher distribution on B(R), that is, supp(ρ) =

{−1, 1} and ρ({−1}) = 1/2 = ρ({1}). Define a probability measure ν on
B(R3) by

ν
.
= ρ⊗ ρ⊗ δ0,

and choose, for N ∈ N, the initial distribution for the N -player game ac-
cording to νN

.
= ⊗Nν.
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The dynamics of the N -player game are thus given byXN
i,1(t)

XN
i,2(t)

XN
i,3(t)

 =

XN
i,1(0)

XN
i,2(0)

0


+

∫ t

0

ui,1(s,XN )−
∣∣∣ 1
N̄N (s)

∑N
j=1 1[0,τNj )(s) ·XN

j,2(s)
∣∣∣ ∧ 1

4

0

1

 ds,

where XN
i,k(0), k ∈ {1, 2}, i ∈ {1, . . . , N}, are i.i.d. Rademacher and u =

(u1, . . . , uN ) ∈ UNfb is an admissible strategy vector. Clearly, for all s ∈ [0, 2],

1

N̄N (s)

N∑
j=1

1[0,τNj )(s) ·X
N
j,2(s) =

1

N̄N (s)

N∑
j=1

1[0,τNj )(s) ·X
N
j,2(0).

Randomness thus enters the system only through the initial condition. We
may therefore fix the stochastic basis. To this end, let ξNi,k, k ∈ {1, 2},
i ∈ {1, . . . , N}, be i.i.d. Rademacher random variables defined on some prob-
ability space (ΩN ,FN ,PN ). As filtration, we may take any filtration that
makes the ξNi,k measurable at time zero. The dynamics of the N -player sys-
tem can be rewritten asXN

i,1(t)

XN
i,2(t)

XN
i,3(t)

 =


ξNi,1 +

∫ t
0

ui,1(s,XN )−
∣∣∣ 1
N̄N (s)

N∑
j=1

1[0,τNj )(s) · ξ
N
j,2

∣∣∣ ∧ 1

4

 ds

ξNi,2
t


Since ui,1 takes values in [−1, 1] and ξNi,1 values in {−1, 1}, we have, for

PN -almost all ω ∈ ΩN ,

(7.1) −1− 5

4
t ≤ XN

i,1(t, ω) ≤ 1 + t for all t ∈ [0, 2].

By construction of O, XN
i (·, ω) can leave O before the terminal time only if

XN
i,1(1, ω) = 2; this is possible only if

∑N
j=1 ξ

N
j,2(ω) = 0. But

PN

 N∑
j=1

ξNj,2(ω) = 0

 =

{
0 if N is odd,(
N
N/2

)
1

2N
if N is even.

Since
(
N
N/2

)
1

2N
→ 0 as N →∞, we may assume for simplicity that N is odd.

The dynamics of the N -player game then reduce to

(7.2)

XN
i,1(t)

XN
i,2(t)

XN
i,3(t)

 =

ξNi,1 +
∫ t

0 ui,1(s,XN )ds− t ·
(∣∣∣ 1

N

∑N
j=1 ξ

N
j,2

∣∣∣ ∧ 1
4

)
ξNi,2
t


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t ∈ [0, 2], for any admissible strategy vector u. The associated costs for
player i are, in view of (7.1),

JNi (u) = 2 + EN

1 +
1

6

∫ 2

0
ui,1(s,XN )ds− 1

3

∣∣∣ 1

N

N∑
j=1

ξNj,2

∣∣∣ ∧ 1

4

 .1
Let us turn to the limit model. Given a flow of measures p ∈ M

and a stochastic-open loop control ((Ω,F , (Ft),P), ξ, α,W ) ∈ A such that
P ◦ξ−1 = ν, the dynamics are given by
(7.3)X1(t)

X2(t)

X3(t)

 =

ξ1

ξ2

0

+

∫ t

0

α1(s)−
∣∣∫

R3 w(y)p(s, dy)
∣∣ ∧ 1

4

0

1

 ds, t ∈ [0, 2].

Notice that ξ1, ξ2 are independent Rademacher variables.
Suppose that p is such that, for all t ∈ [0, 2], supp(p(t)) ⊆ cl(O) and∫

R3 w(y)p(t, dy) = 0. The dynamics then reduce to

(7.4)

X1(t)

X2(t)

X3(t)

 =

ξ1 +
∫ t

0 α1(s)ds

ξ2

t

 ,

while the associated expected costs are equal to E[ζα] where

ζα(ω)
.
= τX(ω) ∧ 2 + 1 +

τX(ω) ∧ 2

12
·X1(τX(ω) ∧ 2, ω), ω ∈ Ω.

Since α1 takes values in [−1, 1] and ξ1 values in {−1, 1}, we have, P-almost
surely,

(7.5) −1− t ≤ X1(t) ≤ 1 + t for all t ∈ [0, 2].

By construction of O, it follows that, for P-almost every ω ∈ Ω, X(·, ω)

leaves O before time T = 2 if and only if ξ1(ω) = 1 and α1(t, ω) = 1 for
Lesbegue almost every t ∈ [0, 1]. In this case, τX(ω) = 1, X1(1, ω) = 2, and
ζα(ω) = 2 + 1/6. If X(·, ω) does not leave O before the terminal time, then,
by (7.5), ζα(ω) ≥ 2+1/2, and the optimal control is to choose α1(t, ω) = −1

for almost every t ∈ [0, 2]. Therefore, if for P-almost every ω ∈ Ω,

(7.6) α(t, ω) =

{
(1, 0, 0)T if ξ1(ω) = 1 and t ∈ [0, 1],

(−1, 0, 0)T if ξ1(ω) = −1 or t > 1,

1It is easy to see that if u is such that ui,1 ≡ −1 for all i ∈ {1, . . . , N}, then u is a
Nash equilibrium for the N -player game.
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then
E[ζα] =

1

2

(
2 +

1

6

)
+

1

2

(
2 +

1

2

)
= 2 +

1

3

and α is optimal in the sense that

E[ζα] = V (ν; p).

Now, choose ((Ω,F , (Ft),P), ξ, α,W ) ∈ A such that P ◦ξ−1 = ν and
(ξ, α) satisfies (7.6) P-almost surely. Let X be the unique strong solution of
Eq. (7.4), and define a flow of measures p∗ according to

p∗(t, ·)
.
= P(X ∈ · | τX > t), t ∈ [0, 2].

Notice that P(τX > t) ≥ 1/2 for all t ∈ [0, 2]; thus, p∗ is well defined. By
construction, supp(p∗) ⊆ cl(O), which implies∫

R3

w(y)p∗(t, dy) =

∫
R3

y2p∗(t, dy).

We are going to show that
∫
R3 w(y)p∗(t, dy) = 0 for all t ∈ [0, 2]. By

definition of ν, X1(0), X2(0), X3(0) are independent. Moreover, X3 is (al-
most surely) deterministic, while α1 is measurable with respect to σ(ξ1) =

σ(X1(0)). This implies that the real-valued processes X1, X2, X3 are inde-
pendent. The time of first exit τX can be rewritten in terms of X1 and X3

only. It follows that τX and X2 are independent, hence∫
R3

w(y)p∗(t, dy) =

∫
R3

y2p∗(t, dy)

= EP [X2(t)] = EP [X2(0)] =

∫
R
zρ(dz) = 0.

As a consequence, X solves Eq. (7.3) with flow of measures p = p∗ and the
associated costs are optimal in the sense that

E[ζα] = V (ν; p∗).

Recall that p∗ was defined as the conditional flow of measures for the law
of X. Since X solves Eq. (7.3) with flow of measures p = p∗, the conditional
mean field property of Definition 4.1 holds.

Relation (7.6) between the open-loop control α and the initial condition
ξ induces a feedback strategy in U1, namely

u∗(t, ϕ) =


(1, 0, 0)T if ϕ1(0) = 1 and t ∈ [0, 1],

(−1, 0, 0)T if ϕ1(0) = −1 or t > 1,

arbitrary otherwise.
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For pairs (t, ϕ) where the control is unspecified, we may choose the control
actions in such a way that u∗ becomes Lipschitz continuous in the state
variable at every point in time; to be specific, set

u∗(t, ϕ)
.
=

{
(−1 ∨ ϕ1(0) ∧ 1, 0, 0)T if t ∈ [0, 1],

(−1, 0, 0)T if t > 1.

Eq. (4.1) is well posed under u∗ given the flow of measures p∗ and any
initial distribution with support in O. Let ((Ω∗,F∗,P∗), (F∗t ), W̄ ,X∗) be a
solution of Eq. (4.1) under u∗ with flow of measures p∗ and initial distribution
ν = ρ⊗ ρ⊗ δ0. Then, by construction,

P∗ ◦(X∗)−1 = P ◦X−1.

This implies the optimality property

J(ν, u∗; p∗) = V (ν; p∗),

but also the conditional mean field property of Definition 4.1, namely

p∗(t) = P(X ∈ · | τX > t) = P∗(X
∗ ∈ · | τX∗ > t) for all t ∈ [0, 2].

It follows that (ν, u∗, p∗) is a feedback solution of the mean field game.
Let us check whether or not the feedback strategy u∗ induces a sequence

of approximate Nash equilibria in analogy with Theorem 5.1. Thus, for
N ∈ N, define uN = (uN1 , . . . , u

N
N ) by

uNi (t,ϕ)
.
= u∗(t, ϕi), t ∈ [0, T ], ϕ = (ϕ1, . . . , ϕN ) ∈ XN , i ∈ {1, . . . , N}.

Equation (3.1) has a unique solution under uN with initial distribution νN
because b̄, w are Lipschitz continuous in the state variable and uN is measur-
able with respect to σ(XN (0)). Therefore, uN ∈ UNfb. For simplicity, assume
again that N is odd. Let XN be the unique strong solution of Equation (7.2)
under uN . Then, for every i ∈ {1, . . . , N},

JNi (uN ) = 2 + EN

1 +
1

6

∫ 2

0
u∗(s,XN

i )ds− 1

3

∣∣∣ 1

N

N∑
j=1

ξNj,2

∣∣∣ ∧ 1

4


= 3− 1

2
· 2

6
− 1

3
EN

∣∣∣ 1

N

N∑
j=1

ξNj,2

∣∣∣ ∧ 1

4


≥ 33

12
.
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Suppose player one deviates from uN by choosing the strategy that is con-
stant and equal to −1. Denote that strategy by v. Notice that [uN,−1, v] ∈
UNfb. For the associated costs, we have

JN1 ([uN,−1, v]) = 2 + EN

1− 2

6
− 1

3

∣∣∣ 1

N

N∑
j=1

ξNj,2

∣∣∣ ∧ 1

4


= 3− 1

3
− 1

3
EN

∣∣∣ 1

N

N∑
j=1

ξNj,2

∣∣∣ ∧ 1

4


≤ 32

12
.

Player one can thus save costs of at least 1/12 by deviating from uN for
every N odd (asymptotically, also for N even). It follows that the strategy
vectors induced by the feedback solution (ν, u∗, p∗) of the mean field game
do not yield approximate Nash equilibria with vanishing error.

Appendix

Let ν ∈ P(Rd) with support in O. Recall the definition of Θν ∈ P(X ) in (5.1)
at the beginning of Section 5, and also the definition of the sets Qν,c ⊂ P(X ),
c ≥ 0, given there.

Let σ be a d× d-matrix, and let

b̂ : [0, T ]×X × P(X )→ Rd, b̃N : [0, T ]×XN × P(X )→ Rd, N ∈ N,

be functions such that the following hold:

(ND) Non-degeneracy: σ is invertible.

(M) Measurability: b̂, b̃N , N ∈ N, are Borel measurable and progressive in
the sense that, for all t ∈ [0, T ],

b̂(t, ϕ, θ) = b̂(t, ϕ̃, θ̃) whenever ϕ|[0,t] = ϕ̃|[0,t] and θ|Gt = θ̃|Gt ,

and analogously for b̃N .

(B) Boundedness: there exists a finite constant K > 0 such that

‖b̂‖∞ ∨ sup
N∈N
‖b̃N‖∞ ≤ K.

For each N ∈ N, let νN ∈ P(RN×d) be symmetric with supp(νN ) ⊂ ON ,
as above. We assume, in addition to (ND), (M), and (B):
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(I) Initial distributions: the sequence (νN )N∈N is ν-chaotic, where ν has
support in O.

(C) Almost continuity: for Lebesgue a.e. t ∈ [0, T ], every θ ∈ Qν,K ,

Θν

(
ϕ ∈ X : ∃ (ϕn, θn) ⊂ X × P(X ) such that b̂(t, ϕn, θn) 6→ b̂(t, ϕ, θ)

while (ϕn, θn)→ (ϕ, θ)
)

= 0.

In Section B of this Appendix, we will make the following assumption of
partial Lipschitz continuity:

(L) Lipschitz continuity in the measure variable: There exists a finite con-
stant L > 0 such that for all t ∈ [0, T ], all ϕ ∈ X ,∣∣∣b̂(t, ϕ, θ)− b̂(t, ϕ, θ̃)∣∣∣ ≤ L · dt(θ, θ̃) whenever θ, θ̃ ∈ Qν,K ,

where the distances dt are pseudo-metrics derived from the total variation
distance; see below.

A Convergence of empirical measures

For N ∈ N, consider the system of equations

XN
1 (t) = XN

1 (0) +

∫ t

0
b̃N
(
s,XN , µN

)
ds+ σWN

1 (t),

XN
i (t) = XN

i (0) +

∫ t

0
b̂
(
s,XN

i , µ
N
)
ds+ σWN

i (t),

i ∈ {2, . . . , N}, t ∈ [0, T ],

(A.1)

whereWN
1 , . . . ,WN

N are independent d-dimensional Wiener processes defined
on some filtered probability space (Ω,F , (Ft),P), and µN is the empirical
measure of the players’ state trajectories, that is,

µNω (·) .
=

1

N

N∑
j=1

δXN
j

(·, ω), ω ∈ Ω.

A solution of Eq. (A.1) with initial distribution νN is given by a triple
((Ω,F , (Ft),P),WN ,XN ) such that (Ω,F , (Ft),P) is a filtered probability
space satisfying the usual hypotheses, WN = (WN

1 , . . . ,WN
N ) a vector of in-

dependent d-dimensional (Ft)-Wiener processes, and XN = (XN
1 , . . . , X

N
N )

a vector of continuous Rd-valued (Ft)-adapted processes such that Eq. (A.1)
holds P-almost surely with P ◦(XN (0))−1 = νN .
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As in Section 3, existence and uniqueness in law of solutions to Eq. (A.1)
hold thanks to Girsanov’s theorem and assumptions (ND), (M), and (B).
Now, for each N ∈ N, take a solution ((ΩN ,FN , (FNt ),PN ),WN ,XN ) of
Eq. (A.1) with initial distribution νN , and let µN be the associated empirical
measure on the path space X .

Lemma A.1. Grant (ND), (M), (B), (I), and (C). Then (PN ◦(µN )−1)N∈N
is tight in P(P(X )), and its limit points have support in Qν,K .

Proof. For N ∈ N, let ιN be the intensity measure of PN ◦(µN )−1, that is,

ιN (A)
.
= EN

[
µN (A)

]
, A ∈ B(X ).

Tightness of (PN ◦(µN )−1) in P(P(X )) is then equivalent to the tightness
of (ιN ) in P(X ) [cf. (2.5) in Sznitman, 1991, p. 178]. By construction,

ιN (A) =
1

N

N∑
i=1

PN

(
XN
i ∈ A

)
, A ∈ B(X ).

It is therefore enough to check that the family (P ◦(XN
i )−1)N∈N,i∈{1,...,N} is

tight. Now, for N ∈ N, i ∈ {1, . . . , N},

PN

(
XN
i (0) ∈ cl(O)

)
= 1,

and cl(O) is compact since O is open and bounded. Moreover, thanks to
assumption (B), for all s, t ∈ [0, T ],∣∣XN

i (t)−XN
i (s)

∣∣ ≤ K · |t− s|+ |σ| · ∣∣WN
i (t)−WN

i (s)
∣∣ ,

where we recall that WN
i is a standard Wiener process under PN . Tight-

ness of (PN ◦(XN
i )−1) is now a consequence of the Kolmogorov-Chentsov

tightness criterion [for instance, Corollary 16.9 in Kallenberg, 2001, p. 313].

As to the support of the limit points of (PN ◦(µN )−1), we interpret the
drift terms appearing in (A.1) as stochastic relaxed controls. To this end,
set R .

= RBK(0), where BK(0) ⊂ Rd is the closed ball of radius K around
the origin. Then R is compact (cf. Appendix E). For N ∈ N, let ρNi be the
R-valued (FNt )-adapted random measure determined by

ρNi,ω
(
B × I

) .
=


∫
I δb̃N (t,XN (·,ω),µNω )(B)dt if i = 1,∫
I δb̂(t,XN

i (·,ω),µNω )(B)dt if i > 1,

B ∈ B(Γ), I ∈ B([0, T ]), ω ∈ ΩN .
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We can rewrite Eq. (A.1) in terms of ρN1 , . . . , ρNN :

XN
i (t) = XN

i (0) +

∫
BK(0)×[0,t]

y ρNi (dy, ds) + σWN
i (t),

i ∈ {1, . . . , N}, t ∈ [0, T ].

(A.2)

Now, form the extended empirical measure

QNω
.
=

1

N

N∑
i=1

δ(XN
i (·,ω),ρNi,ω), ω ∈ ΩN .

Thus, QN is a P(X ×R)-valued random variable, and the projection on its
first component coincides with µN . The family (PN ◦(QN )−1)N∈N is tight
in P(P(X ×R)) thanks to the first part of the proof and the fact that R is
compact.

With a slight abuse of notation, let (X̂, ρ̂) denote the canonical process on
X×R. Let (Pn ◦(Qn)−1)n∈I be a convergent subsequence of (PN ◦(QN )−1)N∈N,
and let Q be a P(X×R)-valued random variable defined on some probability
space (Ω,F ,P) such that

Qn → Q in distribution as I 3 n→∞.

We have to show that Qω ◦ X̂−1 ∈ Qν,K for P-almost every ω ∈ Ω. To this
end, define a process Ŵ on X ×R by

Ŵ (t)
.
= σ−1

(
X̂(t)− X̂(0)−

∫
B̄K(0)×[0,t]

y ρ̂(dy, ds)

)
, t ∈ [0, T ].

By a martingale argument similar to that in the proof of Lemma A.2, but
using Eq. (A.2), one checks that Ŵ is a standard Wiener process under Qω
for P-almost every ω ∈ Ω. This entails that X̂ solves Eq. (5.2) under Qω
with BK(0)-valued control process

v(t, (ϕ, r))
.
=

∫
BK(0)

y ṙt(dy), t ∈ [0, T ], (ϕ, r) ∈ X ×R.

It follows that Qω ◦ X̂−1 ∈ Qν,K for P-almost every ω ∈ Ω.

In order to further characterize the limit points of (PN ◦(µN )−1)N∈N,
consider, for θ ∈ P(X ), the equation

(A.3) X(t) = X(0) +

∫ t

0
b̂ (s,X, θ) ds+ σW (t), t ∈ [0, T ],
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whereW is a d-dimensional Wiener process defined on some filtered probabil-
ity space. A solution of Eq. (A.3) with measure θ ∈ P(X ) and initial distribu-
tion ν is a triple ((Ω,F , (Ft),P),W,X) such that (Ω,F , (Ft),P) is a filtered
probability space satisfying the usual hypotheses, W a d-dimensional (Ft)-
Wiener process, and X an Rd-valued (Ft)-adapted process such that (A.3)
holds P-almost surely with P ◦(X(0))−1 = ν and drift coefficient b̂(·, ·, θ).
Again thanks to Girsanov’s theorem and assumptions (ND), (M), and (B),
existence and uniqueness in law of solutions to Eq. (A.3) hold for each fixed
θ ∈ P(X ).

Recall that X̂ denotes the canonical process on X .

Definition A.1. A measure θ ∈ P(X ) is called a McKean-Vlasov solution
of Eq. (A.3) if there exists a solution ((Ω,F , (Ft),P),W,X) of Eq. (A.3)
with initial distribution θ ◦ (X̂(0))−1 and measure θ such that P ◦X−1 = θ.

By uniqueness in law (with fixed measure θ), if P ◦X−1 = θ holds for
one solution ((Ω,F , (Ft),P),W,X) of Eq. (A.3) with measure θ and initial
distribution θ ◦ (X̂(0))−1, then it holds for any such solution of Eq. (A.3).
According to the next lemma, limit points of the sequence of empirical mea-
sures (µN )N∈N are almost surely concentrated on McKean-Vlasov solutions
of Eq. (A.3). This yields, in particular, existence of McKean-Vlasov solu-
tions. Those solutions do not necessarily have the same law.

Lemma A.2. Grant (ND), (M), (B), (I), and (C). Let (Pn ◦(µn)−1)n∈I
be a convergent subsequence of the family (PN ◦(µN )−1)N∈N, and let µ be
a P(X )-valued random variable defined on some probability space (Ω,F ,P)

such that

µn → µ in distribution as I 3 n→∞.

Then µω is a McKean-Vlasov solution of Eq. (A.3) for P-almost every ω ∈ Ω.

Proof. Thanks to hypothesis (I), we have µω ◦ (X̂(0))−1 = ν for P-almost
every ω ∈ Ω.

In the proof, we use the characterization of solutions to Eq. (A.3) with
fixed measure variable through a martingale problem in the sense of Stroock
and Varadhan [1979]; also see Karatzas and Shreve [1991, Section 5.4]. Since
the coefficients in (A.3) are bounded, we can employ a “true” martingale
problem instead of a local martingale problem and work with test functions
that have compact support. For a test function g ∈ C2

c(Rd) and a measure
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θ ∈ P(X ), define the process M θ
g on (X ,B(X )) by

M θ
g (t, ϕ)

.
= g
(
ϕ(t)

)
− g
(
ϕ(0)

)
−
∫ t

0

b̂(s, ϕ, θ) · ∇g +
1

2

d∑
i,j=1

(σσT)ij
∂2g

∂xi∂xj

(ϕ(s)
)
ds.

Recall that (Gt) is the canonical filtration in B(X ) and that X̂ is the co-
ordinate process on X . We have to show that, for P-almost every ω ∈ Ω, µω
solves the martingale problem associated with b̂(·, ·, µω) and σσT, that is, for
every test function g ∈ C2

c(Rd), the process Mµω
g is a (Gt)-martingale under

µω. Although (Gt) is a “raw” filtration (i.e., not necessarily right-continuous
or µω-complete), checking the martingale property with respect to (Gt) is
sufficient; see, for instance, Problem 5.4.13 in Karatzas and Shreve [1991,
pp. 318-319, 392]. Indeed, if Mµω

g is a (Gt)-martingale under µω for every
g ∈ C2

c(Rd), then ((X ,B(X ), (Gµωt+ ), µω), Ŵ , X̂) is a solution of Eq. (A.3)
with initial distribution ν, where (Gµωt+ ) indicates the right-continuous µω-
augmentation of (Gt) and Ŵ is defined by

Ŵ (t)
.
= σ−1

(
X̂(t)− X̂(0)−

∫ t

0
b̂
(
s, X̂, µω

)
ds

)
, t ∈ [0, T ].

Since µω ◦ X̂−1 = µω, it then follows that µω is a McKean-Vlasov solution
of Eq. (A.3) in the sense of Definition A.1. For this implication to hold,
it suffices to take a countable collection of test functions g ∈ C2

c(Rd) that
approximate the d-variate monomials of first and second order.

Let θ ∈ P(X ). The processes M θ
g are, by construction and thanks to

assumptions (B) and (M), bounded, measurable, and (Gt)-adapted. The
martingale property of M θ

g is equivalent to having

(A.4) Eθ

[
ψ ·
(
M θ
g (t1)−M θ

g (t0)
)]

= 0

for every choice of (t0, t1, ψ) ∈ [0, T ]2 × Cb(X ) such that t0 ≤ t1 and ψ

is Gt0-measurable. Since the σ-algebras Gt are countably generated, the
processes M θ

g have continuous trajectories, and since the test functions can
be taken from a countable family, we can choose a countable collection of test
parameters T ⊂ [0, T ]2×Cb(X )×C2

c(Rd) with the following two properties:
First, for every (t0, t1, ψ, g) ∈ T we have t0 ≤ t1 and ψ is Gt0-measurable;
second, if θ ∈ P(X ) is such that (A.4) holds for every (t0, t1, ψ, g) ∈ T , then
θ is a McKean-Vlasov solution of Eq. (A.3). In the following three steps, we
will show that there exists Ω̄ ∈ F such that P(Ω̄) = 1 and, for every ω ∈ Ω̄,
(A.4) with θ = µω holds for all (t0, t1, ψ, g) ∈ T .
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Step 1. Let (t0, t1, ψ, g) ∈ T . Define a function Ψ = Ψ(t0,t1,ψ,g) : P(X )→
R by

Ψ(θ) = Ψ(t0,t1,ψ,g)(θ)
.
= Eθ

[
ψ ·
(
M θ
g (t1)−M θ

g (t0)
)]
.

Notice that Ψ is well defined (the expectation on the right-hand side is finite),
Borel measurable, and bounded. We claim that Ψ is continuous at every
θ ∈ Qν,K . To see this, let θ ∈ Qν,K and (θn)n∈N ⊂ P(X ) be such that θn → θ

as n → ∞. Define bounded measurable functions hn, h : [0, T ] × X → R
according to

hn(s, ϕ)
.
= ψ(ϕ) · b̂(s, ϕ, θn) ·

(
d∑
i=1

∂g

∂xi

(
ϕ(s)

))
, n ∈ N,

h(s, ϕ)
.
= ψ(ϕ) · b̂(s, ϕ, θ) ·

(
d∑
i=1

∂g

∂xi

(
ϕ(s)

))
, (s, ϕ) ∈ [0, T ]×X .

By hypothesis, θn → θ in the sense of weak convergence of probability mea-
sures. The functions ψ, σ (constant) as well as g together with its first and
second order partial derivatives are all bounded and continuous. In order to
establish the convergence of Ψ(θn) to Ψ(θ) it is therefore enough to verify
that ∫

X

∫ t1

t0

hn(s, ϕ)ds θn(dϕ)
n→∞−→

∫
X

∫ t1

t0

h(s, ϕ)ds θ(dϕ).

The functions h, hn, n ∈ N, are uniformly bounded. By dominated conver-
gence and the Fubini-Tonelli theorem, it thus suffices to check that

(A.5)
∫
X
hn(s, ϕ) θn(dϕ)

n→∞−→
∫
X
h(s, ϕ) θ(dϕ) for almost every s ∈ [0, T ].

For s ∈ [0, T ], set

Es
.
= {ϕ ∈ X : ∃(ϕn) ⊂ X : hn(s, ϕn) 6→ h(s, ϕ) while ϕn → ϕ} .

The functions ψ, ∂g
∂xi

, i ∈ {1, . . . , d}, are continuous and bounded. The
choice of θ ∈ Qν,K entails that θ is absolutely continuous with respect to Θν .
By (C), the assumption of almost continuity, it follows that

θ(Es) = 0 for Lebesgue almost every s ∈ [0, T ].

The extended mapping theorem [Theorem 5.5 in Billingsley, 1968, p. 34] now
implies that (A.5) holds. It follows that Ψ is continuous at θ ∈ Qν,K .

Step 2. Let again (t0, t1, ψ, g) ∈ T . We are going to show that

(A.6) EP

[(
Ψ(t0,t1,ψ,g)(µ)

)2]
= 0.
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Recall that Ψ = Ψ(t0,t1,ψ,g) is bounded and, by the previous step, contin-
uous at every θ ∈ Qν,K . By Lemma A.1, we have P (µ ∈ Qν,K) = 1. By
hypothesis, µn → µ in distribution as I 3 n → ∞. The mapping theorem
[Theorem 5.1 in Billingsley, 1968, p. 30] thus implies that

EP

[
(Ψ(µ))2

]
= lim

I3n→∞
EPn

[
(Ψ(µn))2

]
.

Now, for every n ∈ I, using Itô’s formula and Eq. (A.1),

EPn

[
(Ψ(µn))2

]
= EPn

( 1

n

n∑
i=1

ψ(Xn
i ) ·

(
Mµn

g (t1, X
n
i )−Mµn

g (t0, X
n
i )
))2


=

1

n2
EPn

[(
ψ(Xn

1 ) ·
∫ t1

t0

(
b̃n(s,Xn, µn)− b̂(s,Xn

1 , µω)
)
· ∇g

(
Xn

1 (s)
)
ds

+
n∑
i=1

ψ(Xn
i ) ·

∫ t1

t0

∇g
(
Xn
i (s)

)T
σdWn

i (s)

)2
 .

The functions ψ, σ (constant), ∇g, b, and b̂n are bounded, uniformly in
n ∈ I; cf. assumption (B). Since ψ is Gt0-measurable, the random variables
ψ(Xn

1 ), . . . , ψ(Xn
n ) are Fnt0-measurable. The Wiener processes Wn

1 , . . . ,W
n
n

are independent. Setting

B̃n
1
.
=

∫ t1

t0

(
b̃n(s,Xn, µn)− b̂(s,Xn

1 , µω)
)
· ∇g

(
Xn

1 (s)
)
ds,

we obtain

EPn

[
(Ψ(µn))2

]
=

1

n2
EPn

[(
ψ(Xn

1 ) · B̃n
1

)2
]

+
2

n2
EPn

[
n∑
i=1

ψ(Xn
i ) · ψ(Xn

1 ) · B̃n
1 ·
∫ t1

t0

∇g
(
Xn
i (s)

)T
σdWn

i (s)

]

+
1

n2
EPn

[
n∑
i=1

(ψ(Xn
i ))2 ·

∫ t1

t0

∇g
(
Xn
i (s)

)T
σσT∇g

(
Xn
i (s)

)
ds

]
I3n→∞−→ 0,

where convergence to zero follows from the uniform boundedness of the in-
tegrands (and the Cauchy-Schwarz inequality).
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Step 3. By Step 2, we have that (A.6) holds for every t = (t0, t1, ψ, g) ∈
T . For every t ∈ T , we can therefore select At ∈ F such that P(At) = 1 and
Ψ(µω) = 0 for every ω ∈ At. Set Ω̄

.
=
⋂

t∈T At. Then P(Ω̄) = 1 since T is
countable, and Ψ(µω) = 0 for every ω ∈ Ω̄. Hence, for P-almost every ω ∈ Ω,
µω is such that (A.4) with θ = µω holds for every (t0, t1, ψ, g) ∈ T .

B Uniqueness of McKean-Vlasov solutions

Here, we consider McKean-Vlasov solutions of Eq. (A.3) in the sense of
Definition A.1 and obtain a uniqueness result.

On P(X ) define the following distances derived from the total variation
distance by setting, for t ∈ [0, T ],

dt(θ, θ̃)
.
= sup

A∈Gt

∣∣∣θ(A)− θ̃(A)
∣∣∣ , θ, θ̃ ∈ P(X ).

Notice that dt are pseudo-metrics for t ∈ [0, T ), while dT is a true metric
since GT = B(X ).

Let K be the constant from assumption (B), ν ∈ P(Rd) the initial distri-
bution. We will assume the following partial Lipschitz property with respect
to the measure argument of b̂:

(L) There exists a finite constant L > 0 such that for all t ∈ [0, T ], all
ϕ ∈ X ,∣∣∣b̂(t, ϕ, θ)− b̂(t, ϕ, θ̃)∣∣∣ ≤ L · dt(θ, θ̃) whenever θ, θ̃ ∈ Qν,K .

Notice that condition (L) does not require b̂ to be Lipschitz continuous or
simply continuous with respect to the trajectory variable ϕ ∈ X . In fact,
for the following uniqueness result to be valid, b̂ need not satisfy (C), the
assumption of almost continuity, either.

Proposition B.1. Grant (ND), (M), (B), and (L). Then there exists at
most one McKean-Vlasov solution of Eq. (A.3) with initial distribution ν.

Proof. Suppose θ, θ̃ ∈ P(X ) are McKean-Vlasov solutions of Eq. (A.3) with
initial distribution ν = θ ◦ (X̂(0))−1 = θ̃ ◦ (X̂(0))−1. We have to show that
θ = θ̃.

Observe that θ and θ̃, being McKean-Vlasov solutions of Eq. (A.3) with
initial distribution ν, are elements of Qν,K . In particular, the Lipschitz
property expressed in (L) applies to θ, θ̃.
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Step 1. Set γ .
= Θν and, for t ∈ [0, T ],

Y (t)
.
= exp

(∫ t

0

(
σσT

)−1
b̂(s, X̂, θ) · dX̂(s)

−1

2

∫ t

0
b̂(s, X̂, θ)

T
(
σσT

)−1
b̂(s, X̂, θ)ds

)
,

Ỹ (t)
.
= exp

(∫ t

0

(
σσT

)−1
b̂(s, X̂, θ̃) · dX̂(s)

−1

2

∫ t

0
b̂(s, X̂, θ̃)

T
(
σσT

)−1
b̂(s, X̂, θ̃)ds

)
.

Then Y , Ỹ are well defined under γ and, for every t ∈ [0, T ],

dθ

dγ

∣∣∣
Gt

= Y (t),
dθ̃

dγ

∣∣∣
Gt

= Ỹ (t).(B.1)

The equalities in (B.1) are a consequence of the Cameron-Martin-Girsanov
formula; see Theorem 6.4.2 in Stroock and Varadhan [1979, p. 154]. For the
sake of completeness, we derive (B.1) from a standard version of Girsanov’s
formula. First observe that Y , Ỹ are well defined if the stochastic integral
that appears in the exponential is well defined. This is the case if we take γ
as our reference probability measure since X̂ is a vector of continuous mar-
tingales under γ, while the integrands b̂(s, X̂, θ) and b̂(s, X̂, θ̃), respectively,
are bounded progressively measurable processes with respect to (Gt) thanks
to assumptions (M) and (B).

As to the densities given in (B.1), it is enough to prove the assertion for
θ, the proof for θ̃ being completely analogous. Let ((Ω,F , (Ft),P),W,X) be
a solution of Eq. (A.3) with initial distribution ν and measure θ such that
P ◦X−1 = θ; such a solution exists by hypothesis.

Define a process Z on (Ω,F) by setting

Z(t)
.
= e−

∫ t
0 σ
−1b̂(s,X,θ)·dW (s)− 1

2

∫ t
0 |σ−1b̂(s,X,θ)|2ds, t ∈ [0, T ].

Then Z is a martingale with respect to P and (Ft), and

Q(A)
.
= EP [Z(T )1A] , A ∈ F ,

defines a probability measure such that

dQ

dP

∣∣∣
Ft

= Z(t) for every t ∈ [0, T ].

By Girsanov’s Theorem [Theorem 3.5.1 Karatzas and Shreve, 1991, p. 191]
and Eq. (A.3), we have that

σ−1 (X(·)−X(0)) = W (·) +

∫ ·
0
σ−1b̂(s,X, θ)ds
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is an (Ft)-Wiener process under Q. Thus, since X(0) is F0-measurable, X(0)

and X(·)−X(0) are independent under Q. It follows that

Q ◦X−1 = P ◦ (X(0) + σW )−1 = γ.

Using again Eq. (A.3), we obtain with probability one under P as well
as under Q that for all t ∈ [0, T ],

Z(t) = e−
∫ t
0 (σσT)

−1
b̂(s,X,θ)·dX(s)+ 1

2

∫ t
0 |σ−1b̂(s,X,θ)|2ds,

1

Z(t)
= e

∫ t
0 (σσT)

−1
b̂(s,X,θ)·dX(s)− 1

2

∫ t
0 b̂(s,X,θ)

T
(σσT)

−1
b̂(s,X,θ)ds.

The process X is a vector of continuous semimartingales with respect to P

as well as Q, with quadratic covariation processes

〈Xi, Xj〉 (t) = t ·
(
σσT

)
ij
, t ∈ [0, T ], P-/Q-almost surely.

It follows that 1/Z is a stochastic exponential, hence a local martingale,
under Q. Since b̂ is bounded, 1/Z is a true martingale under Q. As a
consequence,

dP

dQ

∣∣∣
Ft

=
1

Z(t)
for every t ∈ [0, T ].

Recall that Q ◦X−1 = γ. Comparing the expressions for 1/Z and Y , we
find that

Q ◦
(

1

Z(t)
, X

)−1

= γ ◦
(
Y (t), X̂

)−1
for all t ∈ [0, T ].

Since θ = P ◦X−1, it follows that, for every B ∈ Gt,

θ(B) = EP [1B(X)] = EQ

[
1

Z(t)
1B(X)

]
= Eγ

[
Y (t)1B(X̂)

]
,

hence dθ
dγ

∣∣
Gt = Y (t) for all t ∈ [0, T ].

Step 2. We are going to show that there exists a constant C ∈ (0,∞) de-
pending only on T , K, and σ, such that for every bounded and progressively
measurable functional ψ : [0, T ]×X → R, every t ∈ [0, T ],∣∣∣Eθ [ψ(t, X̂)

]
−Eθ̃

[
ψ(t, X̂)

]∣∣∣2 ≤ C · ‖ψ‖2∞ ∫ t

0
ds(θ, θ̃)

2ds.

Indeed, by (B.1), for every t ∈ [0, T ],

Eθ

[
ψ(t, X̂)

]
−Eθ̃

[
ψ(t, X̂)

]
= Eγ

[(
Y (t)− Ỹ (t)

)
ψ(t, X̂)

]
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Under γ, X̂ is a martingale with quadratic covariation processes

〈Xi, Xj〉 (t) = t ·
(
σσT

)
ij
, t ∈ [0, T ],

while Y , Ỹ are stochastic exponentials. In fact, setting

M(t)
.
=

∫ t

0

(
σσT

)−1
b̂(s, X̂, θ) · dX̂(s),

M̃(t)
.
=

∫ t

0

(
σσT

)−1
b̂(s, X̂, θ̃) · dX̂(s),

we have, with probability one under γ,

Y (t) = exp

(
M(t)− 1

2
〈M〉(t)

)
, Ỹ (t) = exp

(
M̃(t)− 1

2
〈M̃〉(t)

)
.

Therefore (by Itô’s formula), with probability one under γ,

Y (t) = 1 +

∫ t

0
Y (s)dM(s), Ỹ (t) = 1 +

∫ t

0
Ỹ (s)dM̃(s), t ∈ [0, T ].

The invertibility of σ and the boundedness assumption (B) imply that

(B.2) sup
t∈[0,T ]

{
Eγ

[
|Y (t)|2

]
∨Eγ

[∣∣∣Ỹ (t)
∣∣∣2]} ≤ eT ·K2‖σ−1‖2 .

= eTC0 ,

where ‖·‖ denotes the Hilbert-Schmidt matrix norm. The bound (B.2) holds
since

Y (t)2 = exp

(
2M(t)− 1

2
〈2M〉(t)

)
︸ ︷︷ ︸
stochastic exponential under γ

exp (〈M〉(t)) ,

while supt∈[0,T ] |〈M〉(t)| ≤ T · C0 γ-almost surely by the Cauchy-Schwarz
inequality; analogously for the tilde part.

Using Itô’s isometry, (B.2), and assumption (L), we obtain, for every
t ∈ [0, T ],

Eγ

[∣∣∣Y (t)− Ỹ (t)
∣∣∣2]

= Eγ

[∣∣∣∣∫ t

0

(
σσT

)−1 (
Y (s)b̂(s, X̂, θ)− Ỹ (s)b̂(s, X̂, θ̃)

)
· dX̂(s)

∣∣∣∣2
]

≤
∫ t

0
Eγ

[∥∥σ−1
∥∥2
∣∣∣Y (s)b̂(s, X̂, θ)− Ỹ (s)b̂(s, X̂, θ̃)

∣∣∣2] ds
≤ 2

∥∥σ−1
∥∥2
L2eTC0

∫ t

0
ds(θ, θ̃)

2ds+ 2C0

∫ t

0
Eγ

[∣∣∣Y (s)− Ỹ (s)
∣∣∣2] ds,
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hence, thanks to Gronwall’s lemma,

Eγ

[∣∣∣Y (t)− Ỹ (t)
∣∣∣2] ≤ 2

∥∥σ−1
∥∥2
L2e3TC0

∫ t

0
ds(θ, θ̃)

2ds, t ∈ [0, T ].

It follows that, for every t ∈ [0, T ],∣∣∣Eθ [ψ(t, X̂)
]
−Eθ̃

[
ψ(t, X̂)

]∣∣∣2
≤ Eγ

[∣∣∣Y (t)− Ỹ (t)
∣∣∣2 |ψ(t, X̂)|2

]
≤ ‖ψ‖2∞ · 2

∥∥σ−1
∥∥2
L2e3TC0

∫ t

0
ds(θ, θ̃)

2ds.

Step 3. For t ∈ [0, T ], A ∈ Gt, define ψ(A,t) : [0, T ]×X → R through

ψ(A,t)(s, ϕ)
.
=

{
1A(ϕ) if s ≥ t,
0 otherwise.

Then ψ(A,t) is bounded and progressively measurable with ‖ψ(A,t)‖∞ = 1.
By Step 2, there exists a finite constant C, depending only on T , K, σ, such
that for every t ∈ [0, T ],

sup
A∈Gt

∣∣∣θ(A)− θ̃(A)
∣∣∣2

= sup
A∈Gt

∣∣∣Eθ [ψ(A,t)(t, X̂)
]
−Eθ̃

[
ψ(A,t)(t, X̂)

]∣∣∣2
≤ C ·

∫ t

0
ds(θ, θ̃)

2ds.

By the definition of the total variation semi-distances, it follows that

dt(θ, θ̃)
2 ≤ C ·

∫ t

0
ds(θ, θ̃)

2ds for all t ∈ [0, T ],

hence, thanks to Gronwall’s lemma, dT (θ, θ̃) = 0. Since dT is a true metric,
we obtain θ = θ̃.

C Regularity results

Here we collect some (well known) regularity results on the exit time τ X̂

with respect to measures in Qν,K . Recall that τ X̂ is the time of first exit
from O on path space:

τ X̂(ϕ) = τ(ϕ)
.
= inf {t ≥ 0 : ϕ(t) /∈ O} , ϕ ∈ X ,

where O is a bounded open set satisfying (H5).
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Lemma C.1. Let K ≥ 0. Then Qν,K is compact in P(X ).

Proof. Recall that Qν,K is the set of all laws of processes of the form

X(t) = ξ +

∫ t

0
v(s)ds+ σW (t), t ∈ [0, T ],

whereW is an Rd-valued (Ft)-Wiener process defined on some filtered proba-
bility space (Ω,F , (Ft),P), ξ is an Rd-valued F0-measurable random variable
with distribution P ◦ξ−1 = ν, and v is an Rd-valued (Ft)-progressively mea-
surable bounded process with ‖v‖∞ ≤ K. By the boundedness of the control
processes v and the Kolmogorov-Chentsov tightness criterion [for instance,
Corollary 16.9 in Kallenberg, 2001, p. 313], we have that Qν,K is tight, hence
precompact in P(X ). By interpreting the control processes v as relaxed con-
trols, using arguments analogous to those of the second part of the proof of
Lemma A.1, one checks that Qν,K coincides with its own closure. It follows
that Qν,K is compact.

Lemma C.2. Let K > 0. Any measure θ ∈ Qν,K is equivalent to Θν .
Moreover, there exists a strictly positive constant c0 depending only on d, ν,
T , and K, such that

inf
θ∈Qν,K

Eθ

[
1

[0,τ X̂)
(T )
]
≥ c0 > 0.

Proof. Let θ ∈ Qν,K . Let (Ω,F , (Ft),P) be a filtered probability space
carrying an Rd-valued (Ft)-Wiener process W , an Rd-valued F0-measurable
random variable ξ with P ◦ξ−1 = ν, and an Rd-valued (Ft)-progressively
measurable bounded process v with ‖v‖∞ ≤ K such that the process

X(t)
.
= ξ +

∫ t

0
v(s)ds+ σW (t), t ∈ [0, T ],

has law P ◦X−1 = θ. Set

B(t)
.
= ξ + σW (t), t ∈ [0, T ].

Define a process Z on (Ω,F) by setting

Z(t)
.
= e−

∫ t
0 σ
−1v(s)·dW (s)− 1

2

∫ t
0 |σ−1v(s)|2ds, t ∈ [0, T ].

Then Z is a martingale with respect to P and (Ft), and

Q(A)
.
= EP [Z(T )1A] , A ∈ F ,
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defines a probability measure such that

dQ

dP |Ft
= Z(t) for every t ∈ [0, T ].

By using Girsanov’s theorem as in the first step of the proof of Proposi-
tion B.1 and thanks to the boundedness of v, we find that

W̃
.
= σ−1 (X(·)− ξ) = W (·) +

∫ ·
0
σ−1v(s)ds

is an (Ft)-Wiener process under Q,

Q ◦X−1 = P ◦ (ξ + σW )−1 = P ◦B−1,

and
dP

dQ |Ft
=

1

Z(t)
for every t ∈ [0, T ].

Since a d-dimensional Brownian motion stays in an open ball for any
fixed finite time with strictly positive probability, there exists a constant
c0 > 0 depending only on d, ν, and T , such that

inf
t∈[0,T ]

EP

[
1[0,τB)(t)

]
= EP

[
1[0,τB)(T )

]
≥ c0 > 0.

Using Hölder’s inequality, we find that

Eθ

[
1

[0,τ X̂)
(T )
]

= EP

[
1[0,τX)(T )

]
= EQ

[
1

Z(T )
· 1[0,τX)(T )

]
≥ EQ

[√
1[0,τX)(T )

]2
EQ [Z(T )]−1

= EP

[
1[0,τB)(T )

]2
EQ [Z(T )]−1 ≥ c2

0

EQ [Z(T )]
.

Now,

Z(T ) = e−
∫ T
0 σ−1v(s)·dW̃ (s)− 1

2

∫ T
0 |σ−1v(s)|2ds︸ ︷︷ ︸

corresponds to a Q-stochastic exponential

·e
∫ T
0 |σ−1v(s)|2ds,

hence
1

EQ [Z(T )]
≥ e−T ·‖σ−1‖2·‖v‖2∞ .

Lemma C.3. Let K > 0, and let θ ∈ Qν,K . Then the following hold:

(a) τ X̂ <∞ θ-almost surely;
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(b) the mapping X 3 ϕ 7→ τ X̂(ϕ) ∈ [0,∞] is continuous θ-almost surely;

(c) θ
(
τ X̂ = t

)
= 0 for every t ≥ 0;

(d) the mapping X 3 ϕ 7→ 1
[0,τ X̂(ϕ))

(t) ∈ R is continuous θ-almost surely
for every t ≥ 0;

Proof. Since θ is equivalent to Θν by Lemma C.2, it is enough to check the
above properties for θ = Θν .

Property (a) is a consequence of the law of the iterated logarithm (as time
tends to infinity), the non-degeneracy of σ, and the fact that O is bounded.
Property (b) follows again from the law of the iterated logarithm, now as
time goes to zero, the non-degeneracy of σ and the fact that O is open with
smooth boundary; cf., for instance, Kushner and Dupuis [2001, pp. 260-261].

Property (d) is a consequence of properties (b) and (c). As to (c), by
continuity of trajectories,

Θν

(
τ X̂ = t

)
≤ Θν

(
X̂(t) ∈ ∂O

)
for every t ≥ 0.

The boundary ∂O has Lebesgue measure zero as it is bounded and of class
C2 by hypothesis. By the non-degeneracy of σ, X̂(t) is absolutely continuous
w.r.t. Lebesgue measure, hence Θν(X̂(t) ∈ ∂O) = 0. It follows that Θν(τ X̂ =

t) = 0.

D Assumptions (C) and (L)

Throughout this section, we assume that b̂ is defined by (5.4), that is, for
(t, ϕ, θ) ∈ [0, T ]×X × P(X ),

b̂(t, ϕ, θ) =

u(t, ϕ) + b̄
(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)∫

1[0,τ(ϕ̃))(t)θ(dϕ̃)

)
if θ(τ > t) > 0,

u(t, ϕ) + b̄ (t, ϕ(t), w(0)) if θ(τ > t) = 0,

where w is bounded continuous according to hypotheses (H1) and (H2), b̄
is bounded measurable and Lipschitz in its third variable according to (H1)
and (H3), b̄(t, ·, ·) is continuous uniformly in t ∈ [0, T ] thanks to (H2), and
u is a feedback strategy such that, for Lebesgue-almost every t ∈ [0, T ],

Θν ({ϕ ∈ X : u(t, ·) is discontinuous at ϕ}) = 0.

We are going to show that b̂ thus defined satisfies conditions (C) and (L)
above.
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To establish condition (C), choose K ≥ ‖b̂‖∞. We have to show that for
Lebesgue almost every t ∈ [0, T ], every θ ∈ Qν,K ,

Θν

(
ϕ ∈ X : ∃ (ϕn, θn) ⊂ X × P(X ) s.th. b̂(t, ϕn, θn) 6→ b̂(t, ϕ, θ)

while (ϕn, θn)→ (ϕ, θ)
)

= 0.
(D.1)

Let t ∈ [0, T ] be such that u(t, ·) is Θν-almost surely continuous; this is
true for Lebesgue almost every t ∈ [0, T ] by the continuity assumption on
u. Let θ ∈ Qν,K . Using Part (d) of Lemma C.3, we find At,θ ∈ B(X )

such that Θν(At,θ) = 1 and, for every ϕ ∈ At,θ, the mappings u(t, ·) and
1

[0,τ X̂(·))(t) are continuous at ϕ. In view of Part (b) of Lemma C.3, one can

choose At,θ such that also the mapping τ X̂(·) is continuous on At,θ. Since
Θν and θ are equivalent, we have θ(At,θ) = 1. Now, let ϕ ∈ At,θ, and let
(ϕn, θn) ⊂ X × P(X ) be such that (ϕn, θn) → (ϕ, θ) as n → ∞. Then, by
the mapping theorem and since 1

[0,τ X̂(·))(t) is θ-almost surely continuous,∫
X
1[0,τ(ϕ̃))(t)θn(dϕ̃)

n→∞−→
∫
X
1[0,τ(ϕ̃))(t)θ(dϕ̃).

Since w is bounded and continuous, we also have∫
X
w(ϕ̃(t)) · 1[0,τ(ϕ̃))(t)θn(dϕ̃)

n→∞−→
∫
X
w(ϕ̃(t)) · 1[0,τ(ϕ̃))(t)θ(dϕ̃).

In view of Lemma C.2,∫
X
1[0,τ(ϕ̃))(t)θ(dϕ̃) = Eθ

[
1

[0,τ X̂)
(t)
]

= θ (τ > t) > 0.

Since b̄(t, ·, ·) is bounded and continuous, it follows that

b̂(t, ϕn, θn) = u(t, ϕn) + b̄

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θn(dϕ̃)∫

1[0,τ(ϕ̃))(t)θn(dϕ̃)

)
n→∞−→ u(t, ϕ) + b̄

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)∫

1[0,τ(ϕ̃))(t)θ(dϕ̃)

)
= b̂(t, ϕ, θ),

and we conclude that (D.1) holds.
As to condition (L) from Section B, we have to show that, given K ≥

‖b̂‖∞, there exists L > 0 (possibly depending on d, ν, T , and K) such that
for all t ∈ [0, T ], all ϕ ∈ X ,

(D.2)
∣∣∣b̂(t, ϕ, θ)− b̂(t, ϕ, θ̃)∣∣∣ ≤ L · dt(θ, θ̃) whenever θ, θ̃ ∈ Qν,K .
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Thanks to Lemma C.2,

inf
t∈[0,T ]

inf
θ∈Qν,K

θ (τ > t) = inf
θ∈Qν,K

θ (τ > T ) ≥ c0 > 0

for some strictly positive constant c0 depending only on d, ν, T , and K.
Denote by L̄ the Lipschitz constant of b̄ with respect to its third variable
according to (H3). Let θ, θ̃ ∈ Qν,K . Then for all ϕ ∈ X ,∣∣∣b̂(t, ϕ, θ)− b̂(t, ϕ, θ̃)∣∣∣

=

∣∣∣∣b̄(t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)

θ(τ > t)

)
−b̄

(
t, ϕ(t),

∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ̃(dϕ̃)

θ̃(τ > t)

)∣∣∣∣∣
≤ L̄

c0

∣∣∣∣∫ w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)−
∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ̃(dϕ̃)

∣∣∣∣
+
L̄

c2
0

· ‖w‖∞ ·
∣∣∣θ(τ > t)− θ̃(τ > t)

∣∣∣ .
By definition and since {τ > t} ∈ Gt,∣∣∣θ(τ > t)− θ̃(τ > t)

∣∣∣ ≤ dt(θ, θ̃).

The measures θ, θ̃ are both equivalent to Θν , and their restrictions to Gt are
equivalent to the restriction of Θν to Gt. Denoting by Zt and Z̃t, respectively,
the densities with respect to the restriction of Θν , we have

dt(θ, θ̃) =
1

2

∫
X

∣∣∣Zt(ϕ̃)− Z̃t(ϕ̃)
∣∣∣Θν(dϕ̃).

It follows that∣∣∣∣∫ w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ(dϕ̃)−
∫
w(ϕ̃(t))1[0,τ(ϕ̃))(t)θ̃(dϕ̃)

∣∣∣∣
≤ 2‖w‖∞ · dt(θ, θ̃).

Consequently, for all t ∈ [0, T ], all ϕ ∈ X , all θ, θ̃ ∈ Qν,K ,

∣∣∣b̂(t, ϕ, θ)− b̂(t, ϕ, θ̃)∣∣∣ ≤ L̄

c2
0

· ‖w‖∞ (2c0 + 1) · dt(θ, θ̃),

which implies (D.2).
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E Relaxed controls

In the proofs of Section 5, Appendix A and Appendix C, we need the concept
of relaxed controls. For a Polish space S, let RS denote the space of all
deterministic S-valued relaxed controls over the time interval [0, T ], that is,

RS
.
= {r : r positive measure on B(S × [0, T ]) : r(S × [0, t]) = t, t ∈ [0, T ]} .

If r ∈ RS , then the time derivative of r exists almost everywhere as a
measurable mapping ṙt : [0, T ] → P(S) such that r(dy, dt) = ṙt(dy)dt. The
topology of weak convergence of measures turns RS into a Polish space.
Notice that RS is compact if S is compact. Any S-valued (Ft)-adapted
process α defined on some filtered probability space (Ω,F ,P) induces an
RS-valued random variable ρ, the corresponding stochastic relaxed control,
according to

ρω
(
B × I

) .
=

∫
I
δα(t,ω)(B)dt, B ∈ B(Γ), I ∈ B([0, T ]), ω ∈ Ω.

The random measure ρ is (Ft)-adapted in the sense that its restriction to
S× [0, t] is Ft-measurable for every t ∈ [0, T ] or, equivalently, that (a version
of) the time derivative process ρ̇· is (Ft)-adapted. For details on relaxed
controls, see, for instance, El Karoui et al. [1987] or Kushner [1990].
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