
PROBABILISTIC APPROACH TO FINITE STATE MEAN FIELD

GAMES

ALEKOS CECCHIN AND MARKUS FISCHER

Abstract. We study mean field games and corresponding N -player games in
continuous time over a finite time horizon where the position of each agent be-

longs to a finite state space. As opposed to previous works on finite state mean

field games, we use a probabilistic representation of the system dynamics in
terms of stochastic differential equations driven by Poisson random measures.

Under mild assumptions, we prove existence of solutions to the mean field

game in relaxed open-loop as well as relaxed feedback controls. Relying on the
probabilistic representation and a coupling argument, we show that mean field

game solutions provide symmetric εN -Nash equilibria for the N -player game,

both in open-loop and in feedback strategies (not relaxed), with εN ≤ constant√
N

.

Under stronger assumptions, we also find solutions of the mean field game in
ordinary feedback controls and prove uniqueness either in case of a small time

horizon or under monotonicity.

1. Introduction

Mean field games, as independently introduced by Lasry and Lions (2007) and
by Huang et al. (2006), represent limit models for symmetric non-zero-sum non-
cooperative N -player dynamic games with mean field interactions when the num-
ber N of players tends to infinity. For an introduction to mean field games see
Cardaliaguet (2013), Carmona et al. (2013) and Bensoussan et al. (2013); the lat-
ter two works also deal with optimal control problems of McKean-Vlasov type.
There is by now a wealth of works dealing with different classes of mean field
games; for a partial overview see Gomes et al. (2015) and the references therein.
Here, we restrict attention to a class of finite time horizon problems with continu-
ous time dynamics and fully symmetric cost structure, where the position of each
agent belongs to a finite state space.

The relation between the limit model (the mean field game) and the correspond-
ing prelimit models (the N -player games) can be understood in two different direc-
tions: approximation and convergence. By approximation we mean that a solution
of the mean field game allows to construct approximate Nash equilibria for the N -
player games, where the approximation error is arbitrarily small for N big enough.
By convergence we mean that Nash equilibria for the N -player games may be ex-
pected to converge to a solution of the mean field game as N tends to infinity.
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Results in the approximation direction are more common and usually provide
the justification for the definition of the mean field game. When the underlying
dynamics is of Itô type without jumps, such results were established by Huang et al.
(2006) and, more recently, by for instance Carmona and Delarue (2013), Carmona
and Lacker (2015) and Bensoussan et al. (2016). When the dynamics is driven
by generators of Lévy type, but with the control appearing only in the drift, an
approximation result is found in Kolokoltsov et al. (2011).

Rigorous results on convergence to the mean field game limit in the non station-
ary case (finite time horizon) are even more recent. While the limits of N -player
Nash equilibria in stochastic open-loop strategies can be completely characterized
(see Lacker (2016) and Fischer (2017) for general systems of Itô type), the conver-
gence problem is more difficult for Nash equilibria in Markov feedback strategies
with global state information. A breakthrough was achieved by Cardaliaguet et al.
(2015). Their proof of convergence relies on having a regular solution to the so-called
master equation. This is a kind of transport equation on the space of probability
measures associated with the mean field game; its solution yields a solution to the
mean field game for any initial time and initial distribution. If the mean field game
is such that its master equation possesses a unique regular solution, then that so-
lution can be used to prove convergence of the costs associated with the N -player
Nash equilibria, as well as a weak form of convergence of the corresponding feedback
strategies. An important ingredient in the proof is a coupling argument similar to
the one employed in deriving the propagation of chaos property for uncontrolled
mean field systems (cf. Sznitman, 1991). This kind of coupling argument, in which
independent copies of the limit process are compared to their prelimit counterparts,
is useful also for obtaining approximation results; cf. for instance the above cited
works by Huang et al. (2006) and Carmona and Delarue (2013).

In this paper, we focus on games where the position of each agent belongs to a
given finite state space Σ := {1, . . . , d}. Such games have been studied by Gomes
et al. (2013), and also by Basna et al. (2014). Their approach to the problem is
based on PDE / ODE methods and the infinitesimal generator (Q matrix) of the
system dynamics; we will return to this shortly.

Here, we adopt a different approach based on a probabilistic representation. We
write the dynamics of the N -player game as a system of stochastic differential
equations driven by independent stationary Poisson random measures with the
same intensity measure ν, weakly coupled through the empirical measure of the
system states:
(1.1)

XN
i (t) = ξNi +

∫ t

0

∫
U

f(s,XN
i (s−), u, αNi (s), µN (s−))NN

i (ds, du), i = 1, . . . , N,

where αNi is the control of player i (here in open loop form) with values in a compact
set A and µN (s−) is the empirical measure of the system immediately before time s.
The dynamics for the one representative player of the mean field limit is analogously
written as

(1.2) X(t) = ξ +

∫ t

0

∫
U

f(s,X(s−), u, α(s),m(s))N (ds, du),

where α is the control and m : [0, T ] → P(Σ) a deterministic flow of probability
measures, which takes the place of µN .

Representations (1.1) and (1.2) of the system dynamics allow to obtain approxi-
mation results with error bounds of the form constant√

N
for the approximate N -player

Nash equilibria via the aforementioned coupling argument. This is what we will do
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here. The probabilistic representation is useful also for the problem of convergence
to the mean field limit; see below.

The function f appearing in (1.1) and (1.2) can be chosen so that the correspond-
ing state processes XN

i , X have prescribed transition rates when the control and
measure variable are held constant. Following an idea of Graham (1992), we choose
U ⊂ Rd, let the intensity measure ν be given by d copies of Lebesgue measure on
the line (cf. (2.29) below), and set

(1.3) f(t, x, u, a, p) :=
∑
y∈Σ

(y − x)1]0,λ(t,x,y,a,p)[(uy).

With this f we have, as h→ 0,

P [X(t+ h) = y|X(t) = x] = λ(t, x, y, α,m) · h+ o(h)

if y 6= x, for any constant control α and probability measurem. Thus, λ(t, x, y, α,m)
is the transition rate from state x to state y.

We will consider several types of controls: open-loop, feedback, relaxed open-
loop and relaxed feedback. Each player wants to optimize his cost functional over
a finite time horizon T . The coefficients representing running and terminal costs
may depend on the measure variable and are the same for all players.

We first study the mean field game and show that it admits a solution in relaxed
controls. The solution of the mean field game can be seen as a fixed point. For a
given flow of measures m(·), find a strategy αm that is optimal and let Xαm,m be
the corresponding solution of Eq. (1.2). Now find m such that Law(X(t)) = m(t)
for all t ∈ [0, T ]. Under mild hypotheses, we prove existence of solutions in relaxed
open-loop controls using the Ky Fan fixed point theorem for point-to-set maps.
This is analogous to the existence result obtained by Lacker (2015) for general
dynamics driven by Wiener processes. As there, we will characterize solutions to
Eq. (1.2) through the associated controlled martingale problem. In order to write
the dynamics when using a relaxed control, we need to work with relaxed Poisson
measures in the sense of Kushner and Dupuis (2001); also see Appendix A below.
The same assumptions that give existence in relaxed open-loop controls also yield
existence of solutions in relaxed feedback controls. Relaxed controls are used only
for the limit model.

Then we show that those relaxed mean field game solutions provide εN -Nash
equilibria for the N -player game both in ordinary open-loop and ordinary feedback
strategies. To this end, we approximate a limiting optimal relaxed control by an
ordinary one, using a version of the chattering lemma that also works for feedback
controls, at least in our finite setting. The approximating control is then shown
to provide a symmetric εN -Nash equilibrium, with εN ≤ constant√

N
, decentralized

when considering feedback strategies. As explained above, our proof relies on the
probabilistic representation of the system and a coupling argument.

We also study the problem of finding solutions of the mean field game in ordinary
feedback controls. There, we need stronger assumptions in order to guarantee the
uniqueness of an optimal feedback control for any fixed m (existence always holds).
Moreover, we prove that the feedback mean field game solution is unique either if
the time horizon T is small enough or if the cost coefficients satisfy the monotonicity
conditions of Lasry and Lions (cf. below).

Roughly speaking, we need to assume only the continuity of the rates λ in order to
have relaxed or relaxed feedback mean field game solutions and to obtain εN -Nash
equilibria for the N -player game, both open-loop and feedback. Under stronger
assumptions, namely affine dependence of λ on the control and strict convexity of
the cost, we have uniqueness of the optimal feedback control for any m through
the uniqueness of the minimizer of the associated Hamiltonian. Under assumptions
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similar to these latter, Basna et al. (2014) study the problem in the framework of
non-linear Markov processes and find 1

N -Nash equilibria for the N -player game. In
Gomes et al. (2013), the transition rates coincide with the control, in analogy with
the original works of Lasry and Lions, and 1√

N
-Nash equilibria are obtained. Both

these works consider ordinary feedback controls only, hence feedback solutions of
the mean field game.

The work by Gomes et al. (2013) also contains a result in the convergence direc-
tion. More precisely, convergence of N -player Nash equilibria in feedback controls
to the mean field limit is established, but only if the time horizon T is sufficiently
small. Moreover, the authors prove a result about the uniqueness of feedback mean
field game solutions for arbitrary time horizon in case the Lasry-Lions monotonicity
conditions hold.

Lastly, let us mention several recent preprints. In Doncel et al. (2016), continuous
time mean field games with finite state space and finite action space are studied.
The authors prove existence of solutions to the mean field game, corresponding to
what we call solutions in relaxed feedback controls. Their prelimit models (the
N -player games) are different and difficult to compare to ours since they are set
in discrete time. In Carmona and Wang (2016), finite state mean field games with
major and minor players are considered. The authors provide a characterization of
the mean field game in terms of viscosity solutions to a coupled system of integro-
differential equations and establish existence of solutions. The connection with
the underlying N+1-player game is made, as usual, through the construction of
approximate Nash equilibria. As opposed to the fully symmetric case considered
here, in the presence of a major player, solutions to the limit system in open-loop
and in feedback strategies are in general not equivalent. The third work we mention
is Benazzoli et al. (2017). There, the authors study a class of mean field games with
jump diffusion dynamics. An existence result for the mean field game in the spirit
of Lacker (2015) is given. The authors also obtain a convergence result in a special
situation where Nash equilibria for the N -player games can be found explicitly. In
their model, the jump heights are directly (and linearly) controlled, not the jump
intensities.

The last two preprints, which appeared nearly simultaneously, after submission
of the present paper, concern the convergence problem for finite state mean field
games. In Cecchin and Pelino (2017), a joint work of the first author, the conver-
gence of feedback Nash equilibria to solutions of the mean field game is studied
following the ideas of Cardaliaguet et al. (2015) sketched above. The Master Equa-
tion, which in this case is a first order PDE stated in P(Σ), is employed to obtain
convergence of the feedback Nash equilibria, the value functions and a propaga-
tion of chaos property for the N -player optimal trajectories. Provided that the
Master Equation possesses a (unique) classical solution, convergence is established
through a coupling argument, which relies on the probabilistic representation of the
dynamics introduced here. Existence of a unique classical solution to the Master
Equation is verified under the Lasry-Lions monotonicity conditions. In addition,
a central limit theorem and a large deviation principle for the N -player empirical
measure processes are proved. In the independent work by Bayraktar and Cohen
(2017), the authors again use the Master Equation in the spirit of Cardaliaguet
et al. (2015) to find the same convergence result as in Cecchin and Pelino (2017),
but using a slightly different probabilistic representation of the dynamics. They
also obtain a central limit theorem for the fluctuations of the N -player empirical
measure processes.

Structure of the paper. In Section 2, we introduce the notation and various
assumptions to be used in the sequel. Then we describe the N -player games as
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well as the corresponding mean field game, giving the relevant definitions of Nash
equilibrium and solution of the mean field game. Relaxed controls (open-loop and
feedback) are introduced there as well, while a proper definition of relaxed Poisson
measures is given in Appendix A. All main assumptions are verified to hold for the
natural shape of f in (1.3).

In Section 3, we establish existence of solutions to the mean field game in relaxed
open-loop as well as relaxed feedback controls.

In Section 4, we find, under additional assumptions, mean field game solutions
in non-relaxed feedback controls by proving the uniqueness of the optimal control
for any flow of measures. Moreover, uniqueness of solutions is proved either for
small T or under the Lasry-Lions monotonicity conditions.

In Section 5, we first establish a version of the chattering lemma that works
also for feedback controls. Then we turn to the construction of approximate Nash
equilibria coming from a solution of the mean field game, and derive the error bound
mentioned above for feedback as well as open-loop strategies.

Section 6 contains a summary of the main results.

2. Description of the model

2.1. Notation and assumptions. Throughout the paper, we fix Σ = {1, . . . , d} to
be the finite state space of any player. Let T be the finite time horizon and (A, dist)
be a compact metric space, the space of control values. Let U be a compact set in
Rd and let ν be a Radon measure on U . Let

S := P(Σ) = {p ∈ Rd : pj ≥ 0, j = 1, . . . , d; p1 + . . .+ pd = 1}

be the space of probability measures on Σ, which is the probability simplex in
Rd. Let f : [0, T ] × Σ × U × A × S −→ {−d, . . . , d} be a measurable function
(the one appearing in the dynamics (1.2) and (1.1)) such that f(t, x, u, a, p) ∈
{1−x, . . . , d−x}. Let c : [0, T ]×Σ×A×S −→ R, ψ : Σ×S −→ R be measurable
functions, representing the running and the terminal costs, respectively, which will
be the same for all players.

We will denote by N any stationary Poisson random measure on [0, T ] × U
with intensity measure ν on U , and by NN = (NN

1 , . . . ,NN
N ) a vector of N i.i.d.

stationary Poisson random measures, each with the same law asN . The initial point
of the N -player game will be represented by N i.i.d. random variables ξ1, . . . , ξN
with values in Σ and common distribution m0 ∈ S, which will be fixed throughout.
Similarly, the initial point of the limiting system will be represented by a random
variable ξ with law m0.

The state of player i at time t is denoted by XN
i (t). The trajectories of any

process XN
i are assumed to be in D([0, T ],Σ), which denotes the space of càdlàg

functions from [0, T ] to Σ, endowed with the Skorokhod J1-topology. Let µN (t) :=
1
N

∑N
i=1 δXNi (t) be the empirical measure of the system of N players. In the limiting

dynamics, the empirical measure is replaced by a deterministic flow of probability
measures m : [0, T ] −→ S.

The space of measures S can be equipped with any norm in Rd, as they are all
equivalent, so we choose the Euclidean norm |p|. We observe that S is a compact
and convex subset of Rd. Denote by C([0, T ], S) the space of continuous functions
from [0, T ] to S, endowed with the uniform norm. The space of flows of proba-
bility measures on S will be denoted by L ⊂ C([0, T ], S), which will be shown in
Subsection 3.1 to be

L := {m : [0, T ] −→ S : |m(t)−m(s)| ≤ K|t− s|, m(0) = m0}

where the constant is given by K := 2ν(U)
√
d.
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We will study several types of controls. Pathwise existence and uniqueness of
solutions to the controlled dynamics (1.2), with trajectories that remain in Σ, is
guaranteed by the following Lipschitz condition:

(2.1)

∫
U

|f(s, x, u, a, p)− f(s, x, u, a, p)|ν(du) ≤ K1|x− y|

for every x, y ∈ Σ, s ∈ [0, T ], a ∈ A and p ∈ S, where K1 is a constant. The above
condition is always satisfied in our model since |x− y| ≥ 1 for each x 6= y ∈ Σ and∫
U
|f(s, x, u, a, p)| ≤ ν(U)d; thus we may take K1 = 2ν(U)d.
Let us summarize here the various sets of assumptions we will make use of:

(A) The function f̃ : [0, T ] × Σ × A × S −→ L1(ν) defined by f̃(t, x, a, p) :=
f(t, x, ·, a, p) ∈ L1(ν) is continuous in t, a, p (uniformly, and is bounded),
that is, there exists a function wf such that limh→0 wf (h) = 0 and

(2.2)

∫
U

|f(t, x, u, a, p)− f(s, x, u, b, q)|ν(du) ≤ wf (|t− s|+ dist(a, b) + |p− q|)

for every t, s ∈ [0, T ], x ∈ Σ, a, b ∈ A, p, q ∈ S;

(A’) Assumption (A) holds and f̃ is Lipschitz in p ∈ S:

(2.3)

∫
U

|f(t, x, u, a, p)− f(t, y, u, a, q)|ν(du) ≤ K1(|x− y|+ |p− q|);

(A”) Assumption (A’) holds andf̃ is Lipschitz also in a ∈ A:

(2.4)

∫
U

|f(t, x, u, a, p)− f(t, y, u, b, q)|ν(du) ≤ K1(|x− y|+ |p− q|+ dist(a, b));

(B) The running cost c is continuous (and bounded) in t, x, a, p and the terminal
cost is continuous (and bounded) in x, p;

(B’) Assumption (B) holds and the costs c and ψ are Lipschitz in p:

(2.5) |c(t, x, a, p)− c(t, y, a, q)|+ |ψ(x, p)− ψ(y, q)| ≤ K2(|x− y|+ |p− q|);

(B”) Assumption (B’) holds and the running cost c is Lipschitz also in a:

(2.6) |c(t, x, a, p)−c(t, y, b, q)|+|ψ(x, p)−ψ(y, q)| ≤ K2[|x−y|+dist(a, b)+|p−q|].

The above assumptions will be used in Sections 3 and 5 to find solutions of the
mean field game and then approximate Nash equilibria for the N -player game, both
in open-loop and in feedback form.

Our last assumption will be more implicit. We identify the set of functions
g : Σ −→ R with Rd and observe that any g is bounded and Lipschitz. For any
x ∈ Σ, 0 ≤ t ≤ T , a ∈ A, p ∈ S and g ∈ Rd define the generator

(2.7) Λa,pt g(x) :=

∫
U

[g(x+ f(t, x, u, a, p))− g(x)]ν(du)

and the pre-Hamiltonian

(2.8) H(t, x, a, p, g) := Λa,pt g(x) + c(t, x, a, p).

In order to obtain existence and uniqueness of feedback mean field game solutions,
in Section 4, we will make the additional hypothesis:

(C) For any t, x, p and g there exists a unique a∗ = a∗(t, x, p, g) minimizer of
H(t, x, a, p, g) in A;

We observe that for any fixed p and g the function a∗(t, x) is measurable, thanks to
Theorem D.5 in Hernández-Lerma and Lasserre (1996). We remark also that the
limiting dynamics (1.2) always admits a pathwise unique solution thanks to (2.1).
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2.2. N-player game. In the prelimit, we consider a system of N symmetric players
governed by the dynamics
(2.9)

XN
i (t) = ξNi +

∫ t

0

∫
U

f(s,XN
i (s−), u, αNi (s), µN (s−))NN

i (ds, du) i = 1, . . . , N,

where XN = (XN
1 , . . . , X

N
N ) and µN (t) := 1

N

∑N
i=1 δXNi (t). Here, the controls αNi

are in open-loop form. Let us specify the controls to be used in the N -player game.

Definition 1. Define the set of strategy vectors as

AN :=
{

((Ω,F , P ;F), αN , ξN ,NN )
}

where (Ω,F , P ;F) is a filtered probability space, ξN := (ξN1 , . . . , ξ
N
N ) is a vector of

N i.i.d. F0-measurable random variables with law m0, the initial points, NN =
(NN

1 , . . . ,NN
N ) is a vector of N i.i.d. stationary Poisson random measures with

respect to the filtration F = (Ft)t∈[0,T ] with intensity measure ν on U , FT = F ,

and αN = (αN1 , . . . , α
N
N ) is a vector of A-valued F-predictable processes αNi . We

will often write αN ∈ AN to indicate the process αN .
Define the set of feedback strategy vectors as

AN :=
{

((Ω,F , P ;F), γN , ξN ,NN )
}

where γN = (γN1 , . . . , γ
N
N ) : [0, T ] × ΣN → AN is measurable and the filtered prob-

ability space and the ξN and NN are as above. We will often write γN ∈ AN to
indicate the function γN .

We observe that the above definition of feedback strategy vector is not standard,
as it is given together with the probability space and the noise. We give such a
definition because in this way any strategy gives a unique pathwise solution to dy-
namics (2.9). Indeed, provided that f̃ is Lipschitz in p, we have pathwise existence
and uniqueness of solutions to the system (2.9), for any αN = (αN1 , . . . , α

N
N ) ∈ AN .

Given a feedback strategy vector γN = (γN1 , . . . , γ
N
N ) ∈ AN , equation (2.9) is

written as

XN
i (t) = ξNi +

∫ t

0

∫
U

f(s,XN
i (s−), u, γNi (s,XN (s−)), µN (s−))NN

i (ds, du)

for each i = 1, . . . , N . The same assumption as above provides existence and
uniqueness of solutions XN

i to this equation, so we can define the related open-loop
control αN [γN ] by

αN [γN ]i(s) = γNi (s,XN (s−)).

In view of Definition 1, the open-loop control αN [γN ] has to be given together with
a filtered probability space, a vector of initial conditions and a vector of Poisson
random measures, which we impose to be the same as those given with the feedback
control γN .

Next, we define the object of the minimization. Let αN = (αN1 , . . . , α
N
N ) ∈ AN

be a strategy vector and XN = (XN
i , . . . , X

N
N ) be the solution to dynamics (2.9).

For i = 1, . . . , N set

JNi (αN ) := E

[∫ T

0

c(t,XN
i (t), αNi (t), µN (t))dt+ Ψ(XN

i (T ), µN (T ))

]
.

Define also JNi (γN ) := JNi (αN [γN ]) for any γN ∈ AN .
We look for approximate Nash equilibria for the N -player game. So let us define

what are the perturbed strategy vectors we consider.
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Notation 1. Let β be an A-valued F-predictable process. For a strategy vector
αN = (αN1 , . . . , α

N
N ) in AN denote by [αN,−i;β] the strategy vector such that

[αN,−i;β]j =

{
αNj j 6= i

β j = i.

For a feedback strategy vector γN = (γN1 , . . . , γ
N
N ) ∈ AN , let X̃N be the solution to

X̃N
i (t) = ξNi +

∫ t
0

∫
U
f(s, X̃N

i (s−), u, β(s), µ̃N (s−))NN
i (ds, du)

X̃N
j (t) = ξNj +

∫ t
0

∫
U
f(s, X̃N

j (s−), u, γNj (s, X̃N (s−)), µ̃N (s−))NN
j (ds, du)

if j 6= i.

Denote then by [γN,−i;β] ∈ AN the strategy vector such that

[γN,−i;β]j(t) =

{
γNj (t, X̃N

j (t−)) j 6= i

β(t) j = i.

Definition 2. Let ε > 0. A strategy vector αN is said to be an ε-Nash equilibrium
if for each i = 1, . . . , N

JNi (αN ) ≤ J iN ([αN,−i;β]) + ε

for every β such that [αN,−i;β] is a strategy vector.
A vector γN ∈ AN is called a feedback ε-Nash equilibrium if

JNi (γN ) ≤ J iN ([γN,−i;β]) + ε

for every β such that [γN,−i;β] is a strategy vector.

We remark that the above definition of feedback ε-Nash equilibrium is not stan-
dard. Indeed, the perturbed strategy vector [γN,−i;β] is usually required to be in
feedback form. In our definition, a slightly more restrictive (or stronger) condition
is used since the perturbing strategy β is allowed to be in open-loop form. As a
consequence, the approximation result of Section 5 will be slightly stronger than
with the standard definition.

2.3. Mean field game. The mean field limiting system consists of a single player
whose state evolves according to the dynamics

(2.10) X(t) = ξ +

∫ t

0

∫
U

f(s,X(s−), u, α(s),m(s))N (ds, du), t ∈ [0, T ].

Here the empirical measure appearing in (2.9) is replaced by a deterministic flow
of probability measures m : [0, T ] −→ S.

Definition 3. The set of open-loop controls is the set

A := {((Ω,F , P ;F), α, ξ,N )}
where (Ω,F , P ;F) is a filtered probability space, ξ is an F0-measurable random vari-
able with law m0, the initial condition, N is a stationary Poisson random measure
with respect to the filtration F = (Ft)t∈[0,T ] with intensity measure ν on U , FT = F ,
and α is an A-valued F-predictable process. We will often write α ∈ A to indicate
the process α.

Define the set of feedback controls as

A := {((Ω,F , P ;F), γ, ξ,N )}
where γ : [0, T ]×Σ→ A is measurable and the filtered probability space, the initial
condition and the Poisson random measure N are as above. We will often write
γ ∈ A to indicate the function γ.
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We remark that the feedback control is given with the probability space and the
noise, in analogy with Definition 1 for the prelimit system.

Thanks to the Lipschitz condition (2.1), the limiting dynamics is well defined.
More precisely, given any open-loop control ((Ω,F , P ;F), α, ξ,N ) ∈ A and flow of
measures m ∈ L, there exists a pathwise unique solution X of Eq. (2.10), which we
will denote by Xα,m. Similarly, given any feedback control ((Ω,F , P ;F), γ, ξ,N ) ∈
A and flow of measures m ∈ L, there exists a pathwise unique process X = Xγ,m

solving

(2.11) X(t) = ξ +

∫ t

0

∫
U

f(s,X(s−), u, γ(s,X(s−)),m(s))N (ds, du), t ∈ [0, T ].

The corresponding open-loop control is then defined as

(2.12) αγ(t) := γ(t,Xγ,m(t−)).

In view of Definition 3, the open-loop control αγ has to be given together with
a filtered probability space, an initial condition and a Poisson random measure,
which we impose to be the same as those given with the feedback control γ.

We define the object of the minimization for the mean field game. For any α ∈ A
and m ∈ L set

J(α,m) := E

[∫ T

0

c(s,Xα,m(s), α(s),m(s))ds+ ψ(Xα,m(T ),m(T ))

]
.

Define also J(γ,m) := J(αγ ,m) for any γ ∈ A.
The notion of solution for the limiting mean field game, which will provide

approximate Nash equilibria for the N -player game, is the following.

Definition 4. An open-loop solution of the mean field game (2.10) is a triple

(((Ω,F , P ;F), α, ξ,N ) ,m,X)

such that

(1) ((Ω,F , P ;F), α, ξ,N ) ∈ A, m ∈ L, (X(t))t∈[0,T ] is adapted to the filtration
F and X = Xα,m;

(2) Optimality: J(α,m) ≤ J(β,m) for every β ∈ A;
(3) Mean Field Condition: Law(X(t)) = m(t) for every t ∈ [0, T ].

We say that (((Ω,F , P ;F), γ, ξ,N ) ,m,X) is a feedback solution of the mean
field game if γ ∈ A and (((Ω,F , P ;F), αγ , ξ,N ) ,m,X) is an open-loop solution of
the mean field game, where αγ is defined in (2.12).

In our writing, we will often drop the filtered probability space and the Poisson
random measure from the notation.

In condition (3) of the above definition, Law(X(t)) := P ◦X(t)−1 as usual. Let us
denote by Flow(X) : [0, T ] −→ S the flow of the process X, that is, Flow(X).t :=
Law(X(t)). Then the mean field condition can be written as Flow(X) = m.

2.4. Relaxed controls. The space A is not itself compact. In order to always
have convergence along subsequences, we need to enlarge the space of controls,
considering relaxed controls and related relaxed Poisson measures. They are used
only for the limiting system.

Definition 5. A deterministic relaxed control is a measure ρ on the Borel sets
B([0, T ]×A) such that

(2.13) ρ([0, t[×A) = ρ([0, t]×A) = t ∀t ∈ [0, T ].

The space of deterministic relaxed controls will be denoted by D.
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Given ρ ∈ D, the time derivative exists for Lebesgue-almost every t ∈ (0, T ]; it
is the probability measure ρt on A given by

(2.14) ρt(E) := lim
δ→0

ρ([t− δ, t]× E)

δ
, E ∈ B(A).

As a consequence, ρ can be factorized according to

(2.15) ρ(dt, da) = ρt(da)dt.

The space D is endowed with the topology of weak convergence of measures, i.e.
ρn → ρ if and only if

(2.16)

∫ T

0

∫
A

ϕ(s, a)ρn(ds, da) −→
∫ T

0

∫
A

ϕ(s, a)ρ(ds, da)

for every continuous ϕ on [0, T ] × A. Moreover there exists a metric which makes
D a compact metric space (for instance, Kushner and Dupuis, 2001).

Definition 6. The space of (stochastic) relaxed controls is

R = {((Ω,F , P ;F), ρ, ξ,N )}
where (Ω,F , P ;F) is a filtered probability space, ρ is a D-valued random variable
such that ρ([0, ·] × E) is F-adapted for every E ∈ B(A), and N is a stationary
Poisson random measure with respect to the filtration F with intensity measure ν
on U . We will often write ρ ∈ R to denote the process ρ.

The space of relaxed feedback controls is the set

Â := {((Ω,F , P ;F), γ̂, ξ,N )}
where γ̂ : [0, T ] × Σ −→ P(A) is measurable, P(A) is endowed with the topology
of weak convergence, and the filtered probability space, the initial condition and the

Poisson random measure are as above. We will often write γ̂ ∈ Â to denote the
process γ̂.

The relaxed feedback control is given with the probability space and the noise,
in analogy with Definition 3. Because of (2.14), the derivative (ρt(E))0≤t≤T is an
F-predictable process for any E ∈ B(A). An ordinary open-loop control α ∈ A can
be viewed as a relaxed control ρα ∈ R in which the derivative in time is a Dirac
measure:

ρα([0, t]× E) =

∫ t

0

ραs (E)ds =

∫ t

0

δα(s)(E)ds.

We also have to introduce the corresponding relaxed Poisson measure in order
to have well-defined dynamics. This will be done properly in Appendix A. Given
any ρ ∈ R, Borel sets U0 ⊆ U , A0 ⊆ A, the relaxed Poisson measure Nρ related to
the relaxed control ρ has the property that the processes

(2.17) Nρ(t, U0, A0)− ν(U0)ρ([0, t]×A0)

are F-martingales, and are orthogonal for disjoint U0×A0. This martingale property
and the fact that Nρ is a counting measure valued process define the distribution
of Nρ and the joint law of (Nρ, ρ, ξ,N ) uniquely (see Appendix A). The martingale
property (2.17) also implies that the process

(2.18)

∫ t

0

∫
U

∫
A

ϕ(s, u, a)Nρ(ds, du, da)−
∫ t

0

∫
U

∫
A

ϕ(s, u, a)ν(du)ρs(da)ds

is an F-martingale, for any bounded and measurable ϕ. For an ordinary control
α ∈ A (or the relaxed control it induces), the corresponding relaxed Poisson measure
is explicitly given by

(2.19) Nα(t, U0, A0) :=

∫ t

0

∫
U0

1A0
(α(s))N (ds, du).
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The stochastic differential equation (2.10) in this more general framework with
a relaxed Poisson measure is written as

(2.20) X(t) = ξ +

∫ t

0

∫
U

∫
A

f(s,X(s−), u, a,m(s))Nρ(ds, du, da)

for any relaxed control ρ ∈ R and m ∈ L.

Given a relaxed feedback control γ̂ ∈ Â and a processX, define the corresponding
relaxed open-loop control through

(2.21) ργ̂,X(dt, da) := [γ̂(t,X(t−))](da)dt.

Let Nργ̂,X be the relaxed Poisson measure corresponding to ργ̂,X . Equation (2.20)
then becomes

(2.22) X(t) = ξ +

∫ t

0

∫
U

∫
A

f(s,X(s−), u, a,m(s))Nργ̂,X (ds, du, da),

where the solution process X appears also in the relaxed Poisson measure.
The proof of the following lemma is given in Appendix A.1.

Lemma 1. For any m ∈ L and ρ ∈ R, respectively γ̂ ∈ Â, there exists a pathwise
unique solution to the stochastic differential equation (2.20), respectively (2.22).

The solutions to (2.20) and (2.22) will be denoted by Xρ,m and Xγ̂,m respectively.

For γ̂ ∈ Â, let ργ̂ denote the corresponding relaxed control defined by (2.21), that
is, ργ̂ is the relaxed open-loop control such that

(2.23) ργ̂t (da) := [γ̂(t,Xγ̂,m(t−))](da).

In view of Definition 6, the relaxed open-loop control ργ̂ has to be given together
with a filtered probability space, an initial condition and a Poisson random measure,
which we impose to be the same as those coming with the relaxed feedback control
γ̂.

Let ρ ∈ R and m ∈ L. Let X = Xρ,m. Thanks to the martingale property
(2.18), we obtain that the process

MX
g (t) = g(X(t))− g(X(0))

(2.24)

−
∫ t

0

∫
U

∫
A

[g(X(s) + f(s,X(s), u, a,m(s)))− g(X(s))] ν(du)ρs(da)ds

is an F-martingale, for any g ∈ Rd. This yields the Dynkin formula

E[g(X(t))]− E[g(ξ)](2.25)

= E

∫ t

0

∫
U

∫
A

[g(X(s) + f(s,X(s), u, a,m(s)))− g(X(s))] ν(du)ρs(da)ds.

The cost to be minimized is
(2.26)

J(ρ,m) := E

[∫ T

0

∫
A

c(s,Xρ,m(s), a,m(s))ρs(da)ds+ ψ(Xρ,m(T ),m(T ))

]
.

Define also J(γ̂,m) := J(ργ̂ ,m) for γ̂ ∈ Â. The definitions of relaxed solution of the
mean field game (2.20) and relaxed feedback solution are analogous to Definition 4,
where ordinary controls are replaced by relaxed controls.

Definition 7. A relaxed solution of the mean field game (2.10) is a triple

(((Ω,F , P ;F), ρ, ξ,N ) ,m,X)

such that
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(1) ((Ω,F , P ;F), ρ, ξ,N ) ∈ R, m ∈ L, (X(t))t∈[0,T ] is adapted to the filtration
F and X = Xρ,m;

(2) Optimality: J(ρ,m) ≤ J(σ,m) for every σ ∈ R;
(3) Mean Field Condition: Law(X(t)) = m(t) for every t ∈ [0, T ].

We say that (((Ω,F , P ;F), γ̂, ξ,N ) ,m,X) is a relaxed feedback solution of the

mean field game if γ̂ ∈ Â and
((

(Ω,F , P ;F), ργ̂ , ξ,N
)
,m,X

)
is a relaxed solution

of the mean field game, where ργ̂ is defined in (2.23).
In our writing, we will often drop the filtered probability space and the Poisson

random measure from the notation.

In Section 3.2 we will show the existence of relaxed mean field game solutions
via a fixed point argument, while existence of a relaxed feedback mean field game
solution is established in Section 3.3.

We will use the characterization of solutions to (2.20) via the controlled martin-
gale problem. The proof of the following lemma is omitted; it can be derived by
mimicking the one of Theorem 2.8.1 in Kushner (1990, p. 42).

Lemma 2. Let ((Ω′,F ′, P ′;F′), ρ, ξ,N ) ∈ R and m ∈ L. Then X solves equation
(2.20) in distribution if and only if the process MX

g (t) defined in (2.24) is an F′-
martingale for any g ∈ Rd. The underlying filtered probability space can always
be assumed to be D([0, T ],Σ)× Ω, where Ω is the canonical space for (Nρ, ρ, ξ,N )
defined in Appendix A, F the canonical filtration, and X is the canonical process.

The martingale property holds if and only if

(2.27) E
[
h(X(ti); i ≤ j)(MX

g (t+ s)−MX
g (t))

]
= 0

for every h : Σj → R and every choice of j, t, s, ti, i = 1, . . . , j such that 0 ≤ ti ≤
t ≤ t+ s.

In Section 4, under additional assumptions, we will prove existence of feedback
mean field game solutions (not relaxed); such solutions will be shown to be unique
either if the time horizon is small or if the Lasry-Lions monotonicity assumptions
apply.

2.5. Example. We show how our assumptions are satisfied for a natural shape of
the function f for which, when considering α and m constants, the transition rates
of the Markov chain X solution of the dynamics (2.10) appear explicitly. Consider
then f defined by

(2.28) f(t, x, u) :=
∑
y∈Σ

(y − x)1]0,λ(t,x,y)[(uy)

and the intensity measure ν on U ∈ B(Rd) defined by

(2.29) ν(E) :=

d∑
y=1

`(E ∩ Uy), E ∈ B(U),

where Uy := {u ∈ U : uz = 0 ∀z 6= y}, which is viewed as a subset of R, and ` is
the Lebesgue measure on R.

The function λ appearing in (2.28) yields the transition rates of the Markov
chain X solution of (2.10), that is, for x 6= y, as h→ 0,

(2.30) P [X(t+ h) = y|X(t) = x] = λ(t, x, y) · h+ o(h).

Moreover, the measure ν defined in (2.29) has the property that

(2.31)

∫
U

ϕ(u1, . . . , ud)ν(du) =

d∑
y=1

∫
Uy

ϕ(0, . . . , uy, . . . , 0)duy
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for any bounded and measurable ϕ : Rd −→ R. In particular,

(2.32)

∫
U

d∑
y=1

ϕy(uy)ν(du) =

d∑
y=1

∫
Uy

ϕy(uy)duy

for any function ϕy : R −→ R such that ϕy(0) = 0, y ∈ Σ.
If we want f to depend also on a control and a flow of measures, we may consider

the rate λ to depend also on a ∈ A and p ∈ S, so that (2.28) is rewritten as

(2.33) f(t, x, u, a, p) :=
∑
y∈Σ

(y − x)1]0,λ(t,x,y,a,p)[(uy).

We also assume that λ is bounded by a constant M (which holds a posteriori by
the assumptions of the next lemma) and U := [0,M ]d. With this f , (2.30) becomes

(2.34) P [X(t+ h) = y|X(t) = x] = Et,x[λ(t, x, y, α(t),m(t))] · h+ o(h),

where X = Xα,m is the solution of (2.10) under the control α ∈ A and flow of
measures m ∈ L and Et,x denotes expectation with respect to the conditional
probability P [·|X(t) = x] provided P (X(t) = x) > 0. In particular, if α(t) =
γ(X(t)), then the transition rate is λ(t, x, y, γ(x),m(t)). A proof of (2.30), (2.31)
and (2.34) can be found in Turchi (2015), where the examples (2.28) and (2.33)
were treated.

Let us check whether our assumptions on the model are satisfied for the above
choice of f and ν.

Lemma 3. Let f be defined by (2.33) and ν by (2.29).

• If the rate λ appearing in (2.33) is continuous in t, a and p, then (A) holds;
• If in addition λ is Lipschitz in p, then (A’) holds;
• If in addition λ is Lipschitz also in a, then (A”) holds.

Proof. Let t, s ∈ [0, T ], a, b ∈ A, p, q ∈ S and fix x ∈ Σ. Then∫
U

|f(t, x, u, a, p)− f(s, x, u, b, q)|ν(du)

=

∫
U

∣∣∣∣∣∣
∑
y∈Σ

(y − x)
[
1]0,λ(t,x,y,a,p)[(uy)− 1]0,λ(s,x,y,b,q)[(uy)

]∣∣∣∣∣∣ ν(du)

≤
∫
U

∑
y 6=x

|y − x|
∣∣1]0,λ(t,x,y,a,p)[(uy)− 1]0,λ(s,x,y,b,q)[(uy)

∣∣ ν(du)

≤ 2d

∫
U

∑
y 6=x

∣∣1]0,λ(t,x,y,a,p)[(uy)− 1]0,λ(s,x,y,b,q)[(uy)
∣∣ ν(du).

Applying (2.32), the last expression above is equal to

2d
∑
y 6=x

∫
U

∣∣1]0,λ(t,x,y,a,p)[(uy)− 1]0,λ(s,x,y,b,q)[(uy)
∣∣ duy

= 2d
∑
y 6=x

|λ(t, x, y, a, p)− λ(s, x, y, b, q)|,

which gives the claims. �

In order to verify assumption (C), we need additional hypotheses on the structure
of the model.
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Lemma 4. Let f be defined by (2.33) and ν by (2.29). Assume that A is a compact
and convex subset of a metric topological vector space. Let the running cost c be
strictly convex in a and the rate λ appearing in (2.33) be affine (in the sense of
being both convex and concave) in a. Then assumption (C) is satisfied.

Proof. We have H(t, x, a, p, g) = Λa,pt g(x) + c(t, x, a, p) where

Λa,pt g(x) =

∫
U

g
x+

∑
y∈Σ

(y − x)1]0,λ(t,x,y,a,p)[(uy)

− g(x)

 ν(du).

Applying formula (2.31) we obtain

Λa,pt g(x) =

d∑
y=1

∫
Uy

[
g(x+ (y − x)1]0,λ(t,x,y,a,p)[(uy))− g(x)

]
duy

=

d∑
y=1

λ(t, x, y, a, p) [g(y)− g(x)] ,

which is an affine function of a if λ is affine in a. Therefore, H is a strictly convex
function of a if c is strictly convex, and thus it has a unique minimum in A. �

3. Relaxed Mean Field Game Solutions

3.1. The space L. In order to prove the existence of solutions we use a fixed
point theorem. First of all, we want to find a suitable space where all the flows of
probability measures lie. Set K := 2ν(U)

√
d and denote by

(3.1) L := {m : [0, T ] −→ S : |m(t)−m(s)| ≤ K|t− s|, m(0) = m0}
the space of Lipschitz continuous flows of probability measures, with the same
Lipschitz constant K and initial point m0. This space is easily seen to be convex and
compact with respect to the uniform norm, thanks to the Ascoli-Arzelà theorem.
The following lemma allows to restrict attention to flows of probability measures
in L.

Lemma 5. Let α ∈ A, or ρ ∈ R, and let m : [0, T ] −→ S be any deterministic
flow of probability measures. Then the flow of the solution process Flow(Xα,m), or
Flow(Xρ,m), is in L.

Proof. We prove the claim for relaxed controls, so the conclusion follows also when
considering the subset of ordinary controls. Let g : Σ −→ R be a function, which is
then Lipschitz and bounded and can be viewed as a vector in Rd. Denote |g|∞ :=
maxx∈Σ g(x). Let ρ ∈ R and m be fixed, and set X = Xρ,m. The function
m : [0, T ] → S has a priori no regularity, except for being measurable. By the
Dynkin formula (2.25) we have, for any 0 ≤ s ≤ t ≤ T ,

E[g(X(t))]− E[g(X(s))]

=

∫ t

s

∫
U

∫
A

E[g(X(r) + f(r,X(r), u, a,m(r)))− g(X(r))]ρr(da)ν(du)dr.

Hence

|E[g(X(t))]− E[g(X(s))]|

≤
∫ t

s

∫
U

∫
A

E|g(X(r) + f(r,X(r), u, a,m(r)))− g(X(r))|ρr(da)ν(du)dr

≤
∫ t

s

∫
U

∫
A

2|g|∞ρr(da)ν(du)dr = 2ν(U)|g|∞(t− s)



FINITE STATE MEAN FIELD GAMES 15

thanks to the fact that ρr is a probability measure on A for any r. Clearly,
E[g(X(t))] = g · Law(X(t)). Thus, for any t and s,

|Law(X(t))− Law(X(s))| =

√√√√ d∑
x=1

[ex · (Law(X(t))− Law(X(s)))]
2

≤

√√√√ d∑
x=1

|t− s|24|ex|2∞ν(U)2 = 2ν(U)
√
d|t− s|,

which gives the claim. �

3.2. Existence of relaxed mean field game solutions.

3.2.1. Tightness and continuity for m fixed. Consider a sequence of random vari-
ables

(3.2) (Xn, ρn,Nρn)

where ρn is a relaxed control, Nρn is the related relaxed Poisson measure and Xn =
Xρn,m, m ∈ L is fixed. The state space of these random variables is D([0, T ],Σ)×
D ×M, where M =M([0, T ]× U ×A) denotes the set of finite positive measures
on [0, T ]× U ×A endowed with the topology of weak convergence.

The following is of fundamental importance, and is similar to Theorem 13.2.1 in
Kushner and Dupuis (2001, p. 363).

Theorem 1. Assume (A) and (B). Then

(1) any sequence of the form (3.2) is tight;

(2) the limit in distribution (X, ρ, Ñ ) of any converging subsequence is such

that Ñ is the relaxed Poisson measure related to the relaxed control ρ and
X = Xρ,m in distribution;

(3) J(ρ,m) is continuous in ρ.

Proof. (1) The sequence of relaxed controls is tight as D is compact. For any ε > 0,
the set

Kε :=

{
Θ ∈M : Θ([0, T ]× U ×A) ≤ Tν(U)

ε

}
is compact in M, since [0, T ]×U ×A is compact. From (2.13) and the martingale
property (2.17), it follows that Nρn(t, U,A) − tν(U) is a martingale for any n and
so E[Nρn(T,U,A)] = Tν(U). Therefore, by Chebychev’s inequality,

P (Nρn /∈ Kε) = P

(
Nρn(T,U,A) >

Tν(U)

ε

)
≤ E[Nρn(T,U,A)] · ε

Tν(U)
= ε

for any n, saying that the sequence of relaxed Poisson measures is tight. The
properties of the stochastic integral give

E
[
|Xn(τ + h)−Xn(τ)|2

∣∣Fτ ] = O(h)

for any F-stopping time τ , uniformly in n, which yields the tightness of the processes
in D([0, T ],Σ) by Aldous’s criterion (Aldous, 1978).

(2) By abuse of notations, denote by (Xn, ρn,Nρn) the subsequence which con-

verges in distribution to (X, ρ, Ñ ). From the martingale property (2.17), it follows

that Ñ (t, U0, A0) − ν(U0)ρ(t, A0) is a martingale for any Borel sets A0 ⊂ A and
U0 ⊂ U , where the limiting measure is defined on the canonical space and the
filtration is the canonical filtration (both defined in Appendix A). The limit ran-

dom measure Ñ is integer valued (Theorem 15.7.4 in Kallenberg, 1986), so the

uniqueness property says that Ñ = Nρ in distribution. The claim X = Xρ,m in
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distribution will be shown also in the proof of Theorem 2, where m is not fixed,
using the controlled martingale problem, so we do not repeat the argument here.

(3) limn→∞ J(ρn,m) = J(ρ,m) since c and ψ are bounded and continuous by
assumption (B). �

By the chattering lemma, which we will present later as Lemma 8, we have

min
ρ∈R

J(ρ,m) = inf
α∈A

J(α,m).

The minimum on the left hand side exists by the above Theorem 1. The infimum
on the right hand side is actually a minimum, too; see Theorem 4 below, where
the existence of optimal feedback controls will be shown. However, there might
exist more optima among relaxed open-loop controls than among ordinary feedback
controls.

3.2.2. Fixed point argument. Let 2L be the set of subsets of L and define the point-
to-set map Φ : L −→ 2L by

(3.3) Φ(m) := {Flow(Xρ,m) : J(ρ,m) ≤ J(σ,m) ∀σ ∈ R} , m ∈ L.
A flow m ∈ L is called a fixed point of this point-to-set map if m ∈ Φ(m). We need
this map since the optimal control is not necessarily unique.

By construction, Φ has a fixed point if and only if there exists a relaxed solution
to the mean field game, in the sense of Definition 7. In order to prove the existence
of a fixed point, we are going to apply Theorem 1 in Fan (1952), which requires the
following definition.

Definition 8. Let L be a metric space. A map Φ : L −→ 2L is said to have closed
graph if mn ∈ L, yn ∈ L, yn ∈ Φ(mn) for any n ∈ N and mn → m, yn → y in L
implies y ∈ Φ(m).

Proposition 1 (Ky Fan). Let L be a non empty, compact and convex subset of a
locally convex metric topological vector space. Let Φ : L −→ 2L have closed graph
and assume that Φ(m) is non empty and convex for any m ∈ L. Then the set of
fixed points of Φ is non empty and compact.

By means of this proposition we are now able to state and prove the following
main theorem concerning existence of relaxed solutions, while uniqueness is not
guaranteed.

Theorem 2. Under assumptions (A) and (B) there exists at least one relaxed
solution of the mean field game (2.20).

Proof. We want to show the existence of a fixed point for the map Φ : L −→ 2L

defined in (3.3), applying Proposition 1. Recall that any element of Φ(m) is in
L by Lemma 5, and the set L defined in (3.1) is a compact and convex subset of
C([0, T ], S) endowed with the uniform norm. By Theorem 1, Φ(m) is non empty
for any m. It remains to prove that Φ(m) is convex and Φ has closed graph.

Φ(m) is convex. Let m be fixed and let ρ1, ρ2 ∈ R be such that Flow(Xρ1,m)
and Flow(Xρ2,m) belong to Φ(m), i.e. ρ1 and ρ2 are optimal controls for m,
and take θ ∈ [0, 1]. Let ζ be a Bernoulli random variable with parameter θ, F0

measurable and independent of ρ1 and ρ2. Define ρ3 ∈ R by

ρ3([0, t[×E) := ρ1([0, t[×E)1{ζ=1} + ρ2([0, t[×E)1{ζ=0}

for any E ∈ B(A) and t ∈ [0, T ]. We have

E[G(Xρ3,m)] = E [G(Xρ3,m)| ζ = 1]P (ζ = 1) + E [G(Xρ3,m)| ζ = 0]P (ζ = 0)

= θE[G(Xρ1,m)] + (1− θ)E[G(Xρ2,m)]
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for every G ∈ Cb(D([0, T ],Σ),R). This implies that

(3.4) Law(Xρ3,m) = θLaw(Xρ1,m) + (1− θ)Law(Xρ2,m)

and then in particular

(3.5) Flow(Xρ3,m) = θF low(Xρ1,m) + (1− θ)Flow(Xρ2,m).

Since ρ1 and ρ2 are optimal for m we have, thanks to (3.4),

J(ρ3,m) = J(ρ1,m)P (ζ = 1) + J(ρ2,m)P (ζ = 0)

≤ θJ(σ,m) + (1− θ)J(σ,m) = J(σ,m)

for any σ ∈ R, which means that also ρ3 is optimal for m and hence (3.5) says that
Φ(m) is convex.

Φ has closed graph. Let mn, yn,m, y ∈ L be such that mn → m, yn → y in
L and yn ∈ Φ(mn) for every n ∈ N. We have to prove that y ∈ Φ(m). Let ρn ∈ R
be optimal for mn and such that yn = Flow(Xρn,mn). Set Xn := Xρn,mn and let
Nn := Nρn be the relaxed Poisson measure related to ρn.

The tightness of the sequence (Xn, ρn,Nn) is proved as in Theorem 1. Let

(Xnk , ρnk ,Nnk) be a subsequence which converges in distribution to (X, ρ, Ñ ). We

have Ñ = Nρ in distribution, i.e. it is the relaxed Poisson measure related to ρ.
In order to prove that X = Xρ,m in distribution, we use the controlled martingale
problem formulation stated in Lemma 2, and hence let us assume that the processes
are defined in the canonical space.

Property (2.27) holds for Xnk , ρnk and mnk , any k ∈ N. Let Mnk
g denote the

process defined by

Mnk
g (t) = g(Xnk(t))− g(Xnk(0))

−
∫ t

0

∫
U

∫
A

[g(Xnk(s) + f(s,Xnk(s), u, a,mnk(s)))− g(Xnk(s))] ν(du)ρnks (da)ds,

for any g ∈ Rd. Property (2.27) and the convergence in distribution of the sequence
(Xnk , ρnk ,Nnk) imply that

0 = lim
k→∞

E
[
h(Xnk(ti); i ≤ j)(Mnk

g (t+ s)−Mnk
g (t))

]
= E [h(X(ti); i ≤ j)(Mg(t+ s)−Mg(t))]

thanks to continuity assumption (A), uniform convergence of mn and (2.16). There-
fore we have proved that X = Xρ,m in distribution.

Thus we obtain

lim
k→∞

Law(Xnk) = Law(Xρ,m),

which implies the convergence

lim
k→∞

sup
t∈[0,T ]

|Law(Xk(t))− Law(X(t))| = 0,

that is, Flow(Xnk) → Flow(X) uniformly. The convergence is then proved along
a subsequence, but by hypothesis the limit Flow(Xn) → y exists in L, hence
y = Flow(X) = Flow(Xρ,m).

It remains to prove that ρ is optimal for m. Again the convergence in distribution
of the sequence (Xnk , ρnk ,Nnk) implies that limk J(ρnk ,mnk) = J(ρ,m) thanks to
continuity assumption (B), uniform convergence of mn and (2.16). Then from the
optimality of ρn for mn, i.e. J(ρnk ,mnk) ≤ J(σ,mnk) for every σ ∈ R, taking the
limit as k → ∞ we get J(ρ,m) ≤ J(σ,m) for every σ ∈ R, which means that ρ is
optimal for m and thus y = Flow(Xρ,m) ∈ Φ(m) as required. �
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3.3. Relaxed feedback mean field game solutions. Theorem 2 provides a re-
laxed (open-loop) solution of the mean field game (2.20). Under the same assump-
tions we obtain here a relaxed feedback mean field game solution which has the
same cost and flow of the open-loop one. This result is similar to Theorem 3.7
in Lacker (2015) and will provide approximate feedback Nash equilibria for the
N -player game.

Theorem 3. Assume (A) and (B) and let (((Ω,F , P ;F), ρ, ξ,N ),m,Xρ,m) be a

relaxed mean field game solution. Then there exists a relaxed feedback control γ̂ ∈ Â
such that the tuple (((Ω,F , P ;F), γ̂, ξ,N ),m,Xγ̂,m) is a relaxed feedback mean field
game solution; namely

Flow(Xγ̂,m) = Flow(Xρ,m) = m,(3.6)

J(γ̂,m) = J(ρ,m).(3.7)

Proof. The flow m ∈ L is fixed and set X = Xρ,m. We claim that there exists a
measurable function γ̂ : [0, T ]× Σ −→ P(A) such that

γ̂(t,X(t)) = E[ρt|X(t)] `⊗ P -almost every (t, ω) ∈ [0, T ]× Ω.

This holds if and only if

(3.8)

∫
A

ϕ(t,X(t), a)[γ̂(t,X(t))](da) = E

[∫
A

ϕ(t,X(t), a)ρt(da)
∣∣X(t)

]
for any bounded and measurable ϕ : [0, T ]×Σ×A −→ R. In order to construct γ̂,
define the probability measure Θ on [0, T ]× Σ×A by

Θ(C) :=
1

T
E

[∫ T

0

∫
A

1C(t,X(t), a)ρt(da)dt

]
, C ∈ B([0, T ]× Σ×A).

Then build γ̂ by disintegration of Θ:

Θ(dt, ds, da) = Θ1(dt, dx)[γ̂(t, x)](da)

where Θ1 denotes the [0, T ] × Σ marginal of Θ and γ̂ : [0, T ] × Σ −→ P(A) is
measurable. Following Lacker (2015), we show that such γ̂ satisfies (3.8): for every
bounded and measurable h : [0, T ]× Σ −→ R we get

E

[∫ T

0

h(t,X(t))

∫
A

ϕ(t,X(t), a)[γ̂(t,X(t))](da)dt

]

= T

∫
[0,T ]×Σ

h(t, x)

∫
A

ϕ(t, x, a)[γ̂(t, x)](da)Θ1(dt, dx)

= T

∫
[0,T ]×Σ×A

h(t, x)ϕ(t, x, a)Θ(dt, dx, da)

= E

[∫ T

0

h(t,X(t))

∫
A

ϕ(t,X(t), a)ρt(da)dt

]
,

which provides (3.8) thanks to Lemma 5.2 in Brunick and Shreve (2013).
Having γ̂, (3.8) yields∫

U

∫
A

f(t,X(t), u, a,m(t))[γ̂(t,X(t))](da)ν(du)

= E

[∫
U

∫
A

f(t,X(t), u, a,m(t))ρt(da)ν(du)

∣∣∣∣X(t)

]
`⊗ P -almost everywhere.
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Then we solve equation (2.22) in the same probability space of X, under the
relaxed feedback control γ̂, and denote by Y = Xγ̂,m its solution. By the Dynkin
formula (2.25), we have for any g ∈ Rd,

E [g(X(t))] = E [g(ξ)] + E

[∫ t

0

∫
A

Λasg(X(s))ρs(da)ds

]
= E [g(ξ)] + E

[
E

[∫ t

0

∫
A

Λasg(X(s))ρs(da)

∣∣∣∣X(s)

]
ds

]
and then thanks to (3.8)

(3.9) E [g(X(t))] = E [g(ξ)] + E

[∫ t

0

∫
A

Λasg(X(s))[γ̂(s,X(s))](da)ds

]
,

while Dynkin’s formula for Y yields

(3.10) E [g(Y (t))] = E [g(ξ)] + E

[∫ t

0

∫
A

Λasg(Y (s))[γ̂(s, Y (s))](da)ds

]
.

Comparing (3.9) and (3.10) we obtain that Law(X(t)) and Law(Y (t)), which are
vectors in S ⊂ Rd, satisfy the same ODE in integral form, namely

g · π(t) = g · Law(ξ) +

∫ t

0

∫
Σ

∫
A

Λasg(x)[γ̂(s, x)](da)[π(t)](dx)ds, t ∈ [0, T ],

for any g ∈ Rd, the unknown being denoted by π : [0, T ] → S. Taking g = ej ,
j = 1, . . . , d, the corresponding system of ODEs, which is clearly linear in π, has a
unique absolutely continuous solution π ∈ L, hence (3.6) is proved.

Similarly, (3.8) gives

J(ρ,m) = E

[∫ T

0

∫
A

c(t,X(t), a,m(t))ρt(da)dt+ ψ(X(T ),m(T ))

]

= E

[∫ T

0

∫
A

c(t,X(t), a,m(t))[γ̂(s,X(s))](da)dt+ ψ(X(T ),m(T ))

]
and then we use (3.6) to conclude that

J(ρ,m) = E

[∫ T

0

∫
A

c(t, Y (t), a,m(t))[γ̂(s, Y (s))](da)dt+ ψ(Y (T ),m(T ))

]
= J(γ̂,m).

�

4. Feedback Mean field Game Solutions

4.1. Feedback optimal control for m fixed. We show the existence of an opti-
mal non-relaxed feedback control γm for J(α,m) for any m, using the verification
theorem for the related Hamilton-Jacobi-Bellman equation. Let m ∈ L be fixed.

For any t ∈ [0, T ], x ∈ Σ and α ∈ A let Xt,x
α be the solution to

(4.1) Xt,x
α (s) = x+

∫ s

t

∫
U

f(r−, Xt,x
α (r−), u, α(r),m(r))N (dr, du)

and set

J(t, x, α,m) := E

[∫ T

t

c(s,Xt,x
α (s), α(s),m(s))ds+ ψ(Xt,x

α (T ),m(T ))

]
.

Next, define the value function by

(4.2) Vm(t, x) := inf
α∈A

J(t, x, α,m).
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Recall that the generator was defined in (2.7) by

Λa,pt g(x) :=

∫
U

[g(x+ f(t, x, u, a, p))− g(x)]ν(du)

for any t, x, a, p and g ∈ Rd. For a function v = v(t, x) the generator will be applied
to the space variable, i.e. denote Λa,pt v(t, x) = Λa,pt v(t, ·)(x).

Thanks to Theorem D.5 in Hernández-Lerma and Lasserre (1996) on measurable
selectors, there exists a feedback control γm ∈ A (i.e. measurable) such that

(4.3) γm(t, x) ∈ argmina∈A

{
Λ
a,m(t)
t Vm(t, x) + c(t, x, a,m(t))

}
,

where Vm is the value function (4.2). Let us remark that the above minimum
exists for any t and x if (A) and (B) hold, as the right hand side turns out to be a
continuous function of the variable a, since the value function is trivially Lipschitz
continuous in x.

Theorem 4. Assume (A) and (B). Let m ∈ L. Then any feedback control γm
defined by (4.3) is optimal, that is, J(γm,m) ≤ J(α,m) for any α ∈ A.

In order to prove Theorem 4, we use the Hamilton-Jacobi-Bellman equation of
the problem (see, for instance, Chapter 3 in Fleming and Soner (2006)):

(4.4)

{
∂v
∂t (t, x) + infa∈A

{
Λ
a,m(t)
t v(t, x) + c(t, x, a,m(t))

}
= 0 in [0, T [×Σ

v(T, x) = ψ(x,m(T )) in Σ

for a function v : [0, T ]× Σ→ R. Let us define, for g ∈ Rd ≡ {Σ→ R},

G(t, x, g) := inf
a∈A

{∫
U

[g(x+ f(t, x, u, a,m(t)))− g(x)]ν(du) + c(t, x, a,m(t))

}
.

Since Σ is finite, we shall denote Wx(t) := v(t, x), W (t) := (W1(t), . . . ,Wd(t)),
Fx(t, g) := G(t, x, g), F (t, g) := (F1(t, g), . . . , Fd(t, g)), Ψx := ψ(x,m(T )) and Ψ :=
(Ψ1(t), . . . ,Ψd(t)). Therefore (4.4) can be written as

(4.5)

{
d
dtW (t) + F (t,W (t)) = 0, t ∈ [0, T [,

W (T ) = Ψ,

which is in fact an ODE.
Define a classical solution to (4.5) as an absolutely continuous function W from

[0, T ] to Rd such that W (t) = Ψ+
∫ T
t
F (s,W (s))ds for every t ∈ [0, T ]. We apply to

our problem the following verification theorem, which is a version of Theorem 3.8.1
in Fleming and Soner (2006, p. 135):

Proposition 2 (Verification). Let v be a classical solution to (4.5), and let γm be
any feedback control such that (4.3) holds for Lebesgue almost every t. Then

v(t, x) = J(t, x, γm,m) = Vm(t, x)

for any t ∈ [0, T ] and x ∈ Σ, where Vm is the value function (4.2).

We are now in the position to prove Theorem 4.

Proof of Theorem 4. In view of Proposition 2, we have just to show that there
exists a classical solution to (4.5). Hence it is enough to prove that F = F (t, w) is
globally Lipschitz continuous in w ∈ Rd, uniformly in t ∈ [0, T ]. So let t be fixed
and take w, z ∈ Rd and x ∈ Σ. Recall that

Fx(t, w) := min
a∈A

{∫
U

[wx+f(t,x,u,a,m(t))) − wx]ν(du) + c(t, x, a,m(t))

}
,
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and let b be a minimizer for Fx(t, z). Then

Fx(t, w)− Fx(t, z) = min
a∈A

{∫
U

[wx+f(t,x,u,a,m(t))) − wx]ν(du) + c(t, x, a,m(t))

}
−
∫
U

[zx+f(t,x,u,b,m(t))) − zx]ν(du)− c(t, x, b,m(t))

≤
∫
U

[wx+f(t,x,u,b,m(t))) − wx]ν(du)−
∫
U

[zx+f(t,x,u,b,m(t))) − zx]ν(du)

≤
∫
U

∣∣wx+f(t,x,u,b,m(t))) − wx − zx+f(t,x,u,b,m(t))) + zx
∣∣ ν(du)

=

∫
U

∣∣(w − z)x+f(t,x,u,b,m(t))) − (w − z)x
∣∣ ν(du) ≤ 2ν(U) max

y∈Σ
|(w − z)y| .

Changing the role of w and z we obtain the converse, hence

|Fx(t, w)− Fx(t, z)| ≤ 2ν(U) max
y∈Σ
|(w − z)y|

for any x, which implies

max
x∈Σ
|Fx(t, w)− Fx(t, z)| ≤ 2ν(U) max

y∈Σ
|(w − z)y| .

Therefore F is Lipschitz continuous in w in the norm ||w|| = maxy∈Σ |wy|, which is
equivalent to the Euclidean norm in Rd. �

4.2. Uniqueness of the feedback control for m fixed. Consider the pre-
Hamiltonian, as defined in (2.8),

H(t, x, a, p, g) :=

∫
U

[g(x+ f(t, x, u, a, p))− g(x)] ν(du) + c(t, x, a, p)

for (t, x, a, p) ∈ [0, T ]×Σ×A×S and g ∈ Rd. We make the additional assumption
(C); so let us recall that a∗(t, x, p, g) is the unique minimizer of H(t, x, a, p, g) in
a ∈ A. Define for m ∈ L the feedback control

(4.6) γm(t, x) := a∗(t, x,m(t), Vm(t, ·))

where Vm is the value function (4.2).

Theorem 5. Assume (A), (B) and (C). Given m ∈ L, let σ ∈ R be any optimal
relaxed control for m and let Xσ,m be the corresponding solution to (2.20). Then
σt = γm(t,Xσ,m(t)) for ` ⊗ P -almost every (t, ω), that is, σ corresponds to the
feedback control γm.

This result and the proof of Theorem 2 imply that any relaxed solution of the
mean field game must correspond to a feedback solution:

Corollary 1. Assume (A), (B) and (C). Then there exists a feedback solution
(γ,m,X) of the mean field game, and any solution is such that its control coincides
with γm.

Let Q ∈ P(A), and define

H̃(t, x,Q, p, g) :=

∫
A

H(t, x, a, p, g)Q(da).

Lemma 6. If H is continuous in a, then

(4.7) min
Q∈P(A)

H̃(t, x,Q, p, g) = min
a∈A

H(t, x, a, p, g)
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for any t, x, p and g. Moreover, if (C) holds, then there exists a unique Q∗ ∈ P(A)
such that

H̃(t, x,Q∗, p, g) = min
Q∈P(A)

H̃(t, x,Q, p, g) = min
a∈A

H(t, x, a, p, g) = H(t, x, a∗, p, g)

and Q∗ = δa∗ , where a∗ = a∗(t, x, p, g).

Proof. If H is continuous in a, then H̃ is continuous in Q ∈ P(A) in the weak
topology. Since P(A) is compact, there exists a minimum: let Q∗ be a minimizer.
For fixed t, x, p and g we have

min
Q∈P(A)

H̃(t, x,Q, p, g) ≤ min
Q=δa,a∈A

∫
A

H(t, x, a, p, g)Q(da) = min
a∈A

H(t, x, a, p, g)

and

min
Q∈P(A)

∫
A

H(t, x, a, p, g)Q(da) ≥ min
Q∈P(A)

∫
A

H(t, x, a∗, p, g)Q(da) = H(t, x, a∗, p, g),

which means that H̃(t, x,Q∗, p, g) = H(t, x, a∗, p, g).
Consider H(t, x, a, p, g) − H(t, x, a∗, p, g) as a function of a: it is non-negative

and, if (C) holds, it equals zero if and only if a = a∗. Therefore,

0 = H̃(t, x,Q∗, p, g)−H(t, x, a∗, p, g) =

∫
A

[H(t, x, a, p, g)−H(t, x, a∗, p, g)]Q∗(da),

which implies the claim, namely that Q∗({a∗}) = 1. �

Remark 1. Note that if (C) does not hold, then Q∗ is supported on the set of all
minimizers of H. Thus it might not be a Dirac measure. This implies that there
may exist an optimal relaxed control which is not an ordinary control (not even
open-loop).

Proof of Theorem 5. Fix m ∈ L. Let σ ∈ R be an optimal relaxed control and
denote by Xσ = Xσ,m the corresponding optimal trajectory. By the chattering
lemma, which we will state later as Lemma 81,

E [V (0, Xσ(0))] = min
ρ∈R

J(ρ,m) = J(σ,m)

= E

[∫ T

0

∫
A

c(t,Xσ(t), a,m(t))σt(da)dt+ ψ(Xσ(T ),m(T ))

]
,

where V = Vm is the value function defined in (4.2). Thanks to (4.4), the Hamilton-
Jacobi-Bellman equation, and (4.7), we have

(4.8)
∂

∂t
V (t, x) + H̃(t, x, σt, V (t, ·)) ≥ 0 for all t, x, ω.

By the Dynkin formula (2.25) and the terminal condition for V ,

E [V (0, Xσ(0))] = E [V (T,Xσ(T ))]

− E

[∫ T

0

(
∂

∂t
V (t,Xσ(t)) +

∫
A

Λ
a,m(t)
t V (t,Xσ(t))σt(da)

)
dt

]

= E

[∫ T

0

∫
A

c(t,Xσ(t), a,m(t))σt(da)dt+ ψ(Xσ(T ),m(T ))

]

− E

[∫ T

0

∂

∂t
V (t,Xσ(t)) + H̃(t,Xσ(t), σt, V (t, ·))dt

]
.

1Here only the open loop part of the chattering lemma is needed, which is well known, and so
we postpone the proof of the lemma to Section 5, where we also give the feedback part.
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It follows that

E

[∫ T

0

∂

∂t
V (t,Xσ(t)) + H̃(t,Xσ(t), σt, V (t, ·))dt

]
= 0,

hence, in view of (4.8),

∂

∂t
V (t,Xσ(t)) + H̃(t,Xσ(t), σt, V (t, ·)) = 0

for `⊗ P -almost every (t, ω), which means that

σt ∈ argminQ∈P(A) H̃(t,Xσ,m(t), σt, V (t, ·))
for ` ⊗ P -almost every (t, ω). If (C) holds, then, by Lemma 6, the unique min-

imizer of Q 7→ H̃(t, x,Q,m(t), V (t, ·)) is the measure Q∗ = δa∗ ∈ P(A) with
a∗ = a∗(t, x,m(t), V (t, ·)). It follows that σt = γm(t,Xσ(t)) for ` ⊗ P -almost
every (t, ω).

�

4.3. Uniqueness of the feedback MFG solution for small time. In this sub-
section, we focus only on the dynamics for f in (2.33),

f(t, x, u, a, p) :=
∑
y∈Σ

(y − x)1]0,λ(t,x,y,a,p)[(uy),

and ν defined in (2.29) with U := [0,M ]d. Moreover, we assume that A = U and,
for x 6= y,

λ(t, x, y, a, p) = ay + ζ(p),

where ζ : S → R is some Lipschitz continuous function with Lipschitz constant Kζ

such that ζ(p) ≥ κ for some κ > 0. Since λ determines the transition rates, we set
λ(t, x, x, a, p) := −

∑
y 6=x λ(t, x, y, a, p), x ∈ Σ.

We assume that the cost c in the variable a is in C1(A), ∇ac is Lipschitz contin-
uous in the variable p with Lipschitz constant Ka and c is uniformly convex, that
is, there exists θ > 0 such that

c(t, x, b, p)− c(t, x, a, p) ≥ ∇ac(t, x, a, p) · (b− a) + θ|b− a|2

for all t, x, a, b, p.
This setup is analogous to the one considered in Gomes et al. (2013). The

assumptions of Lemma 4 are satisfied and thus for any g ∈ Rd there exist a unique
minimizer a∗(t, x, p, g) of H(t, x, a, p, g), which in this setting becomes

H(t, x, a, p, g) =

d∑
y=1

λ(t, x, y, a, p)[g(y)− g(x)] + c(t, x, a, p)(4.9)

=

d∑
y=1

(ay + ζ(p))[g(y)− g(x)] + c(t, x, a, p).

The assumptions of Lemma 1 are satisfied so that (A”) and (B”) hold. We need a∗

to be Lipschitz continuous in p and g; this fact is proved in Proposition 1 in Gomes
et al. (2013). We state the result in the following

Lemma 7. Under the above assumptions (in this subsection), the function a∗ is
Lipschitz continuous in p and g:

|a∗(t, x, p, g)− a∗(t, x, q, g)| ≤ Ka

θ
|p− q|(4.10)

|a∗(t, x, p, g)− a∗(t, x, p, h)| ≤ 1

θ
|g − h|(4.11)

for any t, x, p, q, g, h.
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Let us fix here the filtered probability space, the initial condition and the Poisson
random measure. Define γm(t, x) = a∗(t, x,m(t), Vm(t, ·)) as in (4.6): it is the
unique feedback control for given flow of measures m ∈ L, where Vm(t, x) is the
value function defined in (4.2) with respect to m. The cost functions c and ψ are
uniformly bounded and so is the value function: Let us denote by MV the maximum
of its absolute value. Denote by Mζ the maximum of ζ and fix the constants

C1 := 2Md2 + 2d
√
dMd,

C2 := 2d
√
d
Ka

θ
+ 2d2Kζ ,

C3 :=
2d2

θ
,

C4 := K2 + 2dMVKζ + 2
√
dMV

Ka

θ
+K2

Ka

θ
,

C5 := 2MV

√
d

θ
+
K2

θ
+
√
d(Mζ +M).

Let T ∗ > 0 be such that

(4.12) 2T ∗
√
deT

∗C1

[
C2 + C3(K2 + T ∗C4)eT

∗C5

]
= 1.

Theorem 6. Under the assumptions of this subsection, for any 0 < T < T ∗ there
exists a unique feedback solution (γ,m,X) of the mean field game. It is such that
γ is the feedback control γm.

Proof. In the notation of Theorem 2, the map Φ : L → L is defined by Φ(m) =
{Flow(Xγm,m)}, a singleton. If we prove that this map is a contraction for small
time horizon T , then the assertion follows by the Banach-Cacciopoli Theorem. So
let m,n ∈ L and set X := Xγm,m and Y := Xγn,n. For a vector v ∈ Rd denote
|v|∞ = maxx∈Σ |vx|.

First we prove that the value function Vm is Lipschitz continuous with respect
to m. Thanks to the HJB equation (4.4) we have

Vm(t, x) = Vm(T, x) +

∫ T

t

H(s, x, a∗(s, x,m(s), Vm(s, ·)),m(s), Vm(s, ·))ds.

The Hamiltonian H is Lipschitz in (a, p, g); in fact, by (2.6) and (4.9) we have

|H(t, x, a, p, g)−H(t, x, b, q, h)|

≤ 2|g|∞
(√

d|a− b|+ dKζ |p− q|
)

+K2(|a− b|+ |p− q|) +
√
d(Mζ +M)|g − h|.

Then using (4.10) and (4.11) we obtain

|Vm(t, x)− Vn(t, x)|

≤ K2|m(T )− n(T )|+
∫ T

t

[C4|m(s)− n(s)|+ C5|Vm(s)− Vn(s)|] ds

≤ K2|m(T )− n(T )|+ C4(T − t)||m− n||∞ +

∫ T

t

C5|Vm(s)− Vn(s)|ds

for any x, hence Gronwall’s lemma implies that

|Vm(t)− Vn(t)| ≤
√
d(K2 + TC4)eTC5 ||m− n||∞

for any 0 ≤ t ≤ T .



FINITE STATE MEAN FIELD GAMES 25

Therefore, by applying again (4.10) and (4.11), we obtain

E|X(t)− Y (t)|

≤
∫ t

0

∫
U

E|f(s,X(s), u, γ(s,X(s),m(s), Vm(t, ·)),m(s))

− f(s, Y (s), u, γ(s, Y (s), n(s), Vn(t, ·)), n(s))|ν(du)ds

≤
∫ t

0

[
C1E|X(s)− Y (s)|+ C2|m(s)− n(s)|+ 2d

√
d

θ
|Vm(t, ·)− Vn(t, ·)|

]
ds

≤
∫ t

0

[
C1E|X(s)− Y (s)|+ C2|m(s)− n(s)|+ C3(K2 + C4T )eTC5 ||m− n||∞

]
ds

and thus, again by Gronwall’s lemma,

E|X(t)− Y (t)| ≤ T ∗eT
∗C1

[
C2 + C3(K2 + T ∗C4)eT

∗C5

]
||m− n||∞

for any 0 ≤ t ≤ T . Since |Law(X(t))− Law(Y (t))| ≤ 2
√
dE|X(t)− Y (t)| we have

sup
0≤t≤T

|Law(X(t))− Law(Y (t))| =: ||Flow(X)− Flow(Y )||∞

≤ 2T ∗
√
deT

∗C1

[
C2 + C3(K2 + T ∗C4)eT

∗C5

]
||m− n||∞,

and then the claim holds for T ∗ satisfying (4.12). �

4.4. Uniqueness under monotonicity. Uniqueness of mean field game solutions
was shown in Theorem 2 in Gomes et al. (2015) for arbitrary time horizon under
the Lasry-Lions monotonicity assumptions. Here, we give a different proof of this
result, which relies on the probabilistic representation of the mean field game, and
allows for less restrictive assumptions on the data.

Specifically, we suppose that the function f in the dynamics (2.10) does not
depend on p ∈ S and that the running cost c splits in c(t, x, a, p) = c0(t, x, a) +
c1(x, p). Moreover we assume that c1 and ψ satisfy the following monotonicity
property: ∑

x∈Σ

(c1(x, p)− c1(x, p′))(px − p′x) > 0(4.13) ∑
x∈Σ

(ψ(x, p)− ψ(x, p′))(px − p′x) ≥ 0(4.14)

for any p 6= p′ ∈ S. For example, c1 and ψ could be the gradient of convex functions
in Rd.

Theorem 7. Suppose that (A), (B) and the assumptions above hold. Let (γ,m,X)
and (γ′,m′, X ′) be two feedback mean field game solutions. Then m(t) = m′(t) for
any t. Also the corresponding value functions Vm and Vm′ are the same. Moreover,
if (C) holds, then γ(t, x) = γ′(t, x) for any t, x.

Proof. Since the dynamics does not depend on p ∈ S, we have X = Xγ = Xγ,m =
Xγ,m′ and X ′ = Xγ′ = Xγ′,m = Xγ′,m′ . The optimality of γ yields J(γ,m) ≤
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J(γ′,m) and similarly J(γ′,m′) ≤ J(γ,m′), hence

0 ≤ J(γ′,m)− J(γ,m) = E [ψ(X ′(T ),m(T ))− ψ(X(T ),m(T ))]

+ E

[∫ T

0

[c0(X ′(t), γ′(t,X ′(t))) + c1(X ′(t),m(t))

−c0(X(t), γ(t,X(t)))− c1(X(t),m(t))]dt]

0 ≤ J(γ,m′)− J(γ′,m′) = E [ψ(X(T ),m′(T ))− ψ(X ′(T ),m′(T ))]

+ E

[∫ T

0

[c0(X(t), γ(t,X(t))) + c1(X(t),m′(t))

−c0(X ′(t), γ′(t,X ′(t)))− c1(X ′(t),m′(t))]dt] .

Summing these two inequalities and using the fact that Law(X(t)) = m(t) for any
t, we obtain

0 ≤ E [ψ(X ′(T ),m(T ))− ψ(X(T ),m(T )) + ψ(X(T ),m′(T ))− ψ(X ′(T ),m′(T ))]

+ E

[∫ T

0

[c1(X ′(t),m(t))− c1(X(t),m(t))

+c1(X(t),m′(t))− c1(X ′(t),m′(t))]dt]

=
∑
x∈Σ

(ψ(x,m(T ))− ψ(x,m′(T )))(m′x(T )−mx(T ))

+

∫ T

0

[∑
x∈Σ

(c1(x,m(t))− c1(x,m′(t)))(m′x(t)−mx(t))

]
dt.

If m(t) 6= m′(t) for some t, then the latter expression is < 0, thanks to (4.13), (4.14)
and the continuity of m; a contradiction. Therefore m(t) = m′(t) for all t.

The fact that Vm = Vm′ is implied by the uniqueness of solutions to the HJB
equation (4.4). Assuming (A) and (B), the optimal feedback γ satisfies (4.3). Thus,
if (C) holds, then γ = γ′. �

5. Approximation of N-player game

5.1. Approximation of relaxed controls. In order to get an ε-Nash equilibrium
for the N -player game in open-loop strategies, respectively in feedback strategies,
we have first to find an approximation of the optimal relaxed control, respectively
relaxed feedback control, for the mean field game. To this end, we will make use of
the following version of the chattering lemma.

Lemma 8 (Chattering). For any relaxed control ρ ∈ R, there exists a sequence
of stochastic open-loop controls αn ∈ A such that, denoting by ραn(dt, da) =
δαn(t)(da)dt their relaxed control representation,

lim
n→∞

ραn = ρ P -a.s.,

where the limit is in the weak topology in M([0, T ] × A). Moreover, any αn takes
values in a finite subset of A.

For any relaxed feedback control γ̂ ∈ Â, there exists a sequence of feedback controls
γn ∈ A such that

(5.1) lim
n→∞

δγn(t,x)(da)dt = [γ̂(t, x)](da)dt

uniformly in x ∈ Σ and

(5.2) lim
n→∞

ργn = ργ̂ in distribution,



FINITE STATE MEAN FIELD GAMES 27

where ργn denotes the relaxed control representation of the open-loop control αγn

corresponding to γn, as in (2.12), and ργ̂ is defined in (2.23); i.e. ργnt (da) =

δγn(t,Xγn (t−)(da) and ργ̂t (da) = [γ̂(t,Xγ̂(t−))](da).

Proof. The first part is proved as Theorem 3.5.2 in Kushner (1990, p. 59), and the
construction of the approximating sequence in the proof gives the γn for the second

part; let us show how to build them. Let γ̂ ∈ Â, cover A by Mr disjoint sets Cri
which contain a point ari and set Ar := {ari : i ≤Mr}, a finite subset of A. For any
∆ > 0 and i, j define the function

τ∆r
ij (x) :=

∫ (i+1)∆

i∆

[γ̂(s, x)](Crj )ds.

Divide any interval [(i+1)∆, (i+2)∆[ into Mr subintervals I∆r
ij (x) of length τ∆r

ij (x)

and define the feedback control γ∆r, which is piecewise constant, by

γ∆r(t, x) :=

{
a0 t ∈ [0,∆[

arj t ∈ I∆r
ij (x)

where a0 is an arbitrary value in A. The proof in Kushner (1990) shows that

lim
r→0
∆→0

δγ∆r(t,x)(da)dt = [γ̂(t, x)](da)dt

weakly, for any x ∈ Σ. Since Σ is finite we obtain that there exists a sequence of
ordinary feedback controls (γn) such that (5.1) holds uniformly in x. Let m ∈ L be
fixed and Xn be the solution to (2.11) corresponding to the feedback control γn.
By Theorem 1, the sequence Xn is tight and there are a subsequence, which we
still denote as (Xn), and a process X such that limn→∞Xn = X in distribution.
Possibly applying the Skorokhod representation (Theorem 4.30 in Kallenberg, 2001,
p. 79), we may assume that this convergence is with probability one in the space of
càdlàg functions D([0, T ],Σ) equipped with the Skorokhod metric. This implies in
particular that

(5.3) P
(

lim
n→∞

Xn(t) = X(t) for any t /∈ η
)

= 1,

where η is the finite random set of discontinuity points (the jumps) of X.
Let now ϕ ∈ C([0, T ]×A) be any continuous function, which is also bounded as

A is compact. We have to show the convergence to zero, almost surely, of∫ T

0

∫
A

ϕ(t, a)[δγn(t,Xn(t−)) − γ̂(t,X(t−))](da)dt = Yn + Zn,

where

Yn =

∫ T

0

[
ϕ(t, γn(t,Xn(t−)))− ϕ(t, γn(t,X(t−)))

]
dt

Zn =

∫ T

0

∫
A

ϕ(t, a)[δγn(t,X(t−)) − γ̂(t,X(t−))](da)dt.

Any feedback control is Lipschitz in x, i.e. dist(γn(t, x), γn(t, y)) ≤ Diam(A)|x −
y|, and so Yn tends to zero thanks to (5.3), the continuity of ϕ and dominated
convergence. As to Zn, write Zn =

∑
x∈Σ Z

x
n where

Zxn :=

∫ T

0

∫
A

1ηx(t)ϕ(t, a)[δγn(t,x) − γ̂(t, x)](da)dt

and ηx is the random set in [0, T ] where X(t) = x. For each x, the random set
Dx of discontinuity points of the function 1ηx(t)ϕ(t, a) is a subset of ηx × A for
some finite random set ηx ⊂ [0, T ]. Thus Dx has null measure with respect to the
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limiting control γ̂(t, x)(da)dt with probability one, for each x, thanks to Definition
5. Hence by (5.1) we get that Zxn tends to zero for each x and so does Zn since Σ
is finite.

Let αn(t) = γn(t,Xn(t−)) be the open-loop control corresponding to γn and
ρn its relaxed control representation. We have just proved that limn→∞ ρn =
[γ̂(t,X(t−))](da)dt P -almost surely and thus Theorem 1 says that X must have
the same law as the solution to (2.22) under the relaxed feedback control γ̂. That
solution is unique by Lemma 1, meaning that X = Xγ̂ in distribution. Therefore

(5.2) follows since ργ̂t = γ̂(t,Xγ̂(t−)) by (2.23). �

Remark 2. In the above proof we strongly used the finiteness of Σ to get the
approximation in feedback controls. While the result in the open-loop setting holds
for general state space Σ, when considering feedback controls it is not clear whether
the above lemma can be generalized to uncountably infinite state spaces.

We are now able to state the approximation result:

Proposition 3. Let m ∈ L, ρ ∈ R and γ̂ ∈ Â. Then for every ε > 0 there exist
α ∈ A and γ ∈ A such that

E

[
sup
t≥0
|Xα,m(t)−Xρ,m(t)|

]
≤ ε(5.4)

E

[
sup
t≥0
|Xγ,m(t)−Xγ̂,m(t)|

]
≤ ε(5.5)

|J(α,m)− J(ρ,m)| ≤ ε.(5.6)

|J(γ,m)− J(γ̂,m)| ≤ ε.(5.7)

Proof. Let (αn) be a sequence in A that approximates ρ as in Lemma 8. Then
we apply Theorem 1 to the sequence (Xαn,m, αn,m): it is tight, a subsequence
(Xαnk ,m

, αnk ,m) converges in distribution to (Xρ,m, ρ,m) and limk→∞ J(αnk ,m) =

J(ρ,m). Thus there exist αnk =: α for which (5.4) and (5.6) hold. In a similar way,
one proves (5.5) and (5.7) for feedback controls. �

5.2. εN -Nash equilibria. We can now define the approximate Nash equilibrium
for the N -player game, first in open-loop form.

Notation 2. Let
((

(Ω,F , P ; (Ft)t∈[0,T ]), α, ξ,N
)
,m,Xρ,m

)
be a relaxed solution

of the mean field game (2.20), which exists assuming (A) and (B) by Theorem
2. Fix N ∈ N and let α ∈ A be as in Proposition 3, satisfying (5.4) and (5.6)
with ε = 1√

N
. Then

(
(Ω,F , P ; (Ft)t∈[0,T ]), α

N , ξN ,NN
)

denotes the strategy vector

where αN = (αN1 , . . . , α
N
N ), ξN = (ξN1 , . . . , ξ

N
N ), NN = (NN

1 , . . . ,NN
N ), such that

(5.8) Law
(
(αN1 , ξ

N
1 ,NN

1 ), . . . , (αNN , ξ
N
N ,NN

N )
)

= (Law(α, ξ,N ))⊗N .

Equation (5.8) says that this control is symmetric. The following is our main
result, whose proof is carried out in the next subsection. In addition to (A) and
(B), we make the Lipschitz assumptions (A’) and (B’).

Theorem 8. Assume (A’) and (B’). Then the vector strategy defined in Notation 2
is an εN -Nash equilibrium for the N -player game for any N where εN ≤ C√

N
and

C = C(T, d, ν(U),K1,K2) is a constant.

An analogous result holds when considering feedback strategies, but we state it
separately.
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Notation 3. Let
((

(Ω,F , P ; (Ft)t∈[0,T ]), γ̂, ξ,N
)
,m,Xγ̂,m

)
be a relaxed feedback

solution of the mean field game (2.22), which exists assuming (A) and (B) by
Theorem 3. Fix N ∈ N and let γ ∈ A be as in Proposition 3, satisfying (5.5)
and (5.7) with ε = 1√

N
. Then the tuple

(
(Ω,F , P ; (Ft)t∈[0,T ]), γ

N , ξN ,NN
)

de-

notes the feedback strategy vector where ξN = (ξN1 , . . . , ξ
N
N ), NN = (NN

1 , . . . ,NN
N ),

γN = (γN1 , . . . , γ
N
N ) such that

(5.9) γNi (t, xN ) := γ(t, xNi )

for any t, i and xN = (xN1 , . . . , x
N
N ) ∈ ΣN , and the (ξNi ,NN

i ) are N i.i.d copies of
(ξ,N ).

Equation (5.9) says that this feedback strategy vector is symmetric and decen-
tralized. In order to obtain feedback ε-Nash equilibria from a mean field game
solution, we need the Lipschitz assumptions (A”) and (B”).

Theorem 9. Assume (A”), (B”). Then the feedback strategy vector defined in
Notation 3 is a feedback εN -Nash equilibrium for the N -player game for any N
where εN ≤ C√

N
and C = C(T, d, ν(U),K1,K2) is a constant.

5.3. Proofs of the results. In the following C will denote any constant which
depends on T , d, ν(U) and the Lipschitz constants K1 and K2, but not on N , and
is allowed to change from line to line. We focus first on open-loop controls. Fix
N ∈ N and let the strategy vector αN be as in Notation 2. We play this strategy
in the N -player game:
(5.10)

XN
i (t) = ξNi +

∫ t

0

∫
U

f(s,XN
i (s−), u, αNi (s), µN (s−))NN

i (ds, du) i = 1, . . . , N.

This will be coupled with Y N defined by
(5.11)

Y Ni (t) = ξNi +

∫ t

0

∫
U

f(s, Y Ni (s−), u, αNi (s),m(s))NN
i (ds, du) i = 1, . . . , N.

Let µN (t) := 1
N

∑N
i=1 δXNi (t) be the empirical measure of the system (5.10) and

µN be the empirical measure of (5.11). Denote m(t) := Law(Xα,m(t)). By (5.4)
we have

(5.12) |m(t)−m(t)| ≤ 1√
N

for any t ≥ 0, since Flow(Xρ,m) = m. From (5.8) it follows that

Law(Y Ni , αNi , ξ
N
i ,NN

i ) = Law(Xα,m, α, ξ,N ), i ∈ {1, . . . , N}.

This implies, thanks to Theorem 1 in Fournier and Guillin (2015), that

(5.13) E|µN (t)−m(t)| ≤ C√
N

for any t ∈ [0, T ] and N ∈ N, where C is a constant. This upper bound in N−
1
2

cannot be improved, since for these discrete measures a lower bound still in N−
1
2

can be found, see again Fournier and Guillin (2015).

Lemma 9. Under assumption (A’), for every t ≥ 0 and i = 1, . . . , N

E|µN (t)−m(t)| ≤ C√
N

(5.14)

E|XN
i (t)− Y Ni (t)| ≤ C√

N
.(5.15)
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Proof. From (5.12) and (5.13) it follows that

(5.16) E|µN (t)−m(t)| ≤ C√
N
.

We estimate |µN (t)−µN (t)| using the 1-Wasserstein metric (which is equivalent to
the Euclidean metric in Rd) and (5.10), (5.11) and the Lipschitz assumption (2.3):

E|µN (t)− µN (t)| ≤ C

N

N∑
i=1

E|XN
i (t)− Y Ni (t)|

≤ C

N

N∑
i=1

E|XN
i (0)− Y Ni (0)|+ C

N

N∑
i=1

∫ t

0

∫
U

E|f(s,XN
i (s), u, αNi (s), µN (s−))

− f(s, Y Ni (s), u, αNi (s),m(s))|ν(du)ds

≤ C

N

N∑
i=1

K1

∫ t

0

[
E|XN

i (s)− Y Ni (s)|+ E|µN (s)−m(s)|
]
ds.

Hence applying (5.16)

E|µN (t)−m(t)|+ C

N

N∑
i=1

E|XN
i (t)− Y Ni (t)|

≤ E|µN (t)−m(t)|+ 2C

N

N∑
i=1

E|XN
i (t)− Y Ni (t)|

≤ C√
N

+ 2K1
1

N

N∑
i=1

∫ t

0

[
E|XN

i (s)− Y Ni (s)|+ E|µN (s)−m(s)|
]
ds.

Then we obtain, by Gronwall’s lemma,

E|µN (t)−m(t)|+ C

N

N∑
i=1

E|XN
i (t)−Y Ni (t)| ≤ C√

N
+2K1

∫ t

0

e2K(t−s) C√
N
ds ≤ C√

N
.

Similarly we show (5.15): using (5.10), (5.11) and (5.14) we get, for any i,

E|XN
i (t)− Y Ni (t)|

≤
∫ t

0

∫
U

E
∣∣f(s,XN

i (s), u, αNi (s), µN (s))− f(s, Y Ni (s), u, αNi (s),m(s))
∣∣ ν(du)ds

≤ K1

∫ t

0

[
E|XN

i (s)− Y Ni (s)|+ E|µN (s)−m(s)|
]
ds

≤ K1

∫ t

0

[
E|XN

i (s)− Y Ni (s)|+ C√
N

]
ds

and hence E|XN
i (t)− Y Ni (t)| ≤ C√

N
by Gronwall’s lemma. �

We are now in the position to state the result about the costs. Because of the
symmetry of the problem, for the prelimit we shall consider only player one (i = 1).

Lemma 10. Under assumptions (A’) and (B’)

(5.17) |JN1 (αN )− J(ρ,m)| ≤ C√
N
.

Proof. Inequality (5.6), together with notation 2, yields

(5.18) |J(α,m)− J(ρ,m)| ≤ C√
N
.
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While from (2.5), (5.14) and (5.15) we have

|JN1 (αN )− J(α,m)| ≤ E|ψ(XN
1 (T ), µN (T ))− ψ(Y N1 (T ),m(T ))|

+ E

∫ T

0

|c(t,XN
1 (t), αN1 (t), µN (t))− c(t, Y N1 (t), αN1 (t),m(t))|dt

≤ K2

∫ T

0

[
E|XN

1 (t)− Y N1 (t)|+ E|µN (t)−m(t)|
]
dt

+K2

[
E|XN

1 (T )− Y N1 (T )|+ E|µN (T )−m(T )|
]

≤ K2T
C√
N

+K2
C√
N
≤ C√

N
,

which, combined with (5.18), gives the claim. �

We consider then any β ∈ A and the perturbed strategy vector [αN,−1, β]. We

denote by X̃N the solution to

(5.19) X̃N
i (t) = ξNi +

∫ t

0

∫
U

f(s, X̃N
i (s−), u, [αN,−1, β]i(s), µ̃N (s−))NN

i (ds, du)

for each i = 1, . . . , N . Set also Ỹ1 := Xβ,m and µ̃N (t) := 1
N

∑N
i=1 δX̃Ni (t).

Lemma 11. Under assumption (A’), for any t ≥ 0 and β ∈ A

E|µN (t)− µ̃N (t)| ≤ C

N
(5.20)

E|µ̃N (t)−m(t)| ≤ C√
N

(5.21)

E|X̃N
1 (t)− Ỹ1(t)| ≤ C√

N
.(5.22)

Proof. We make the rough estimate

E|µN (t)− µ̃N (t)| ≤ 1

N
E|XN

1 (t)− X̃N
1 (t)|+ 1

N

N∑
i=2

E|XN
i (t)− X̃N

i (t)|

≤ d

N
+

1

N

N∑
i=2

∫ t

0

∫
U

E|f(s,XN
i (s), u, αNi (s), µN (s))

− f(s, X̃N
i (s), u, αNi (s), µ̃N (s))|ν(du)ds

≤ d

N
+

1

N

N∑
i=2

K1

∫ t

0

[
E|XN

i (s)− X̃N
i (s)|+ E|µN (s)− µ̃N (s)|

]
ds.

Hence

E|µN (t)− µ̃N (t)|+ 1

N

N∑
i=2

E|XN
i (t)− X̃N

i (t)|

≤ d

N
+ 2K1

1

N

N∑
i=2

∫ t

0

[
E|XN

i (s)− X̃N
i (s)|+ E|µN (s)− µ̃N (s)|

]
ds

and then, by Gronwall’s lemma,

E|µN (t)− µ̃N (t)|+ 1

N

N∑
i=2

E|XN
i (t)− X̃N

i (t)| ≤ d

N
e2K1T ≤ C

N
.
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Therefore (5.20) is proved. Estimate (5.21) follows from (5.20) and (5.14) and the
fact that 1

N ≤
1√
N

for any N ∈ N. While (5.22) is a consequence of (5.21):

E|X̃N
1 (t)− Ỹ1(t)|

≤
∫ t

0

∫
U

E
∣∣∣f(s, X̃N

1 (s), u, β(s), µ̃N (s))− f(s, Ỹ1(s), u, β(s),m(s))
∣∣∣ ν(du)ds

≤ K1

∫ t

0

[
E|X̃N

1 (s)− Ỹ1(s)|+ E|µN (s)−m(s)|
]
ds

≤ K1

∫ t

0

[
E|X̃N

1 (s)− Ỹ1(s)|+ C√
N

]
ds

and we conclude by Gronwall’s lemma. �

Lemma 12. Under assumptions (A’) and (B’)

(5.23) |JN1 ([αN,−1, β])− J(β,m)| ≤ C√
N
.

Proof. Inequalities (2.5), (5.21) and (5.22) give

|JN1 ([αN,−1,β])− J(β,m)| ≤ E|ψ(X̃N
1 (T ), µ̃N (T ))− ψ(Ỹ1(T ),m(T ))|

+ E

∫ T

0

|c(t, X̃N
1 (t), β(t), µ̃N (t))− c(t, Ỹ1(t), β(t),m(t))|dt

≤K2

∫ T

0

[
E|X̃N

1 (t)− Ỹ1(t)|+ E|µ̃N (t)−m(t)|
]
dt

+K2

[
E|X̃N

1 (T )− Ỹ1(T )|+ E|µ̃N (T )−m(T )|
]

≤K2T
C√
N

+K2
C√
N
≤ C√

N
.

�

Theorem 8 is now a consequence of Lemmata 10 and 12:

Proof of Theorem 8. Inequalities (5.17), (5.23), and the optimality of ρ yield

JN1 (αN ) ≤ J(ρ,m) +
C√
N
≤ J(β,m) +

C√
N
≤ JN1 ([αN,−1, β]) +

C√
N
.

�

Remark 3. We observe that αN is still an εN -Nash equilibrium if we assume only
(B) instead of (B’), but without the estimate of the order of convergence εN ≤ C√

N
.

Namely, there exists a sequence (εN ) such that limN→∞ εN = 0.

Proof of Theorem 9. The argument is the same as in the proof of Theorem 8. The
difference is that equations (5.10), (5.11) and (5.19) become respectively, for each
i = 1, . . . , N ,

XN
i (t) = ξNi +

∫ t

0

∫
U

f(s,XN
i (s−), u, γ(s,XN

i (s−)), µN (s−))NN
i (ds, du),

Y Ni (t) = ξNi +

∫ t

0

∫
U

f(s, Y Ni (s−), u, γ(s, Y Ni (s−)),m(s))NN
i (ds, du)

and

X̃N
i (t) = ξNi +

∫ t

0

∫
U

f(s, X̃N
i (s−), u, [γN,−1, β]i(s), µ̃N (s−))NN

i (ds, du),
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where the latter means that

X̃N
1 (t) = ξN1 +

∫ t

0

∫
U

f(s, X̃N
1 (s−), u, β(s), µ̃N (s−))NN

1 (ds, du)

and

X̃N
i (t) = ξNi +

∫ t

0

∫
U

f(s, X̃N
i (s−), u, γ(s, X̃N

i (s−)), µ̃N (s−))NN
i (ds, du)

for i = 2, . . . , N , thanks to Notation 1. The estimates we need to apply Gronwall’s
lemma, in particular in the proof of Lemma 11, are found using also (2.4) and the
fact that dist(γ(s, x), γ(s, y)) ≤ Diam(A)|x − y| for every s and each x and y in
the finite Σ. �

6. Conclusions

We summarize here the results we have obtained. The assumptions are given in
Section 2.1 and verified for a natural shape of the dynamics in Lemmata 3 and 4.

(1) Under assumptions (A) and (B), there exist a relaxed mean field game
solution and a relaxed feedback mean field game solution (in the sense of
Definition 7), see Theorems 2 and 3, respectively.

(2) Assuming (A), (B) and (C), there exists a feedback solution of the mean
field game (Definition 4), see Corollary 1. The feedback mean field game
solution is unique for small T under the additional assumptions of Sec-
tion 4.3 by Theorem 6; uniqueness for arbitrary time horizon holds under
the Lasry-Lions monotonicity assumptions, see Theorem 7.

(3) The relaxed mean field game solutions provide εN -Nash equilibria for the
N -player game (cf. Definition 2), both in open-loop and in feedback form
(not relaxed), with εN ≤ C√

N
. If (A’) and (B’) hold, then the symmetric

open-loop strategy vector defined in Notation 2 is an εN -Nash equilibrium
by Theorem 8. Assuming (A”) and (B”), the feedback strategy vector
defined in Notation 3, which is symmetric and decentralized, is a feedback
εN -Nash equilibrium thanks to Theorem 9.

Appendix A. Relaxed Poisson measures

In order to state the definition of the relaxed Poisson random measure we first
need to define the canonical space of integer valued random measures on a metric
space E. Following Jacod (1979), the setting is:

• Ω is the set of sequences (tn, yn) ⊂ [0,+∞]×E such that (tn) is increasing
and tn < tn+1 if tn < +∞; set t0 := 0 and t∞ := limn tn;
• if ω = (tn, yn)n∈N write Tn(ω) := tn and Yn(ω) := yn;
• the canonical random measure is

N (ω,B) :=
∑
n∈N

1{Tn(ω)<∞}δ(Tn(ω),Yn(ω)(B)

for any B ∈ B([0,+∞[×E);
• Gt := σ

(
N (·, B) : B ∈ B([0, t]× E)

)
, F0 is given, F t = F0 ∨

(
∩s<tGs

)
,

F = F∞ and F = (F t)t≥0.

The filtered space (Ω,F ,F) is then the canonical space of integer valued random
measures on E. A probability measure on it is the law of an integer valued random
measure on E, given an initial condition on F0. Note that the canonical measure
N is not the identity: for this reason we can work with M = M([0,+∞[×E) as
the state space of a random measure. Moreover, the set of integer valued random
measures is vaguely closed inM: see Theorem 15.7.4 in Kallenberg (1986) and the
references therein.
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Let now Θ be any integer valued random measure defined on a filtered probability
space (Ω,F ,F, P ). It is determined by a sequence of stopping times Tn and random
variables Xn which are FTn -measurable. To any Θ is associated its compensator,
that is, a positive random measure η on E such that

(1) η([0, t]×B)t≥0 is predictable for any B ∈ B(E);
(2) (Θ([0, t∧Tn]×B)− η([0, t∧Tn]×B))t≥0 is an F-martingale for each n and

B;
(3) η({t} × E) ≤ 1 for each t and η([T∞,∞[×E) = 0.

The compensator exists and is unique (up to a modification on a P -null set) for
any Θ. The proof can be found in Jacod (1975), where the author also shows that
a process with the above properties uniquely determines an integer valued random
measure.

Consider then an arbitrary measurable space (Ω′,F ′) and define Ω := Ω × Ω′.
Set F0 :=

{
∅,Ω

}
and F0 := F0 ⊗ F ′. The canonical random measure N on Ω is

extended to Ω via (Tn, Yn).(ω, ω′) := (Tn, Yn).(ω). Set Ft := F t ∨ F0.

Theorem 10 (Jacod (1975)). Let P0 be a probability measure on (Ω,F0) and η
a predictable random measure satisfying (1) and (3). Then there exists a unique
probability measure P on (Ω,F∞) whose restriction to F0 is P0 and for which η is
the compensator of N .

By means of this theorem, we are able to define properly a relaxed Poisson
measure. Consider a relaxed control ((Ω′′,F ′′, P ′′;F′′), ρ, ξ,N ) ∈ R and let Ω′ =
D × Σ × Ω be the state space of the process ρ, the initial distribution ξ and the
Poisson random measure N . The σ-algebra F ′ is generated by the processes and P0

is the joint law of (ρ, ξ,N ). So a relaxed Poisson measure Nρ, related to the relaxed
control ρ, is an integer valued random measure on [0, T ]×U×A whose compensator
η, calculated on [0, t], U0, A0, is ν(U0)ρ([0, t]×A0). Its law is uniquely determined
on Ω and thus has the martingale properties (2.17) and (2.18). Moreover, the joint
law of (Nρ, ρ, ξ,N ) is uniquely determined.

We can give an explicit construction of Nρ. Let ρ ∈ R and (αn) be a se-
quence in A which tends to ρ in the sense of Lemma 8, the chattering lemma.
Denote by ραn the relaxed control representation of αn and construct Nαn as in

(2.19): Nαn(t, U0, A0) :=
∫ t

0

∫
U0
1A0(αn(s))N (ds, du). Then, by Theorem 1, the

sequence (Xαn , ρ
αn ,Nαn) is tight and any subsequence converges in distribution to

(Xρ, ρ,Nρ). The marginals are uniquely defined in this way, while to show that the
joint law of (ρ,Nρ) is unique we need to invoke the above Theorem 10.

A.1. Proof of Lemma 1. Let m ∈ L be fixed, which we shall omit. Let Z be the
space of stochastic processes with paths in D([0, T ],Σ) and equip it with the norm
||X|| = E

[
sup0≤t≤T |X(t)|

]
. Let ρ ∈ R and define the map G : Z −→ Z by

Gt(X) := ξ +

∫ t

0

∫
U

∫
A

f(s,X(s−), u, a)Nρ(ds, du, da)

for any X ∈ Z. If we prove that this map is a contraction in the norm || · ||, then
pathwise existence and uniqueness of solutions to equation (2.20) follow. We have,
for any X,Y ∈ Z,

|Gt(X)−Gt(Y )| ≤
∫ t

0

∫
U

∫
A

|f(s,X(s−), u, a)− f(s, Y (s−), u, a)|Nρ(ds, du, da),
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hence

E

[
sup

0≤t≤T
|Gt(X)−Gt(Y )|

]
≤ E

∫ T

0

∫
U

∫
A

|f(s,X(s), u, a)− f(s, Y (s), u, a)|ρs(da)ν(du)ds

≤ K1E

∫ T

0

∫
A

|X(s)− Y (s)|ρs(da)ds ≤ K1TE

[
sup

0≤t≤T
|X(s)− Y (s)|

]
thanks to (2.1) and the fact that ρs is a probability measure. Therefore G is a
contraction if T < 1

K1
, and so uniqueness is proved for small time horizon; but then

iterating the same argument, we have uniqueness for any T .

Consider now γ̂ ∈ Â and define Ĝ : Z −→ Z by

Ĝt(X) := ξ +

∫ t

0

∫
U

∫
A

f(s,X(s−), u, a)Nργ̂,X (ds, du, da)

for any process X ∈ Z. Then for any X and Y we have ||Ĝ(X) − Ĝ(Y )|| ≤
||Z1||+ ||Z2|| where

Z1(t) :=

∫ t

0

∫
U

∫
A

|f(s,X(s−), u, a)− f(s, Y (s−), u, a)|Nργ̂,Y (ds, du, da)

and

Z2(t) :=

∫ t

0

∫
U

∫
A

|f(s,X(s−), u, a)|
∣∣Nργ̂,X −Nργ̂,Y ∣∣ (ds, du, da),

where |Θ| denotes the total variation of the signed measure Θ defined for any
C ∈ B([0, T ]×U ×A) by |Θ|(C) := supE⊆C |Θ(E)|; while the total variation norm
is ||Θ||TV = |Θ|([0, T ] × U × A). The first term Z1 is bounded as above yielding
||Z1|| ≤ K1T ||X − Y ||. For the second term, we use |f | ≤ d to obtain

sup
0≤t≤T

Z2(t) ≤ d||Nργ̂,X −Nργ̂,Y ||TV = d sup
E⊂[0,T ]×U×A

∣∣Nργ̂,X (E)−Nργ̂,Y (E)
∣∣ .

Thanks to (2.17) and (2.13), we have E||Nργ̂,X −Nργ̂,Y ||TV ≤ 2Tν(U), saying that
the right-hand side above is finite P -a.s. Since the measure Nργ̂,X −Nργ̂,Y is integer
valued, we can assume that the above supremum is attained on a set C(ω) for P -a.e.
ω, giving thus a random set C. Moreover, we may assume that on such a set the
random measure considered is positive. The martingale property (2.18) now gives

||Z2|| ≤ dE
[
Nργ̂,X (C)−Nργ̂,Y (C)

]
= d

∣∣∣∣∣E
∫ T

0

∫
U

∫
A

1C(t, u, a)[γ̂(t,X(t))− γ̂(t, Y (t))](da)ν(du)dt

∣∣∣∣∣
≤ dE

∫ T

0

|γ̂(t,X(t))− γ̂(t, Y (t))|(A)ν(U)dt

≤ 2ν(U)dE

∫ T

0

|X(t)− Y (t)|dt ≤ K1T ||X − Y ||,

where in the last line above we have used the fact that γ̂ is a probability measure

and |x − y| ≥ 1 for each x 6= y ∈ Σ. Therefore, for T < 1
2K1

, the map Ĝ is a
contraction; the claim follows iterating the above procedure.
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M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic
games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence
principle. Commun. Inf. Syst., 6(3):221–252, 2006.

N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion
Processes, volume 24 of North-Holland Mathematical Library. North Hol-
land/Kodansha, Amsterdam, 2nd edition, 1989.

J. Jacod. Multivariate point processes: predictable projection, Radon-Nikodym
derivatives, representation of martingales. Z. Wahrscheinlichkeitstheorie verw.
Gebiete, 31:235–253, 1975.
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