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Abstract. We provide an abstract framework for submodular mean field games and iden-
tify verifiable sufficient conditions that allow us to prove the existence and approximation
of strong mean field equilibria in models where data may not be continuous with respect
to the measure parameter and common noise is allowed. The setting is general enough to
encompass qualitatively different problems, such as mean field games for discrete time
finite space Markov chains, singularly controlled and reflected diffusions, and mean field
games of optimal timing. Our analysis hinges on Tarski’s fixed point theorem, along with
technical results on lattices of flows of probability and subprobability measures.

Funding: Financial support by the German Research Foundation [Collaborative Research Centre Grant
1283/2 2021–317210226] is acknowledged.

Keywords: mean field games • submodularity • complete lattice of measures • Tarski’s fixed point theorem • Markov chain •
singular stochastic control • reflected diffusion • optimal stopping

1. Introduction
Mean field games (MFGs in short) are limit models for noncooperative symmetric N-player games with interac-
tion of mean field type as the number of players N tends to infinity. They have been proposed independently by
Huang et al. [39] and Lasry and Lions [42], and since their introduction, they have attracted increasing interest
in various fields of mathematics ranging from the theory of partial differential equations (PDEs) to stochastic
analysis and game theory as well as in applications in economics, finance, biology, and engineering among
others; we refer, for instance, to the recent book by Carmona and Delarue [19] for an extensive presentation of
theoretical results and applications.

The interest in identifying a key property that allows us to prove the existence and approximation of equilibria
for a general class of MFGs has motivated our study. Inspired by the early contribution of Topkis [57] on sub-
modularN-player games (i.e., games in which players minimize cost functions, which are submodular in the vec-
tor of strategies chosen by all the players) in a static setting, we identify submodularity as a relevant structural
condition and explore the flexibility of lattice-theoretical techniques in MFGs enjoying a submodular structure.
Submodular MFGs have already been considered in the literature; see Adlakha et al. [1] for a class of stationary
discrete time games, Carmona et al. [20] for optimal timing MFGs, Dianetti et al. [25] for MFGs involving a regu-
larly controlled one-dimensional Itô diffusion, and WieRcek [60] for a class of finite state MFGs with exit. It is cru-
cial to underline that (see Dianetti et al. [25] or Remark 2) when it comes to MFGs, the submodularity property
represents an antithetic version of the well-known Lasry–Lions monotonicity condition, which is typically
related to the uniqueness of equilibria (see Carmona and Delarue [19]).

In this work, we push the analysis of ours (Dianetti et al. [25]) much forward, and we provide an abstract
framework for submodular MFGs, which embeds qualitatively different problems and allows us to show the
existence and approximation of their mean field equilibria. The results of our work can be informally presented
as follows.

1. The submodular structure of the game yields an alternative way of establishing the existence of MFG solutions
by using the lattice-theoretical Tarski’s fixed point theorem rather than topological fixed point results. This allows
us to treat systems with coefficients that are possibly discontinuous in the measure variable as well as to prove the
existence of strong solutions in settings involving a common noise.

2. The set of MFG solutions enjoys a lattice structure so that there exist a minimal solution and a maximal solu-
tion with respect to a suitable order relation.
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3. A learning procedure, which consists of iterating the best-response map (thus, computing a new flow of meas-
ures as the best response to the previous measure flow), converges to the minimal (or the maximal) MFG solution
for appropriately chosen initial measure flows.

These claims are made precise in Theorem 1 under suitable assumptions that are formulated at a general
abstract level. Those requirements do not involve nondegeneracy of the underlying noise and are satisfied in a
variety of formulations of the mean field game problem, including deterministic frameworks. Clearly, the setting
of our previous work (Dianetti et al. [25]) is included. Furthermore, in this paper we highlight the flexibility of
the approach by considering four qualitatively different problems, in which the representative agent minimiza-
tion problem involves as a state variable (i) a finite state discrete time Markov chain (see Section 4); (ii) a singu-
larly controlled Itô diffusion, possibly affected by a common noise (see Section 5); (iii) an Itô diffusion facing a
reflecting boundary condition (see Section 6); and (iv) a general progressive stochastic process whose evolution
can be stopped by the representative player (see Section 7). Here, a common source of noise is also allowed. For
each of these examples, existence and approximation results are derived through a suitable application of Theo-
rem 1. It is worth noting that fine properties of lattices of probability and subprobability measures are needed in
order to apply Theorem 1 in the different examples. As we were unable to find a precise reference for those prop-
erties, we present them in brevity in Section 3. Given the generality of the setting in which they are obtained, we
believe that those findings are of interest on their own and might be a useful technical tool in other works as
well.

The approach that we follow in this paper focuses exclusively on the representative agent minimization prob-
lem, without reformulating the problem in terms of a related forward-backward system or of the master equa-
tion. Whether those reformulations of the mean field game problem allow one to obtain results of a similar
fashion as ours is, to the best of our knowledge, an open question that we leave for future research.

1.1. Existence and Approximation Results in MFGs
Questions of existence and approximation of mean field equilibria have been addressed in the literature at vari-
ous degrees of generality and through different mathematical techniques.

General existence results for solutions to the MFG problem can be obtained through Banach’s fixed point theorem
if the time horizon is small (see Huang et al. [39]). For an arbitrary time horizon, a version of the Brouwer–Schauder
fixed point theorem, including generalizations to multivalued maps, can be used (see Cardaliaguet [17] and Lacker
[41]; see also Fu andHorst [31] in the context ofMFGswith singular controls). In the presence of a common noise (i.e.,
an aggregate source of randomness), the existence of a weak MFG solution (i.e., not adapted to the common noise)
can be established for a general class ofMFGs. On the other hand, the existence of a strongMFG solution (i.e., adapted
to the common noise) has been addressed mainly under conditions that imply uniqueness of equilibria. For example,
in Carmona et al. [20], an analogue of the famous result by Yamada andWatanabe is derived, and it is used to prove
the existence and uniqueness of a strong solution under the Lasry–Lions monotonicity conditions (see Lasry and
Lions [42]). Under a lack of uniqueness, the existence of strong solutions remainsmainly an open question.

Because uniqueness of equilibria in game theory is the exception rather than the rule, it is not surprising that
multiple solutions also often arise in MFGs. This phenomenon has been investigated mainly on a case by case
basis, and specific examples with multiple solutions have been presented in the recent literature: Bardi and
Fischer [3], Cecchin et al. [22], Delarue and Tchuendom [23], and Tchuendom [56] among others. Interestingly,
the submodularity assumption appears implicitly in a number of classical linear-quadratic models (see, e.g., Ben-
soussan et al. [9]) and in Bardi and Fischer [3], Campi et al. [14], Cecchin et al. [22], and Delarue and Tchuendom
[23], although this property is not exploited therein. The increasing interest in the nonuniqueness of solutions
together with the perspective of characterizing many models through a unique key structural property has been
one of the main motivations for our study of submodular MFGs.

Once existence is established, it is natural to investigate how and whether solutions to MFGs can be approxi-
mated in a constructive way. This problem has been addressed by Cardaliaguet and Hadikhanloo [18]. They ana-
lyze a learning procedure—similar to what it is known as “fictitious play” (see Hofbauer and Sandholm [38] and
the references therein)—where the representative agent, starting from an arbitrary flow of measures, computes a
new flow of measures by updating the average over past measure flows according to the best response to that
average. For potential mean field games, the authors establish convergence of this kind of fictitious play via PDE
methods. Similar approaches have been further developed in some more recent works (see Elie et al. [28], Perrin
et al. [51], and Xie et al. [62] among others) with the help of machine learning techniques, providing a rich set of
tools able to address computational aspects in MFGs. As already discussed, our result also contributes to the
approximation question because the submodularity condition provides convergence of a simple learning proce-
dure à la Topkis [58], consisting of iterating the best-response map (see Dianetti et al. [25] and also, see Dianetti
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and Ferrari [24] in the context of N-player games). In particular, this type of algorithm seems to be quite promis-
ing when combined with reinforcement learning methods, as shown in the recent work by Lee et al. [43] for sta-
tionary discrete time finite state MFGs with complementarities.

1.2. Examples
We now discuss in more detail the applications of Theorem 1 that we present in this work by also reviewing the
related literature.

1.2.1. Submodular Mean Field Games with Finite State Discrete Time Markov Chains. We start with a simple class
of finite state discrete time MFGs where expected costs are to be minimized over a finite time horizon. Control
acts on the Kolmogorov equation: that is, on the transition matrix that determines the evolution of the state prob-
ability vector. Mean field interaction only occurs through the measure variable appearing in the cost coefficients.
We relate our model to the general setup of Section 2 and provide sufficient conditions so that part (a) of Theo-
rem 1 applies, yielding the existence of solutions. We also give a simple example of a class of two-state models
satisfying those conditions. They are related to the continuous time two-state MFGs studied in Cecchin et al. [22]
and Gomes et al. [33]; also see Bayraktar and Zhang [4], which exhibits multiple solutions.

The study of finite state discrete time MFGs goes back to Gomes et al. [32], where existence and convergence
to equilibrium for a class of finite horizon problems were established. For discrete MFGs of this type satisfying
an analogue of the Lasry–Lions monotonicity condition, convergence of a fictitious play learning procedure is
proved in Hadikhanloo and Silva [36]. There, discrete models are also shown to approximate corresponding con-
tinuous time and space MFGs. Existence of solutions for a general class of finite and infinite horizon discrete
MFGs is established in Doncel et al. [26], and their connection with the underlying N-player games is investi-
gated. Discrete time MFGs with more general state space have been studied recently under various optimality
criteria; see Saldi et al. [53, 54] for infinite horizon discounted cost and risk-sensitive problems, respectively;
WieRcek [61] for ergodic MFGs; and Bonnans et al. [12] for risk-averse problems. Existence of solutions in those
works is established through a topological fixed point theorem; in particular, cost coefficients are assumed to
depend continuously on the measure variable. Although our simple discrete models fall under the framework
of, for instance, Doncel et al. [26], the continuity assumptions there are not needed here because here, as in the
aforementioned Adlakha et al. [1] and WieRcek [60], we rely on an order-theoretic fixed point result. Lastly, we
mention that our finite state MFGs do not involve common noise. Choosing a common noise for finite state prob-
lems is in fact less straightforward than in the usual continuous space setting; see the recent works by Bayraktar
et al. [7, 8] for continuous time finite state problems.

1.2.2. Submodular Mean Field Games with Singular Controls. The number of papers considering MFGs of singu-
lar stochastic controls is still relatively limited. Fu and Horst [31] employs a relaxed approach in order to establish
the existence for a general class of MFGs involving singular controls, whereas the more recent work of Fu [30]
extends the analysis toMFGs, in which interaction takes place both through states and through controls. In Campi
et al. [14] and Guo and Xu [35], MFGs for finite fuel follower problems are considered. By employing the connec-
tion to problems of optimal stopping and PDE methods, respectively, the structure of the mean field equilibrium
as well as its connection to Nash equilibria for the correspondingN-player stochastic differential games is derived.
Finally, Cao and Guo [15] and Cao et al. [16] study stationary MFGs (i.e., games in which the interaction comes
through the stationary distribution of the population of players). Cao et al. [16] considers ergodic and discounted
performance criteria and studies the relation across the corresponding equilibria; in Cao and Guo [15], the repre-
sentative player can employ two-sided controls in order to adjust geometric dynamics and optimize a certain dis-
counted payoff. It is worth noting that none of the previous contributions allow for the presence of common noise,
whichwe can instead treat in our analysis.We can indeed show that the class of submodularMFGswith geometric
dynamics that we consider in Section 5.1 admits strong equilibria (i.e., adapted to the common noise), which can
in fact also be approximated through the previously discussed learning algorithm à la Topkis. In the case of a gen-
eral nonconvex setting, a weak formulation of the singular control MFG is employed, and existence of mean field
equilibria is proved by means of an approximation result through Lipschitz-continuous controls. Furthermore,
convergence of the learning procedure is also established (see Section 5.2).

1.2.3. Submodular Mean Field Games with Reflecting Boundary Conditions. Theorem 1 also yields the existence
and approximation of equilibria for submodular MFGs in which the representative player can employ regular
controls in order to adjust the drift of a one-dimensional Itô diffusion, which is constrained, via a Skorokhod
reflection, to live in a bounded interval (see Section 6). These models have received recent interest because they
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naturally arise as suitable limits of interacting queuing systems; see Bayraktar et al. [5, 6]. As in Bayraktar et al.
[6], we employ a weak (distributional) approach, and by enforcing additional mild technical requirements on the
data of the problem, an application of Tanaka’s formula for continuous semimartingales allows us to embed the
considered MFG into the class of abstract submodular MFGs for which Theorem 1 holds. Then, the existence and
approximation of mean field equilibria follow.

1.2.4. Supermodular Mean Field Games with Optimal Stopping. In Section 7, we consider a class of MFGs where
the representative agent can choose a stopping time in order to stop the evolution of a general multidimen-
sional progressive process while maximizing a certain reward functional. The model is formulated by includ-
ing the presence of a common noise. By assuming that the running profit function is increasing with respect
to the stochastic order put on the lattice of subprobability measures, the game enjoys a supermodular (rather
than submodular because here, we are dealing with a maximization problem) structure that allows us to
invoke Theorem 1 and show the existence of equilibria. Furthermore, under suitable continuity requirements,
convergence of a learning procedure is obtained.

Models involving MFGs of optimal stopping have been considered in the economic literature mostly in sta-
tionary settings (see Luttmer [45] and Miao [48] in the context of industry equilibria) and more recently, under
greater generality in the mathematical literature; see Aïd et al. [2], Bertucci [10], and Bouveret et al. [13]. Using a
relaxed solution approach, in Aïd et al. [2] and Bouveret et al. [13], an Itô-diffusive setting not allowing for a
common noise is considered (see also Example 3 in Section 7). In Bertucci [10], an analytical approach to MFGs of
optimal stopping is developed through the study of the associated variational inequality. Explicit use of the
supermodular property and of Tarski’s fixed point theorem in an MFG of stopping with common noise is made
in Carmona et al. [21] (see also Example 4 in Section 7).

1.3. Outline of the Paper
The rest of the paper is organized as follows. Section 2 presents the general approach to submodular MFGs.
There, we state and prove Theorem 1. Section 3 derives the properties of lattices of probability and subprobabil-
ity measures needed in the paper. The remaining sections deal with applications of the abstract setup. Section 4
deals with MFGs having discrete time finite space Markov chains as state variables. Section 5 considers MFGs
with singular controls. Section 6 treats MFGs with reflecting boundary conditions, whereas MFGs of optimal
stopping are addressed in the Section 7. For the reader’s convenience, we collect some lattice-theoretical prelimi-
naries in the appendix.

1.3.1. General Notation. For a fixed finite time horizon T ∈ (0,∞), we introduce the following canonical spaces.
1. C denotes the space of R-valued continuous functions defined on [0,T], endowed with the supremum norm

and the Borel σ-algebra B(C) generated by the supremum norm.
2. For a set A ⊂ R, letΛ denote the set of deterministic relaxed controls on [0,T] × A: that is, the set of positive meas-

ures λ on [0,T] × A such that λ([s, t] × A) � t− s for all s, t ∈ [0,T] with s < t. The set Λ is endowed with the topol-
ogy of weak convergence of probability measures, and B(Λ) denotes the related Borel σ-algebra.

3. D denotes the Skorokhod space of R-valued càdlàg functions, defined on [0,T], endowed with the Borel
σ-algebra B(D) generated by the Skorokhod topology. On the spaceD, consider the pseudopath topology τTpp: that is, the
topology on D induced by the convergence in the measure dt+ δT on the interval [0,T], where dt denotes the Leb-
esgue measure and δT denotes the Dirac measure at the terminal time T. For the topological space (D,τTpp), the Borel
σ-algebra induced by the topology τTpp coincides with the σ-algebra induced by the Skorokhod topology (see the

appendix in Li and Žitković [44]).
4. D↑ denotes the set of elements of D, which are nonnegative and nondecreasing, endowed with the Borel

σ-algebra B(D↑) induced by the Skorokhod topology. Note that D↑ is a closed subset of the topological space
(D,τTpp).

5. V denotes the set of elements of D with bounded total variation endowed with the Borel σ-algebra B(V)
induced by the Skorokhod topology. Furthermore, the space V is a closed subset of the topological space (D,τTpp).

2. A General Approach to Submodular MFGs
In this section, we consider an abstract version of a mean field game. The aim of this section is to collect funda-
mental structural conditions and arguments, which provide a common basis for the examples treated in the next
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sections. For the lattice-theoretical notions and preliminaries that are used throughout this section and the rest of
this paper, we refer to the appendix.

2.1. Formulation of the Abstract Model
Let (L, �L ) be a complete and Dedekind super complete lattice, which represents the set of possible distributions
of players; see Definition A.1. Let E be the set of strategies of the representative player. The set E is endowed
with a topology and a map p : E→ L, which can be interpreted as a projection, that maps each strategy to a
related distribution. The representative player wants to minimize a cost functional J : E × L→ R, depending also
on the distribution of her opponents.

We make the following assumption (see also Remark 1 for a generalization).

Assumption 1. For every µ ∈ L, we assume the following.
1. The set arg minE J(·,µ) is nonempty, and J(·,µ) is lower semicontinuous.
2. For any sequence (νn)n ⊂ arg minE J(·,µ) such that p(νn) is nondecreasing or nonincreasing in L, there exists a subse-

quence (nj)j∈N and ν ∈ arg minE J(·,µ) such that νnj converges to ν as j→∞ and pν � supjp(νnj) or pν � infjp(νnj),
respectively.

For µ ∈ L, we define the set of best responses R(µ) ⊂ L by

R(µ) :� p
(
arg min

ν∈E
J(ν,µ)

)
:

Definition 1. We say that µ ∈ L is a mean field game equilibrium if µ ∈ R(µ) (i.e., µ is a fixed point of the best-
response map).

2.2. Submodularity Conditions and Properties of the Best-Response Map
Existence of MFG solutions is subject to the following abstract structural condition.

Assumption 2 (Submodularity Conditions). There exist operations �E , �E : E × E→ E.
1. The projection p behaves like a homeomorphism of lattices: that is,

p(ν�E ν̄)�L pν�L pν̄�L pν�L pν̄�L p(ν�Eν̄), for each ν, ν̄ ∈ E:

2. The cost functional satisfies the following submodularity properties

J(ν�Eν̄, µ̄) − J(ν̄, µ̄)� J(ν�Eν̄,µ) − J(ν̄,µ)� J(ν,µ) − J(ν�E ν̄,µ),
for each ν, ν̄ ∈ E and µ, µ̄ ∈ L with µ�L µ̄.

We underline that condition 2 in Assumption 2 coincides with the conditions in Topkis [57] only in the case in
which (E, �E , �E) is a lattice.

We start our analysis with the following result on the structure of the sets of best responses.

Lemma 1. Under Assumptions 1 and 2, we have the following.
a. The set R(µ) is directed (i.e., for every η1,η2 ∈ R(µ), there exist η� ,η� ∈ R(µ) such that η� �L η1�L η2 and

η� � Lη1�L η2).
b. For all µ, µ̄ ∈ L with µ�L µ̄, infR(µ)�L infR(µ̄), and supR(µ)�L supR(µ̄).
c. For every µ ∈ L, infR(µ) ∈ R(µ) and supR(µ) ∈ R(µ).

Proof. We prove each of the claims separately. To this end, let µ, µ̄ ∈ L with µ�L µ̄. Moreover, let η1 ∈ R(µ) and
η2 ∈ R(µ̄).

a. By definition of R(µ) and R(µ̄), there exist
ν1 ∈ arg min

ν∈E
J(ν,µ) and ν2 ∈ arg min

ν∈E
J(ν, µ̄) with pν1 � η1 and pν2 � η2:

By condition 1 in Assumption 2, we can define ν� ,ν� ∈ E by ν� :� ν1�E ν2 and ν� :� ν1�Eν2, leading to pν� �L pν1

�L pν2 and pν� � Lpν1�L pν2. The optimality of ν1 and ν2 for η1 and η2, respectively, together with condition 2 in
Assumption 2 implies that

0� J(ν� , µ̄) − J(ν2, µ̄)� J(ν� ,µ) − J(ν2,µ)� J(ν1,µ) − J(ν� ,µ)�0:
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This shows that η� :� pν� ∈ R(µ) and η� :� pν� ∈ R(µ̄). Now, the statement in (a) directly follows by choosing
µ � µ̄.

b. By part (a), η� ∈ R(µ) and η� ∈ R(µ̄) imply that

infR(µ)�L η� � pν� �L pν2 � η2 and η1 � pν1�L pν� � η� �L supR(µ̄):
Taking the infimum over all η2 ∈ R(µ̄) and the supremum over all η1 ∈ R(µ) yields the assertion in (b).

c. We now prove the claim only for the infimum; the statement for the supremum follows in an analogous man-
ner. Because L is, by assumption, Dedekind super complete, there exists a sequence (µn)n ⊂ R(µ) such that
infR(µ) � infnµn. Therefore, we can find a sequence (νn)n ⊂ arg minJ(·,µ) with pνn � µn. We can inductively define
a new sequence (ν� ,n)n by setting

ν� ,1 :� ν1 and ν� ,n+1 :� ν� ,n�E νn+1, n�1:

As shown in the proof of part (a), we have that ν� ,1 ∈ arg minJ(·,µ), and by induction, we deduce that ν� ,n ∈
arg minJ(·,µ) for each n ∈ N. Define now the sequence (µ� ,n)n setting, µ� ,n :� pν� ,n for each n ∈ N, and note that
µ� ,n ∈ R(µ). Moreover, condition 1 in Assumption 2 implies that

µ� ,n+1 � p(ν� ,n+1) � p(ν� ,n�E νn+1)�L pν� ,n�L pνn+1 � µ� ,n�L µn+1,

which at the same time, implies that (µ� ,n)n is nonincreasing in L and that µ� ,n�L µn for each n ∈ N. Hence, we have

infR(µ) � inf
n
µn � inf

n
µ� ,n:

Moreover, by Assumption 1, there exists a subsequence (nj)j∈N and a limit point ν ∈ arg minE J(·,µ) such that

pν � infj p(ν� ,nj) � inf
j
µ� ,nj � infR(µ),

so that infR(µ) ∈ R(µ). w

2.3. Existence and Approximation of MFG Solutions
For the approximation of MFG solutions, we will enforce the following additional continuity requirements (see
again Remark 1 for a generalization).

Assumption 3. For any sequence (νn)n ⊂ {arg minE J(·,µ) |µ ∈ L} such that p(νn) is increasing or decreasing in L, there exists
a subsequence (nj)j∈N and ν ∈ E such that νnj converges to ν as j→∞ and pν � supj p(νnj) or pν � infj p(νnj), respectively.

Moreover, respectively, for any nondecreasing or nonincreasing sequence (µn)n ⊂ L, we assume that
1. for any ν ∈ E, J(ν, supnµ) � limnJ(ν,µn) or J(ν, infnµ) � limnJ(ν,µn) and
2. for any sequence (νn)n ⊂ E converging to ν ∈ E, we have that J(ν, supnµ)� liminfnJ(νn,µn) or J(ν, infnµ)� lim infn

J(νn,µn).
We can then state the main result of this section.

Theorem 1. Under Assumptions 1 and 2, we have that
a. the set of mean field game equilibria M is nonempty with infM ∈M and supM ∈M. If R(µ) is a singleton for all µ ∈ L,

then M is a nonempty complete lattice.
Moreover, if Assumption 3 is satisfied, then

b. the learning procedure µ0 :� infL and µn :� infR(µn−1), for n ∈ N, is monotone increasing and converges to infM, and

c. the learning procedure µ̄0 :� supL and µ̄n :� supR(µ̄n−1), for n ∈ N, is monotone decreasing and converges to supM.

Proof.
a. Follows directly from Lemma 1 together with Tarski’s fixed point theorem applied to the maps µ �→ infR(µ)

and µ �→ supR(µ).
b. By Lemma 1, it follows that the sequence (µn)n∈N0

is increasing. By completeness of the lattice L, we can set
µ∗ :� supnµ

n. We next want to prove that µ∗ � infM.
For any n ∈ N, by Lemma 1 and the definition of µn, we can find

νn ∈ arg min
E

J(·,µn−1 )

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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with pνn � µn. By Assumption 3, we can take a subsequence (νnj)j and a limit point ν∗ such that νnj converges to
ν∗ and pνnj converges to pν∗ as j→∞. This implies that pν∗ � µ∗. Moreover, we have

J(νnj ,µnj−1 )� J(ν,µnj−1), for any ν ∈ E and j ∈ N:

Exploiting the continuity properties of J in Assumption 3, we may pass to the limit as j→∞ in the previous
inequality and obtain that

J(ν∗,µ∗)� J(ν,µ∗), for any ν ∈ E and j ∈ N:

This, in turn, implies that ν∗ ∈ arg minE J(·,µ∗), so that µ∗ � pν∗ ∈ R(µ∗). Therefore, µ∗ is an MFG solution.
We next want to prove that µ∗ is the minimal MFG solution. Let µ ∈M be another mean field game equili-

brium. Then, µ0�Lµ, which by Lemma 1, implies that µ1 � R(µ0)�L R(µ). Inductively, one obtains that µn�L µ

for all n ∈ N0, which implies that µ∗�Lµ. Because µ∗ ∈M, it follows that µ∗ � infM.
c. Follows by arguments analogous to the one used in the proof of part (b). w

The following remark proposes a set of purely order-theoretical conditions, alternative to those in Assumptions 1
and 3. These will be employed in the proof of Proposition 1.

Remark 1. The proofs of Lemma 1 and Theorem 1 show that all stated properties remain valid if Assumption 1 is
replaced by the following purely order-theoretic assumptions.

• For every µ ∈ L, the set arg minE J(·,µ) is nonempty, and the set R(µ) is closed under monotone sequences; that
is, for any nondecreasing or nonincreasing sequence (µn)n ⊂ R(µ), there exists ν ∈ arg minE J(·,µ) such that pν �
supnµ

n or pν � infnµn, respectively.
If Assumption 3 is replaced by the following two order-theoretic conditions,

• for any ν ∈ E, J(ν,·) is continuous over monotone sequences in L, and
• for any sequence (νn,µn)n ∈ E × L such that pνn and µn are nondecreasing or nonincreasing, there exist ν ∈ E such

that pν � supn pν
n or pν � infn pνn and J(ν, supnµ

n)� lim infnJ(νn,µn) or J(ν, infnµn)� lim infnJ(νn,µn), respectively.

3. Lattices of Measures Related to Submodular MFG
In this section, we discuss lattices of measures arising in the context of submodular MFGs. Again, we refer to the
appendix for the lattice-theoretic preliminaries. Throughout this section, let B(R) denote the Borel σ-algebra on R

and M�1 denote the set of all subprobability measures (i.e., the set of all (nonnegative) measures on B(R) with
µ(R)�1). We identify a distribution µ ∈M�1 by its survival function µ0, given by

µ0(s) :� µ((s,∞)) for all s ∈ R:

OnM�1, we consider the partial order �st arising from first-order stochastic dominance, given by

µ�st ν if and only if µ0(s)�ν0(s) for all s ∈ R:

Recall that, for µ,ν ∈M�1, µ�st ν if and only if∫
R

h(x)dµ(x)�
∫
R

h(x) dν(x) (1)

for all nondecreasing functions h : R→ [0,∞). In particular, µ(R)�ν(R). Note that (1) holds for all nonde-
creasing functions h : R→ R if and only if µ�st ν and µ(R) � ν(R). For a detailed discussion on the properties
of the partial order �st for probability measures, we refer to section 1.A in the book by Shaked and Shanthi-
kumar [55].

By identifying a subprobability measure µ with its survival function µ0, the set M�1 coincides with the set of
all nonincreasing right-continuous functions F : R→ [0,∞) with lims→−∞F(s)�1 and lims→∞F(s) � 0. In particu-
lar, the partial order �st induces a lattice structure onM�1 via

(µ�st ν)(s) :� µ0(s)�ν0(s) and (µ�st ν)(s) :� µ0(s)�ν0(s) for all s ∈ R:

We point out that although the firs- order stochastic dominance induces a partial order on the set of probability
measures P(Rd) on the Borel σ-algebra B(Rd), for all d ∈ N, it does not induce a lattice order on P(Rd) for d > 1;
see Müller and Scarsini [49].
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Recall that the weak convergence coincides with the pointwise convergence of survival functions at every con-
tinuity point (i.e., µn → µ weakly as n→∞ if and only if

µn
0(s) → µ0(s) as n→∞ for every continuity point s ∈ R of µ0)

and that the weak topology onM�1 (i.e., the topology induced by the weak convergence of subprobability meas-
ures) is metrizable. As a consequence, the lattice operations (µ,ν) �→ µ�st ν and (µ,ν) �→ µ�st ν are continuous
maps M�1 ×M�1 →M�1, and the weak topology is finer than the interval topology (see Definition A.3 in the
appendix) because every closed interval is weakly closed.

Lemma 2. Every bounded and nondecreasing or nonincreasing sequence (µn)n∈N ⊂M�1 converges weakly to its
supremum or infimum with respect to (w.r.t.) �st , respectively.

Proof. First, observe that a nonincreasing function R→ R is right continuous if and only if it is lower semicontin-
uous. Hence, for every sequence (µn)n∈N ∈M�1, which is bounded above, the supremum supn∈Nµ

n w.r.t. �st

exists, and it is exactly the pointwise supremum of the survival functions (µn
0)n∈N.

For a nonincreasing function F : R→ R, we define its lower semi-continuous envelope F∗ : R→ R by

F∗(s) :� sup
δ>0

F(s+ δ) for s ∈ R:

Then, F(s)�F∗(s)�F(s+ ε) for all s ∈ R and ε > 0. That is, F∗ differs from F only at discontinuity points of F. For a
sequence (µn)n∈N ∈M�1, which is bounded, the infimum infn∈Nµn w.r.t. �st is then given by the lower semi-
continuous envelope of the pointwise infimum of the survival functions (µn

0)n∈N. Because the weak convergence
of a sequence of subprobability measures coincides with the pointwise convergence of the related survival func-
tions at every continuity point, the assertion follows. w

Let (S,S,π) be a σ-finite measure space. We denote the Borel σ-algebra of the weak topology by B(M�1) and
the lattice of all equivalence classes of S-B(M�1)–measurable functions S→M�1 by L0st � L0(S,S,π;M�1). An
arbitrary element µ of L0st will be denoted in the form µ � (µt)t∈S. On L0st, we consider the order relation �L0st ,
given by µ�L0st ν if and only if µt�st νt for π almost all (a.a.) t ∈ S.

In the sequel, we consider a family (Ln)n∈N of Dedekind σ-complete sublattices of M�1, which correspond to a
countable number of constraints, and a family (Bn)n∈N ⊂ S of measurable sets, on which the constraints in terms
of the family (Ln)n∈N should be satisfied. Before we state the main result of this section, we list some possible
choices for measurable spaces (S,S,π), Dedekind σ-complete lattices L � Ln, and measurable sets B � Bn ∈ S for
n ∈ N.

Example 1.
a. The measure space (S,S,π) can be, for example,

• S � [0,T], S � B([0,T]), π � δ0 +λ[0,T], also with [0,∞) instead of [0,T] and e−δtdt instead of λ;
•Ω × [0,T], S the σ-algebra of all predictable processes, and π � P⊗ (δ0 +λ[0,T]).

b. The following are possible choices for L � Ln.
• The simplest choice is L �M�1 or L � {µ ∈M�1 | µ(R) � 1}.
• Another choice is L � {µ ∈M�1 | µ�stµ�st µ̄} with µ, µ̄ ∈M�1. If µ � µ̄ ≕ ν, this results in L � {ν}. Note

that µ ≡ 0 is not excluded.
• Let a,b ∈ R with a�b. Then, L � {µ ∈M�1 | suppµ ⊂ [a,b]} is Dedekind σ complete. In fact, a subprobabil-

ity µ ∈M�1 is an element of L if and only if its survival function µ0 is constant on (−∞,a) and (b,∞), a property
that carries over to suprema and infima of countably many elements of L. The same holds true if the interval
[a,b] is replaced by [a,∞) or (−∞,b].

•Another possible choice is L � {δx | x ∈ R} (Dirac measures).
c. Possible choices for B � Bn are

• B � {0} or B � {0} ×Ω in order to prescribe an initial condition,
• B � [0,T] or B �Ω × [0,T] in order to give a condition that should be satisfied for all times t ∈ [0,T] and in

all states ω ∈Ω, and
• B � A × (t1, t2] in order to prescribe a condition on a certain eventA during the time period (t1, t2].

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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We consider the set

L :� {µ ∈ L0st | ∀n ∈ N : π({t ∈ S |µt ∉ Ln} ∩ Bn) � 0}:
This is the set of all measurable flows (µt)t∈S of subprobability measures such that for all n ∈ N, µt ∈ Ln for π a.a.
t ∈ Bn. The following theorem is the main result of this section.

Theorem 2.
a. The lattice L is Dedekind super complete.
b. If M ⊂ L is a nonempty set, which is bounded above or below and directed upward or downward, then there exist sequen-

ces (µ̄n)n∈N ⊂M and (µn)n∈N ⊂Mwith µ̄n�L0st µ̄n+1 and µn�L0stµn+1 for all n ∈ N and

µ̄n → supM ∈ L and µn → infM ∈ L weakly π-a:e: as n→∞,

respectively.

Proof. Because every σ-finite measure can be transformed to a probability measurewithout changing the null sets,
we may, without loss of generality, assume that π(S) � 1. By Remark 2 and because the lattices (Ln)n∈N are Dede-
kind σ complete, L is Dedekind σ complete. LetΦ : R→ (0, 1) be the cumulative distribution function of the stand-
ard normal distribution: that is,

Φ(x) :� 1����
2π

√
∫ x

−∞
e−y

2=2 dy for all x ∈ R:

The map S→ R, t �→ ∫
R

Φ(x)dµt(x) is S-B(R) measurable for every µ ∈ L0st because the bounded and continuous

function Φ : R→ (0, 1) induces a continuous (w.r.t. the weak topology) functionalM�1 → R. Hence,

F : L→ R, µ �→
∫
S

∫
R

Φ(x)dµt(x) dπ(t)

is well defined and strictly increasing because Φ is nonnegative and strictly increasing (see, e.g., theorem 1.A.8 in
the book by Shaked and Shanthikumar [55]). The assertions now follow from Lemmas 2 and A.1. w

4. Submodular Mean Field Games with Markov Chains
Throughout this section, let d ∈ N \ {1} and S :� {1, : : : ,d} be a finite state space. We endow S with the natural
order and identify elements of the set P(S) of all probability measures with their probability vectors according
to

µ ≡ (µ1, : : : ,µd) :� (µ({1}), : : : ,µ({d})), µ ∈ P(S):
We consider probability vectors as row vectors. On P(S), we introduce a partial order 9 through

µ9ν if and only if
∑l

i�1
µi�

∑l

i�1
νi for all l ∈ {1, : : : ,d}:

This corresponds to the usual stochastic order in terms of cumulative distribution functions when interpreting
S � {1, : : : ,d} as a subset of R with the natural order. As a consequence, we have∑d

i�1
ciµi�

∑d
i�1

ciνi whenever µ9ν and S� i �→ ci ∈ R is nonincreasing; (2)

see, for instance, section 1.A.1 in the book by Shaked and Shanthikumar [55].
For µ,ν ∈ P(S), their greatest lower bound µ�ν and least upper bound µ�ν are given by

(µ�ν)j :�max
∑j

k�1
µk,

∑j

k�1
νk

{ }
−max

∑j−1
k�1

µk,
∑j−1
k�1

νk

{ }
and

(µ�ν)j :�min
∑j

k�1
µk,

∑j

k�1
νk

{ }
−min

∑j−1
k�1

µk,
∑j−1
k�1

νk

{ }
for all j ∈ {1, : : : ,d},

respectively, where we use the convention
∑0

k�1µk :� 0 and
∑0

k�1 νk :� 0. Then, (P(S), 9 ) is a complete lattice.
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We consider a fixed finite time horizon T ∈ N and a fixed initial distribution η ∈ P(S). Let L be the set of all
flows

µ : {0, : : : ,T}→ P(S) with µ0 � η,

and let �L be the partial order on L induced by 9 : that is,

µ�L ν if and only if µt9νt for all t ∈ {0, : : : ,T}:
The greatest lower bound µ�L ν and the least upper bound µ�L ν of two elements µ,ν ∈ L are then given by

(µ�L ν)t :� µt�νt and (µ�L ν)t :� µt�νt for all t ∈ {0, : : : ,T}:
Observe that (L, �L ) is again a complete lattice.

Let Γ be a nonempty set; Γ represents the set of control actions for the representative player. Define the set U of
Γ-valued open-loop strategies as the set of all mappings u : {0, : : : ,T − 1} → Γ.

Let A(γ))γ∈Γ be a family of transition matrices on S. Thus, for each γ ∈ Γ, A(γ) � (aij(γ))i,j∈S is a d × dmatrix with
nonnegative entries such that

∑d
j�1

aij(γ) � 1 for all i ∈ S:

For u ∈ U, we define the flow µu of laws of the controlled Markov chain recursively through

µu
0 :� η and µu

t+1 :� µu
t A(ut) for all t ∈ {0, : : : ,T− 1}, (3)

where η ∈ P(S) is the fixed initial distribution, and we recall that elements of P(S) are identified as row vectors.
Let E be the subset of U × L given by

E :� {(u,µu) : u ∈ U},
and let p : E→ L be the projection on the second component:

p(u,µ) :� µ for all (u,µ) ∈ E:

Thus, p(u,µu) � µu for all u ∈ U.
Let f : {0, : : : ,T − 1} × S × P(S) × Γ→ R, g : S × P(S) → R be functions, representing the running and terminal

costs, respectively. Define a functional J : E × L→ R according to

J((u,µu),µ) :�∑T−1
t�0

∑d
i�1

f (t, i,µt,ut)µu
t,i +

∑d
i�1

g(i,µT)µu
T,i,

where for µ ∈ L, t ∈ {0, : : : ,T}, and i ∈ S, µt,i denotes the ith coordinate of µt.
As in Section 2, we define the best-response map R : L→ 2L according to

R(µ) :� {p(ν) : ν ∈ arg minE J(·,µ)}:
The following conditions on the solution map and Jwill entail the assumptions of the general setup.

Assumption 4 (Sufficient Conditions). Suppose that � U is a partial order on U making (U, � U) a complete lattice.
1. For every sequence (un)n∈N ⊆ U,

inf
n∈Nµ

un � µu �
with u� � inf

n∈Nun and

sup
n∈N

µun � µu �
with u� � sup

n∈N
un:

2. For all µ̂, ǔ ∈ L and û, ǔ ∈ U with µ̂�L ǔ, û� U ǔ,

J((ǔ,µǔ), ǔ) − J((û,µû), ǔ)� J((ǔ,µǔ), µ̂) − J((û,µû), µ̂):

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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3.Given any µ ∈ L, we have for all sequences (un)n∈N ⊆ U, with u� :� infn∈Nun and u� :� supn∈Nun,

J((u� ,µu � ),µ) � inf
n∈N J((un,µ

un),µ) and

J((u� ,µu � ),µ) � sup
n∈N

J((un,µun ),µ),

or else,

J((u� ,µu � ),µ) � sup
n∈N

J((un,µun ),µ) and

J((u� ,µu � ),µ) � inf
n∈N J((un,µ

un),µ):

Proposition 1. Given Assumption 4, the set E together with the pointwise lattice operations

(u,µu)�E (v,µv) :� (u�U v,µu�L µv) and (u,µu)�E(v,µv) :� (u�U v,µu�L µv),
for u,v ∈ U, becomes a lattice, and the best-response map R, the projection p, and the cost functional J satisfy Assumption 2
and the alternative for Assumption 1 from Remark 1.

Proof. First observe that thanks to condition 1 in Assumption 4, the operations �E , �E are well defined in the
sense that if ν, ν̄ ∈ E, then ν�E ν̄ and ν�Eν̄ are again elements of E.

Because µ�L µ̄�L µ�L µ̄ for all µ, µ̄ ∈ L, we find that the projection p satisfies condition 1 in Assumption 2.
Indeed, if (u,µu), (v,µv) ∈ E, then

p((u,µu)�E (v,µv)) � µu�L µv � p((u,µu))�L p((v,µv))�p((u,µu))�L p((v,µv))
� µu�L µv � p((u,µu)�E(v,µv)):

Again, thanks to condition 1 in Assumption 4, we have

µu �L µv for all u, v ∈ U with u� Uv, (4)

for in that situation, setting u1 :� u and un :� v, for n ∈ N \ {1}, we find µu � µu�Lµv�L µv.
Let (u,µu), (v,µv) ∈ E, and let µ̂, ǔ ∈ L be such that µ̂�L ǔ. Set ǔ :� u�U v. Then, thanks to conditions 1 and 2 in

Assumption 4,

J((u,µu)�E(v,µv), ǔ) − J((v,µv), ǔ) � J((ǔ,µǔ), ǔ) − J((v,µv), ǔ)
� J((ǔ,µǔ), µ̂) − J((v,µv), µ̂)
� J((u,µu)�E(v,µv), µ̂) − J((v,µv), µ̂):

This establishes the first inequality in condition 2 in Assumption 2. The second inequality in condition 2 in
Assumption 2 is a consequence of condition 3 in Assumption 4. In fact, thanks to condition 3 in Assumption 4, we
have for every µ ∈ L and all (u,µu), (v,µv) ∈ E,

J((u,µu)�E(v,µv),µ) + J((u,µu)�E (v,µv),µ)
� J((u�U v,µu�Lµv),µ) + J((u�U v,µu�Lµv,µ)
�min{ J((u,µu),µ), J((v,µv),µ)} +max{J((u,µu),µ), J((v,µv),µ)}
� J((u,µu),µ) + J((v,µv),µ):

Let µ ∈ L and ((un,µun))n∈N ⊂ E be such that J((un,µun ),µ) ↘ infν∈EJ(ν,µ) as n→∞. Notice that this infimum exists
in [−∞,∞). Set

û :� inf
n∈Nun and ǔ :� sup

n∈N
un:

By condition 1 in Assumption 4, we have

µû � inf
n∈Nµ

un and ǔ � sup
n∈N

µun :

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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By condition 3 in Assumption 4 (we only treat the first case there; the second is obtained by interchanging infima
and suprema), we find that

J((û,µû),µ) � inf
n∈N J((un,µ

un),µ) and J((ǔ,µǔ),µ) � sup
n∈N

J((un,µun),µ):

It follows that infν∈EJ(ν,µ) � J((û,µû),µ), which shows that (û,µû) ∈ arg minE J(·,µ) and thus, µû ∈ R(µ). In particu-
lar, the set of best-response distributions is nonempty.

Now, suppose that (µn)n∈N ⊆ R(µ). For n ∈ N, choose un ∈ arg minu∈U J((u,µu),µ) such that µun � µn. Define û
and ǔ in the same way. By condition 1 in Assumption 4, we have

µû � inf
n∈Nµn and µǔ � sup

n∈N
µn,

and by condition 3 in Assumption 4 (in the first case there), we find again that

J((û,µû),µ) � inf
n∈N J((un,µ

un),µ) and J((ǔ,µǔ),µ) � sup
n∈N

J((un,µun),µ):

However, un ∈ arg minu∈U J((u,µu),µ) for every n ∈ N; hence

inf
n∈N J((un,µ

un),µ) � sup
n∈N

J((un,µun),µ):

It follows that µû ∈ R(µ) as well as µǔ ∈ R(µ). In particular, any monotone sequence in R(µ) has a limit in R(µ).
We thus see that the alternative for Assumption 1 from Remark 1 is satisfied. w

By Proposition 1, Remark 1, and part (a) of Theorem 1, one immediately obtains the following.

Corollary 1. Given Assumption 4, the set M of solutions to the finite state mean field game is nonempty and contains
infM as well as supM.

The following example shows a family of simple two-state models where the assumptions of Proposition 1 are
satisfied.

Example 2. Choose d � 2, and set Γ :� [0, 1] (with the natural order � ). Choose p,q ∈ (0, 1] with p�q, and define
controlled transition matrices A(γ) according to

A(γ)�: 1− pγ pγ
1− qγ qγ

( )
for all γ ∈ Γ:

With this choice, for all γ ∈ Γ � [0, 1] and all µ � (µ1,µ2) ∈ P(S) � P({1, 2}),
µA(γ) � (1− γ(p+µ2(q− p)),γ(p+µ2(q− p))):

For µ, µ̄ ∈ P(S), we have that µ9 µ̄ if and only if µ2� µ̄2 and that

{µ� µ̄,µ� µ̄} � {µ, µ̄}:
Therefore, if µ, µ̄ ∈ L, then for all t ∈ {0, : : : ,T},

{(µ�L µ̄)t, (µ�L µ̄)t} � {µt, µ̄t}:
It also follows that

µA(γ)9 µ̄A(γ̃) whenever γ� γ̃ and µ9 µ̄:

In case µ � µ̄, we have, for all γ, γ̄ ∈ Γ and (γn)∈N ⊂ Γ,

µA(γ� γ̄) � (µA(γ))�(µA(γ̄)),µA(γ� γ̄) �
(
µA(γ)

)
�
(
µA(γ̄)

)
,

µA
(
inf
n∈Nγn

)
� inf{µA(γ) : n ∈ N},µA(sup

n∈N
γn) � sup{µA(γ) : n ∈ N}:

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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We introduce a partial order � U on U by

u� U ũ if and only if µu� Lµũ :

Then, the greatest lower bound u�U v of two elements u,v ∈ U is defined as follows. Set µ̂ :� µu�L µv, and define,
for t ∈ {0, : : : ,T − 1},

(u�U v)t :�min ut · p+ (µu
t )2(q− p)

p+ (µ̂t)2(q− p) , vt ·
p+ (µv

t )2(q− p)
p+ (µ̂t)2(q− p)

{ }
,

where we recall that µu
0 � η � µv

0, hence also µ̂0 � η. By induction, one checks that for every t ∈ {0, : : : ,T − 1},
(u�U v)t ∈ [0, 1],µu�U v

t � µ̂t:

Indeed, the claim holds for t � 0. Now, suppose that it holds up to time t and that µu
t+1 � µ̂t+1. Then,

µ̂t+1 � µu
t A(ut), and there exists γ̃ ∈ {ut, ũt} such that µ̂t+19 µ̂tA(γ̃). Then,

(µ̂t+1)2 � ut(p+ (µu
t )2(q− p))� γ̃(p+ (µ̂t)2(q− p)),

and hence,

0�ut · p+ (µu
t )2(q− p)

p+ (µ̂t)2(q− p) � γ̃�1:

Moreover,

µ̂tA ut · p + (µu
t )2(q − p)

p + (µ̂t)2(q − p)
( )( )

2
� ut · p + (µu

t )2(q − p)
p + (µ̂t)2(q − p) · (p + (µ̂t)2(q − p)) � (µ̂t+1)2

because µ̂t+1 � µu
t A(ut) by assumption. The case µ̂t+1 � µũ

t A(ũt) is handled in the same way.
In analogy with the greatest lower bound, one defines the least upper bound u�U ũ. It follows that for all

u, ũ ∈ U,

µu�U ũ � µu�L µũ , µu� U ũ � µu�L µũ:

Let (un)n∈N ⊆ U. Set µ̂ :� infn∈Nµun , and define û ∈ U by setting

ût :� inf un(t) · p+ (µun
t )2(q− p)

p+ (µ̂t)2(q− p) : n ∈ N

{ }
, t ∈ 0, : : : ,T− 1{ };

in particular, û0 � infn∈Nun(0). By induction, one checks that µû � µ̂, hence the part of condition 1 in Assumption
4 regarding the greatest lower bound is satisfied. The upper bound part is analogous.

Regarding the costs, choose zero running costs f ≡ 0 and terminal costs g given by

g(i,m) :� φ(i) ·ψ(m2), i ∈ {1, 2},
where φ(2) < φ(1) and ψ : [0, 1] → R is nondecreasing (but not necessarily continuous). Then, for u ∈ U, µ ∈ L,

J((u,µu),µ) � ((φ(2) −φ(1))(µu
T)2 +φ(1)) ·ψ((µT)2):

Here, if (µ(n))n∈N ⊂ L and µ̂ � infn∈Nµ(n), ǔ � supn∈Nµ
(n), then

(µ̂T)2 � inf (µ(n)
T )2 : n ∈ N

{ }
, (ǔT)2 � sup (µ(n)

T )2 : n ∈ N

{ }
:

The form of J and condition 1 in Assumption 4, therefore, imply that condition 3 in Assumption 4 holds.
In order to check the submodularity condition (i.e., condition 2 in Assumption 4), let µ̂, ǔ ∈ L and û, ǔ ∈ U be

such that µ̂�L ǔ, û� U ǔ. Then,

J((ǔ,µǔ), ǔ) − J((û,µû), ǔ) � ((φ(2) −φ(1))((µǔ
T)2 − (µû

T)2)) ·ψ((ǔT)2),
J((ǔ,µǔ), µ̂) − J((û,µû), µ̂) � ((φ(2) −φ(1))((µǔ

T)2 − (µû
T)2)) ·ψ((µ̂T)2):

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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However, φ(2) −φ(1) < 0, whereas (µǔ
T)2 − (µû

T)2�0 by condition 1 in Assumption 4 because û� U ǔ and
ψ((µ̂T)2)�ψ((ǔT)2) because µ̂�L ǔ and ψ is nondecreasing. It follows that

J((ǔ,µǔ), ǔ) − J((û,µû), ǔ)� J((ǔ,µǔ), µ̂) − J((û,µû), µ̂),
which is condition 2 in Assumption 4.

5. Submodular Mean Field Games with Singular Controls
In this section, we specialize to mean field games with singular controls and show that they can be embedded
into the general setup given in Section 2. In the following, we consider MFGs with common noise, in which the
representative player faces a convex optimization problem (see Section 5.1), and MFGs without common noise,
in which the representative player faces a nonconvex optimization problem (see Section 5.2). In these two mod-
els, the operations, which are postulated in Assumption 2, can be constructed with different techniques. These
operations can be explicitly constructed in the case in which the dynamics are given by controlled geometric
Brownian motions and the costs are convex in the state variable. When the dynamics are nonlinear, the construc-
tion of such operations is provided by approximating singular controls via regular controls and exploiting the
results in Dianetti et al. [25].

Throughout this section, we take measurable functions

f : [0,T] × R × P(R) → R,

g : R × P(R) → R,

c : [0,T] → [0,∞),
satisfying the following conditions.

Assumption 5.
1. For dt a.a. t ∈ [0,T], the functions f (t, · ,µ) and g(·,µ) are lower semicontinuous, and for some p > 1 and all (t,x,µ) ∈

[0,T] × R × P(R),
κ( |x |p − 1)� f (t,x,µ)�K(1+ |x |p), κ( |x |p − 1)�g(x,µ)�K(1+ |x |p),

with constants K,κ > 0.
2. For dt a.a. t ∈ [0,T], the functions f (t, · ,·) and g have decreasing differences in (x,µ); that is, for φ ∈ { f (t, · ,·),g},

φ(x̄, µ̄) −φ(x, µ̄)�φ(x̄,µ) −φ(x,µ),
for all x̄,x ∈ R and µ̄,µ ∈ P(R) with x̄�x and µ̄�stµ.

3. The cost c is nonincreasing and continuously differentiable with c > 0.

We point out that although conditions 1 and 3 are natural in order to treat the representative player minimiza-
tion problem (see, e.g., the beginning of Section 5.1), condition 2 is a structural hypothesis, which will ensure that
the submodularity conditions (in particular, condition 2 in Assumption 2) are satisfied. For this reason, some-
times we will also refer to condition 2 in Assumption 5 as to the submodularity condition.

Remark 2 (On the Lasry–Lions Monotonicity Condition). It is natural to compare the submodulartity condition
(condition 2 in Assumption 5) with the so-called Lasry–Lions monotonicity condition∫

R

(φ(x, µ̄) − φ(x,µ))d(µ̄ − µ)(x)� 0, for any µ̄,µ ∈ P(R), (5)

which is typically related to the uniqueness of equilibria (see, e.g., p. 169 in the book by Carmona and Delarue
[19]). As already observed in Dianetti et al. [25], there is no relation between the submodularity condition and
(5). However, condition 2 in Assumption 5 implies that the map φ(·, µ̄) −φ(·,µ) is decreasing for µ, µ̄ ∈ P(R) with
µ�st µ̄. Therefore, from (1), we deduce that∫

R

(φ(x, µ̄) −φ(x,µ))d(µ̄ −µ)(x)�0, for any µ̄,µ ∈ P(R) with µ�st µ̄;

the latter, roughly speaking, is sort of an opposite version of the Lasry–Lions monotonicity condition (5).
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5.1. Controlled Geometric Brownian Motion and Common Noise
5.1.1. Formulation of the Model. Let Assumption 5 be satisfied with p � 2. Let W � (Wt)t∈[0,T] and B � (Bt)t∈[0,T] be
two independent Brownian motions on a complete filtered probability space (Ω,F ,F,P). Define the set of admissi-
ble monotone controls as the set V↑ of all F-adapted càdlàg, nondecreasing, square-integrable, and nonnegative
processes ξ � (ξt)t∈[0,T] such that

E

∫ T

0
ξ2t dπ(t)

[ ]
<∞, where π :� dt+ δT: (6)

Let b ∈ R, σ, σo�0, and F
o :� (F o

t )t∈[0,T] denote the filtration generated by σoB (which is trivial in the case of no com-

mon noise; i.e., for σo � 0). Let x0 be a square integrable F 0-random variable. For each ξ ∈ V↑, let Xξ � (Xξ
t )t∈[0,T]

denote the unique strong solution to the linearly controlled geometric dynamics, given by

dXξ
t � Xξ

t (bdt+ σdWt + σodBt) + dξt, t ∈ [0,T], Xξ
0− � x0: (7)

For any P(R)-valued F
o-progressively measurable process µ � (µt)t∈[0,T], we introduce the cost functional

J(ξ,µ) :� E

∫ T

0
f (t,Xξ

t ,µt)dt+ g(Xξ
T,µT) +

∫
[0,T]

ctdξt

[ ]
, ξ ∈ V↑,

and consider the singular control problem infξ∈V↑J(ξ,µ). We say that (Xµ,ξµ) is an optimal pair for the flow µ if
J(ξµ,µ)� J(ξ,µ) for each admissible ξ and Xµ � Xξµ .

Definition 2. A P(R)-valued F
o-progressively measurable process µ � (µt)t∈[0,T] is an equilibrium of the MFGwith

singular controls and common noise if
1. there exists an optimal pair (Xµ,ξµ) for µ and
2. µt � P[Xµ

t ∈ · |F o
T] P almost surely (a.s.), for any t ∈ [0,T].

We point out that similarly to remark 1 in Tchuendom [56], it can be shown that for any ξ ∈ V↑, one has
P[Xξ

t ∈ · |F o
T] � P[Xξ

t ∈ · |F o
t ] P a.s., for any t ∈ [0,T]. Therefore, any equilibrium µ as in Definition 2 is actually

strong, in the sense that it is adapted to the filtration generated by the common noise B.

5.1.2. Optimal Controls and A Priori Estimates. Recalling that c > 0, we enforce the following requirements.

Assumption 6. For dt a.a. t ∈ [0,T], the functions f (t, · ,µ) and g(·,µ) are strictly convex.
Under Assumption 6, by employing arguments such as those in the proof of theorem 8 in Menaldi and Taksar

[46], it can be shown that for any process µ, there exists a unique optimal pair (Xµ,ξµ). Moreover, because the
control, which constantly equals to zero, is suboptimal, the growth conditions in Assumption 6 imply that

κE

∫ T

0
|Xµ

t |2dt+ |Xµ
T |2

[ ]
− κ(1+T)� J(ξµ,µ)

� J(0,µ)�KE
∫ T

0
|X0

t |2dt+ |X0
T |2

[ ]
+K(1+T),

so that for some constant C̄ > 0 independent of µ, we have

E

∫ T

0
|Xµ

t |2dt+ |Xµ
T |2

[ ]
� C̄:

Therefore, for a suitable generic constant C > 0 (changing from line to line), we obtain

E[ |ξµT |2]�E Xµ
T − x0 −

∫ T

0
Xµ

t (b dt + σdWt + σodBt)
( )2[ ]

�CE |Xµ
T |2 + |x0 |2 +

∫ T

0
|Xµ

t |2dt
[ ]

�C,

and by a standard use of Grönwall’s inequality, we conclude that

E[ |Xµ
t |2 + |ξµt |2]�M, for each t ∈ [0,T], (8)

for a constantM > 0, which does not depend on µ.

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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5.1.3. The Control Set E and Its Operations. Define

E :� {(Xξ, ξ) |ξ ∈ V↑,Xξ solution to (7)} and

p(Xξ, ξ)t(A) :� P[Xξ
t ∈ A |F o

T], A ∈ B(R):
Because of (6), the set E is a subset of the space L

2
π of R2-valued progressively measurable processes ν such that

‖ν‖π,2 :� E

[∫ T

0
|νt |2dπ(t)

]
<∞, endowed with the norm ‖ · ‖π,2. Moreover, the lower semicontinuity properties of J in

Assumptions 1 and 3 are satisfied, whereas the continuity of Jw.r.t. µ holds by assuming f and g to be continuous in µ.
Observe that for each ξ ∈ V↑, the solution to the stochastic differential equation (SDE) (7) is, P a.s., given by

Xξ
t � Et x0 +

∫
[0,t]

E−1
s dξs

[ ]
with Et :� exp b− (σ2 + (σo)2)

2

( )
t+ σWt + σoBt

[ ]
(9)

for each t ∈ [0,T]. Hence, defining the map Φ : V↑ → V↑ by Φt(ξ) :�
∫
[0,t]

E−1
s dξs, we have, P a.s.,

Xξ
t � Et[x0 +Φt(ξ)], for each t ∈ [0,T]:

Moreover, for ξ̄,ξ ∈ V↑, ζ̄ :�Φ(ξ̄), and ζ :�Φ(ξ), we define, P a.s., the controls

ξ�t :�
∫
[0,t]

Esd(ζ̄�ζ)s and ξ�
t :�

∫
[0,t]

Esd(ζ̄�ζ)s, for each t ∈ [0,T], (10)

and obtain

Xξ̄
t �X

ξ
t � Et[x0 + ζ̄t�ζt] � Et x0 +

∫
[0,t]

E−1
s dξ�s

[ ]
� Xξ�

t and

Xξ̄
t �X

ξ
t � Et[x0 + ζ̄t�ζt] � Et x0 +

∫
[0,t]

E−1
s dξ�s

[ ]
� Xξ�

t : (11)

According to (10), we introduce the operations �E , �E : E × E→ E via

(Xξ̄ , ξ̄)�E (Xξ,ξ) :� (Xξ�
,ξ� ) and (Xξ̄ , ξ̄)�E(Xξ,ξ) :� (Xξ�

,ξ� ): (12)

Note that in light of (11), the operations �E , �E satisfy condition 1 in Assumption 2.

5.1.4. The Submodularity Condition. Using the definition of ξ� , the linearity of the integral, and that
ζ̄�ζ− ζ̄ � ζ− ζ̄�ζ, we obtain that for each t ∈ [0,T],

ξ�
t − ξ̄t �

∫
[0,t]

Es(d(ζ̄�ζ)s − dζ̄s) �
∫
[0,t]

Es(dζs − d(ζ̄�ζ)s) � ξt − ξ�t P a:s: (13)

Recalling the definition of the measure π in (6), for µ, µ̄ ∈ L, we define the order relation

µ�L µ̄ if and only if µt�st νt, P a:s:, for π a:a: t ∈ [0,T]: (14)

Now, let µ, µ̄ be two P(R)-valued, Fo-progressively measurable processes with µ�L µ̄ and ξ, ξ̄ ∈ V↑. Using (11)
and (13), we find

J(ξ� , µ̄) − J(ξ̄, µ̄) � E

∫ T

0
( f (t,Xξ̄

t �X
ξ
t , µ̄t) − f (t,Xξ̄

t , µ̄t))dt
[ ]

+E g(Xξ̄
T�X

ξ
T, µ̄T) − g(Xξ̄

T, µ̄T) +
∫
[0,T]

ctd(ξ� − ξ̄)t
[ ]

� E

∫ T

0
( f (t,Xξ

t , µ̄t) − f (t,Xξ̄
t �X

ξ
t , µ̄t))dt

[ ]
+E g(Xξ

T, µ̄T) − g(Xξ̄
T�X

ξ
T, µ̄T) +

∫
[0,T]

ctd(ξ− ξ� )t
[ ]

� J(ξ, µ̄) − J(ξ� , µ̄): (15)
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Moreover, by using (11) and Assumption 5, we obtain that

J(ξ, µ̄) − J(ξ� , µ̄)�E

∫ T

0
( f (t,Xξ

t ,µt) − f (t,Xξ̄
t �X

ξ
t ,µt))dt

[ ]

+ E g(Xξ
T,µT) − g(Xξ̄

T�X
ξ
T,µT) +

∫
[0,T]

ctd(ξ − ξ� )t
[ ]

� J(ξ,µ) − J(ξ� ,µ): (16)

Note that (15) and (16) imply that condition 2 in Assumption 2 is satisfied, so that the operations �E , �E fulfill all
the requirements of Assumption 2.

Moreover, taking ξ ∈ arg minV↑ J(·,µ) and ξ̄ ∈ arg minV↑ J(·, µ̄) and using (15) and (16), we find that ξ� ∈
arg minV↑ J(·,µ) and ξ� ∈ arg minV↑ J(·, µ̄). Therefore, by the uniqueness of optimal controls, we conclude that ξ� �
ξ and ξ� � ξ̄, so that

Xµ
t �Xµ̄

t , π a:e:, whenever µ�L µ̄: (17)

5.1.5. The Lattice L. We move on to the identification of a suitable partially ordered set (L, �L ). Thanks to the a
priori estimate (8) and Chebyshev’s inequality for conditional probabilities, we obtain (employing the convention
x=0 �∞ for any x�0)

P[Xµ
t �x |F o

T]� 1−E[ |Xµ
t |2 |F o

T]
(x�0)2

( )
�0� 1− ess supµE[ |Xµ

t |2 |Fo
T]

(x�0)2
( )

�0

≕ µMax
t ((−∞,x]), (18)

as well as

P[Xµ
t �x |F o

T]�
E[ |Xµ

t |2 |F o
T]

(x�0)2 �1�
ess supµE[ |Xµ

t |2 |Fo
T]

(x�0)2 �1≕ µMin
t ((−∞,x]) (19)

for any P(R)-valued F
o-progressively measurable flow µ. From (17), we see that the set {Xµ |µ is a P(R)-valued

F
o-progressively measurable flow} and is directed downward (and upward). Therefore, by the monotone con-

vergence theorem,

ess sup
µ

E[ |Xµ
t |2 |Fo

T] ∈ L
1(Ω;P),

so that ess supµE[ |Xµ
t |2 |F o

T] <∞ P a.s. We deduce that the Fo-progressively measurable processes µMin and µMax

are P(R) valued and that for all P(R)-valued F
o-progressively measurable flows µ,

µMin
t �st

P[Xµ
t ∈ · |F o

T]�stµMax
t P a:s:, for all t ∈ [0,T]: (20)

We, therefore, consider the set L of all P(R)-valued, Fo-progressively measurable processes µ with

µMin
t �stµt�stµMax

t P a:s:, for π a:a: t ∈ [0,T],
endowed with the order relation �L defined in (14). Because the ordered set (L, �L ) is a special instance of the
lattice L considered in Section 3, which is, in addition, order bounded, it is a complete and Dedekind super com-
plete lattice.

5.1.6. Existence and Approximation of Equilibria. For any µ ∈ L, set R(µ)t :� P[Xµ
t ∈ · |F o

T], for each t ∈ [0,T].
Thanks to (20), the best-reply map R : L→ L is well defined, and the MFG equilibria of the MFG with singular
controls correspond to processes µ ∈ L with R(µ) � µ.

We can now state and prove the main result of this subsection.

Theorem 3. The set of solutions of the MFG with singular controls and common noise is a nonempty complete lattice.
Moreover, if f and g are continuous in (x,µ), then

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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1. the learning procedure µn defined inductively by µ0 � infL and µn+1 � R(µn) is nondecreasing in L and converges to the
minimal MFG solution, and

2. the learning procedure µ̄n defined inductively by µ̄0 � supL and µ̄n+1 � R(µ̄n) is nonincreasing in L and converges to
the maximal MFG solution.

Proof. The fact that the set of MFG solutions is a nonempty complete lattice is a direct consequence of Theorem
1. We, therefore, just prove the convergence of the learning procedure in claim (1) (claim (2) can be proved analo-
gously). Even if the sequential compactness in Assumption 3 is not satisfied, the arguments in the proof of Theo-
rem 1 can be recovered as follows.

We first observe that thanks to (17) and the definition of R, the sequence µn is nondecreasing in L. Hence, set-
ting (Xn,ξn) :� (Xµn

,ξµ
n), again by (17) we have that Xn

t �Xn+1
t , P⊗π almost everywhere (a.e.) for any n ∈ N.

Therefore, we can define the process Xt :� supnX
n
t , and by the monotone convergence theorem and the estimates

in (8), we conclude that Xn → X in L
2
π as n→∞. Next, we define the control process ξ by setting

ξt :� Xt − x0 −
∫ t

0
Xs(bdt+ σdWs + σodBs):

The convergence of Xn in L
2
π implies that ξn → ξ in L

2
π as n→∞, so that ξ is nondecreasing. Employing lemma

3.5 in Kabanov [40], we can take càdlàg versions of X and ξ, so that (X,ξ) ∈ E. After repeating the arguments
from the proof of Theorem 1, the proof is complete. w

5.2. Nonconvex Case Without Common Noise
In this subsection, we treat a model of mean field games with singular controls and no common noise for a general
drift and a not necessarily convex running cost. As a consequence, optimal controls are in general not unique. In
comparison with the previous subsection, this case requires a more technical analysis, which makes use of a weak
formulation of the problem in the spirit of Haussmann and Suo [37].

5.2.1. Model Formulation. Let σ�0 be a constant and b : [0,T] × R→ R be a Lipschitz continuous function. In
order to come up with a weak formulation of the problem, the initial value of the dynamics will be described
through a fixed initial distribution ν0 ∈ P(R), satisfying |ν0 |p :�

∫
R

|y |pdν0(y) <∞ with p > 1 from Assumption 5.

Definition 3. A tuple ρ � (Ω,F ,F,P,x0,W,ξ) is said to be an admissible singular control if
1. (Ω,F ,F,P) is a filtered probability space satisfying the usual conditions,
2. x0 is anF 0-measurableR-valued random variable with P ◦ x−10 � ν0,
3.W is a standard (Ω,F ,F,P)-Brownian motion, and
4. ξ : Ω × [0,T] → [0,∞) is an F-adapted nondecreasing càdlàg process.
We denote by Ew the set of admissible singular controls.
Again, because b is assumed to satisfy the usual Lipschitz continuity and growth conditions, for any ρ ∈ Ew

there exists a unique process Xρ : Ω × [0,T] → R solving the system’s dynamics equation that now reads as

Xρ
t � x0 +

∫ t

0
b(t,Xρ

t )dt+ σWt + ξt, t ∈ [0,T]: (21)

Then, for a measurable flow of probability measures µ, we define the cost functional

J(ρ,µ) :� E
P

∫ T

0
f (t,Xρ

t ,µt)dt + g(Xρ
T,µT) +

∫
[0,T]

ctdξt

[ ]
, ρ ∈ Ew,

and we say that ρ ∈ Ew is an optimal control for the flow of measures µ if it solves the optimal control problem
related to µ: that is, if J(ρ,µ) � infEwJ(·,µ).
Definition 4. Ameasurable flow of probabilities µ is an MFG equilibrium if

1. there exists an optimal control ρ ∈ Ew for µ and
2. µt � P ◦ (Xρ

t )−1 for any t ∈ [0,T].

5.2.2. Reformulation via Control Rules and Preliminary Remarks. In order to have a topology on the space of
admissible controls, we reformulate the problem in terms of control rules. We introduce the following canonical

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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space (Ω,F ) by
Ω :� R × C ×D ×D↑, F :� B(R) ⊗B(C) ⊗B(D) ⊗B(D↑): (22)

We define the set of control rules as

E :� {νρ |ρ ∈ Ew}, where νρ :� P ◦ (x0,W,Xρ , ξ)−1 for ρ � (Ω,F ,F,P, x0,W, ξ) ∈ Ew,

And with a slight abuse of notation, we set J(νρ,µ) :� J(ρ,µ). In this way, E is naturally defined as a subspace of
the topological space P(Ω).
Remark 3 (Existence of Optimal Controls). Under the standing assumptions, it is shown in Haussmann and Suo
[37] that for each measurable flow of probabilities µ, J(·,µ) is lower semicontinuous, and the set arg minE J(·,µ) ⊂
E is nonempty (see theorems 3.6 and 3.8 in Haussmann and Suo [37]). Also, one can show that (see theorem 3.7
in Haussmann and Suo [37]) for each sequence (νn)n∈N ⊂ arg minE J(·,µ), we can find an admissible singular con-
trol ν ∈ arg minE J(·,µ) such that, up to a subsequence, νn converges weakly to ν in P(Ω).

Now, for any measurable flow of measures µ, if ρ ∈ arg minEwJ(·,µ), we can repeat (with minor modifications)
the arguments leading to (8) in order to get a priori estimates on the moments of optimally controlled trajectories;
namely, we have

E
P[ |Xρ

t |p + (ξT)p]�M, for any t ∈ [0,T] and ρ ∈ arg min
Ew

J(·,µ), (23)

with a constantM > 0 independent of the flow of measures µ. Therefore, following computations similar to those
leading to (18) and (19) (see also lemma 3.4 in Nendel [50]), we can find µMin, µMax ∈ P(R) such that for any flow
of measures µ, one has

µMin�st
P ◦ (Xρ

t )−1�stµMax, for any t ∈ [0,T] and ρ ∈ argmin
Ew

J(·,µ): (24)

We thus define the set of feasible flows of measures L as the set of all equivalence classes (w.r.t. the measure
π :� dt+ δT on the interval [0,T]) of measurable flows of probabilities µ : [0,T] → P(R) with µt ∈ [µMin,µMax] for
π a.a. t ∈ [0,T]. On L, we consider the order relation �L given by µ�L ν if and only if µt�st µ̄t, for π a.a.
t ∈ [0,T], with the lattice structure given by

(µ�L µ̄)t :� µt�
stµ̄t and (µ�L µ̄)t :� µt�

st µ̄t for π a:a: t ∈ [0,T]:
Again, this is a particular instance of the lattice L considered in Section 3, and it is, by definition, norm bounded.
As a consequence, (L, �L ) is a complete and Dedekind super complete lattice.

Next, we can define the set

EM,w :� {ν ∈ Ew | (23) holds } and EM :� {νρ | ρ ∈ EM,w},
so that arg minE J(·,µ) ⊂ EM for any flow µ. We observe that because of the Meyer–Zheng tightness criteria (see
theorem 4 on p. 360 in Meyer and Zheng [47]), the set EM is a relatively compact subset of P(Ω). Moreover, the
projection map

p : E→ L with p(νρ) :� P ◦ (Xρ)−1, for ρ � (Ω,F ,F,P,x0,W,ξ) ∈ Ew,

satisfies the conditions in Assumptions 1 and 3.
Let 2L be the set of all subsets of L. Then, thanks to (24), the best-response correspondence R : L→ 2L, given by

R(µ) :� {pν |ν ∈ arg minE J(·,µ)} for µ ∈ L is well defined. The flow of measures µ∗ ∈ L is a solution to the mean
field game with singular controls if µ∗ ∈ R(µ∗).
5.2.3. Existence and Approximation of Solutions. In order to employ the results from Section 2, we begin by pro-
viding the following technical result.

Lemma 3. There exist two operations �E , �E : EM × EM → E satisfying Assumption 2.

Proof. The argument exploits an approximation scheme of the singular controls through regular controls and the
results derived in Dianetti et al. [25]. We divide the proof in four steps.

Step 1. For i � 1, 2, take control rules νi � νρi ∈ EM with ρi � (Ωi,F i,Fi,Pi,xi0,W
i,ξi) ∈ EM,w. Without loss of gener-

ality, we can assume that the controls ρ1,ρ2 are defined on a same stochastic basis (Ω,F ,F,P,x0,W); that is,
(Ωi,F i,Fi,Pi,xi0,W

i) � (Ω,F ,F,P,x0,W), for i � 1, 2.

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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Introduce aWong–Zakai-type approximation of ξi by defining the sequences of processes (ξi,n)n∈N through

ξi,nt :� n
∫ t

t−1=n
ξisds, t ∈ [0,T),

ξiT, t � T, (25)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
for each n ∈ N. Recall that processes are always (implicitly) assumed to be equal to zero for negative times. Fur-
ther, note that because EP[ |ξiT |p] <∞ (recall that ξi ∈ EM,w by assumption), the processes ξi,n are Lipschitz contin-
uous on the time interval [0,T). However, they may have discontinuities at time T. Moreover, for each i � 1, 2
and all n ∈ N, denote by Xi,n the solution to the controlled SDE

Xi,n
t � x0 +

∫ t

0
b(s,Xi,n

s )ds+ σWt + ξi,nt , t ∈ [0,T]:

Next, given that the processes ξi,n have Lipschitz paths and are nondecreasing, we can find F-adapted proc-
esses ui,n : Ω × [0,T] → [0,∞) such that

ξi,nt �
∫ t

0
ui,ns ds, t ∈ [0,T):

Observing that the processes ui,n can be regarded as regular controls, we wish to employ the results from
Dianetti et al. [25] in order to construct ρ� , ρ� . However, we need to take care of possible discontinuities
at time T.

As in lemma 2.10 in Dianetti et al. [25], for each n ∈ N, we find two F-adapted [0,∞)-valued processes
u� ,n,u� ,n such that defining P a.s.,

ξ� ,n
t :�

∫ t

0
u� ,n
s ds and ξ� ,n

t :�
∫ t

0
u� ,n
s ds, for each t ∈ [0,T), (26)

we have for each t ∈ [0,T), P a:s:,

X1,n
t �X2,n

t � x0 +
∫ t

0
b(s,X1,n

s �X2,n
s )ds+ σWt + ξ� ,n

t and

X1,n
t �X2,n

t � x0 +
∫ t

0
b(s,X1,n

s �X2,n
s )ds+ σWt + ξ� ,n

t : (27)

This suggests that we define the processes ξ� ,n and ξ� ,n at time T by setting, P a.s.,

ξ� ,n
T :� X1,n

T �X2,n
T − x0 −

∫ T

0
b(s,X1,n

s �X2,n
s )ds− σWT and

ξ� ,n
T :� X1,n

T �X2,n
T − x0 −

∫ T

0
b(s,X1,n

s �X2,n
s )ds− σWT:

We define

ρ� ,n :� (Ω,F ,F,P,x0,W,ξ� ,n),
ρ� ,n :� (Ω,F ,F,P,x0,W,ξ� ,n),
ρi,n :� (Ω,F ,F,P,x0,W,ξi,n), for i � 1, 2,

so that by virtue of (27) and the definition of ξ� ,n
T and ξ� ,n

T , we obtain, P a.s.,

X1,n
t �X2,n

t � Xρ � ,n
t and X1,n

t �X2,n
t � Xρ � ,n

t , for any t ∈ [0,T]: (28)

Moreover, we observe that the processes ξ� ,n and ξ� ,n are nondecreasing.
Step 2. In this step, we prove that

J(ρ� ,n,µ) + J(ρ� ,n,µ) � J(ρ1,n,µ) + J(ρ2,n,µ): (29)

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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This is again done by adapting arguments from Dianetti et al. [25], taking care of possible discontinuities of the
processes ξi,n, ξ� ,n, ξ� ,n at time T.

For a generic admissible control ρ � (Ω,F ,F,P,x0,W,ξ) ∈ Ew, using integration by parts and the controlled
SDE (21), we rewrite the cost functional as

J(ξ,µ) � E
P

∫ T

0
f (t,Xρ

t ,µt)dt+ g(Xρ
T,µT) + cTξT −

∫ T

0
ξtc′tdt

[ ]
� E

P

∫ T

0
( f (t,Xρ

t ,µt) − cTb(t,Xρ
t ) − ξtc′t)dt+ g(Xρ

T,µT) + cTX
ρ
T

[ ]
− cTEP[x0]

� G1(ρ,µ) −G2(ρ,µ) +H(ρ,µ) − cTEP[x0], (30)

where we have set

G1(ρ,µ) :� E
P

∫ T

0
( f (t,Xρ

t ,µt) − cTb(t,Xρ
t ))dt

[ ]
,

G2(ρ,µ) :� E
P

∫ T

0
ξtc′tdt

[ ]
,

H(ρ,µ) :� E
P[g(Xρ

T,µT) + cTX
ρ
T]:

Observing that the functional G1 depends on the control only on the interval [0,T), thanks to the construction of
u� ,n, u� ,n provided in Step 1, we can repeat the arguments in the proof of lemma 2.11 in Dianetti et al. [25] in order
to come upwith

G1(ρ� ,n,µ) +G1(ρ� ,n,µ) � G1(ρ1,n,µ) +G1(ρ2,n,µ): (31)

Moreover, from the definition of u� ,n and u� ,n in Step 1, as in the proof of lemma 2.11 in Dianetti et al. [25],
we see that

ξ� ,n
t + ξ� ,n

t �
∫ t

0
(u� ,n

s + u� ,n
s )ds �

∫ t

0
(u1,ns + u2,ns )ds � ξ1,nt + ξ2,nt , for each t ∈ [0,T),

so that

G2(ρ� ,n,µ) +G2(ρ� ,n,µ) � G2(ρ1,n,µ) +G2(ρ2,n,µ): (32)

Finally, we easily find that

H(Xρ � ,n

T ,µ) +H(Xρ � ,n

T ,µ) �H(Xρ1,n

T ,µ) +H(Xρ2,n

T ,µ): (33)

Therefore, adding (31), (32), and (33) and using the representation in (30), we obtain (29).
Step 3. SetXi :� Xρi , i � 1, 2, and define the right-continuous processes ξ� , ξ� by setting

ξ�t :� X1
t �X

2
t − x0 −

∫ t

0
b(s,X1

s �X
2
s )ds− σWt,

ξ�
t :� X1

t �X
2
t − x0 −

∫ t

0
b(s,X1

s �X
2
s )ds− σWt: (34)

The aim of this step is to prove that the controls ρ� :� (Ω,F ,F,P,x0,W,ξ� ) and ρ� :� (Ω,F ,F,P,x0,W,ξ� ) are
admissible and that the control rules

ν1�E ν2 :� νρ
�

and ν1�Eν2 :� νρ
�

satisfy the conditions in Assumption 2.
From (25), we immediately see that, P a.s.,

ξi,nt → ξit as n→∞ for all continuity points t ∈ [0,T) of ξi,

ξi,nT → ξiT as n→∞:

{
(35)

Dianetti et al.: A Unifying Framework for Submodular Mean Field Games
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Therefore, using (35) and Grönwall’s inequality, we deduce that, P a.s.,

Xi,n
t → Xi

t as n→∞ for all continuity points t ∈ [0,T) of Xi,

Xi,n
T → Xi

T as n→∞: (36)

{

This allows us to take limits in (28) in order to conclude that, P a.s., for π a.a. t ∈ [0,T], we have

X1,n
t �X2,n

t → X1
t �X

2
t , X1,n

t �X2,n
t → X1

t �X
2
t , ξ� ,n

t → ξ�t , ξ� ,n
t → ξ�

t : (37)

Given that the processes ξ� ,n and ξ� ,n are nonnegative and nondecreasing and also, the limit processes ξ� and ξ�

are nonnegative and nondecreasing, hence ρ� and ρ� are admissible. Moreover, by definition of ξ� and ξ� , we
have

Xρ �

t � X1
t �X

2
t �X1

t �X
2
t �Xρ �

t , P a:s:, for each t ∈ [0,T],
which proves that ν1�E ν2 and ν1�Eν2 satisfy condition 1 in Assumption 2.

Step 4. We conclude by proving that ν1�E ν2 and ν1�Eν2 satisfy condition 2 in Assumption 2. We begin by
observing that for a generic constant C > 0, by Grönwall’s inequality, we have

|Xi,n
t |p�C 1+ |x0 |p + σp sup

s∈[0,T]
|Ws |p + |ξi,nT |p

( )
,

so that by definition of ξi,n, we obtain

sup
n

sup
t∈[0,T]

|Xi,n
t |p�C 1+ |x0 |p + σp sup

s∈[0,T]
|Ws |p + |ξiT |p

( )
∈ L

1(Ω;P), (38)

where the integrability condition of the right-hand side follows from the fact that ν1, ν2 ∈ EM. Therefore, thanks
to the convergences in (35) and (36) and the estimate (38), the growth conditions on f and g allow us to employ
the dominated convergence theorem in order to come up with

J(ρi,µ) � E
P

∫ T

0
f (t,Xρi

t ,µt)dt+ g(Xρi
T ,µT) +

∫
[0,T]

ctdξit

[ ]

� lim
n

E
P

∫ T

0
f (t,Xρi,n

t ,µt)dt+ g(Xρi,n

T ,µT) +
∫
[0,T]

ctdξi,nt

[ ]
� lim

n
J(ρi,n,µ): (39)

Now, an integration by parts together with the limit behavior in (37) and Fatou’s lemma yields the estimate

J(ρ� ,µ) � E
P

∫ T

0
f (t,Xρ �

t ,µt)dt+ g(Xρ �

T ,µT) + cTξ�
T −

∫ T

0
ξ�t c

′
tdt

[ ]
� lim inf

n
E
P

∫ T

0
f (t,Xρ � ,n

t ,µt)dt+ g(Xρ � ,n

T ,µT) + cTξ� ,n
T −

∫ T

0
ξ� ,n
t c′tdt

[ ]
� liminf

n
J(ρ� ,n,µ): (40)

Similarly, it follows that

J(ρ� ,µ)� lim inf
n

J(ρ� ,n,µ): (41)

Finally, exploiting (39), (40), and (41), we can take limits in (29) in order to obtain condition 2 in Assumption 2. w

Thanks to Lemma 3 and Remark 3, we see that Assumptions 1 and 2 are satisfied. As a consequence of Theorem
1, we have the following result.

Theorem 4. The set of mean field game equilibria M is nonempty with infM ∈M and supM ∈M. Moreover, if f and g
are continuous in (x,µ), then
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1. the learning procedure µn defined inductively by µ0 � infL and µn+1 � infR(µn) is nondecreasing in L and converges to
the minimal MFG solution and

2. the learning procedure µ̄n defined inductively by µ̄0 � supL and µ̄n+1 � supR(µ̄n) is nonincreasing in L and converges
to the maximal MFG solution.

5.3. Remarks and Extensions
The previous arguments can be easily adapted in order to cover many classical settings, which typically arise in
the literature on stochastic singular control, such as, for example, MFGs where the optimization problem con-
cerns an infinite time horizon discounted criterion or involves controls of bounded variation rather than just
monotone. A similar setting has been, for example, considered in Guo and Xu [35]. In the following, we illustrate
a few specific settings of interest.

Remark 4 (Controlled Ornstein–Uhlenbeck Process and Common Noise). We underline that the results of Section
5.1 can also be obtained if the underlying dynamics are given by a controlled Ornstein–Uhlenbeck process: that
is, if the state process evolves according to

dXξ
t � θ(λ − Xξ

t )dt + σdWt + σodBt + dξt, t ∈ [0,T], Xξ
0− � x0,

with κ, λ ∈ R, σ, σo�0. In this case, the state process can be explicitly written as

Xξ
t � e−θt x0 +λ(eθt − 1) +

∫ t

0
eθs(σdWs + σodBs) +

∫
[0,t]

eθsdξs

( )
,

and for ξ, ξ̄ ∈ V↑, we have Xξ�Xξ̄ � Xξ�
and Xξ�Xξ̄ � Xξ�

by setting

ξ�t :�
∫
[0,t]

e−θsd(ζ� ζ̄)s, ξ�
t :�

∫
[0,t]

e−θsd(ζ� ζ̄)s, ζ :�
∫
[0,t]

eθsdξs, ζ̄ :�
∫
[0,t]

eθsdξ̄s:

Therefore, one can introduce, as in (12), operations that satisfy all the requirements from Assumption 2.

Remark 5 (Mean Field-Dependent Dynamics and Relation to Campi et al. [14]). The theory from Section 5.1 also
allows us to cover problems, where the drift of the underlying state process depends in an increasing way (w.r.t.
first-order stochastic dominance) on the mean field, in such a way that (8) holds true. This could be, for example,
achieved if b in (7) is replaced by a bounded increasing function of (µt)t∈[0,T].

Another example is given by the two-dimensional MFG of finite fuel capacity expansion considered in Campi
et al. [14]. Therein, the mean of a uniformly bounded purely controlled process affects in a nondecreasing way
the drift of an uncontrolled Itô diffusion, and there is no mean field dependence in the profit functional. We refer
to remark 3.15 in Campi et al. [14] for additional details on how the existence of a mean field equilibrium for the
problem considered in that paper can be indeed achieved via our lattice-theoretic techniques.

6. Submodular Mean Field Games with Reflecting Boundary Conditions
In this section, we consider an MFG model with reflecting boundary conditions, in which the state process of the
representative player is forced to remain in a certain interval of the state space. These types of models were
recently introduced in Bayraktar et al. [6] (see also Bayraktar et al. [5]), motivated by applications to queueing
systems consisting of many strategic servers that are weakly interacting. Also, a particular setting in the same
class of models is studied in Graber and Mouzouni [34], motivated by a model for the production of exhaustible
resources. Here, we consider a version of the model in Bayraktar et al. [6] with submodular cost, which we solve
through the results of Section 2.

6.1. Formulation of the Model
Fix M > 0 and x0 ∈ [0,M]. Consider the set LM of all measurable functions µ : [0,T] → P([0,M]) with µ0 � δx0 ,
endowed with the lattice structure coming from the order relation �L of π :� δ0 + dt+ δT-pointwise first-order
stochastic dominance. As in the previous section, this leads to a complete lattice (LM, �L ).

Next, we introduce the minimization problem. For technical reasons (i.e., in order to gain compactness of the
set of controls), we do so by using relaxed controls, although we work with assumptions under which strict opti-
mal controls always exist. For a compact control set A ⊂ R and a Lipschitz continuous function b : [0,T] × R→ R,
we define the set of admissible relaxed controls as the set Ew of tuples ρ :� (Ω,F ,F,P,W,λ,v,X) such that

1. W � (Wt)t∈[0,T] is a Brownian motion on the filtered probability space (Ω,F ,F,P), satisfying the usual
conditions;
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2. λ is a P(A)-valued progressively measurable process; and
3. the couple (v, X) is a solution to the controlled reflected SDE in the domain (0,M):

dXt � (b(t,Xt) +
∫
A
aλt(da) )dt+ σdWt + dvt, t ∈ [0,T], X0 � x0,

Xt ∈ [0,M],
∫ t

0
1{Xs∈(0,M)}d |v | s � 0, for any t ∈ [0,T], P a:s:, (42)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where |v | denotes the total variation of v. Moreover, we define the set of admissible strict controls Ew,s as the set of
elements ρ :� (Ω,F ,F,P,W,λ,v,X) ∈ Ew such that λt � δαt P⊗ dt a.e. in Ω × [0,T], for some A-valued progres-
sively measurable process α.

We consider functions f , g, and c as in the beginning of Section 5 satisfying Assumption 5 and a lower semicon-
tinuous function l : [0,T] × R × R→ [0,∞), which is convex in a. For µ ∈ LM and ρ � (Ω,F ,F,P,W,λ,v,X) ∈ Ew,
we define the cost functional

J(ρ,µ) :� E
P

∫ T

0
( f (t,Xt,µt) +

∫
A
l(t,Xt,a)λt(da))dt+ g(XT,µT) +

∫ T

0
ctd |v | t

[ ]
:

We say that ρ ∈ Ew is an optimal singular control for the flow of measures µ if J(ρ,µ) � infEwJ(·,µ).
We are interested in the following notion of equilibrium.

Definition 5. A flow of probabilities µ ∈ LM is an MFG equilibrium if
1. there exists a strict optimal control ρ � (Ω,F ,F,P,W,λ,v,X) ∈ Ew,s for µ and
2. µt � P ◦ (Xt)−1 for any t ∈ [0,T].

6.2. Reformulation via Control Rules and Preliminary Results
In order to have a topology on the space of admissible controls, we reformulate the problem in terms of control
rules.

Introduce the canonical space (Ω,F ), where

Ω :� C × Λ × V ×D, F :� B(C) ⊗B(Λ) ⊗B(V) ⊗B(D):
Define the set of relaxed control rules

E :� {νρ |ρ ∈ Ew} with νρ :� P ◦ (W,λ, v,X)−1, for ρ � (Ω,F ,F,P,W,λ, v,X) ∈ Ew,

and with a slight abuse of notation, we set J(νρ,µ) :� J(ρ,µ). The set of strict control rules is defined as
Es :� {νρ |ρ ∈ Ew,s}. In this way, E is naturally defined as a subspace of the topological space P(Ω). For any
ρ � (Ω,F ,F,P,W,λ,v,X) ∈ Ew, the controlled SDE (42) together with Xt ∈ [0,M] implies the estimate

E
P[ |v | pT]�K <∞ (43)

with a constant K > 0. Moreover, because A is compact, so are Λ and P(Λ). This, together with (43), allows to use
the Meyer–Zheng tightness criteria (see theorem 4 on p. 360 in Meyer and Zheng [47]) to show that the set E is a
relatively compact subset of P(Ω). Moreover, the projection map

p : E→ LM with p(νρ) :� P ◦ (Xρ)−1, for ρ � (Ω,F ,F,P,W,λ,v,X) ∈ Ew,

satisfies the conditions in Assumptions 1 and 3.

Lemma 4.
1. For any µ ∈ LM, the set arg minE J(·,µ) is nonempty.
2. If ρ � (Ω,F ,F,P,W,X,λ,v) ∈ Ew, there exists a control ρ̂ � (Ω,F ,F,P,W,X, λ̂,v) ∈ Ew,s such that J(ρ̂,µ)� J(ρ,µ),

for any µ ∈ LM.

Proof. We begin by proving claim (1). In order to do so, take a minimizing sequence (νn)n ⊂ E (i.e., limnJ(νn,µ) �
infEJ(·,µ)) and controls ρn � (Ωn,Fn,Fn,Pn,Wn,λn,vn,Xn) ∈ Ew with νn � νρn . Because the set E ⊂ P(Ω) is relatively
compact, we can find a limit point ν∗ ∈ P(C ×Λ × V ×D) and a subsequence (not relabeled) such that νn → ν∗
weakly. Up to using a Skorokhod representation theorem for separable spaces (see theorem 3 in Dudley [27]), we
can assume that there exists a common probability space (Ω,F ,P), on which the processes (Wn,λn,vn,Xn) are
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defined together with a process (W,λ,v,X), such that

(Wn,λn,vn,Xn) → (W,λ,v,X), P a:s:, in C × Λ × V ×D as n→∞,

νn � P ◦ (Wn ,λn
,vn,Xn)−1 and P ◦ (W,λ, v,X)−1 � ν∗: (44)

Also, this convergence allows to show that X is a solution to the SDE Xt � x0 +
∫ t

0
(b(s,Xs) +

∫
A
aλs(da))ds+ σWt +

vt, t ∈ [0,T], P a.s. Moreover, by the Lipschitz continuity of the Skorokhod map (see lemma 2.1 in Bayraktar et al.
[6]), we see that the couple (v, X) solves the controlled reflected SDE (42). Therefore, defining ρ∗ �
(Ω,F ,F,P,W,λ,v,X) with F being the (extended) filtration generated by (W,λ,v,X), we have that ρ∗ ∈ Ew and
ν∗ :� νρ∗ . Moreover, using the convergence in (44) and exploiting the lower semicontinuity of the costs f, g, l and
the fact that c is nondecreasing, by Fatou’s lemma we obtain that

J(ν∗,µ)� liminf
n

J(νn,µ) � inf
E
J(·,µ),

which completes the proof of claim (1).
We conclude by proving claim (2). Take ρ � (Ω,F ,F,P,W,X,λ,v) ∈ Ew, set αt :�

∫
A
aλt(da), λ̂ :� δαt(da)dt, and

consider the control ρ̂ � (Ω,F ,F,P,W,X, λ̂,v) ∈ Ew,s. First of all, we see that, P a.s., X solves the equation

Xt � x0 +
∫ t

0
(b(s,Xs) + αs)ds+ σWt + vt, t ∈ [0,T]:

Finally, by convexity of l, we can use Jensen’s inequality obtaining

J(ρ̂,µ) � E
P

∫ T

0
( f (t,Xt,µt) + l(t,Xt,αt))dt + g(XT,µT) +

∫ T

0
ctd |v | t

[ ]

�E
P

∫ T

0
( f (t,Xt,µt) +

∫
A
l(t,Xt, a)λt(da))dt + g(XT,µT) +

∫ T

0
ctd |v | t

[ ]
� J(ρ,µ),

which completes the proof of the lemma. w

6.3. Existence and Approximation of Equilibria
We begin by observing that a relaxed MFG equilibrium can now be seen as a fixed point of the best-response
map

R : LM → LM with R(µ) :� p arg min
E

J(·,µ)
( )

, for µ ∈ LM: (45)

We move on by constructing operations �E , �E : E × E→ E satisfying Assumption 2. For ν � νρ, ν̄ � νρ̄ ∈ E with
ρ � (Ω,F ,F,P,W,λ,v,X), ρ̄ � (Ω̄, F̄ , F̄, P̄,W̄ , λ̄, v̄, X̄) ∈ Ew, we can, without loss of generality (see, e.g., the proof of
lemma 3.4 in Dianetti et al. [25]), assume these controls to be defined on the same stochastic basis: that is,
(Ω,F ,F,P,W) � (Ω̄, F̄ , F̄, P̄,W̄). Hence, define

ρ� :� (Ω,F ,F,P,W,α� ,v� ,X�X̄) and ρ� :� (Ω,F ,F,P,W,α� ,v� ,X�X̄),
where

λλ
t :� λt 1{Xt� X̄t} + λ̄t 1{Xt>X̄t}, v�

t :�
∫ t

0

(
1{Xs<X̄s}dvs + 1{Xs� X̄s}dv̄s

)
,

λ�
t :� λ̄t 1{Xt� X̄t} +λt 1{Xt>X̄t}, v�

t :�
∫ t

0

(
1{Xs<X̄s}dv̄s + 1{Xs� X̄s}dvs

)
:
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Indeed, by the Meyer–Itô formula for continuous semimartingales (see, e.g., theorem 68 on p. 213 in the book by
Protter [52]), we find

Xt�X̄t � Xt + 0�(X̄t − Xt)

� Xt +
∫ t

0
1{X̄s−Xs � 0}d(X̄ − X)s − 1

2
L0t (X̄ − X)

� x0 + σWt

+
∫ t

0

(
1{Xs<X̄s}(b(s,Xs) +

∫
A
aλs(da)) + 1{Xs � X̄s}

(
b(s, X̄s) +

∫
A
aλ̄s(da)

))
ds

+
∫ t

0

(
1{Xs<X̄s}dvs + 1{Xs � X̄s}dv̄s

)
− 1
2
L0t (X̄ − X),

where L0t (X̄ −X) is the local time of X̄ −X at zero (see, e.g., chapter 4 in Protter [52]). We denote by [X̄ −X, X̄ −X]
the quadratic variation of the process X̄ −X (see, e.g., p. 66 in Protter [52]). Because X̄ −X is a process of bounded
variation, we have [X̄ −X, X̄ −X] � 0. Therefore, using the characterization of local times (see, e.g., corollary 3 on
p. 225 in Protter [52]), we obtain that

L0t � lim
ε→0

1
ε

∫ t

0
1{0� X̄s−Xs�ε}d[X̄ −X, X̄ −X]s � 0,

and we conclude that

Xt�X̄t � x0 +
∫ t

0
(b(s,Xs�X̄s) +

∫
A
aλ�s (da))ds+ σWt + v�

t :

In the same way, the process X�X̄ solves the SDE controlled by λ� with reflection v� . Finally, Xt�X̄t, Xt�X̄t
∈ [0,M], and it can be easily verified that the support of the random measures |v� | or |v� | is contained in the set
of times at which Xt�X̄t ∈ {0,M} or Xt�X̄t ∈ {0,M}, respectively. This proves that ρ� , ρ� ∈ E, so that defining
ν�E ν̄ :� νρ

�
,ν�Eν̄ :� νρ

� , we have ν�E ν̄, ν�Eν̄ ∈ E.
Moreover, one readily verifies that |v� | t + |v� | t� |v | t + | v̄ | t. This together with the fact that c′�0, in turn,

yields the estimate

J(ν�Eν̄, µ̄) − J(ν̄, µ̄)� J(ν�Eν̄,µ) − J(ν̄,µ)� J(ν,µ) − J(ν�E ν̄,µ):
Hence, Assumption 2 is satisfied.

We can now state the main result of this section.

Theorem 5. The set of mean field game equilibria M is a nonempty with infM ∈M and supM ∈M. Moreover, if f and
g are continuous in (x,µ), then

1. the learning procedure µn defined inductively by µ0 � infL and µn+1 � infR(µn) is nondecreasing in L and converges to
the minimal MFG solution, and

2. the learning procedure µ̄n defined inductively by µ̄0 � supL and µ̄n+1 � supR(µ̄n) is nonincreasing in L and converges
to the maximal MFG solution.

Proof. For relaxed MFG equilibria as in (45), the result follows from the general Theorem 1. Thanks to Lemma 4,
this allows us to obtain the result for MFG equilibria as in Definition 5. w

7. Supermodular Mean Field Games with Optimal Stopping
In this section, we adapt the general results of Section 2 to an MFG, where the representative agent faces an opti-
mal stopping maximization problem. In particular, we introduce and solve a version of the model discussed in
Bouveret et al. [13], to which we add a common noise (see Example 3 for details). Our formulation also includes
a particular case of the model studied in Carmona et al. [21] (see Example 4).

7.1. Formulation of the Model
Let (Ω,F ,F,P) be a filtered probability space, satisfying the usual conditions. For 0 < T <∞, let T denote the set of
F-stopping times satisfying τ�T P a.s. Let Z � (Z)t∈[0,T] and B � (B)t∈[0,T] be progressively measurable stochastic
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processes, taking values in R
d1 and R

d2 for d1,d2 ∈ N, respectively. Set X :� (Z,B) and d :� d1 + d2. Assume that the
process B has independent increments, and denote by F

B the right-continuous extension of the filtration generated
by B, augmented by the P-null sets. The process B represents a common noise, and it can also be deterministic
(in this case, FB is the trivial filtration). For any t ∈ [0,T], denote by FB

t,T the σ-field generated by the family of in-
crements {Bi

s2 −Bi
s1 |t� s1 < s2�T, i � 1, : : : ,d2}. We assume that for any t ∈ [0,T], the σ-fields F t and FB

t,T are
independent.

Denote by L pr:(Ω × [0,T];M�1(R)) the set of all processes taking values in the set of subprobability measures
M�1(R), which are FB-progressively measurable. Consider two measurable functions

f : [0,T] × R
d ×M�1(R) → R and g : [0,T] × R

d → R:

Next, for m ∈ L pr:(Ω × [0,T];M�1(R)), we define the profit functional

J(τ,m) :� E

∫ τ

0
f (t,Xt,mt)dt+ g(τ,Xτ)

[ ]
, τ ∈ T , (46)

and consider the optimal stopping problem, parametrized by m, which consists of maximizing the profit func-
tional J(·,m). For a process m, we say that the stopping time τm is optimal for m if τm ∈ arg maxT J(·,m).

We next consider a continuous function ψ : Rd → R and the following notion of solution.

Definition 6. A processm ∈ L pr:(Ω × [0,T];M�1(R)) is an MFG equilibrium if

mt(A) � P[ψ(Xt) ∈ A, t < τm |FB
t ], for all A ∈ B(R), t ∈ [0,T], P a:s:,

for some τm ∈ arg maxT J(·,m).
The function ψ allows us to embed in one single model different formulations of the MFG problem with opti-

mal stopping; we refer to Examples 3 and 4 for further details.

7.2. Reformulation and Preliminary Results
In order to prove the existence and approximation of the equilibria of the MFG, we embed the problem in terms
of the general formulation of Section 2.

Consider the set E :� T , endowed with the lattice structure � , � arising from the order relation � given by the
P a.s. pointwise order (τ� τ̄ if and only if τ� τ̄ P a.s.). The lattice E is complete, so that it is compact in the inter-
val topology; see the appendix. The lattice structure on E allows us to directly use some of the results in Vives
[59] (see, in particular, Remark 7).

For τ ∈ E, we define theM�1(R)-valued process pτ by setting, P a.s.,

(pτ)t(A) :� P[ψ(Xt) ∈ A, t < τ |FB
t ], for all A ∈ B(R) and t ∈ [0,T]: (47)

Note that (pτ)t(y,∞)�P[ψ(Xt) > y |FB
t ]≕ µ

ψ
t (y,∞) P a:s:, for y ∈ R, so that

(pτ)t�stµ
ψ
t , P a:s:, for each t ∈ [0,T]: (48)

For m, m̄ ∈ L pr:(Ω × [0,T];M�1(R)), we define the order relation

m�L m̄wmt�st m̄tP a:s:, for dt a:a: t ∈ [0,T],
and introduce the set of feasible distributions as

L :� {m ∈ L pr:(Ω × [0,T];M�1(R)) |m�Lµψ},
endowed with the order relation �L . Thanks to the results in Section 3, the lattice (L, �L ) is complete and Dede-
kind super complete (see, in particular, Example 1).

Observe that, from the definition of p, we have the following monotonicity properties:

p(τ� τ̄)�L pτ�L pτ̄�L pτ�L pτ̄�L p(τ� τ̄), for each τ, τ̄ ∈ E: (49)

The following assumption will ensure that the projection p takes values in L and will give the necessary integra-
bility of the payoffs in order to gain the continuity of the functional J.
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Assumption 7.
1. The processes Z and B are continuous.
2. The functions f , g are nonnegative, g is continuous, and

E sup
t∈[0,T]

( f (t,Xt,µ
ψ
t ) + g(t,Xt))

[ ]
<∞:

Lemma 5. The map p : E→ L as in (47) is well defined (i.e., pτ ∈ L for any τ ∈ E).

Proof. Take τ ∈ E. In light of (48), we only need to prove that the process pτ is FB-progressively measurable.
We first show that for each τ ∈ T and t ∈ [0,T], P a.s., we have

(pτ)t(A) � P[ψ(Xt) ∈ A, t < τ |FB
t ] � P[ψ(Xt) ∈ A, t < τ |FB

T], for all A ∈ B(R): (50)

This can be shown similarly to remark 1 in Tchuendom [56]. Indeed, for any t ∈ [0,T], the σ-fields F t and FB
t,T are

independent, so that the random variables YA
t :� 1{ψ(Xt)∈A} 1{t<τ}, A ∈ B(R), are independent from FB

t,T. Also, by
assumption, the σ-fields FB

t and FB
t,T are independent. It thus follows that for any A ∈ B(R), one has

P[ψ(Xt) ∈ A, t < τ |FB
T] � E[YA

t |FB
t �F

B
t,T] � E[YA

t |FB
t ] � P[ψ(Xt) ∈ A, t < τ |FB

t ], P a:s:,

which proves (50).
We can now prove that the process pτ is right-continuous P a.s. Indeed, for φ ∈ Cb(R), t ∈ [0,T], and a sequence

(sn)n ⊂ [0,T] converging to twith sn� t, we have

lim
n

∫
R

φ(y)(pτ)sn(dy) � lim
n

E[φ(ψ(Xsn )) 1{sn<τ} |FB
T]

� E[φ(ψ(Xt)) 1{t<τ} |FB
T]

�
∫
R

φ(y)(pτ)t(dy), P a:s:,

where the convergence follows by the dominated convergence theorem for conditional expectations and using
the right continuity of (φ(ψ(Xs)) 1{s<τ})s∈[0,T] deriving from Assumption 7. Therefore, (pτ)sn weakly converges to
(pτ)t, P a.s., as n→∞, proving the right continuity of pτ.

Finally, because the process pτ is FB adapted and right continuous, it is FB-progressively measurable, complet-
ing the proof of the lemma. w

7.3. Existence and Approximation of Equilibria
We enforce the following structural condition.

Assumption 8. For each (t,x) ∈ [0,T] × R
d, the function f (t,x,·) is increasing (i.e., f (t,x,m)� f (t,x, m̄) for any m, m̄ ∈

M�1(R) with m�st m̄).

From Assumption 8, for m, m̄ ∈ L with m�L m̄ and τ, τ̄ ∈ E, we have

J(τ̄, m̄) − J(τ̄�τ, m̄) � E

∫ τ̄

τ̄�τ
f (t,Xt, m̄t)dt+ g(τ̄,Xτ̄) − g(τ̄�τ,Xτ̄ �τ)

[ ]
�E

∫ τ̄

τ̄�τ
f (t,Xt,mt)dt+ g(τ̄,Xτ̄) − g(τ̄�τ,Xτ̄ �τ)

[ ]
� E

∫ τ� τ̄

τ

f (t,Xt,mt)dt+ g(τ� τ̄,Xτ� τ̄) − g(τ,Xτ)
[ ]

� J(τ� τ̄,m) − J(τ,m),
which reads as

J(τ̄, m̄) − J(τ̄�τ, m̄)� J(τ̄,m) − J(τ̄�τ,m) � J(τ� τ̄,m) − J(τ,m): (51)
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Remark 6. It is worth observing that the first inequality in (51) corresponds to the fact that the functional J :
E × L→ R has increasing differences, whereas the second equality in (51) implies that the functionals
J(·,m) : L→ R, m ∈ L, are supermodular. In this case, the game is said to be supermodular, and we refer to
Vives [59] for further details.

We consider the best-response maps

R̂(m) :� arg min
E

J(·,m) ⊂ E, R(m) :� p(R̂(m)) ⊂ L, m ∈ L: (52)

Combining Assumptions 7 and 8 together with the definition of L, we obtain that for any m ∈ L,

E sup
t∈[0,T]

( f (t,Xt,mt) + g(t,Xt))
[ ]

�E sup
t∈[0,T]

( f (t,Xt,µ
ψ
t ) + g(t,Xt))

[ ]
<∞: (53)

This estimate, together with Assumption 7, allows us to show that the functionals J(·,m) : L→ R, m ∈ L, are con-
tinuous in the interval topology on E. Therefore, arguing as in lemma 3.1 in Vives [59], for any m ∈ L the set R̂(m)
is nonempty so that thanks to Lemma 5, the best-reply map R : L→ 2L is well defined. Moreover, m ∈ L is an
MFG equilibrium if and only if m ∈ R(m).
Remark 7. We observe that even if condition 2 in Assumption 1 is not satisfied, the same conclusions as in
Lemma 1 can be deduced as follows. Thanks to the lattice structure on E and to the supermodularity property in
(51), we can employ lemma 3.1 in Vives [59] in order to obtain the following.

1. The set R̂(m) is a lattice (i.e., for every τ1,τ2 ∈ R̂(m), one has τ1�τ2, τ1�τ2 ∈ R̂(m)).
2. For allm, m̄ ∈ Lwithm� m̄, infER̂(m)� infER̂(m̄) and supER̂(m)� supER̂(m̄).
3. For everym ∈ L, infER̂(m) ∈ R̂(m) and supER̂(m) ∈ R̂(m).
Therefore, because of the monotonicity of the projection p (see (49)), for any m ∈ L, we have

infR(m) � p inf
E
R̂(m)( )

∈ R(m) and supR(m) � p sup
E

R̂(m)
( )

∈ R(m), (54)

so that the assertions of Lemma 1 hold.
Now, we provide the main result of this section. We underline that some of the conditions in Assumption 3

are not satisfied (in particular, the continuity-like property of p for monotone sequences of stopping times is not
satisfied). As a consequence, we obtain a result that is less general than that of Theorem 1 (see Remark 8), and
some of the arguments in the proof of that theorem need to be adapted in order to prove existence and approxi-
mation of MFG sulutions.

Theorem 6. The set of MFG equilibria M is nonempty with infM ∈M and supM ∈M. Moreover, if f is continuous in m,
we have that the learning procedure mn defined inductively by m0 � infL and mn+1 � infR(mn) is nondecreasing in L, and
it converges to the minimal MFG solution.

Proof. The existence and the lattice structure of equilibria follow by Tarski’s fixed point theorem because the
maps infR and supR are nondecreasing; see Remark 7.

We prove the convergence of the learning procedure (mn)n. Setting, for n�1, τn :� infER̂(mn−1), by Remark 7,
we have that τn�τn+1, mn�L mn+1, and mn � pτn for any n�1. By the completeness of the lattices E and L, we can
define τ∗ :� supE{τn |n�1} and m∗ :� supnm

n, and we have

τn → τ∗ P a:s: and mn
t →m∗

t weakly P⊗ dt a:e:, as n→∞: (55)

By definition of mn and τn, for any n�1, we have J(τn,mn−1)� J(τ,mn−1) for any τ ∈ E. Therefore, taking limits as
n→∞ (justified by the integrability in (53) and the convergence in (55)), we obtain J(τ∗,m∗)� J(τ,m∗) for any
τ ∈ E, so that

τ∗ ∈ R̂(m∗): (56)

Moreover, the sequence (τn)n increasingly converges to τ∗, P a.s., as n→∞. Therefore, using the dominated
convergence theorem for conditional expectations and exploiting the left continuity of the map 1{t<·}, we find
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that, P a.s.,

(pτ∗)t(y) � E[1{ψ(Xt)>y} 1{t<τ∗} |F B
T ]

� lim
n

E[1{ψ(Xt)>y} 1{t<τn} |F B
T ]

� lim
n

(pτn)t(y) � lim
n

mn
t (y), for any (t,y) ∈ [0,T] × R:

The latter, thanks to the convergence in (55), in turn implies that pτ∗ � supnm
n �m∗. This, together with (56),

gives that m∗ ∈ R(m∗), so that m∗ is an MFG solution.
The fact that m∗ is the minimal MFG solution follows as in the proof of the general Theorem 1, and this com-

pletes the proof of the theorem. w

7.4. Comments and Examples

Remark 8. We point out that because the function 1{t<· } is not right continuous, the learning procedure (mn)n ⊂ L,
which is defined inductively by m0 :� supL and mn+1 :� supR(mn), cannot be shown to converge to an MFG
equilibrium.

Example 3 (MFGs of Optimal Stopping with Interaction of Scalar Type). As an example, wemay consider anMFG in
which the state variable Z evolves according to the SDE

dZt � b(t,Zt)dt + σ(t,Zt)dWt + σo(t,Zt)dBt, t ∈ [0,T],
for functions (b,σ,σo) : [0,T] × R

d1 →× R
d1 × R

d1×d1 × R
d1×d2 satisfying the usual Lipschitz conditions and for

F-adapted independent Brownian motions W and B taking values in R
d1 and R

d2 , respectively. Moreover, one
may consider a running profit function f, which enjoys a scalar nondecreasing dependence on the measure; that
is, f is given by f (t,x,m) :� f̄ (t,x, 〈φ,m〉), where f̄ (t,x,·) is nondecreasing, φ : R→ [0,∞) is nondecreasing, and
〈φ,m〉 :� ∫

[0,∞)
φ(x)dm(x).

Such a setting resembles the one considered in Bouveret et al. [13], even if several differences arise between
the problem in Bouveret et al. [13] and ours. First, in Bouveret et al. [13], no common noise is considered, and a
nondegeneracy condition on the volatility matrix is needed in order to employ results from PDE theory. These
requirements are not needed for our lattice-theoretic approach to work. Second, in Bouveret et al. [13]—in order
to establish uniqueness of the MFG equilibrium—a suitable antimonotonicity property is imposed on the
dependence of the running profit function with respect to the measure variable (see assumption 8 therein),
whereas in the setting of this example, we need that the function f is nondecreasing with respect to its third argu-
ment. Third, a convergence result is established in Bouveret et al. [13] for potential games, whereas the potential
structure is not needed for our learning procedure to work.

Example 4 (MFGs of Timing with Common Noise). A particular example is when Zt � (t, Z̄t) and ψ(t, z̄,b) � t, for
(t, z̄,b) ∈ R

d1 × R
d2 . In this case, the fixed point condition in Definition 6 reduces to an identity on the space of

P([0,T])-valued random variables. In other words, an equilibrium is an FB
T-adapted P([0,T])-valued random

variable m such that, P a.s.,

mt � P[t < τm |FB
T], for any t ∈ [0,T] and some τm ∈ arg min

E
J(·,m):

This example corresponds to a particular case of the MFG of timing with common noise discussed in Carmona
et al. [21].
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Appendix. Lattice-Theoretic Preliminaries
In this section, we collect some notions and preliminaries for lattices. Throughout, we consider a fixed lattice L (i.e., a
partially ordered set (poset) in which every finite nonempty subset has a least upper bound and a greatest lower bound).
We start with the following definition.

Definition A.1.
a. We say that L is Dedekind σ complete if every countable nonempty subset that is bounded above or below has a least upper

bound or a greatest lower bound, respectively. We say that L is Dedekind complete if every nonempty subset that is bounded
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above or below has a least upper bound or a greatest lower bound, respectively. We say that L isDedekind super complete if every
nonempty subset that is bounded above or below has a countable subset with the same least upper bound or greatest lower
bound, respectively. We say that L is complete if every nonempty subset of L has a least upper bound and a greatest lower
bound.

b. We say that a set M ⊂ L is directed upward or directed downward if for all x,y ∈M, there exists some z ∈M with x � y� z or
x�y�z, respectively.

Definition A.2. We say that a map F : L→ R is strictly increasing if
i. F(x)�F(y) for all x,y ∈ Lwith x�y and
ii. for all x,y ∈ Lwith x�y and F(x) � F(y), it follows that x � y.
The following lemma is a special case of lemma A.3 in Nendel [50] and gives a sufficient condition for a Dedekind

σ-complete lattice to be Dedekind super complete. For the proof, we refer to Nendel [50].

Lemma A.1. Let L be a Dedekind σ-complete lattice. If there exists a strictly increasing map F : L→ R, then L is Dedekind super
complete.

A fundamental result by Birkhoff [11] (see section X.12, theorem X.20) and Frink [29] is that completeness of the lattice
L corresponds to the compactness of L w.r.t. the so-called interval topology, whose definition we briefly recall here.

Definition A.3. The interval topology on L is the smallest topology τ on L such that all closed intervals of the form

(−∞, a] :� {x ∈ L |x� a} and [a,∞) :� {x ∈ L |x� a}, for a ∈ L

are closed w.r.t. τ.
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