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tThe subje
t of the present paper is a simpli�ed model for a symmetri
 bistable system with memoryor delay, the referen
e model, whi
h in the presen
e of noise exhibits a phenomenon similar to whatis known as sto
hasti
 resonan
e. The referen
e model is given by a one dimensional parametrizedsto
hasti
 di�erential equation with point delay, basi
 properties whereof we 
he
k.With a view to 
apturing the e�e
tive dynami
s and, in parti
ular, the resonan
e-like behavior ofthe referen
e model we 
onstru
t a simpli�ed or redu
ed model, the two state model, �rst in dis
retetime, then in the limit of dis
rete time tending to 
ontinuous time. The main advantage of theredu
ed model is that it enables us to expli
itly 
al
ulate the distribution of residen
e times whi
hin turn 
an be used to 
hara
terize the phenomenon of noise-indu
ed resonan
e.Drawing on what has been proposed in the physi
s literature, we outline a heuristi
 methodfor establishing the link between the two state model and the referen
e model. The resonan
e
hara
teristi
s developed for the redu
ed model 
an thus be applied to the original model.2000 AMS subje
t 
lassi�
ations: primary 34K50, 60H10; se
ondary 60G17, 34K11, 34K13,34K18, 60G10.Key words and phrases: sto
hasti
 di�erential equation; delay di�erential equation; sto
hasti
resonan
e; e�e
tive dynami
s; Markov 
hain; stationary pro
ess; sto
hasti
 syn
hronization.1 Introdu
tionSto
hasti
 resonan
e in a narrower sense is the random ampli�
ation of a weak periodi
 signal indu
ed bythe presen
e of noise of low intensity su
h that the signal ampli�
ation is maximal at a 
ertain optimalnon-zero level of noise. In addition to weak additive noise and a weak periodi
 input signal there is athird ingredient in systems where sto
hasti
 resonan
e 
an o

ur, namely a threshold or a barrier thatindu
es several (in our 
ase two) ma
ros
opi
 states in the output signal.Consider a basi
, yet fundamental example. Let V be a symmetri
 one dimensional double wellpotential. A 
ommon 
hoi
e for V is the standard quarti
 potential, see Fig. 1 a). The barrier mentioned
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above is in this 
ase the potential barrier of V separating the two lo
al minima. Assume that the periodi
input signal is sinusoidal and the noise white. The output of su
h a system is des
ribed by the sto
hasti
di�erential equation (SDE)(1) dX(t) = −
(

V ′(X(t)
)

+ a · sin
(

2π
T
t
))

dt + σ · dW (t), t ≥ 0,where W is a standard one dimensional Wiener pro
ess, σ ≥ 0 a noise parameter, V ′ the �rst orderderivative of the double well potential V , a ≥ 0 the amplitude and T > 0 the period of the input signal.As an alternative to the system view, Equation (1) 
an be understood as des
ribing the overdampedmotion of a small parti
le in the potential lands
ape V in the presen
e of noise and under the in�uen
eof an exterior periodi
 for
e. It was originally proposed by Benzi et al. [1, 2℄ and Ni
olis [3℄ as an energybalan
e model designed to explain the su

ession of i
e and warm ages in paleo
limati
 re
ords as aphenomenon of quasi periodi
ity in the average global temperature on Earth.If a = 0, i. e. in the absen
e of a periodi
 signal, Equation (1) redu
es to an autonomous SDE whi
h hastwo metastable states 
orresponding to the two lo
al minima of V . With σ > 0 su�
iently small, thedi�usion will spend most of its time near the positions of these minima. In the presen
e of weak noise,there are two distin
t time s
ales, a short one 
orresponding to the quadrati
 variation of the Wienerpro
ess, and a long one proportional to the average time it takes the di�usion to travel from one of themetastable states to the other.The fa
t that the time s
ale indu
ed by the noise pro
ess is small in 
omparison with the meanresiden
e time as σ tends to zero should allow us to disregard small intrawell �u
tuations when we areinterested in the interwell transition behavior.Suppose a > 0 small enough so that there are no interwell transitions in 
ase σ = 0, i. e. in the deter-ministi
 
ase. The input signal then slightly and periodi
ally tilts the double well potential V . We nowhave two di�erent mean residen
e times, namely the average time the parti
le stays in the shallow welland the average time of residen
e in the deep well. Of 
ourse, both time s
ales also depend on the noiseintensity.Noti
e that deep and shallow well 
hange roles every half period T
2 . Given a su�
iently long period

T , the noise intensity 
an now be tuned in su
h a way as to render the o

urren
eof transitions from the shallow to the deep well probable within one half period, while this timespan is too short for the o

urren
e of transitions in the opposite dire
tion. At a 
ertain noise level theoutput signal will exhibit quasi periodi
 transition behavior, thereby indu
ing an ampli�
ation of theinput signal.For a more 
omprehensive des
ription of sto
hasti
 resonan
e and its wide �eld of appli
ations in many�elds of s
ien
e and engineering see Gammaitoni et al. [4℄ or Anish
henko et al. [5℄. Very re
ently ithas been used in e
onomi
s related models designed for the explanation of non-linear market phenom-ena su
h as 
rashes and bubbles, see Krawie
ki and Holyst [6℄. In their model, the external periodi
for
e 
orresponds to a weak external information 
arrying signal. What models that exhibit sto
hasti
resonan
e have in 
ommon is the quasi periodi
ity of the output at a 
ertain non-zero noise level. Moregenerally, sto
hasti
 resonan
e is an instan
e of noise-indu
ed order.In view of the fa
t that the system given by Equation (1) 
an work as a random ampli�er it seemsnatural to take the frequen
y spe
trum of the output signal as basis for a measure of resonan
e. Themost 
ommon measure of this kind is the spe
tral power ampli�
ation (SPA) 
oe�
ient. Another measureof resonan
e based on the frequen
y spe
trum is the signal to noise ratio (SNR). For a detailed analysissee Pavlyukevi
h [7℄. 2



In general, when measuring sto
hasti
 resonan
e, it is assumed that the solution is in a �stationaryregime�. Sin
e Equation (1) is time dependent for a > 0 we 
annot expe
t (X(t))t≥0 to be a stationarypro
ess. Transforming the non-autonomous SDE (1) into an autonomous SDE with state spa
e R × S1,one 
an re
over the time homogeneous Markov property and a unique invariant probability measureexists, 
f. Imkeller and Pavlyukevi
h [8℄. In Se
tion 3 we will make use of the same idea of appropriatelyenlarging the state spa
e in order to regain a time homogeneous Markov model.A di�erent starting point for a measure of resonan
e � the one that will be adopted here � is the distri-bution of intrawell residen
e times. Observe that the roles of the two potential wells are inter
hangeable.A third 
lass of measures of resonan
e is provided by methods of quantifying (un-)
ertainty, inparti
ular by the entropy of a distribution. This agrees well with the view of sto
hasti
 resonan
e as aninstan
e of noise-indu
ed order.The fa
t that with σ > 0 and a > 0 small a typi
al solution to (1) spends most of its time near thepositions of the two minima of the double well potential V suggests to identify the two potential wellswith their respe
tive minima. The state spa
e R of the non-autonomous SDE thus gets redu
ed to twostates, say −1 and 1, 
orresponding to the left and the right well, respe
tively.A

ording to an idea of M
Namara and Wiesenfeld [9℄ the e�e
tive dynami
s of Equation (1) 
anbe 
aptured in the two state model by 
onstru
ting a {−1, 1}-valued time inhomogeneous Markov 
hainwith 
ertain (time dependent) transition rates. These rates are determined as the rates of es
ape fromthe potential well of the tilted double well potential whi
h 
orresponds to the redu
ed state in question.An approximation of the rate of es
ape from a paraboli
 potential well is given in the limit of small noiseby the Kramers formula, 
f. Se
tion 5.In the physi
s literature, a standard ansatz for 
al
ulating the two state pro
ess given time dependenttransition rates is to solve an asso
iated di�erential equation for the probabilities of o

upying state ±1at time t, a so-
alled master equation [
f. 4℄.An advantage of the redu
ed model is its simpli
ity. It should be espe
ially useful in systems with morethan two meta-stable states. Although it is intuitively plausible to apply a two state �lter, there ispossibly a problem with the measure of resonan
e, for it might happen that with the same notion oftuning sto
hasti
 resonan
e would be dete
ted in the two state model, while no optimal noise level, i. e.no point of sto
hasti
 resonan
e, exists in the 
ontinuous 
ase. This is, indeed, a problem for the SPA
oe�
ient and related measures, see Pavlyukevi
h [7℄. The reason is that in passing to the redu
ed modelsmall intrawell �u
tuations are ��ltered out�, while they de
isively 
ontribute to the SPA 
oe�
ient inthe original model.Measures of resonan
e based on the distribution of intrawell residen
e times, however, do not havethis limitation, that is they are robust under model redu
tion as Herrmann et al. [10℄ show.In Equation (1) repla
e the term that represents the periodi
 input signal with a term that 
orrespondsto a for
e dependent on the state of the solution path a �xed amount of time into the past, that is repla
ethe periodi
 signal with a point delay. This yields what will be our referen
e model, see Equation (2).The idea to study su
h equations with regard to noise-indu
ed resonan
e seems to originate withOhira and Sato [11℄. Their analysis, though, is of limited use, be
ause they make too strong assumptionson independen
e between the 
omponents of the redu
ed model whi
h they 
onsider in dis
rete timeonly.A better analysis of the redu
ed model for an important spe
ial 
hoi
e of Equation (2) 
an be foundin Tsimring and Pikovsky [12℄. The same model is the obje
t of re
ent studies by Masoller [13℄, Houlihanet al. [14℄ and Curtin et al. [15℄, and it will be our standard example, too.3



While the measure of resonan
e applied by Tsimring and Pikovsky [12℄ is essentially the �rst peakin the frequen
y spe
trum, in the other arti
les fo
us is laid on the residen
e time distribution in theredu
ed model, whi
h is 
ompared with numeri
al simulations of the original dynami
s. Under 
ertainsimplifying assumptions, approximative analyti
al results are obtained via a master equation approa
h,where the master equation is a DDE instead of an ODE.In Se
tion 5 we follow Tsimring and Pikovsky [12℄ in establishing the link between the redu
ed andthe referen
e model. Results by Masoller [13℄ show that the density of the residen
e time distributionhas a 
hara
teristi
 jump. She proposes to take the height of this jump as a measure of resonan
e, andwe will follow her proposal, supplementing it by an alternative.Our approa
h is di�erent, though, in that we do not use any kind of master equation. Instead, we
onstru
t a redu
ed model with enlarged state spa
e, whi
h has the Markov property and whi
h allowsus to expli
itly 
al
ulate the stationary distributions as well as the residen
e time distributions.2 The referen
e modelConsider the one dimensional motion of a small parti
le in the presen
e of large fri
tion and additivewhite noise subje
t to the in�uen
e of two additional for
es: one dependent on the 
urrent positionof the parti
le and 
orresponding to a symmetri
 double well potential V , the other dependent on theposition of the parti
le a 
ertain amount of time r in the past and 
orresponding to a symmetri
 singlewell potential U , where the position of the extremum of U 
oin
ides with the position of the saddle pointof V .Without loss of generality we may assume that the saddle point of the potential V is at the origin andthe extrema are lo
ated at (−1,−L) and (1,−L) respe
tively, where L > 0 is the height of the potentialbarrier. A standard 
hoi
e for V is the quarti
 potential x 7→ L(x4 − 2x2).Instead of U we will 
onsider β ·U , where β is a s
alar, that serves to �adjust� expli
itly the strengthof the delay for
e. An admissible fun
tion for U is the parabola x 7→ 1
2x

2. In fa
t, with this 
hoi
e of
U and taking as potential V the quarti
 potential with L = 1

4 we �nd ourselves in the setting that wasstudied by Tsimring and Pikovsky [12℄.1 Another reasonable 
hoi
e for U would be a fun
tion whose�rst derivative equals the sign fun
tion outside a small symmetri
 interval around 0 and is smoothly
ontinued on this interval (see Fig. 1).
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Figure 1: Graphs on the interval [−2, 2] of a) quarti
 double well potential V , b) quadrati
 delay potential
U : x 7→ 1

2
x2, 
) absolute value delay potential U : x 7→ |x|, x ∈ R \ (−δ, δ), smoothly 
ontinued on (−δ, δ).1Our notation is slightly di�erent from that of Equation (1) in Tsimring and Pikovsky [12, p. 1℄. In parti
ular, theirparameter ǫ, indi
ating the �strength of the feedba
k�, 
orresponds to −β, here.4



2.1 The underlying SDDEThe dynami
s that govern the motion of a Brownian parti
le as des
ribed above 
an be expressed by thefollowing sto
hasti
 delay di�erential equation determining our referen
e model:(2) dX(t) = −
(
V ′(X(t)

)
+ β · U ′(X(t− r)

))
dt + σ · dW (t), t ≥ 0,where W (.) is a standard one dimensional Wiener pro
ess on a probability spa
e (Ω,F ,P) adapted to a�ltration (Ft)t≥0 satisfying the usual 
onditions, r > 0 is the time delay, V ′, U ′ are the �rst derivativesof V and U , respe
tively, β ∈ R is a parameter regulating the intensity of the delay for
e and σ ≥ 0 anoise parameter. In the spe
ial 
ase σ = 0 Equation (2) be
omes a DDE, while in 
ase β = 0 we havean ordinary SDE.As initial 
ondition at time zero one pres
ribes an F0-measurable C([−r, 0])-valued random variable

ξ su
h that E(‖ξ‖2
∞) <∞ and X0 = ξ P-almost surely. Here, X0 denotes the segment of X at time zero.More generally,

Xt :=
[
s 7→ X(t+ s), s ∈ [−r, 0]

]is the segment at time t ≥ 0, and (Xt)t≥0 the segment pro
ess asso
iated with X, provided a solution
(X(t))t≥−r to Equation (2) exists. The initial segment may, of 
ourse, be deterministi
, i. e. X0 = f forsome fun
tion f ∈ C([−r, 0]).The above des
ription of the two potentials is 
ompatible with the following 
onditions on V and U :

V,U ∈ C
2(R),(3a)

V (x) = V (−x) for all x ∈ R, U(x) = U(−x) for all x ∈ R,(3b)
V ′(x) = 0 i� x ∈ {−1, 0, 1}, U ′(x) = 0 i� x = 0,(3
)
V ′′(−1) = V ′′(1) > 0,(3d)
sup{V ′(x) | x ∈ (−∞,−1) ∪ (0, 1)} ≤ 0, sup{U ′(x) | x ∈ (−∞, 0)} ≤ 0.(3e)If V ′ and U ′ are bounded or satisfy a linear growth 
ondition, then results from the literature ensureexisten
e of a unique strong solution for every F0-measurable C([−r, 0])-valued square integrable randomvariable and a (weakly) unique weak solution for every probability measure on B(C([−r, 0])) as initial
ondition. The segment pro
esses asso
iated with those solutions enjoy the strong Markov property, seeMohammed [16, 17℄.Let R > 0 and let VR, UR be fun
tions su
h that VR and UR have bounded derivatives, while agreeingwith V and U , respe
tively, on the interval [−R,R]. By 
onsidering Equation (2) with V , U repla
ed by

VR, UR we see that unique solutions exist up to an explosion time.In order to prevent explosion of solutions to Equation (2) we need growth 
onditions on V and U .We 
hoose them in a way su
h as to give us 
ontrol over the impa
t of the delay potential U in termsof the potential fun
tion V . In addition to 
onditions (3) let us assume that for some positive 
onstants
R̂0, η̂ and δ we have

U ′(x) > 0 for all x ∈ (0,∞),(4a)
U ′′(x) ≥ 0 for all x ∈ R, V ′′(x) ≥ 0 for all x ∈ R \ [−R̂0, R̂0],(4b)
V ′(x)

U ′(3x)
≥ η̂ · |x|1+δ for all x ∈ R \ [−R̂0, R̂0].(4
)Without loss of generality we may assume δ ∈ (0, 1]. Hen
eforth, whenever the referen
e model is
on
erned, we will suppose that 
onditions (3) and (4) are satis�ed. These 
onditions not only guarantee5



existen
e and uniqueness of solutions, but also the existen
e of a stationary distribution as will be shownnext.Both, non-explosion as well as stationarity, 
an be 
he
ked by the �one step method�. Let b : [0, r]×R → Rbe a 
ontinuous fun
tion, lo
ally Lips
hitz in the se
ond variable (uniformly in the �rst) and su
h thatfor some positive 
onstants R0, η we have(5) x · b(t, x) ≤ −η · |x| for all t ∈ [0, r], x ∈ R \ [−R0, R0].Growth 
ondition (5) guarantees existen
e of a unique strong solution to the non-autonomous SDE(6) dY (t) = b
(
t, Y (t)

)
dt + σ · dW (t), t ∈ [0, r],for every F0-measurable real valued square integrable random variable as initial 
ondition for Y (0), seeDurrett [18, pp. 190-192℄.2 Moreover, E(|Y (0)|2) <∞ implies E(‖Yr‖2

∞) <∞.Let y ∈ R and let Y y be a solution to Equation (6) with deterministi
 initial 
ondition Y (0) = y. For
R > 0 denote by τR the time of �rst exit of Y y from the interval (−R,R), that is we set

τR := inf
{
t ∈ [0, r]

∣
∣ |Y y(t)| ≥ R

}
,with inf ∅ = ∞ by 
onvention. A one dimensional version of Proposition 1.4 in Herrmann et al. [20℄ yieldsthe following estimate for the probability that Y y leaves the interval (−R,R) within time r provided Ris big enough. For any λ > 1 it holds that

P
(
τR ≤ r

)
≤ 6

( r

σ2
η2 + 2

)

exp

(

−2(λ− 1)

λσ2
η R

) for all R ≥ λ(R0 ∨ |y|).(7)For f ∈ C([−r, 0]) de�ne the drift 
oe�
ient bf by
bf (t, x) := −V ′(x) − β · U ′(f(t− r)

)
, (t, x) ∈ [0, r] × R.With (t, x) ∈ [0, r] × R we have

x · bf (t, x) = − xV ′(x) − β xU ′(f(t− r)
) ∣

∣ apply (3b)
= − |x|U ′(3|x|

) V ′(x)

U ′(3x)
− β xU ′(f(t− r)

) ∣
∣ apply (4b)

≤ − |x|U ′(3|x|
) V ′(x)

U ′(3x)
+ |β| |x|U ′(‖f‖∞

)
.Set KV := sup{−x · V ′(x) | x ∈ [−R̂0, R̂0]}. Be
ause of (4
) we �nd that

x · bf (t, x) ≤







KV + |β| R̂0 U
′(‖f‖∞

) if |x| < R̂0,

−η̂ U ′(3|x|
)
|x|2+δ + |β| |x|U ′(‖f‖∞

) if |x| ≥ R̂0.If ‖f‖∞ ≥ 3
(
R̂0 ∨ 2|β|

η̂
∨ 1
), then(8) x · bf (t, x) ≤







KV + |β| R̂0 U
′(‖f‖∞

) if |x| < R̂0,

1
3 |β| ‖f‖∞ U ′(‖f‖∞

) if R̂0 ≤ |x| < 1
3‖f‖∞,

− η̂
18 ‖f‖1+δ

∞ U ′(‖f‖∞) |x| if |x| ≥ 1
3‖f‖∞.2Alternatively, we 
ould invoke Theorem 10.2.2 in Stroo
k and Varadhan [19℄ and the fa
t that pathwise uniquenessholds. 6



In parti
ular, provided that ‖f‖∞ ≥ 3
(
R̂0 ∨ 2|β|

η̂
∨ 1
), we have(9) x · bf (t, x) ≤ −ηf |x| for all t ∈ [0, r], |x| ≥ 1

3‖f‖∞,where ηf := η̂
18 ‖f‖1+δ

∞ U ′(‖f‖∞).Clearly, inequality (9) implies growth 
ondition (5) if we repla
e b with bf and R0 with 1
3‖f‖∞. Noti
ethat (5) is also satis�ed for bf when ‖f‖∞ is small. In this 
ase we would estimate the produ
t x ·bf (t, x)by applying (4
) and observing that U ′(x) is greater than some positive 
onstant for all positive x bigenough.Let (X(t)t∈[−r,τ̂) be a strong solution to Equation (2) for some admissible initial 
ondition ξ up toexplosion time τ̂ . We have to show that τ̂ = ∞ P-a. s.Suppose τ̂ > n · r P-almost surely for some n ∈ N0. This will 
ertainly be the 
ase if we take n = 0.Set s := n · r. By hypothesis, (X(t))t∈[−r,s] is well de�ned as a solution to Equation (2) up to time s. Let

ω ∈ Ω, and set f := Xs(ω). Observe that Xs(ω̃) = f for almost all ω̃ ∈ Ω with respe
t to the probabilitymeasure P(.|Fs)(ω).In Equation (6) repla
e the drift b with bf and pres
ribe f(0) as initial 
ondition. Noti
e that bfful�lls a growth 
ondition like (5). The fa
t that there is a unique strong solution to Equation (6) nowimplies that, P(.|Fs)(ω)-almost surely, (X(s+ t))t∈[0,r] exists and satis�es (6). Consequently, τ̂ > s+ rwith probability one under P(.|Fs)(ω).Sin
e P(A) = E(P(A|Fs)) for any event A ∈ F , we see that τ̂ > n · r entails τ̂ > (n+1)r. Pro
eedingby indu
tion, we 
on
lude that solutions to our referen
e Equation (2) 
annot explode in �nite time.Stationarity is studied in S
heutzow [21, 22℄ for equations of a spe
ial form. Let F be a real valuedBorel measurable and lo
ally bounded fun
tional on C([−1, 0]), where lo
ally bounded means boundedon bounded subsets. Consider the SDDE(10) dX̃(t) = F (X̃t)dt + dW (t), t ≥ 0.By appropriately s
aling time and spa
e one 
an bring SDDEs with delay length r 6= 1 or noise parameter
σ 6= 1, as long as both are positive, into the form of Equation (10). Let us spe
ify F as(11) F (g) := −

√
r

σ
·
(

V ′(σ
√
r · g(0)

)
+ β · U ′(σ

√
r · g(−1)

))

, g ∈ C([−1, 0]).Sin
e the 
oordinate proje
tions are measurable and V ′, U ′ are lo
ally bounded 
ontinuous fun
tionsbe
ause of (3a), F is Borel measurable and lo
ally bounded.Let g ∈ C([−1, 0]) and assume that X̃ together with a Wiener pro
ess (W̃ , (F̃t)t≥0) on (Ω̃, F̃ , P̃) isa weak solution to (10) with F as just de�ned and X̃0 = g P̃-almost surely. Set f(t) := σ
√
r · g( t

r
),

t ∈ [−r, 0]. Let X together with a Wiener pro
ess (W, (Ft)t≥0) on (Ω,F ,P) be a weak solution of (2) su
hthat P(X0 = f) = 1. Then the pro
esses (X(t))t≥−r and (σ
√
r · X̃( t

r
))t≥−r have the same distribution[
f. 21, p. 31℄. Therefore, if σ > 0, then our referen
e equation 
an be transformed into an instan
e ofEquation (10).Theorem 1 
ites part of Theorem 3 and Theorem 4 from S
heutzow [22, pp. 47-48, 54℄. Strong existen
eand pathwise uniqueness 
learly imply weak existen
e and uniqueness in distribution. Noti
e that inorder to have a weak solution for any initial distribution it is su�
ient to 
he
k existen
e of solutions forall deterministi
 initial 
onditions.Theorem 1 (S
heutzow). Let F be a Borel measurable and lo
ally bounded fun
tional on C([−1, 0]).Assume that weak existen
e and uniqueness hold for Equation (10). Let L : C([−1, 0]) → [0,∞) be Borelmeasurable, and set for R ≥ 0

AR := − sup
{
Ẽg

(
L(X̃1)

)
− L(g)

∣
∣ g ∈ C([−1, 0]), ‖g‖∞ ≥ R

}
.7



Here, Ẽg means expe
tation with respe
t to the probability measure of a weak solution for (10) withdeterministi
 initial 
ondition g.1. Let ((X̃, W̃ ), (Ω̃, F̃ , P̃), (F̃t)) be a weak solution to (10) with arbitrary initial distribution ν. There isat most one invariant probability measure π for Equation (10). If an invariant probability measure
π exists, then

P̃X̃t

t→∞→ π in total variation.2. If A0 ∨ 0 <∞ and 0 ≤ limR→∞
A0∨0
AR

< 1, then (10) possesses an invariant probability measure.As Lyapunov fun
tional L we 
hoose
L(g) := ‖g‖∞ + |g(0)|, g ∈ C([−1, 0]).Noti
e that beside 
onditions (4) only properties (3a) and (3b) are needed in order to derive growthestimates (8) and (9). For g ∈ C([−1, 0]) de�ne the res
aled drift 
ondition b̃g by

b̃g(t, x) :=
√

r

σ
· bfg

(
r · t, σ√r · x

)
, (t, x) ∈ [0, 1] × R, where fg(t) := σ

√
r · g

(
t
r

)
, t ∈ [−r, 0].In parti
ular, ‖fg‖∞ = σ

√
r · ‖g‖∞. Set R̃0 := 3

σ
√

r

(
R̂0 ∨ 2|β|

η̂
∨ 1
). If ‖g‖∞ ≥ R̃0 then inequality (9)entails that(12) x · b̃g(t, x) ≤ −η̃g |x| for all t ∈ [0, 1], |x| ≥ 1

3‖g‖∞,where
η̃g :=

√
r

σ
ηfg

= η̂
18 · σδ · r1+ δ

2 · ‖g‖1+δ
∞ · U ′(σ

√
r · ‖g‖∞

)
.In analogy to Equation (6), we 
onsider non-autonomous SDEs of the form(13) dỸ (t) = b̃

(
t, Ỹ (t)

)
dt + dW (t), t ∈ [0, 1].The drift 
oe�
ient b̃ has to be 
hosen in a

ordan
e with the deterministi
 initial 
ondition of Equa-tion (10). For g ∈ C([−1, 0]) denote by Ỹ g the (strongly) unique solution to Equation (13) with b̃g inpla
e of b̃ and initial 
ondition g(0). Let τ̃R denote the time of �rst exit of Ỹ g from the interval (−R,R),where R > 0, that is we set

τ̃R := inf
{
t ∈ [0, 1]

∣
∣ |Ỹ g(t)| ≥ R

}
,with inf ∅ = ∞ by 
onvention. As a 
onsequen
e of (7), provided that ‖g‖∞ ≥ R̃0, with λ > 1 we have

P
(
τ̃R ≤ 1

)
≤ 6

(
η̃2

g + 2
)
exp

(

−2(λ− 1)

λ
η̃g R

) for all R ≥ λ
(

1
3‖g‖∞ ∨ |g(0)|

)
.(14)First, we turn to estimating the expe
ted supremum of |Ỹ g|. Set yg := 1

3‖g‖∞ ∨ |g(0)|. For ‖g‖∞ ≥ R̃0and any λ > 1 it holds that
E
(
‖Ỹ g

1 ‖∞
)

=

∞∫

0

P

(

sup
t∈[0,1]

|Ỹ g(t)| > R

)

dR ≤ λ yg +

∞∫

λyg

P (τ̃R ≤ 1) dR
∣
∣ apply (14)

≤ λ yg + 6
(
η̃2

g + 2
)
·

∞∫

λyg

exp

(

−2(λ− 1)

λ
η̃g R

)

dR

= λ yg +
3λ(η̃2

g + 2)

(λ− 1)η̃g

· exp

(

−2(λ− 1)

λ
η̃g yg

)

≤ λ
(

1
3‖g‖∞ ∨ |g(0)|

)
+

3λ

λ− 1

(

η̃g +
2

η̃g

)

· exp

(

−2(λ− 1)

3
η̃g ‖g‖∞

)

.8



Therefore, given a > 1 we �nd R(a) > 0 su
h that for all g ∈ C([−1, 0]) with ‖g‖∞ ≥ R(a) it holds that(15) E
(
‖Ỹ g

1 ‖∞
)

≤







a
3 ‖g‖∞ if |g(0)| ≤ 1

3‖g‖∞,

a|g(0)| if |g(0)| > 1
3‖g‖∞.Se
ond, we try to �nd an upper bound for the expe
ted value of |Ỹ g|. Clearly, if |g(0)| ≤ 1

3‖g‖∞, theninequality (15) implies E(|Y g(1)|) ≤ a
3‖g‖∞. Assume that |g(0)| > 1

3‖g‖∞. Girsanov's theorem impliesthat the sto
hasti
 equation(16) Z(t) = x −
t∫

0

θ · sgn
(
Z(s)

)
ds + W̃ (t), t ∈ [0, 1],where W̃ is a standard Wiener pro
ess, possesses a (weakly) unique weak solution for any 
hoi
e of theparameters x ∈ R, θ > 0.Set x := |g(0)| − 1

3‖g‖∞, θ := η̃g, and let Zg be a solution pro
ess satisfying (16) with x, θ on anappropriate sto
hasti
 basis. By symmetry and be
ause of growth inequality (12), we �nd that
E
(
|Ỹ g(t)|

)
≤ 1

3‖g‖∞ + Ẽ
(
|Zg(t)|

) for all t ∈ [0, 1].Noti
e that Zg is a Brownian motion with two-valued drift started at x = |g(0)| − 1
3‖g‖∞, and |Zg| is are�e
ted Brownian motion with drift −η̃g. The transition probabilities of Zg 
an be 
omputed expli
itly,see Karatzas and Shreve [23, pp. 437-441℄. It holds that

Ẽ
(
‖Zg(1)‖∞

)
=

∞∫

0

z√
2π

(

exp

(

−1

2
(x− z − θ)2

)

+ exp

(

2θx− 1

2
(x+ z + θ)2

))

dz

+

∞∫

0

2zθ exp
(
−2θz

) 1√
2π

∞∫

x+z

exp

(

−1

2
(v − θ)2

)

dv dz.Observe that 1
3‖g‖∞ ≤ x ≤ ‖g‖∞, that is x is of order ‖g‖∞, while θ = η̃g is of order at least ‖g‖1+δ

∞ .Therefore, Ẽ(‖Zg(1)‖∞) goes to zero as ‖g‖∞ tends to in�nity. We 
on
lude that, given a > 1, there is
R̃(a) > 0 su
h that for all g ∈ C([−1, 0]) with ‖g‖∞ ≥ R̃(a) it holds that(17) E

(
|Ỹ g(1)|

)
≤ a

3 ‖g‖∞.Observe that A0 as de�ned in Theorem 1 is �nite. Estimates (15) and (17) imply that AR tends toin�nity as R goes to in�nity. Theorem 1 thus guarantees existen
e of an invariant probability measure.Let us summarize our �ndings.Proposition 1. Suppose that V , U satisfy 
onditions (3) and (4). Let σ ≥ 0, β ∈ R be given. Then thefollowing holds for Equation (2):1. For every F0-measurable C([−r, 0])-valued random variable as initial 
ondition there is a (pathwise)unique strong solution.2. The segment solution pro
esses enjoy the strong Markov property.3. If σ > 0, then there is a unique invariant probability measure π for the segment pro
ess, whi
h
onverges in total variation to π for every initial distribution.9



The additional 
onditions (4) are rather 
rude and 
ould be varied in many ways. For example, onemight relax 
ondition (4
) by requiring a ratio between V ′ and U ′ of order one instead of order 1+δprovided the growth of U ′ is of polynomial order δ.A di�erent restri
tion on the geometry of V and U would be the following: Assume that a 
onstant
Rpot greater than the positive root of V exists su
h that V and U are linear on R\ [−Rpot, Rpot]. Clearly,this 
ondition would not allow V to be a paraboli
 or quarti
 potential. In this setting, however, thedelay parameter β be
omes important. By appealing to Theorem 5 in S
heutzow [22, pp. 55-56℄ we �ndthat a stationary distribution exists if σ > 0 and β > −V ′(Rpot)

U ′(Rpot)
, while no invariant measure exists in
ase β < −V ′(Rpot)

U ′(Rpot)
.2.2 Basi
 parameter settingsLet us have a look at basi
 parameter settings for Equation (2). The simplest and least interesting
hoi
e of parameters is σ = 0 and β = 0, i. e. no noise and no delay. In this 
ase, (2) redu
es to a onedimensional ordinary di�erential equation with two stable solutions, namely −1 and 1, and an instabletrivial solution.The dynami
s of the general deterministi
 delay equation, i. e. σ = 0, β 6= 0, is not obvious forall 
ombinations β ∈ R, r > 0. In Redmonda et al. [24℄ stabilization of the trivial solution and the
orresponding bifur
ation points are studied. The parameter region su
h that the zero solution is stableis 
ontained in β ≥ 1, r ∈ [0, 1].3 This is not the parameter region we are interested in, here. Re
all fromSe
tion 1 that sto
hasti
 resonan
e is a phenomenon 
on
erned with an in
rease of order in the presen
eof weak non-zero noise. For large |β| the delay for
e would be predominant. Similarly, with r small thenoise would not have enough time to in�uen
e the dynami
s.Indeed, we must be 
areful in our 
hoi
e of β lest we end up with a randomly perturbed deterministi
os
illator. Solutions to Equation (2) exhibit periodi
 behavior even for β > 0 
omparatively small.If β = 0 and σ > 0, then our SDDE (2) redu
es to an ordinary SDE. Of interest is again the 
ase ofsmall noise. A Brownian parti
le moving along a solution traje
tory spends most of its time �u
tuatingnear the position of the minimum of one or the other potential well, while interwell transitions onlyo

asionally o

ur.Now, let σ > 0 and |β| be small enough so that the 
orresponding deterministi
 system does not exhibitos
illations. Let us suppose �rst that β is positive. Then the e�e
t of the delay for
e should be that offavouring interwell transitions whenever the Brownian parti
le is 
urrently in the same potential well itwas in r units of time in the past, while transitions should be
ome less likely whenever the parti
le is
urrently in the well opposite to the one it was in before. Noti
e that the in�uen
e of the delay for
ealone is insu�
ient to trigger interwell transitions. In fa
t, with σ > 0 not too big, transitions are rareand a typi
al solution traje
tory will still be found near the position of one or the other minimum of Vwith high probability.Consider what happens if the noise intensity in
reases. Of 
ourse, interwell transitions be
ome morefrequent, while at the same time the intrawell �u
tuations in
rease in strength. But there is an additionale�e
t: As we let the noise grow stronger interwell transitions o

ur at time intervals of approximatelythe same length, namely at intervals between r and 2r, with high probability. The solution traje
toriesexhibit quasi-periodi
 swit
hing behavior at a non-zero noise level. This is what we may 
all an instan
eof sto
hasti
 resonan
e.3Equation (1.3) in Redmonda et al. [24℄ is our standard example with V the quarti
 potential, where −α 
orrespondsto our parameter β. 10



Further in
reasing the noise intensity leads to ever growing intrawell �u
tuations whi
h eventuallydestroy the quasi-periodi
ity of the interwell transitions. When the noise is too strong, the potentialbarrier of V has no substantial impa
t anymore and random �u
tuations easily 
rossing the barrier arepredominant.Suppose β is negative. The e�e
t of the delay for
e, now, is that of pushing the Brownian parti
le out ofthe potential well it is 
urrently in whenever the parti
le's 
urrent position is on the side of the potentialbarrier opposite to the one remembered in the past. Sojourns of duration longer than r, on the otherhand, be
ome prolonged due to the in�uen
e of the delay whi
h in this 
ase renders transitions less likely.In order to obtain some kind of regular transition behavior a higher noise level as 
ompared to the
ase of positive β is ne
essary. Of 
ourse, one 
ould 
hange time s
ales by in
reasing the delay time
r, thereby allowing for lower noise intensities. In Se
tion 5 we will state more pre
isely what regulartransition behavior means in 
ase β < 0, yet we will not subsume it under the heading of sto
hasti
resonan
e.3 The two state model in dis
rete timeApplying the ideas sket
hed in Se
tion 1, we develop a redu
ed model with the aim of 
apturing thee�e
tive dynami
s of the referen
e model. To simplify things further we start with dis
rete time. Asthe segment pro
ess asso
iated with the unique solution to (2), the referen
e model equation, enjoys thestrong Markov property, it is reasonable to approximate the transition behavior of that solution by asequen
e of Markov 
hains. One unit of time in the dis
rete 
ase 
orresponds to r/M time units in theoriginal model, where the delay interval [−r, 0] is divided into M ∈ N equally spa
ed subintervals.After de�ning the approximating Markov 
hains we obtain an expli
it formula for their stationarydistributions whi
h will be useful in 
al
ulating, for ea
h M ∈ N, the residen
e time distribution in thestationary regime and deriving its density fun
tion in the limit of dis
rete time tending to 
ontinuoustime. Finally, based on the residen
e time distributions, we introdu
e two simple measures of resonan
e.The results on Markov 
hains we need are elementary and 
an be found, for example, in Brémaud[25℄, whi
h will be our standard referen
e.3.1 A sequen
e of Markov 
hains and stationary distributionsLet M ∈ N be the dis
retization degree, that is the number of subintervals of [−r, 0]. The 
urrent stateof the pro
ess we have to 
onstru
t 
an attain only two values, say −1 and 1, 
orresponding to thepositions of the two minima of the double-well potential V . Now, there areM +1 latti
e points in [−r, 0]that delimit the M equally spa
ed subintervals, giving rise to 2M+1 possible states in the enlarged statespa
e.Let SM := {−1, 1}M+1 denote the state spa
e of the Markov 
hain with time unit r/M . Elements of
SM will be written as (M+1)-tuples having {−1, 1}-valued entries indexed (from left to right) from −Mto 0. This 
hoi
e of the index range serves as a mnemoni
 devi
e to re
all how we have dis
retized thedelay interval [−r, 0]. Thus, l ∈ {−M, . . . , 0} 
orresponds to the point l · r/M in 
ontinuous time.To embed the dis
rete into the time 
ontinuous model, let α, γ be positive real numbers. If X(.) is theunique solution to (2) in the 
ase of �interesting� noise parameter σ and delay parameter β, one may thinkof α as the es
ape rate of X(.) from one of the two potential wells under the 
ondition X(t) ≈ X(t− r)and of γ as the es
ape rate of X(.) under the 
ondition X(t) ≈ −X(t− r). All of the parameters of thereferen
e model, in
luding the delay length and the geometry of the potentials U and V , will enter thedis
rete model through the transition rates α and γ, 
f. Se
tion 5.11



In the dis
rete model of degree M , instead of two di�erent transition rates we have two di�erenttransition probabilities αM and γM with αM = Rsc(α,M), γM = Rsc(γ,M), where Rsc is an appropriates
aling fun
tion. In analogy to the time dis
retization of a Markov pro
ess we set(18) Rsc : {α, γ} × N ∋ (η,N) 7→ η
α+γ

· (1 − e−
α+γ

N ) ∈ (0, 1).Let Z = (Z(−M), . . . , Z(0)), Z̃ = (Z̃(−M), . . . , Z̃(0)) be elements of SM . A transition from Z to Z̃ shallhave positive probability only if the following shift 
ondition holds:(19) ∀ l ∈ {−M, . . . ,−1} : Z̃(l) = Z(l+1).Example. Take the element (−1, 1,−1) ∈ S2. A

ording to the shift 
ondition, starting from (−1,1,−1)there are at most two transitions with positive probability, namely to the elements (1,−1, 1) and
(1,−1,−1). ♦If (19) holds for Z and Z̃ then there are two 
ases to distinguish whi
h 
orrespond to the 
onditions
X(t) ≈ X(t − r) and X(t) ≈ −X(t − r), respe
tively. Denote by pM

ZZ̃
the probability to get from state

Z to state Z̃. Under 
ondition (19) we must have
Z(0) = Z(−M) then pM

ZZ̃
=







αM if Z̃(0) 6= Z(0),

1 − αM if Z̃(0) = Z(0),

Z(0) 6= Z(−M) then pM
ZZ̃

=







γM if Z̃(0) 6= Z(0),

1 − γM if Z̃(0) = Z(0).

(20)The fa
t that � be
ause of (18) � we always have αM , γM ∈ (0, 1), implies
pM

ZZ̃
6= 0 i� shift 
ondition (19) is satis�ed.(21)Set PM := (pM

ZZ̃
)Z,Z̃∈SM

. Clearly, PM is a 2M+1 × 2M+1 transition matrix. For every M ∈ N 
hoose an
SM -valued dis
rete pro
ess (XM

n )n∈N0
on some measurable spa
e (ΩM ,FM ) and probability measures

PM
Z , Z ∈ SM , on FM su
h that under PM

Z the pro
essXM is a homogeneous Markov 
hain with transitionmatrix PM and initial 
ondition PM
Z (XM

0 = Z) = 1.If ν is a probability measure on the power set ℘(SM ) then, as usual, let PM
ν denote the probabilitymeasure on FM su
h that XM is a Markov 
hain with transition matrix PM and initial distribution νwith respe
t to PM

ν . Write Pν instead of PM
ν , when there is no ambiguity about the measure PM .From relation (21), 
hara
terizing the non-zero entries of PM , it follows that PM and the asso
i-ated Markov 
hains are irredu
ible. They are also aperiodi
, be
ause the time of residen
e in state

(−1, . . . ,−1), for example, has positive probability for any �nite number of steps. Sin
e the state spa
e
SM is �nite, irredu
ibility implies positive re
urren
e, and these two properties together are equivalentto the existen
e of a uniquely determined stationary distribution on the state spa
e, 
f. Brémaud [25,pp. 104-105℄. Therefore, for every M ∈ N, we have a uniquely determined probability measure πM on
℘(SM ) su
h that4(22) πM (Z̃) =

∑

Z∈SM

πM (Z) pM
ZZ̃

for all Z̃ ∈ SM .4For the probability of a singleton {Z} under a dis
rete measure ν we just write ν(Z).12



There is a simple 
hara
terization of the stationary distribution πM in terms of the number of �jumps� ofthe elements of SM .5 Let Z = (Z(−M), . . . , Z(0)) be an element of SM , and de�ne the number of jumpsof Z as
J (Z) := #

{

j ∈ {−M+1, . . . , 0}
∣
∣ Z(j) 6= Z(j−1)

}

.The global balan
e equations (22) then lead toProposition 2 (Number of jumps formula). Let M ∈ N. Set α̃M := αM

(1−γM ) , γ̃M := γM

(1−αM ) , η̃M :=

α̃M · γ̃M . Then for all Z ∈ SM the following formula holds(23) πM (Z) =
1

cM
α̃

⌊J (Z)+1
2 ⌋

M γ̃
⌊J (Z)

2 ⌋
M =

1

cM
α̃

J (Z) mod 2
M η̃

⌊J (Z)
2 ⌋

M ,where cM := 2 ·
M∑

j=0

(
M
j

)
α̃ j mod 2

M η̃
⌊ j

2 ⌋
M .Proof. The right-hand part of Equation (23) is just a rearrangement of the middle part. For Z ∈ SMde�ne
ψM (Z) := α̃

⌊J (Z)+1
2 ⌋

M γ̃
⌊J (Z)

2 ⌋
M .We then have cM =

∑

Z∈SM
ψM (Z), be
ause J (Z) ∈ {0, . . . ,M} for every Z ∈ SM , and with j ∈

{0, . . . ,M} there are exa
tly 2 ·
(
M
j

) elements in SM having j jumps.Let Z = (Z(−M), . . . , Z(0)) be an element of SM . De�ne elements Z̃, Ẑ of SM as
Z̃ :=

(
Z(−1), Z(−M), . . . , Z(−1)

)
, Ẑ :=

(
−Z(−1), Z(−M), . . . , Z(−1)

)
.Be
ause of (20) and (21) the global balan
e Equations (22) redu
e to(24) πM (Z) =







(1 − αM ) · πM (Z̃) + (1 − γM ) · πM (Ẑ) if Z(−1) = Z(0),

αM · πM (Z̃) + γM · πM (Ẑ) if Z(−1) = −Z(0).Equations (24) determine πM up to a multipli
ative 
onstant. Of 
ourse, ∑Z∈SM
πM (Z) = 1, and wehave already seen that 1

cM

∑

Z∈SM
ψM (Z) = 1. It is therefore su�
ient to show that ψM (Z), Z ∈ SM ,satisfy (24). Let Z, Z̃,Ẑ be elements of SM as above. Then

J (Z̃) =







J (Z) if Z(−M) = Z(0),

J (Z) + 1 if Z(−M) = −Z(−1) = −Z(0),

J (Z) − 1 if Z(−M) = Z(−1) = −Z(0),

J (Ẑ) =







J (Z) if Z(−M) = −Z(0),

J (Z) + 1 if Z(−M) = Z(−1) = Z(0),

J (Z) − 1 if Z(−M) = Z(0) = −Z(−1),and ψM (Z̃), ψM (Ẑ) 
an now be 
al
ulated. This yields the assertion.Let cM be the normalizing 
onstant from Proposition 2. By splitting up the sum in the binomial formulawe see that(25) cM =
(

1 +
√

α̃M

γ̃M

)(
1 +

√

η̃M

)M
+
(

1 −
√

α̃M

γ̃M

)(
1 −

√

η̃M

)M
.5At the moment, �number of 
hanges of sign� would be a label more pre
ise for J (Z), but 
f. Se
tion 4.13



3.2 Residen
e time distributionsLet Y M be the {−1, 1}-valued sequen
e of 
urrent states of XM , that is 6
Y M

n :=







(XM
n )(0) if n ∈ N,

(XM
0 )(n) if n ∈ {−M, . . . , 0}.Denote by LM (k) the probability to remain exa
tly k units of time in the same state 
onditional on theo

urren
e of a jump, that is(26) LM (k) = PπM

(Y M
n = 1, . . . , YM

n+k−1 = 1, Y M
n+k = −1 | Y M

n−1 = −1, Y M
n = 1), k ∈ N,where n ∈ N is arbitrary. The above 
onditional probability is well de�ned, be
ause

PπM

(
Y M
−1 = −1, Y M

0 = 1
)

= πM

(
{(∗, . . . , ∗,−1, 1)}

)
> 0.Here, {(∗, . . . , ∗,−1, 1)} denotes the set {Z ∈ SM | Z(−1) = −1, Z(0) = 1}. By symmetry the roles of −1and 1 in (26) are inter
hangeable. Under PπM

not only XM is a stationary pro
ess, but � as a 
oordinateproje
tion � Y M is stationary, too, although it does not, in general, enjoy the Markov property. We notethat LM (k), k ∈ N, gives the residen
e time distribution of the sequen
e of 
urrent states of XM in thestationary regime.Observe that LM (.) has a �geometri
 tail�. To make this statement pre
ise set(27) KM := PπM

(
Y M

0 = −1, Y M
1 = 1, . . . , Y M

M = 1
∣
∣ Y M

0 = −1, Y M
1 = 1

)
.In view of the �extended Markov property� of Y M , that is the Markov property of the segment 
hain

XM , we have(28) LM (k) = (1 − γM ) ·KM · αM · (1 − αM )k−M−1, k ≥M + 1,where (1 − γM ) ·KM is the probability mass of the geometri
 tail. Stationarity of PπM
implies

KM =
πM

(
(−1, 1, . . . , 1)

)

πM

(
{(∗, . . . , ∗,−1, 1)}

) .From Proposition 2 we see that
πM

(
(−1, 1, . . . , 1)

)
=

α̃M

cM
,and arranging the elements of {(∗, . . . , ∗,−1, 1)} a

ording to their number of jumps we obtain

πM

(
{(∗, . . . , ∗,−1, 1)}

)
=

α̃M

2cM
·
((

1 +
√

γ̃M

α̃M

)(
1 +

√

η̃M

)M−1
+
(

1 −
√

γ̃M

α̃M

)(
1 −

√

η̃M

)M−1
)

.We therefore have(29) KM =
2

(

1 +
√

γ̃M

α̃M

)(
1 +

√
η̃M

)M−1
+
(

1 −
√

γ̃M

α̃M

)(
1 −√

η̃M

)M−1
.In a similar fashion we 
an 
al
ulate LM (k) for k ∈ {1, . . . ,M}. We obtain

LM (M) =
PπM

(
Y M

0 = −1, Y M
1 = 1, . . . , Y M

M = 1, Y M
M+1 = −1

)

πM

(
{(∗, . . . , ∗,−1, 1)}

) = γM ·KM ,(30a)6Re
all the tuple notation for elements of SM . 14



and for k ∈ {1, . . . ,M − 1}

LM (k) =

√
γ̃M

2
·KM ·

(√

γ̃M

(
(1 +

√

η̃M )M−1−k + (1 −
√

η̃M )M−1−k
)

+
√

α̃M

(
(1 +

√

η̃M )M−1−k − (1 −
√

η̃M )M−1−k
))

.

(30b)More interesting than the residen
e time distribution in the 
ase of dis
rete time is to know the behaviorof this distribution in the limit of dis
retization degree M tending to in�nity.Re
all the de�nition of s
aling fun
tion Rsc a

ording to Equation (18) for some numbers α, γ > 0.If αM = Rsc(α,M) and γM = Rsc(γ,M) for all M ∈ N, then � with the usual notation O(.) for theorder of 
onvergen
e � we have
αM =

α

M
+ O(

1

M2
), γM =

γ

M
+ O(

1

M2
).(31)Indeed, if 
ondition (31) holds between the transition probabilities αM , γM , M ∈ N, and some positivetransition rates α, γ, then we 
an 
al
ulate the normalizing 
onstant cM , the �tail 
onstant� KM andthe density fun
tion of the residen
e time distribution in the limit M → ∞.Proposition 3. Let αM , γM ∈ (0, 1), M ∈ N. Suppose that the sequen
es (αM )M∈N, (γM )M∈N satisfyrelation (31) for some positive real numbers α, γ. Then cM and KM 
onverge to c∞ and K∞, respe
tively,as M → ∞, where

c∞ := lim
M→∞

cM =
(

1 +
√

α
γ

)

e
√

αγ +
(

1 −
√

α
γ

)

e−
√

αγ = 2 ·
∞∑

k=0

1

k!
αk mod 2 (αγ)⌊

k
2 ⌋,(32)

K∞ := lim
M→∞

KM =
2

(
1 +

√
γ
α

)
e
√

αγ +
(
1 −

√
γ
α

)
e−

√
αγ

=

√
α√

α cosh(
√
αγ) +

√
γ sinh(

√
αγ)

.(33)De�ne a fun
tion fL : (0,∞) 7→ R by q 7→ fL(q) := lim
M→∞

M · LM

(
⌊qM⌋

). Then(34) fL(q) =







√
γ ·K∞ ·

(√
γ cosh

(√
αγ(1 − q)

)
+

√
α sinh

(√
αγ(1 − q)

)) if q ∈ (0, 1],

K∞ · α · exp
(
−α(q − 1)

) if q > 1.Proof. If relation (31) holds, then in order to derive (32) and (33) from (25) and (29), respe
tively, it issu�
ient to observe that (1 + a
N

+ O( 1
N2 ))N N→∞→ ea for every a ∈ R. The last part of (32) is obtainedby series expansion. Similarly, expression (34) for fL follows from Equations (30a), (30b) and (28).Observe that fL as de�ned in Proposition 3 is indeed the density of a probability measure on (0,∞). In
ase α = γ this probability measure is just an exponential distribution with parameter α (= γ). If α 6= γthen fL has a dis
ontinuity at position 1, where the height of the jump is(35) fL(1+) − fL(1−) = K∞ · (α− γ).Clearly, the restri
tions of fL to (0, 1] and (1,∞), respe
tively, are still stri
tly de
reasing fun
tions,and fL(q), q ∈ (1,∞), is again the density of an exponential distribution, this time with parameter α( 6= γ) and total probability mass K∞. The fun
tion fL(q), q ∈ (0, 1), is the density of a mixture of two�hyperboli
� distributions with the geometri
 mean √

αγ of α and γ as parameter and total probabilitymass 1 −K∞. The ratio between the hyperboli
 
osine and the hyperboli
 sine density is √γ to √
α.15



Re
all how at the beginning of this se
tion we interpreted the dis
retization degree M as the number ofsubintervals of [−r, 0], where r > 0 is the length of the delay that appears in Equation (2). Let us assumethat the numbers α, γ are fun
tions of the parameters of our referen
e model, in parti
ular of the noiseparameter σ and the length of the delay r. Then we should interpret the density fL as being de�nedon normalized time, that is one unit of time 
orresponds to r units of time in the referen
e model. Thedensity of the residen
e time distribution for the two state model in 
ontinuous time should thereforeread(36) f̃L(t) := 1
r
fL

(
t
r

)
, t ∈ (0,∞).Before we may 
all f̃L the density of a residen
e time distribution, we have to justify the passage to thelimit M → ∞ at the level of distributions of the Markov 
hains XM , whi
h underlie the de�nition of

LM . We return to this issue in Se
tion 4.3.3 Two measures of resonan
eDrawing on the residen
e time distribution of the Markov 
hain XM we introdu
e simple 
hara
teristi
sthat provide us with a notion of quality of tuning for the redu
ed model in dis
rete time.We 
onsider XM and the resonan
e 
hara
teristi
s to be de�ned in the stationary regime only,be
ause by doing so we 
an guarantee that an eventual resonan
e behavior of the traje
tories of XM isindependent of transitory behavior. We know that PM is a positive re
urrent, irredu
ible and aperiodi
transition matrix and, therefore, the distribution of XM
n 
onverges to πM in total variation as n → ∞for every initial distribution of X0 [25, p. 130℄. In Se
tion 2 we saw an analogous result for the segmentpro
ess of a solution to Equation (2).Assume that the transition probabilities αM , γM are related to some transition rates α, γ by meansof a smooth s
aling fun
tion like (18), for example, su
h that 
ondition (31) is satis�ed. Under thisassumption we let the dis
retization degree M tend to in�nity. Assume further that α, γ are fun
tionsof the parameters of the referen
e model, in parti
ular, that α = α(σ), γ = γ(σ) are C

2-fun
tions of thenoise parameter σ ∈ (0,∞). The resonan
e 
hara
teristi
s 
an then be understood as fun
tions of σ.Re
all that the residen
e time distribution LM has a geometri
 tail in the sense that LM (k), k ≥M+1,renormalized by the fa
tor (1 − γM ) · KM is equivalent to a geometri
 distribution on N \ {1, . . . ,M}with KM as de�ned by (27). The distribution whi
h LM indu
es on {1, . . . ,M} is given � up to arenormalizing fa
tor � by Equations (30b) and (30a). A natural 
hara
teristi
 seems to be the jump inthe density of the residen
e time distribution fL obtained above. In dis
rete time, i. e. with dis
retizationdegree M ∈ N, we set(37) υM := M ·
(
LM (M+1) − LM (M)

)
.Be
ause of (28), (30a) and (35) we have

υM = M ·KM ·
(
(1 − γM ) · αM − γM

)
, υ∞ := lim

M→∞
υM = K∞ · (α− γ).(38)To 
onsider the height of the dis
ontinuity of fL as a measure of resonan
e has already been proposed byMasoller [13℄. Following her proposal we de�ne what sto
hasti
 resonan
e means a

ording to the jump
hara
teristi
.De�nition 1. Let M ∈ N ∪ {∞}, and suppose that the following 
onditions hold:(i) υM as a fun
tion of the noise parameter σ is twi
e 
ontinuously di�erentiable,16



(ii) lim
σ↓0

υM (σ) = 0,(iii) υ′M has a smallest root σopt ∈ (0,∞).If υM has a global maximum at σopt, then let us say that the Markov 
hain XM or, in 
ase M = ∞, theredu
ed model de�ned by the family (XN )N∈N exhibits sto
hasti
 resonan
e and 
all σopt the resonan
epoint. If υM has a global minimum at σopt, then let us say that the Markov 
hain XM (or, in 
ase
M = ∞, the redu
ed model) exhibits pseudo-resonan
e and 
all σopt the pseudo-resonan
e point.Alternatively, we may take the probability of transitions in a 
ertain time window as 
hara
teristi
 ofthe resonan
e e�e
t. For M ∈ N and q ∈ (0, 1] de�ne

κ̂M :=
M∑

k=1

LM (k), κ
(q)
M :=

⌊(q+1)M⌋
∑

k=M+1

LM (k).(39)By summation over k we see from (28) that
κ̂M = 1 − (1 − γM ) ·KM , κ

(q)
M = (1 − γM ) ·KM ·

(
1 − (1 − αM )⌊qM⌋),and letting M tend to in�nity we get

κ̂∞ := lim
M→∞

κ̂M = 1 −K∞, κ(q)
∞ := lim

M→∞
κ

(q)
M = K∞ · (1 − e−q·α).(40)Re
all thatM steps in time of the 
hain XM or the {−1, 1}-valued pro
ess Y M 
orrespond to an amountof time r in the referen
e model. Thus, κ̂M 
orresponds to the probability of remaining at most time

r in one and the same state, while κ(q)
M approximates the probability of state transitions o

urring in atime window 
orresponding to (r, (q+1)r] of length q · r given a transition at time zero.In (39) we 
ould have allowed for a �window width� q > 1. The interesting 
ase, however, is a smalltime window, be
ause then κ(q)

M measures the probability of transitions within the se
ond delay interval.For q = 1 the two 
omponents of our resonan
e measure 
orrespond to time windows of equal length,that is κ̂M gives the probability of transitions within the �rst delay interval, while κ(1)
M is the probabilityof hopping events o

urring in the se
ond delay interval. Sin
e LM is geometri
ally distributed on

N\{1, . . . ,M}, κ(1)
M majorizes the transition probability for all time windows of the same length startingafter the end of the �rst delay interval. Let us write κM for κ(1)

M .The idea of the following de�nition is to maximize quasi-periodi
ity by �nding a noise level su
h thatsojourns in the same state be
ome neither too long nor too short. Here, short sojourns are those thatlast less than the length of one delay interval, long sojourns those that last longer than the length oftwo delay intervals. Observe that if the 
urrent state of XM remains the same for more than M stepsin dis
rete time, then the in�uen
e of the delay will be 
onstant until a transition o

urs.De�nition 2. Let M ∈ N ∪ {∞}, and suppose that the following 
onditions hold:(i) κM as a fun
tion of the noise parameter σ is twi
e 
ontinuously di�erentiable with values in theunit interval,(ii) lim
σ↓0

(κ̂M + κM )(σ) = 0,(iii) κM has a unique global maximum at σopt ∈ (0,∞).17



If κM (σopt) > κ̂M , then let us say that the Markov 
hain XM or, in 
ase M = ∞, the redu
ed modelde�ned by the family (XN )N∈N exhibits sto
hasti
 resonan
e of strength κM (σopt), and 
all σopt theresonan
e point, else let us speak of pseudo-resonan
e and 
all σopt the pseudo-resonan
e point.In the above de�nition we might have taken a shorter time window than the se
ond delay interval. Anatural 
hoi
e would have been the probability of transitions o

urring in a time window 
orrespondingto (r, (1 + q)r] normalized by the window width. In the limit M → ∞ we obtain(41) lim
q↓0

1

q
· κ(q)

∞ = K∞ · α = fL(1+).Here, fL is the density of the residen
e time distribution from Proposition 3 and fL(1+) is the right-handlimit appearing in Equation (35), whi
h gives the height of the dis
ontinuity of fL.Of 
ourse, De�nition 2 
ould be modi�ed in other ways, most importantly by allowing the time windowthat 
orresponds to κM to �oat. This would be ne
essary for a distributed delay. Suppose that in thereferen
e model instead of the point delay we had a delay supported on [−r,−δ] for some δ > 0. Thena reasonable starting point for a measure of resonan
e 
ould be a time window of length r with its leftboundary �oating from δ to r. Noti
e that a distributed delay (in the referen
e or in the redu
ed model)
an be 
hosen in su
h a way as to render 
ontinuous the density fL.4 The two state model in 
ontinuous timeOur aim in this se
tion is to justify the passage from time dis
retization degreeM to the limitM → ∞ asundertaken in Se
tions 3.2 and 3.3. To this end we will look for a pro
ess in 
ontinuous time that is thelimit in distribution of the Markov 
hains XM , M ∈ N, in the stationary regime. We 
an then 
onsiderthe distribution of residen
e times for this new pro
ess and show that it 
oin
ides with the limit of theresiden
e time distributions in dis
rete time whi
h was 
al
ulated in Se
tion 3.2. Sin
e the measures ofresonan
e introdu
ed in Se
tion 3.3 were de�ned over the (dis
rete) residen
e time distributions, we may
on
lude that in this 
ase, too, the passage to the limit M → ∞ is admissible.For M ∈ N the Markov 
hain XM takes its values in the �nite spa
e SM with 
ardinality 2M+1.The �rst thing to be done, therefore, is to 
hoose a 
ommon state spa
e for the Markov 
hains. Thiswill be D0 := D{−1,1}([−r, 0]), the spa
e of all {−1, 1}-valued 
àdlàg fun
tions, i. e. right-
ontinuousfun
tions with left limits, on the interval [−r, 0], endowed with the Skorokhod topology. This simplestof all Skorokhod spa
es is introdu
ed in detail in Appendix A.3, while in Appendix A.5 we present
D∞ := D{−1,1}([−r,∞)), the spa
e of all {−1, 1}-valued 
àdlàg fun
tions on the in�nite interval [−r,∞).Re
all how in Se
tion 3.1 we partitioned the delay interval [−r, 0]. Time step n ∈ {−M,−M+1, . . .}with respe
t to the 
hain XM was said to 
orrespond to point n · r

M
in 
ontinuous time. Keeping in mindthis 
orresponden
e, in Se
tion 4.1 we embed the spa
es SM , M ∈ N, into D0, whi
h allows us to lookupon the stationary distributions πM as being probability measures on B(D0) and to view the randomsequen
es XM as being D0-valued Markov 
hains.Now, be
ause of shift 
ondition (19) from Se
tion 3.1 one may regard XM as being a pro
ess withtraje
tories in D∞. If the dis
retization of time is taken into a

ount, then the 
hain XM indu
es aprobability measure on B(D∞) for every initial distribution over SM ⊂ D0.Weak 
onvergen
e of the stationary distributions or, equivalently, 
onvergen
e of the πM with respe
tto the Prohorov metri
 indu
ed by the Skorokhod topology onD0 will be established in Se
tion 4.2. Weak
onvergen
e of the distributions on B(D∞) is the obje
t of Se
tion 4.3.Finally, in Se
tion 4.4, we return to the question of identity between the residen
e time distributionfor the limit pro
ess and the one we obtained above as the limit of dis
rete distributions.18



4.1 Embedding of the dis
rete-time 
hainsFirst we interpret the �nite enlarged state spa
e SM as a subset of D0. After that, we 
hange philosophyand regard a 
hain XM as being equivalent to a {−1, 1}-valued 
àdlàg pro
ess.The embedding of SM , the state spa
e of the Markov 
hain XM , into D0 is in a sense the reverse ofwhat one does when approximating solutions to sto
hasti
 delay di�erential equations by Markov 
hainsin dis
rete time.7 Approximation results of this kind were obtained for the multi-dimensional version ofEquation (10) by S
heutzow [21, 22℄. The method is more powerful, though, as Lorenz [26℄ shows, whereweak 
onvergen
e of the approximating pro
esses to solutions of multi-dimensional SDDEs is related toa martingale problem that 
an be asso
iated with the 
oe�
ients of the target equation.Of 
ourse, D0 is a toy spa
e 
ompared to C([−r, 0],Rd). Noti
e, however, that linear interpolationas in the 
ase of C([−r, 0],Rd) is ex
luded, be
ause the only 
ontinuous fun
tions in D0 are the two
onstant fun
tions −1 and 1.Let M ∈ N, Z ∈ SM , and asso
iate with Z = (Z(−M), . . . , Z(0)) a fun
tion fZ : [−r, 0] → {−1, 1} de�nedby
fZ(t) := Z(0) · 1{0}(t) +

−1∑

i=−M

Z(i) · 1[i r
M

,(i+1) r
M

)(t), t ∈ [−r, 0].Clearly, fZ ∈ D0. Hen
e, ι̃M : Z 7→ fZ de�nes a natural inje
tion SM →֒ D0, whi
h indu
es the followingembedding of probability measures on ℘(SM ) into the set of probability measures on B(D0).
M1

+(SM ) ∋ µ 7→ µ̃ :=
∑

Z∈SM

µ(Z) · δfZ
∈ M1

+(D0),where δf is the Dira
 or point measure 
on
entrated on f ∈ D0.Denote by π̃M the probability measure on B(D0) asso
iated with the stationary distribution πM forthe 
hain XM , and write X̃M for the 
orresponding D0-valued Markov 
hain. Sin
e all we have done sofar is a reinterpretation of the state spa
e the results obtained in Se
tion 3 regarding XM are also validfor X̃M .Although the embedding ι̃M given above is natural in view of how the delay interval [−r, 0] shouldbe partitioned a

ording to Se
tion 3.1, it is not the only one possible. Indeed, one 
ould sele
t di�erentinterpolation points in the de�nition of fZ . As the degree of dis
retization M in
reases the 
ompleteSkorokhod distan
e between the di�erent fun
tions fZ , Z ∈ SM being �xed, tends to zero, and the
onvergen
e results stated in Se
tions 4.2 and 4.3 still hold true.Following the notation of Appendix A.3, for Z ∈ SM we write
J(Z) := J(fZ), J̇(Z) := J̇(fZ), ζZ := ζfZ

,thereby denoting the sets of (inner) dis
ontinuities or jumps of Z, and the minimal distan
e between twodis
ontinuities. Noti
e that our new de�nition of J(Z) agrees with the number of jumps J (Z) de�nedin Se
tion 3.1 in the sense that #J(Z) = J (Z).Re
all the notation of Se
tion 3.1. Let ν be a distribution on ℘(SM ) and denote by PM
ν the probabilitymeasure on FM su
h that XM is a Markov 
hain with transition matrix PM and initial distribution

XM
0

d∼ ν. For a �point distribution� on Z ∈ SM write PM
Z .7Under suitable 
onditions the approximating time series 
onverge in distribution to the (weakly unique) solution of theSDDE. 19



For f ∈ D0 let Z(f) be the element of SM su
h that Z(i) = f( r
M

·i) for all i ∈ {−M, . . . , 0}. Let
(Y M

n )n∈{−M,−M+1,...} be the sequen
e of 
urrent states of XM as de�ned at the beginning of Se
tion 3.2.Write
Ỹ M (t) := Y M

⌊ t
r

M⌋, t ≥ −r.For A ∈ B(D∞) set
P̃

M

f (A) := PM
Z(f)

(
Ỹ M ∈ A

)
, P̃M (A) := PM

πM

(
Ỹ M ∈ A

)
,thereby de�ning probability measures on B(D∞). Note that P̃

M

f , P̃M are well de�ned and 
orrespondto the distribution of XM with XM
0 = Z(f) PM -almost surely and XM

0
d∼ πM , respe
tively.4.2 Convergen
e of the stationary distributions on D0The aim of this se
tion is to prove that the sequen
e (π̃M )M∈N of probability measures on B(D0) indu
edby the sequen
e (πM ) of stationary distributions 
onverges weakly to a probability measure π̃. Sin
e

(D0, d
◦
S) is separable, Theorem 3 in Appendix A.1 says that weak 
onvergen
e of (π̃M ) to π̃ is equivalentto 
onvergen
e under the Prohorov metri
 indu
ed by d◦S .The proof follows the usual strategy for this kind of 
onvergen
e. First, we 
he
k that the 
losureof {π̃M | M ∈ N} is 
ompa
t in M1

+(D0) with respe
t to the Prohorov topology. Now, (D0, d
◦
S) is also
omplete. A

ording to the Prohorov 
ompa
tness 
riterion, 
ited as Theorem 4 in Appendix A.1, it istherefore su�
ient to show that the set {π̃M |M ∈ N} is tight.For the se
ond step, 
hoose a limit point π̃ ∈ M1

+(D0) of {π̃M | M ∈ N}, whi
h exists a

ording tothe �rst step. It remains to show that any 
onvergent subsequen
e of (π̃M ) a
tually 
onverges to π̃.Before embarking on the a
tual proof of 
onvergen
e we need some te
hni
al preparation, whi
h
onsists in de�ning suitable approximation sets and estimating their probability under the measures πM .Let N ∈ N, Z ∈ SN , and set for M ∈ N \ {1, . . . , N−1}

UN
M (Z) :=

{

Z̃ ∈ SM

∣
∣
∣ #J̇(Z̃) = #J̇(Z) ∧

(
∃λ ∈ Λ : sup

s∈[−r,0]

|λ(s) − s| ≤ r
2N+1 ∧ fZ̃ ◦ λ = fZ

)}

.For N big enough in 
omparison to r, UN
M (Z) ⊂ SM is the set of elements Z̃ ∈ SM su
h that dS(fZ , fZ̃) ≤

r
2N+1 . Furthermore, #J(fZ̃) = #J(fZ) for all Z̃ ∈ UN

M (Z).Noti
e that fZ̃ is not ne
essarily an approximation of fZ with respe
t to the 
omplete metri
 d◦S ,be
ause the slope of λ 
an be of order N for all admissible time transformations.Re
all from Proposition 2 that the probability πM (Z) of an element Z ∈ SM under the stationarydistribution πM depends only on the number of jumps of Z. It will be useful to partition SM into subsetsof elements whi
h have equal number of inner jumps. Set
SM (i) :=

{

Z ∈ SM

∣
∣ #J̇(fZ) = i

}

, i ∈ {0, . . . ,M−1}.Clearly, SM = SM (0)∪ . . .∪ SM (M−1) is a pairwise disjoint union. For Z, Z̃ ∈ SM (i) we have |#J(Z)−
#J(Z̃)| ∈ {0, 1}. Noti
e that we pres
ribed #J̇(Z) = #J̇(Z̃) instead of #J(Z) = #J(Z̃) in the de�nitionof SM (i). Elements Z ∈ SM su
h that fZ jumps at position 0 play a spe
ial role, as their a

umulatedprobability under πM tends to zero as M tends to in�nity.Before establishing this point, we need two lemmata, see Appendix B. Lemma 1 estimates thenumber of elements of SM (i) and UN

M (Z), respe
tively. Lemma 2 shows that for M ∈ N large most ofthe probability mass of πM is 
on
entrated on elements of SM whi
h have a number of jumps small in
omparison to M . 20



It is even su�
ient to restri
t attention to elements of UN
M (Z), where Z ∈ SN is su
h that thenumber of jumps of Z is small in 
omparison to N whi
h in turn must be small against M . We also seethat the probability of a set UN

M (Z) under πM gives a good approximation of the probability whi
h the�generating� element Z ∈ SN re
eives under πN .If we 
ompare probabilities with respe
t to probability measures πM for di�erent indi
es M ∈ N,we have to assume that an appropriate relation holds between the 
orresponding transition probabilities
αM , γM asM varies. We assume s
aling relation (31) as in Se
tion 3.2, where we 
onsidered 
onvergen
eof the residen
e time distributions.For M ∈ N let π̃M ∈ M1

+(D0) be the probability measure whi
h 
orresponds to the stationary distribu-tion πM , if we embed SM into D0 as was done in Se
tion 4.1.Proposition 4. Suppose the sequen
es of transition probabilities (αM )M∈N, (γM )M∈N satisfy relation(31) for some transition rates α, γ > 0. Then there is a probability measure π̃ on B(D0) su
h that (π̃M )
onverges weakly to π̃ as M tends to in�nity.Proof. Lemma 2 from Appendix B.1 must be applied several times, see Appendix B.2.For some spe
ial sets we 
an 
al
ulate their probability with respe
t to π̃.Proposition 5. Let π̃ be the weak limit of (π̃M )M∈N a

ording to Proposition 4. For i ∈ N0 set
Hi := {f ∈ D0 | #J(f) = #J̇(f) = i}, Ĥi := {f ∈ D0 | #J(f) = #J̇(f)+1 = i+1}.Then for all i ∈ N0

π̃(Hi) =
2

c∞ · i! · α
⌊ i+1

2 ⌋γ ⌊ i
2 ⌋, π̃(Ĥi) = 0.Proof. Observe that Hi, Ĥi, i ∈ N0, are disjoint 
losed subsets of D0, be
ause 
onvergen
e with respe
tto the Skorokhod topology on D0 preserves the number of inner jumps.8 Indeed, Hi, Ĥi, i ∈ N0, are the
onne
ted 
omponents of D0, and they are also open sets, be
ause dS(f, g) = 2 for all f, g ∈ D0 su
hthat f(0) 6= g(0) or #J̇(f) 6= #J̇(g).The assertion now follows from Theorem 3 in Appendix A.1, Proposition 2, Equations (33) and (60)of Proposition 3 and Lemma 1 in Appendix B.1, respe
tively, under s
aling 
ondition (31).4.3 Convergen
e of the 
hain distributions on D∞Let the notation be that of Se
tion 4.1, let us write D := D{−1,1}([0,∞)), DR := DR([0,∞)) and re
all

D0 = D{−1,1}([−r, 0]), D0
R

= DR([−r, 0]), D∞ = D{−1,1}([−r,∞)), D∞
R

= DR([−r,∞)). All spa
es 
omewith their respe
tive Skorokhod topology, and D ⊂ DR, D0 ⊂ D0
R
are 
losed subsets.We sket
h a proof for weak 
onvergen
e of the sequen
e (P̃M ) in M1

+(D∞) applying results fromsemimartingale theory as developed in Ja
od and Shiryaev [27℄.A semimartingale with values inDR is des
ribed in terms of its 
hara
teristi
s, a triplet (B,C, ν), whereBis a trun
ated predi
table pro
ess (�drift�), C the quadrati
 variation pro
ess of the 
ontinuous martingalepart and ν a random measure, namely the 
ompensator of the jump measure of the semimartingale [27,pp. 75-76℄.Any probability measure Q on B(D) gives the distribution of a {−1, 1}-valued jump pro
ess. The
hara
teristi
s (B,C, ν) of su
h a pro
ess take on a spe
ial form. One may 
hoose a 
ontinuous trun
ation8Skorokhod 
onvergen
e in D∞ does not ne
essarily preserve the number of jumps.21



fun
tion with support 
ontained in (−2, 2), thereby eliminating the 
ontribution of B. The quadrati
variation pro
ess C of the 
ontinuous martingale part disappears, be
ause the only 
ontinuous fun
tionsin D are the two 
onstant fun
tions −1 and 1. The important 
hara
teristi
 is therefore the 
ompensatormeasure ν. If Q 
orresponds to a {−1, 1}-valued pro
ess in dis
rete time, then the 
ompensator 
an be
al
ulated expli
itly [27, pp. 93-94℄.Let M ∈ N, Z ∈ SM and let P̃
M

Z be the 
orresponding probability measure on B(D∞) as de�nedin Se
tion 4.1. Re
all that P̃
M

Z is the distribution of the {−1, 1}-valued 
àdlàg pro
ess (Ỹ M (t))t≥−rindu
ed by the sequen
e Y M of 
urrent states of XM when time dis
retization is taken into a

ount.Denote by (Y (t))t≥−r the 
anoni
al pro
ess on D∞ and by (Ft)t≥−r the 
anoni
al �ltration in B(D∞).Noti
e that (Y (t))t≥−r under P̃
M

Z is equivalent to the pro
ess (Ỹ M (t))t≥−r under PM
Z and that thejumps of (Y (t))t≥0 under P̃

M

Z are 
on
entrated on { r
M
k | k ∈ N}. We 
an now 
al
ulate the 
ompensatormeasure ν̃M,Z : D∞ × [0,∞) × R → [0,∞] of (Y (t))t≥0 under P̃

M

Z in terms of the in
rement pro
essof Y . Observe that ν̃M,Z is determined by the integral pro
esses (ψ ∗ ν̃M,Z)t≥0, ψ any bounded Borelfun
tion.9 Set s(k) := r
M

·k, k ∈ {−M,−M+1, . . .}. A

ording to II.3.11 in Ja
od and Shiryaev [27,p. 94℄ it holds for all fun
tions ψ, all t ≥ 0, ω̃ ∈ D∞ (all probabilities with respe
t to P̃
M

Z )
(ψ ∗ ν̃M,Z)t(ω̃) =

⌊ t
r

M⌋
∑

k=1

E

(

ψ
(
Y (s(k)) − Y (s(k−1))

)
· 1Y (s(k)) 6=Y (s(k−1))

∣
∣ Fs(k−1)

)

(ω̃)

=

⌊ t
r

M⌋
∑

k=1

E

(

. . .
∣
∣ σ
(
Y (s(k−M−1)), . . . , Y (s(k−1))

))

(ω̃)

= 1(ω̃(s(−M)),...,ω̃(s(0)))=Z(ω̃) ·
⌊ t

r
M⌋
∑

k=1

ψ(2) · P
(
Y (s(k)) = 1

∣
∣ Y (s(k−M−1)) = −1, Y (s(k−1)) = −1

)
· 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=−1(ω̃)

+ ψ(2) · P
(
Y (s(k)) = 1

∣
∣ Y (s(k−M−1)) = 1, Y (s(k−1)) = −1

)
· 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=−1(ω̃)

+ ψ(−2) · P
(
Y (s(k)) = −1

∣
∣ Y (s(k−M−1)) = 1, Y (s(k−1)) = 1

)
· 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=1(ω̃)

+ ψ(−2) · P
(
Y (s(k)) = −1

∣
∣ Y (s(k−M−1)) = −1, Y (s(k−1)) = 1

)
· 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=1(ω̃)

= 1...(ω̃) ·
⌊ t

r
M⌋
∑

k=1

ψ(2) ·
(
αM · 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=−1(ω̃) + γM · 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=−1(ω̃)

)

+ ψ(−2) ·
(
αM · 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=1(ω̃) + γM · 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=1(ω̃)

)
,where Bayes' formula has been applied.Let f ∈ D0 with f(0) = f(0−), and write Z(f) = Z(f,M) for the element of SM su
h that fZ(f) = f .The 
ompensator measure ν̃M,Z(f) then indu
es a random measure

νM,f : DR × [0,∞) × R → [0,∞], νM,f (ω) := ν̃M,Z(f)(θf (ω)), where
θf : DR → D∞

R
θf (ω)(t) := f(t) · 1[−r,0)(t) + ω(t) · 1[0,∞)(t).Assume that s
aling relation (31) is satis�ed for some positive transition rates α, γ. Then for all fun
tions9See Ja
od and Shiryaev [27, p. 66℄ for a de�nition of the integral pro
ess w. r. t. a random measure.22



ψ : R → R, ω ∈ DR, t ≥ 0 it holds that
lim

M→∞
ψ ∗ νM,f

t (ω) =

∫ t

0

ψ(2) ·
(
α · 1ω̃(s−r)=−1,ω̃(s)=−1(θf (ω)) + γ · 1ω̃(s−r)=1,ω̃(s)=−1(θf (ω))

)
ds

+

∫ t

0

ψ(−2) ·
(
α · 1ω̃(s−r)=1,ω̃(s)=1(θf (ω)) + γ · 1ω̃(s−r)=−1,ω̃(s)=1(θf (ω))

)
ds,whi
h de�nes a random measure νf : DR × [0,∞) × R → [0,∞].Let µ : DR × [0,∞) × R → [0,∞] be the jump measure asso
iated to the D-valued pro
ess (Y (t))t≥0, 
f.Ja
od and Shiryaev [27, pp. 68-69℄. We have for all fun
tions ψ : R → R, ω ∈ DR, t ≥ 0

(ψ ∗ µ)t(ω) =
∑

0<s≤t

1ω(s) 6=ω(s−)(ω) ·
(
ψ(2) · 1ω(s)=1,ω(s−)=−1(ω) + ψ(−2) · 1ω(s)=−1,ω(s−)=1(ω)

)
.Theorem IX.2.31 in Ja
od and Shiryaev [27, p. 495℄ guarantees the existen
e of a probability measure

Qf on B(DR) su
h that
• Qf

(
{ω ∈ DR | ω(0) = f(0)}

)
= 1,

• the 
anoni
al pro
ess is a semimartingale under Qf with 
hara
teristi
s (0, 0, νf ).We noti
e that Qf (D) = 1. Let us interpret Qf as a probability measure on B(D). A

ording toTheorem II.2.21 in Ja
od and Shiryaev [27, p. 80℄ the se
ond property implies that
• (ψ ∗ µ− ψ ∗ νf )t≥0 is a lo
al martingale under Qf for every fun
tion ψ : R → R.Observe that Theorem IX.2.31 does not guarantee uniqueness of the probability measure Qf . Here, how-ever, uniqueness 
an be established by 
onsidering sequen
es of stopping times τ1, τ2, . . . whi
h exhaustthe jump positions. The above lo
al martingale property must then be applied to show that any twosolution measures to the semimartingale problem 
oin
ide on the sets {τn ≤ t} for all t ≥ 0, n ∈ N.Re
all that every element ω ∈ D is determined by its value ω(0) and the positions of its dis
ontinuities.By the uniqueness theorem of measure theory we see that Qf is uniquely determined.Let p : D∞ → D be the natural proje
tion. Then Theorem IX.3.21 in Ja
od and Shiryaev [27, p. 505℄implies that P̃

M

Z(f,M) ◦ p−1 w→ Qf in M1
+(D). De�ne a probability measure P̃

f ∈ M1
+(D∞) by P̃

f
:=

Qf ◦ θ−1
f . We have δZ(f,M)

w→ δf in M1
+(D0). In view of Qf ({ω ∈ DR | ω(0) = f(0)}) = 1 we 
on
ludethat P̃

M

Z(f,M)
w→ P̃

f .The last step is to show that (P̃M ) 
onverges weakly, that is in pla
e of a deterministi
 initial 
ondition
f ∈ D0 we have π̃M ∈ M1

+(D0) as initial distribution. Let π̃ be the weak limit of (π̃M ) a

ording toProposition 4. As a 
onsequen
e of Proposition 5 we have π̃({f ∈ D0 | f(0) = f(0−)}) = 1. De�ne
P̃ ∈ M1

+(D∞) by
P̃(A) :=

∫

D0

P̃
f
(A) dπ̃(f), A ∈ B(D∞).If f1, . . . , fn ∈ D0 with fi(0) = fi(0−), i ∈ {1, . . . , n}, then any 
onvex 
ombination of the sequen
es

(P̃
M

Z(f1,M)), . . . , (P̃
M

Z(fn,M)) 
onverges weakly to the 
orresponding 
onvex 
ombination of the measures
P̃

f1
, . . . , P̃

fn . An approximation argument analogous to that in the proof of Proposition 4 leads toProposition 6. Suppose s
aling relation (31) holds. Let P̃M , M ∈ N, be de�ned as in Se
tion 4.1,and let π̃ be the weak limit of (πM )M∈N a

ording to Proposition 4. Then there is a probability measure
P̃ ∈ M1

+(D∞) su
h that P̃M
w→ P̃. 23



4.4 Residen
e times revisitedIn Se
tion 3.2 we 
al
ulated the residen
e time distribution for the two state model of dis
retizationdegree M for ea
h M ∈ N. We then let M tend to in�nity in order to obtain the residen
e timedistribution and its density fun
tion in the �
ontinuous time� limit.At that stage, however, we had not yet established the existen
e of a 
orresponding limit pro
ess.This was done in Se
tion 4.3, where we saw that (P̃M ), the sequen
e of distributions indu
ed by the twostate 
hains in dis
rete time, 
onverges weakly to a probability measure P̃ on B(D∞). We are now in aposition to show that any pro
ess with distribution P̃ has the same residen
e time distribution as theone obtained in Se
tion 3.2.On the probability spa
e (D∞,B(D∞), P̃) a pro
ess with distribution P̃ is, of 
ourse, given by the
anoni
al pro
ess of 
oordinate proje
tions pt : D∞ → {−1, 1}, be
ause pt is Borel measurable for all
t ≥ −r, 
f. Appendix A.4. We 
ontinue to work dire
tly on the 
anoni
al spa
e. De�ne a mapping

τ : D∞ → [0,∞], τ(f) := inf{t ≥ 0 | f(t) = −1}.(42)Then τ is Borel measurable as we have
τ−1[0, t] = p−1

0 {−1} ∪
∞⋂

n=0

n⋃

k=1

p−1
0 {1} ∩ . . . ∩ p−1

k−1
n

t
{1} ∩ p−1

k
n

t
{−1} for all t ≥ 0,where the 
àdlàg property of the elements of D∞ has been exploited. Be
ause of this property thein�mum in (42) is really a minimum provided τ <∞. We noti
e that τ is a stopping time with respe
tto the natural �ltration in B(D∞) and that τ is �nite P̃-almost surely.For ea
h δ ∈ (0, 1) denote by Ãδ the event that in the time interval [−δr, 0] there is exa
tly one jump,that jump going from −1 to 1. This means we set(43) Ãδ :=

{
f ∈ D∞

∣
∣ ∃ δ̃ ∈ [0, δ) : f(t) = −1 ∀ t ∈ [−δr,−δ̃r) ∧ f(t) = 1 ∀ t ∈ [−δ̃r, 0]

}
.Observe that Ãδ ∈ B(D∞) and P̃(Ãδ) > 0 for all δ ∈ (0, 1). The distribution fun
tion of τ 
onditionalon the event of exa
tly one jump from −1 to 1 �just before� time zero 
an be approximated by fun
tionsof the form(44) Fδ(t) := P̃

(
τ ≤ t

∣
∣ Ãδ

)
, t ∈ [0,∞),where δ > 0 must be small. Sin
e τ is P̃-almost surely �nite and Ãδ has positive probability under P̃,the fun
tion Fδ indeed determines a probability distribution on [0,∞).Let f̃L be the residen
e time distribution density in the limit of dis
retization degree M tending toin�nity as given by (36). Set(45) F (t) :=

∫ t

0

f̃L(s)ds, t ∈ [0,∞).We have to show that Fδ(t) tends to F (t) as δ goes to zero for ea
h t ∈ [0,∞). In (42) and (43), thede�nitions of τ and Ãδ, respe
tively, instead of time zero we 
ould have 
hosen any starting time t0 ≥ 0,see Appendix B.3, whi
h gives a proof ofProposition 7. Suppose s
aling relation (31) holds. Let the distribution fun
tions Fδ, δ ∈ (0, 1), and Fbe de�ned by (44) and (45), respe
tively. Then
lim
δ↓0

Fδ(t) = F (t) for all t ∈ [0,∞).24



5 Conne
tion between the redu
ed and the referen
e modelThe aim of this se
tion is to provide a heuristi
 way ofestablishing the missing link between our original model, whi
h is given by Equation (2), and theredu
ed model developed in Se
tion 3. The situation here is quite similar to the one that was studied byTsimring and Pikovsky [12℄, and we will 
losely follow their approa
h in deriving a relation between thetransition rates α, γ and the parameters of the original model.The main ingredient in �nding su
h a relation is the so-
alled Kramers rate, whi
h gives an asymptoti
approximation of the time a Brownian parti
le needs in order to es
ape from a paraboli
 potential wellin the presen
e of white noise only as the noise intensity tends to zero. By means of the Kramers ratewe 
al
ulate es
ape rates from potentials that should mirror the �e�e
tive dynami
s� of solutions toEquation (2). The resonan
e 
hara
teristi
s de�ned in Se
tion 3.3 
an then be written down expli
itly asfun
tions of the noise parameter σ, whi
h allows us to numeri
ally 
al
ulate the resonan
e point and to
ompare the optimal noise intensity a

ording to the two state model with the behavior of the originalmodel.Let U be a smooth double well potential with the positions of the two lo
al minima at xleft and xright,respe
tively, xleft < xright, the position of the saddle point at xmax ∈ (xleft, xright) and su
h that
U(x) → ∞ as |x| → ∞. An example for U is the double well potential V from Se
tions 1 and 2. Considerthe SDE(46) dX(t) = −U ′(X(t)

)
dt + σ · dW (t), t ≥ 0,where W (.) is a standard one dimensional Wiener pro
ess with respe
t to a probability measure P and

σ > 0 is a noise parameter. Denote by Xx,σ a solution of Equation (46) starting in Xx,σ(0) = x, x ∈ R.With y ∈ R let τy(Xx,σ) be the �rst time Xx,σ rea
hes y, that is we set
τy(Xx,σ) := inf{t ≥ 0 | Xx,σ = y}.As we are interested in the transition behavior of the di�usion, we need estimates for the distribution of

τy(Xx,σ) when x and y belong to di�erent potential wells.In the limit of small noise the Freidlin-Wentzell theory of large deviations [28℄ allows to determinethe exponential order of τy(Xx,σ) by means of the so-
alled quasipotential Q(x, y) asso
iated with thedouble well potential U . One may think of Q(x, y) as measuring the work a Brownian parti
le has to doin order to get from position x to position y. The following transition law holds.Theorem 2 (Freidlin-Wentzell). Let Q be the quasipotential asso
iated with U , let x ∈ (−∞, xmax),
y ∈ (xmax, xright]. Set ql := Q(xleft, xmax). Then

lim
σ↓0

σ2 · ln
(
EP

(
τy(Xx,σ

))
= ql,(47a)

lim
σ↓0

P

(

exp
(ql − δ

σ2

)

< τy(Xx,σ) < exp
(ql + δ

σ2

))

= 1 for all δ > 0.(47b)Moreover, Q(xleft, xmax) = 2
(
U(xmax)−U(xleft)

). If x ∈ (xmax,∞), y ∈ [xleft, xmax) then ql has to berepla
ed with qr := Q(xright, xmax).We noti
e that in traveling from position x in the left potential well to y ∈ (xmax, xright], a position inthe downhill part of the right well, the transition time in the limit of small noise is determined ex
lusivelyby the way up from position xleft of the left minimum to position xmax of the potential barrier.25



A typi
al path of Xx,σ, if σ > 0 is small, will spend most of its time near the positions of the twominima of the double well potential. Typi
ally, the di�usion will rea
h the minimum of the potentialwell where it started, before it 
an 
ross the potential barrier at xmax and enter the opposite well.Theorem 2 implies the existen
e of di�erent time s
ales for Equation (46). On the one hand, thereis the time s
ale indu
ed by the Wiener pro
ess, where one unit of time 
an be 
hosen as 1
σ2 , that is thetime it takes the quadrati
 variation pro
ess asso
iated with σW (.) to rea
h 1. On the other hand, thereis the mean es
ape time given by (47a), whi
h is proportional to exp

(
2L
σ2

), where L > 0 is the height ofthe potential barrier. Clearly, with σ > 0 small, the time s
ale indu
ed by the white noise is negligiblein 
omparison with the es
ape time s
ale.Moreover, if U(xleft) 6= U(xright), then there are two di�erent heights Ll and Lr for the potentialbarrier depending on where the di�usion starts. Suppose, for instan
e, that Ll < Lr. A

ording to (47b),waiting a time of order exp
(

2Ll+δ
σ2

) with 0 < δ < 2(Lr − Ll) one would witness transitions from the leftwell to the right well, but no transition in the opposite dire
tion. If the waiting time was of an exponentialorder less than exp
(

2Ll

σ2

), there would be no interwell transitions at all, where �no transitions� meansthat the probability of a transition o

urring tends to zero as σ → 0. Thus, by slightly and periodi
allytilting a symmetri
 double well potential quasi-periodi
 transitions 
an be enfor
ed provided the tiltingperiod is of the right exponential order. This is the me
hanism underlying sto
hasti
 resonan
e.Now, let us suppose that τy(Xx,σ), where x < xmax and y ∈ (xmax, xright], is exponentially distributedwith rate rK > 0 su
h that(48) rK ∼ exp
(

−2
(
U(xmax) − U(xleft)

)

σ2

)

.Equations (47a) and (47b) of Theorem 2 would be ful�lled. In the physi
s literature it is generallyassumed that τy(Xx,σ) obeys an exponential distribution with rate rK provided σ > 0 is su�
ientlysmall. This is known as Kramers's law, and rK is a

ordingly 
alled the Kramers rate of the respe
tivepotential well. It is, moreover, assumed that the proportionality fa
tor missing in (48) 
an be spe
i�ed asa fun
tion of the 
urvature of U at the positions of the minimum and the potential barrier, respe
tively.The Kramers rate thus reads(49) rK = rK(σ,U) =

√

| U ′′(xleft)U ′′(xmax) |
2π

exp

(

−2| U(xleft) − U(xmax) |
σ2

)

.Observe that both the assumption of exponentially distributed interwell transition times and formula(49) for the Kramers rate are empiri
al approximations, where the noise parameter σ is supposed to besu�
iently small.Well known results for one-dimensional di�usions, extended to the multi-dimensional framework inre
ent papers by Bovier et al. [29, 30℄, show that in the limit of small noise the distribution of theinterwell transition time indeed approa
hes an exponential distribution with a noise-dependent rate thatasymptoti
ally satis�es relation (48). The order of the approximation error 
an also be quanti�ed. Forour purposes, however, Kramers's law and the Kramers rate as given by Equation (49) will be goodenough.In Se
tion 3.1 we introdu
ed the transition rates α, γ as being swit
hing rates in the two state model
onditional on whether or not the 
urrent state agrees with the last remembered state. The idea, now, isto �nd two �e�e
tive� potentials Uα, Uγ su
h that α is proportional to the Kramers rate des
ribing thees
ape time distribution from potential Uα, while γ is proportional to the Kramers rate for potential Uγ ,where the Kramers rate is given by formula (49). More pre
isely, we must have(50) α = α(σ) = r · rK(σ,Uα), γ = γ(σ) = r · rK(σ,Uγ).26



Note that the in
lusion of the delay time r as a proportionality fa
tor is ne
essary, be
ause in the
onstru
tion of our two state model we took one unit of time as equivalent to the length of the interval
[−r, 0].There is an important point to be made here. In the dis
ussion of Se
tion 3 we assumed that X(t) ≈ 1 or
X(t) ≈ −1. The error of this approximation is of �rst order in β, and its 
ontribution to the delay for
eis proportional to β2 U ′′(1) + O(β3), i. e. of the se
ond order in β. As long as we 
ontent ourselves withan approximation of �rst order in β, two states 
orresponding to the positions of the minima around −1and 1 should be enough in order to model the e�e
tive dynami
s of the referen
e equation. If we wantedto 
apture the in�uen
e of se
ond order terms in the delay for
e, we would have to build up a model offour states 
orresponding to the positions ±xα, ±xγ of the minima of the distorted potential V .10The problem disappears, of 
ourse, if U ′ is 
onstant ex
ept on a small symmetri
 interval (−δ, δ)around the origin (see Fig. 1 
), for in this 
ase the delay for
e would not depend on the parti
ular valueof X(t− r) provided |X(t− r)| ≥ δ.Let L := V (0)−V (1) be the height of the potential barrier of V . Set ρ := |V ′′(0)V ′′(1)|, η := V ′′′(1) U ′(1)

(V ′′(1))2 ,
η̃ := U ′(1)

L
. Negle
ting terms of order higher than one, from (49) we obtain

α = α(σ) ≈ r ·
√

ρ (1 − η β)

2π
exp

(

−2L (1 − η̃ β)

σ2

)

,(51a)
γ = γ(σ) ≈ r ·

√

ρ (1 + η β)

2π
exp

(

−2L (1 + η̃ β)

σ2

)

.(51b)Re
all that the Kramers rate is exa
t only in the small noise limit. Thus, for the formulae (51a) tobe
ome the a
tual rates of es
ape it is ne
essary that σ tends to zero. If the rates α, γ as fun
tions of
r and σ are to 
onverge to some �nite non-zero values, we must have σ → 0 and r → ∞ su
h that 1

σ2and ln(r) are of the same order. There remain errors due to the �rst order approximations of V , V ′′ and
U , whi
h make sense only if V , U are su�
iently regular and the delay parameter β is of small absolutevalue.In Se
tion 3.3 we de�ned two measures of resonan
e, namely the jump height υM of the residen
e timedistribution density and the probabilities κ̂M , κM of transitions within the �rst and se
ond delay interval,respe
tively.11 Re
all that M ∈ N∪{∞} is the degree of dis
retization, where M = ∞ denotes the limit
M → ∞. We restri
t attention to the 
ase M = ∞, that is to the two state model in 
ontinuous time.Suppose the transition rates α, γ are fun
tions of the referen
e model parameters as given by (51a) readas equalities. In parti
ular, α, γ are fun
tions of the delay length r and the noise parameter σ. Let usfurther suppose that the delay parameter β is of small absolute value, r > 0 is big enough so that the
riti
al parameter region for σ lies within the s
ope of formula (51a), and that the remaining parametersare su�
iently ni
e.As a 
onsequen
e of the exponential form the Kramers rate possesses, we noti
e that

√
αγ = r ·

√
ρ

2π
· 4
√

1 − η2β2 exp
(
− 2L

σ2

)
≈ r ·

√
ρ

2π
exp

(
− 2L

σ2

)
.In �rst order of β, the geometri
 mean √

αγ of α, γ 
oin
ides with the transition rate arising in 
ase
β = 0, that is when there is no delay. Compare this with Proposition 3, whi
h states that the residen
etime density f̃L is distributed on the �rst delay interval a

ording to a mixed hyperboli
 sine - 
osinedistribution with parameter √αγ.10Cf. also the numeri
al results in Curtin et al. [15℄.11The jump height measure 
orresponds to a measure of resonan
e proposed by Masoller [13℄.27



The 
onditions of De�nitions 1 and 2 are satis�ed. If β > 0, then the redu
ed model exhibits sto
hasti
resonan
e a

ording to both de�nitions. A

ording to the jump height measure there is no e�e
t in 
ase
β = 0 and pseudo-resonan
e in 
ase β < 0, while the time window measure does not distinguish between
β = 0 and β < 0, 
lassifying both 
ases as pseudo-resonan
e.Let us spe
ify the potentials V and U a

ording to the model studied by Tsimring and Pikovsky [12℄,that is V is the standard quarti
 potential and U a parabola, see Fig. 1. For the 
onstants appearing informula (51a) we have

L = 1
4 , ρ = 2, η =

3

2
, η̃ = 4.With r = 500, β = 0.1, for example, we obtain the resonan
e point συ ≈ 0.32 a

ording to the jumpheight measure, while the time window measure yields σκ ≈ 0.29 with probability κ∞(σκ) ≈ 0.88 fortransitions o

urring in the se
ond delay interval.Assume β is negative. Again, both measures yield an optimal noise level. With β = −0.1 we have

συ ≈ 0.30 as the noise level that maximizes the jump height in f̃L. A

ording to the time windowmeasure optimal noise level is at σκ ≈ 0.34, but κ∞(σκ) ≈ 0.02, that is sojourns of duration between rand 2r are rare.
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......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................Figure 2: Graphs on [0, 2] of the density fL of the residen
e time distribution in normalized time. Parametersof the original model: r = 500, a) σ = 0.30, β = 0.1, b) σ = 0.30, β = −0.1, 
) σ = 0.35, β = −0.1.There seems to be a dis
repan
y, now, between the predi
ted optimal noise level and the level of �mostregular� transition behavior whi
h one would expe
t from numeri
al simulation. This is true espe
iallywith regard to the jump height measure, the pseudo-resonan
e point συ being too low.The problem is that the expe
ted residen
e time at the level of optimal noise in 
ase β < 0 is long
ompared with r. In spite of the fa
t that long residen
e times are rare, there is a high probability of�nding a solution path remaining in one and the same state for the length of many delay intervals or ofwitnessing a quasi-periodi
 transition behavior break down.For example, let σ = 0.30, β = 0.1. The expe
ted residen
e time is then about 1.16r, while with
σ = 0.30 and β = −0.1 the expe
ted residen
e time is around 4.62r. More importantly, with β negativethe exponential part of the residen
e time distribution has a �heavy tail� in the sense that long sojournsre
eive a relatively high probability, 
f. Fig. 2.These properties of the residen
e time distribution support the distin
tion made in De�nitions 1 and2 between sto
hasti
 resonan
e and pseudo-resonan
e.28



6 Con
lusions and open questionsThe main advantage of the two state model whi
h has been our 
on
ern for most of this work is that itprovides a tool for the analysis of the phenomenon of noise-indu
ed resonan
e in systems with delay.The referen
e model introdu
ed in Se
tion 2 is a more elaborate system exhibiting sto
hasti
 reso-nan
e. Basi
 features of this model are the extended Markov property and the existen
e of an invariantprobability measure. Both properties 
arry over to the two state model.By �rst studying the two state model in dis
rete time we obtained an expli
it 
hara
terization of itsstationary distribution. It was thus possible to 
al
ulate the residen
e time distribution whi
h in turnserved as starting point for the de�nition of two simple measures of resonan
e. The 
hara
terizationof the stationary distributions in dis
rete time together with the passage to the time limit also allowsto 
al
ulate measures of resonan
e di�erent from those 
onsidered here, for example the entropy of adistribution.In Se
tion 5 a heuristi
 link between the referen
e and the two state model was outlined. The twostate model seems to reliably mirror those aspe
ts of the referen
e model that are responsible for thephenomenon of sto
hasti
 resonan
e. Observe that we did not show whether the dynami
s of the originalmodel in the limit of small noise is redu
ible to the two state model nor whether the resonan
e measures
onsidered here are indeed robust under model redu
tion.There are di�erent ways in whi
h to pro
eed. The referen
e model 
ould be modi�ed, for example,by substituting a distributed delay for the point delay. Clearly, the white noise 
ould be repla
ed withnoise of di�erent type, and higher dimensional equations may be 
onsidered.Lastly, the passage to 
ontinuous time as addressed in Se
tion 4 should be a spe
ial 
ase of moregeneral 
onvergen
e results for 
ontinuous time Markov 
hains with delay.A Skorokhod spa
es and weak 
onvergen
eA.1 Weak 
onvergen
e in separable metri
 spa
esThe results summarized in this se
tion are taken from Ethier and Kurtz [31, 
h. 3 �� 1-3℄ and Billingsley[32, � 2℄. Let (S, d) be a separable metri
 spa
e, and denote by M1
+(S) the set of probability measureson the Borel σ-algebra B(S). De�ne the Prohorov metri
 ρ by

ρ(P, P̂) := inf
{
ǫ > 0 | P(G) ≤ P̂(Gǫ) + ǫ for all 
losed G ⊆ S

}
, P, P̂ ∈ M1

+(S),where Gǫ := {x ∈ S | infy∈G d(x, y) < ǫ}. Then ρ is indeed a metri
, and (M1
+(S), ρ) is a separablemetri
 spa
e. If, in addition, (S, d) is 
omplete, then (M1

+(S), ρ) is 
omplete, too [31, p. 101℄.Denote by Cb(S) the spa
e of all bounded 
ontinuous fun
tions on (S, d), topologized with the supremumnorm. A sequen
e (Pn)n∈N of probability measures on B(S) is said to 
onverge weakly to a probabilitymeasure P ∈ M1
+(S), in symbols Pn

w→ P, i�
∀ f ∈ Cb(S) :

∫

S

f dPn
n→∞−→

∫

S

f dP .The next theorem gives di�erent 
hara
terizations of weak 
onvergen
e and states that weak 
onvergen
eis equivalent to 
onvergen
e in the Prohorov metri
 [31, p. 108℄. Re
all that we assume (S, d) to beseparable. In an arbitrary metri
 spa
e 
onvergen
e under ρ would still imply weak 
onvergen
e and its
hara
terizations, but the 
onverse would not ne
essarily hold.29



Let P ∈ M1
+(S). A set A ⊆ S is 
alled a P-
ontinuity set i� A ∈ B(S) and P(∂A) = 0, i. e. A isBorel measurable and its boundary is a P-null set.Theorem 3. Let (Pn)n∈N ⊆ M1

+(S), P ∈ M1
+(S). The following 
onditions are equivalent:(i) lim

n→∞
ρ(Pn,P) = 0,(ii) Pn

w→ P,(iii) ∫
S

f dPn
n→∞−→

∫

S

f dP for all uniformly 
ontinuous fun
tions f ∈ Cb(S),(iv) lim sup
n→∞

Pn(A) ≤ P(A) for all 
losed sets A ⊆ S,(v) lim inf
n→∞

Pn(A) ≥ P(A) for all open sets A ⊆ S,(vi) lim
n→∞

Pn(A) = P(A) for all P-
ontinuity sets A ⊆ S.Useful in proving 
onvergen
e in M1
+(S) is the Prohorov 
riterion for 
ompa
tness, provided the under-lying metri
 spa
e is 
omplete [31, p. 104℄.Theorem 4 (Prohorov). Let Γ ⊆ M1

+(S), and suppose that (S, d) is 
omplete. Then the following
onditions are equivalent:(i) Γ is tight, i. e. ∀ ǫ > 0 ∃A ⊂ S 
ompa
t : infP∈Γ P(A) ≥ 1 − ǫ,(ii) ∀ ǫ > 0 ∃A ⊂ S 
ompa
t : infP∈Γ P(Aǫ) ≥ 1 − ǫ,(iii) the 
losure of Γ is 
ompa
t in the Prohorov topology.The mapping theorem states that under a measurable map weak 
onvergen
e 
arries over to the sequen
eof image measures if the set of dis
ontinuities of the mapping is negligible with respe
t to the originallimit measure [32, p. 21℄.Theorem 5. Let (Pn)n∈N ⊂ M1
+(S), P ∈ M1

+(S). Let (S′, d′) be a se
ond metri
 spa
e and ξ : S → S′be a B(S′)-B(S)-measurable map. Denote by Jξ the set of dis
ontinuities of ξ.If Pn
w→ P and P(Jξ) = 0 then Pn ◦ξ−1 w→ P ◦ξ−1.A.2 The Skorokhod spa
e D

0
RHere, we gather results and de�nitions from Billingsley [32, �� 12-13℄ on the nature of D0

R
:= DR([−r, 0]),the Skorokhod spa
e of all real valued 
àdlàg fun
tions on the �nite interval [−r, 0], i. e. of fun
tions

f : [−r, 0] → R su
h that
f(t+) := lim

s↓t
f(s) = f(t) for all t ∈ [−r, 0), f(t−) := lim

s↑t
f(s) exists for ea
h t ∈ (−r, 0].It is possible to de�ne Skorokhod spa
es of fun
tions with values in more general spa
es than R. In fa
t,the theory 
an be developed for DE([−r, 0]) essentially in the same way as for D0

R
as long as E is a Polishspa
e, i. e. a 
omplete and separable metri
 spa
e.Let f be any real valued fun
tion on [−r, 0]. De�ne the modulus of 
àdlàg 
ontinuity as

w̃(f, δ) := inf
{

max
i∈{1,...,n}

w(f, [ti−1, ti))
∣
∣ n ∈ N, −r = t0 < . . . < tn = 0,

min
i∈{1,...,n}

(ti − ti−1) > δ
}
, δ ∈ (0, r),

(52) 30



where w(., .) is the modulus of uniform 
ontinuity de�ned as
w(f, I) := sup

s,t∈I

|f(s) − f(t)|, I ⊆ [−r, 0] an interval.(53)A fun
tion f : [−r, 0] → R is in D0
R
if and only if limδ↓0 w̃(f, δ) = 0, 
f. Billingsley [32, p. 123℄.Denote by Λ := {λ : [−r, 0] → [−r, 0] | λ bije
tive and stri
tly in
reasing} the set of �time transforma-tions� on [−r, 0]. For all λ ∈ Λ we have λ(−r) = −r, λ(0) = 0, and λ is 
ontinuous. On Λ de�ne apseudo-norm

‖λ‖Λ := sup
s,t∈[−r,0], s 6=t

∣
∣ln

(
λ(t) − λ(s)

t− s

)
∣
∣, λ ∈ Λ.Let f , g be elements of D0

R
, and de�ne the distan
es dS , d◦S as

dS(f, g) := inf
{
ǫ > 0

∣
∣ ∃λ ∈ Λ : sup

t∈[−r,0]

|λ(t) − t| ≤ ǫ ∧ sup
t∈[−r,0]

|f(t) − g(λ(t))| ≤ ǫ
}
,(54)

d◦S(f, g) := inf
{
ǫ > 0

∣
∣ ∃λ ∈ Λ : ‖λ‖Λ ≤ ǫ ∧ sup

t∈[−r,0]

|f(t) − g(λ(t))| ≤ ǫ
}
.(55)Both fun
tionals, dS and d◦S , measure the distan
e between f and g in terms of the supremum norm

‖f − g ◦ λ‖∞. In addition, dS requires that time transformations λ di�er as little as possible from theidentity on [−r, 0], while d◦S puts an extra restri
tion on the slope of the transformations.The most important di�eren
e between dS and d◦S lies in the fa
t that they give rise to di�erent sets ofCau
hy sequen
es. Theorem 6 is a summary of Billingsley [32, pp. 125-129℄.Theorem 6. Let dS, d◦S be de�ned as above. Then D0
R
is a separable metri
 spa
e under dS as well asunder d◦S. Both metri
s generate the same topology, 
alled the Skorokhod topology.Equipped with the Skorokhod topology, D0

R
is a Polish spa
e, and d◦S is a 
omplete metri
, while D0

Ris not 
omplete under dS.The example below illustrates why dS does not de�ne a 
omplete metri
 on D0
R
. The sequen
e to be
onstru
ted is a Cau
hy sequen
e with respe
t to dS , the only possible limit point of whi
h lies outsidethe spa
e of 
àdlàg fun
tions. The same sequen
e is not Cau
hy under d◦S .Example. Choose t0 ∈ [−r, 0). For n ∈ N big enough set fn := 2 · 1In

− 1, where In := [t0, t0 + 2−n).Then (fn) ⊂ D0
R
is a Cau
hy sequen
e of {−1, 1}-valued fun
tions with respe
t to the metri
 dS , and

fn(t)
n→∞→ −1 for all t 6= t0, but dS(fn,−1) = 2 for all n ∈ N, and f := 2 · 1{t0} − 1 is no 
àdlàgfun
tion. ♦The following 
riterion, whi
h is Theorem 12.3 in Billingsley [32, p. 130℄, is an analogue of the Arzelà-As
oli theorem for 
ompa
tness in spa
es of 
ontinuous fun
tions.Theorem 7. Let A ⊆ D0

R
. Then the 
losure of A is 
ompa
t in the Skorokhod topology if and only if thefollowing two 
onditions hold:(i) sup

f∈A

sup
t∈[−r,0]

|f(t)| <∞,(ii) lim
δ↓0

sup
f∈A

w̃(f, δ) = 0. 31



A.3 The Skorokhod spa
e D0There are two equivalent ways of topologizing D0 := D{−1,1}([−r, 0]), the spa
e of all {−1, 1}-valued
àdlàg fun
tions on the �nite interval [−r, 0]. The �rst is to de�ne metri
s dS , d◦S in analogy to Ap-pendix A.2, where |.− .| should be interpreted as a metri
 on {−1, 1}. In fa
t, if (E, d) is a metri
 spa
e,one 
an de�ne the Skorokhod spa
e DE([−r, 0] with its a

ompanying metri
s. If, in addition, (E, d) is
omplete and separable, then an analogue of Theorem 6 holds.12The se
ond option is to restri
t the metri
s dS , d◦S and the Skorokhod topology of D0
R
to D0. Thisworks, be
ause D0 is a 
losed subset of D0

R
with respe
t to the Skorokhod topology. Theorem 6 nowimplies that D0 is a separable metri
 spa
e under dS , and 
omplete and separable under d◦S , as is the 
asefor D0

R
. De�ne the moduli of 
ontinuity w, w̃ by restri
tion or in analogy to (52) and (53), respe
tively.For f ∈ D0 de�ne J(f), the set of dis
ontinuities or jumps, and ζf , the minimal distan
e between twodis
ontinuities or an inner dis
ontinuity and one of the boundary points of [−r, 0], as

J(f) :=
{
t ∈ (−r, 0]

∣
∣ f(t) 6= f(t−)

}
,

ζf := min
{
|t− s|

∣
∣ t, s ∈ J(f) ∪ {−r, 0}

}
,where f(t−) is the left-hand limit of f at t. Set J̇(f) := J(f) ∩ (−r, 0), the set of inner dis
ontinuitiesof f . Noti
e that the only possible dis
ontinuity of f not in J̇(f) is 0, the right boundary of [−r, 0].Proposition 8. Let f ∈ D0, δ ∈ (0, r), and let I ⊆ [−r, 0] be an interval. Then

w(f, I) ∈ {0, 2}, w(f, I) = 0 ⇔ f is 
onstant on the interval I,(56)
#J(f) ∈ N0,(57)
w̃(f, δ) ∈ {0, 2}, w̃(f, δ) = 0 ⇔ ζf > δ.(58)Proof. Obviously, |f(s) − f(t)| ∈ {0, 2} for all s, t ∈ [−r, 0], and (56) is a 
onsequen
e of (53), thede�nition of w.If there were an f ∈ D0 with #J(f) = ∞, one 
ould 
hoose a sequen
e (tn)n∈N ⊂ J(f) su
h that

tn
n→∞→ t and tn 6= t for all n ∈ N. Sin
e f is a 
àdlàg fun
tion, there would be δl, δr > 0 su
h that f is
onstant on the intervals (t− δl, t), (t, t+ δr), ex
ept if t were a boundary point of [−r, 0], in whi
h 
aseonly one of the 
onstants δl, δr 
ould be 
hosen appropriately. In any 
ase, tn ∈ (t−δl, t) or tn ∈ (t, t+δr)for n big enough, a 
ontradi
tion, be
ause f 
annot be 
onstant on an open interval and at the sametime have a dis
ontinuity in it.Clearly, w̃(f, δ) ∈ {0, 2}. Suppose w̃ = 0. Then there are m ∈ N and a partition −r = t0 < . . . <

tm = 0 su
h that ti − ti−1 > δ and w(f, [ti−1, ti)) = 0 for all i ∈ {0, . . . ,m}. Hen
e, f is 
onstant onea
h interval [ti−1, ti), and the minimal distan
e between two dis
ontinuities or an inner dis
ontinuityand the boundary of [−r, 0] is at least min{(ti − ti−1) | i ∈ {0, . . . ,m}}.Conversely, ζf > δ implies w̃(f, δ) = 0, be
ause −r = t0 < . . . < tm = 0 forms a suitable partition of
[−r, 0], if one 
hooses m = #J̇(f)+1 and takes as t1, . . . , tm−1 the inner dis
ontinuities of f .Theorem 7, whi
h states ne
essary and su�
ient 
onditions for 
ompa
tness in D0

R
, takes on a simpleform in the present 
ontext.Proposition 9. Let A ⊆ D0. Then the 
losure of A is 
ompa
t in the Skorokhod topology if and only if

inf{ζf | f ∈ A} > 0.12Skorokhod spa
es for E-valued fun
tions on the in�nite interval [0,∞) are de�ned in Ethier and Kurtz [31℄.32



Proof. Condition (i) of Theorem 7 is satis�ed for any A ⊆ D0. Hen
e, we must show that 
ondition (ii)of 7 is equivalent to inff∈A ζf > 0.Let f ∈ D0, then w̃(f, δ) ∈ {0, 2} for all δ ∈ (0, r). Therefore, limδ↓0 supf∈A w̃(f, δ) = 0 if and only ifthere exists δ0 ∈ (0, r) su
h that for all δ ∈ (0, δ0) and all f ∈ A we have w̃(f, δ) = 0. A

ording to (58)the latter 
ondition is equivalent to the existen
e of δ0 ∈ (0, r) su
h that ζf ≥ δ0 for all f ∈ A, whi
h inturn is just inff∈A ζf > 0.Condition inff∈A ζf > 0 implies supf∈A #J(f) <∞, but the 
onverse impli
ation does not hold, as 
anbe seen by 
onsidering the sequen
e (fn) de�ned in the example of Appendix A.2.A.4 The spa
e D
∞
RDenote by D∞

R
:= DR([−r,∞)) the spa
e of all real valued 
àdlàg fun
tions on the interval [−r,∞).Observe that a 
àdlàg fun
tion on [−r,∞) has at most 
ountably many points of dis
ontinuity [31,p. 116℄. It is possible to de�ne Skorokhod metri
s on D∞

R
in a way similar to that of Appendix A.2, 
f.Ethier and Kurtz [31, 
h. 3 � 5℄.There are two noteworthy di�eren
es, though, be
ause the interval the elements of D∞

R
live on is nolonger bounded to the right. In the de�nitions whi
h 
orrespond to (54) and (55) one needs a �fadingfun
tion� or a �fading series� to guarantee �niteness of the metri
s. More importantly, the spe
ial rolewhi
h the right boundary plays in (53) and in the de�nition of the set of time transformations Λ has no
ounterpart with D∞

R
.An alternative is provided by Billingsley [32, � 16℄, where a 
onne
tion is established between D∞

R
andSkorokhod spa
es over �nite intervals. Observe that all de�nitions and properties of D0

R
= DR([−r, 0])
arry over to the spa
e DR([−r, t]) for any t ∈ (−r,∞). Set

θt : D∞
R

∋ f 7→ f|[−r,t·r] ∈ DR([−r, t · r]), t > −1.Let m ∈ N0. Set Dm
R

:= DR([−r,m · r]). Write dm, d◦m for the 
orresponding Skorokhod metri
s, andde�ne a fun
tion hm and a �
ontinuous restri
tion� ψm by
hm(t) :=







1 if t ∈ [−r, (m−1)r),

m− t
r

if t ∈ [(m−1)r,m · r),
0 if t ≥ m · r,

ψm : D∞
R

∋ f 7→ θm(f · hm) ∈ Dm
R
.De�ne a Skorokhod metri
 d◦∞ on D∞

R
by(59) d◦∞(f, g) :=

∞∑

m=0

2−m
(

1 ∧ d◦m
(
ψm(f), ψm(g)

))

.An equivalent (but in
omplete) Skorokhod metri
 d∞ 
an be de�ned as in (59) by repla
ing the metri
s
d◦m with dm [32, p. 168℄. Now de�ne a metri
 on the produ
t of the spa
es Dm

R
, m ∈ N0, that is one sets

ΠD :=

∞∏

m=0

Dm
R
, d̃◦∞

(
(fm)m∈N0

, (gm)m∈N0

)
:=

∞∑

m=0

2−m
(
1 ∧ d◦m(fm, gm)

)
.We have the following embedding theorem [32, p. 170℄.33



Theorem 8. De�ne Ψ : D∞
R

→ ΠD by f 7→ (θm(f · hm))m∈N0
. Then1. Ψ is an isometry with respe
t to d◦∞ and d̃◦∞,2. Ψ(D∞

R
) ⊂ ΠD is 
losed,3. (ΠD, d̃
◦
∞) is a Polish spa
e, and so is (D∞

R
, d◦∞).The natural proje
tion pt : D∞

R
∋ f 7→ f(t) ∈ R is Borel measurable for ea
h t ≥ −r, and pt is 
ontinuousat f ∈ D∞

R
if and only if f is 
ontinuous at t. The proje
tions generate B(D∞

R
) and form a 
anoni
alpro
ess [32, p. 172℄. Noti
e that the restri
tions θt, t > −1, are measurable, too.The following proposition 
hara
terizes 
onvergen
e in D∞

R
in terms of 
onvergen
e of the restri
tedsequen
es [32, p. 169℄.Proposition 10. Let fn, n ∈ N, f be elements of D∞

R
. Then fn

n→∞→ f w. r. t. d◦∞ if and only if
θt(fn)

n→∞→ θt(f) in DR([−r, t · r]) for every 
ontinuity point t · r of f .A.5 The Skorokhod spa
e D∞First observe that for any t > −r the spa
e D{−1,1}([−r, t]) of all {−1, 1}-valued 
àdlàg fun
tions on
[−r, t] 
an be de�ned in analogy to the spa
e D0.Denote by D∞ := D{−1,1}([−r,∞)) the set of all {−1, 1}-valued 
àdlàg fun
tions on [−r,∞). Clearly,
D∞ is a subset of D∞

R
, but it is also 
losed with respe
t to the Skorokhod topology of D∞

R
as 
an be seenfrom Proposition 10 and Appendix A.3. We may therefore restri
t the topology of D∞

R
and its metri
s

d∞, d◦∞, thus topologizing D∞.B Convergen
e to 
ontinuous timeB.1 Approximating sets in SMLemma 1.
∀M ∈ N ∀ i ∈ {0, . . . ,M − 1} : #SM (i) = 4 ·

(
M−1

i

)
,(60)

∀N ∈ N ∀Z1, Z2 ∈ SN ∀M ≥ N : Z1 6= Z2 ⇒ UN
M (Z1) ∩ UN

M (Z2) = ∅,(61)
∀N ∈ N ∀ i ∈ {0, . . . , ⌊

√
N⌋ − 1} ∀M ≥ N ∀Z ∈ SN (i) :

(⌊
2M

2N+1

⌋)i

≤ #UN
M (Z) ≤

(⌊
2M

2N+1

⌋
+ 1
)i

.
(62)Proof. Any element f ∈ ι̃M

(
SM (i)

) 
an be des
ribed as follows. Choose i out of M−1 possible positionsfor the inner dis
ontinuities, and de
ide on the binary values of f(−r), f(0). This determines f , and(60) follows.Let Z1 = (Z
(−N)
1 , . . . , Z

(0)
1 ), Z2 = (Z

(−N)
2 , . . . , Z

(0)
2 ) be elements of SN . By de�nition of UN

M (.), for
UN

M (Z1) ∩ UN
M (Z2) 6= ∅ we must have #J̇(Z1) = #J̇(Z2) as well as Z(−N)

1 = Z
(−N)
2 and Z(0)

1 = Z
(0)
2 .Suppose that Z1, Z2 have the same number of inner dis
ontinuities and agree at −N and 0, but still

Z1 6= Z2. Then Z1, Z2 di�er in the position of at least one inner dis
ontinuity, that is to say thereis s1 ∈ (−r, 0) su
h that s1 ∈ J(Z1) \ J(Z2); by symmetry, there is also s2 ∈ (−r, 0) su
h that s2 ∈
J(Z2) \ J(Z1). Sele
t su
h an s2, then |s− s2| ≥ r

N
for all s ∈ J(Z1).34



Let Z̃1 be an element of UN
M (Z1). Then for any inner dis
ontinuity s ∈ J̇(Z1) there is exa
tly one

s̃ ∈ J̇(Z̃1) su
h that |s̃− s| ≤ r
2N+1 , and vi
e versa. The same holds true for any element Z̃2 of UN

M (Z2)with respe
t to Z2. In parti
ular, there is s̃2 ∈ J̇(Z̃2) su
h that |s̃2 − s2| ≤ r
2N+1 . But s̃2 6∈ J(Z̃1),be
ause |s̃2 − s̃| ≥ r

N
− 2r

2N+1 > 0 for all s̃ ∈ J(Z̃1). Sin
e Z̃1, Z̃2 were arbitrary, this establishes (61).An element Z̃ ∈ UN
M (Z) is determined by the positions of its #J̇(Z) inner dis
ontinuities, where

{
k · r

M
− r | k ∈ {1, . . . ,M−1}

}is the set of possible su
h positions. If s ∈ J̇(Z), then there is k ∈ {1, . . . , N−1} with s = k · r
N

− r, andit exists exa
tly one s̃ ∈ J̇(Z̃) su
h that s̃ ∈ [s− r
2N+1 , s+

r
2N+1 ]. Equation (62) is now a 
onsequen
e of

⌊ 2M
2N+1⌋ ≤ #

({
k · r

M
− r

∣
∣ k ∈ {1, . . . ,M−1}

}
∩ [s− r

2N+1 , s+ r
2N+1 ]

)

≤ ⌊ 2M
2N+1⌋ + 1,for all s ∈ {k · r

N
− r | k ∈ {1, . . . , N−1}}, and the fa
t that #J̇(Z) = i for Z ∈ SN (i).Lemma 2. Let M , N , N0 be natural numbers su
h that N0 < N ≤ M , let ǫ > 0, and de�ne theexpressions ψ1, ψ2 and ψ3 as

ψ1 := πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

≥ 1 − ǫ,

ψ2 := ∀ i ∈ {0, . . . , N0} ∀Z ∈ SN (i) :
∣
∣πM

(
UN

M (Z)
)
− πN (Z)

∣
∣ ≤ ǫ

N i
,

ψ3 :=

N−1∑

i=N0+1

πN

(
SN (i)

)
≤ ǫ.Suppose that the sequen
es of transition probabilities (αM )M∈N, (γM )M∈N satisfy relation (31) for sometransition rates α, γ > 0. Then for all ǫ > 0

∃ Ñ0 ∈ N ∀N0 ≥ Ñ0 ∃ Ñ ∈ N ∀N ≥ Ñ ∃ M̃ ∈ N ∀M ≥ M̃ : ψ1,(63)
∀N0 ∈ N ∃ Ñ ∈ N ∀N ≥ Ñ ∃ M̃ ∈ N ∀M ≥ M̃ : ψ2,(64)

∃ Ñ0 ∈ N ∀N0 ≥ Ñ0 ∃ Ñ ∈ N ∀N ≥ Ñ : ψ3.(65)Finally, it holds that
∀ ǫ > 0 ∃N0, Ñ ∈ N ∀N ≥ Ñ ∃ M̃ ∈ N ∀M ≥ M̃ : ψ1 ∧ ψ2 ∧ ψ3.(66)Proof. Formula (66) follows by �putting together� (63), (64) and (65), where N0 = N0(ǫ) 
an be 
hosenas the maximum of Ñ0 a

ording to (63) and Ñ0 a

ording to (65), Ñ = Ñ(ǫ,N0) as the maximum ofthe respe
tive variables Ñ , and in the same way for M̃ = M̃(ǫ,N0, Ñ ,N).The remaining formulae will be established one by one. Let ǫ > 0, without loss of generality ǫ < 1.Re
all Proposition 2, where the normalizing 
onstant cM for the probability measure πM was de�ned,and Equation (32) of Proposition 3, where we obtained an expli
it expression for c∞ = limM→∞ cM . Inanalogy to Propositions 2 and 3, respe
tively, we set

cM,M0
:= 2 ·

M0∑

k=0

(
M

k

)( αM

1 − γM

)k mod 2( αM · γM

(1 − αM )(1 − γM )

)⌊ k
2 ⌋
, M ∈ N, M0 ∈ {1, . . . ,M}.

c∞,M0
:= 2 ·

M0∑

k=0

1

k!
αk mod 2 (αγ)⌊

k
2 ⌋, M0 ∈ N,35



Be
ause of relation (31) it holds that ∀ ǫ̃ ∈ (0, 1) ∀M0 ∈ N ∃ M̃ ∈ N ∀M ≥ M̃ ∀ {0, . . . ,M0}:(67) (1 + ǫ̃) · (αγ)k ≥

∧ (1 + ǫ̃)α ≥

∧ 1 ≥

M2k ·
(

αM ·γM

(1−αM )(1−γM )

)k

M · αM

1−γM

M ·...·(M−2k+1)
M2k ≥ M ·...·(M−2k)

M2k+1

≥ (1 − ǫ̃) · (αγ)k

≥ (1 − ǫ̃)α

≥ 1 − ǫ̃.In view of the above we have
∀ ǫ̃ ∈ (0, 1) ∃ M̃0 ∈ N ∀M0 ≥ M̃0 ∃ M̃ ∈ N ∀M ≥ M̃ :

1 ≥ c∞,M0

c∞
≥ 1 − ǫ̃ ∧ M ≥ M0 ∧

∣
∣
cM,M0

c∞
− 1
∣
∣+
∣
∣
c∞

cM,M0

− 1
∣
∣ ≤ ǫ̃.

(68)To 
on
lude the preparations, re
all that for Z ∈ SM (i), where M ∈ N, i ∈ {0, . . . ,M−1}, we have
#J(Z) ∈ {i, i+1}, and that exa
tly half of the elements of SM (i) has a dis
ontinuity at 0.Let ǫ̃ > 0. Choose Ñ0 ∈ N su
h that c∞,N0

c∞
≥ 1− ǫ̃ for all N0 ≥ Ñ0. Let N0 ∈ N with N0 ≥ Ñ0 = Ñ0(ǫ̃).Choose Ñ ∈ N su
h that ∀N ≥ Ñ ∀ i ∈ {0, . . . , N0}:

(
2

2N+1

)i ≥ 1−ǫ̃
Ni and 1

Ni

(
N−1

i

)
≥ 1−ǫ̃

i! .Let N ∈ N with N ≥ Ñ = Ñ(ǫ̃, N0). Choose M̃ su
h that ∀M ≥ M̃ ∀ i ∈ {0, . . . , N0}:
(
⌊ 2M

2N+1⌋
)i ≥

( 2M−(2N+1)
2N+1

)i ≥ (1 − ǫ̃)
( 2M−(2N+1)

2N

)i ≥ (1 − ǫ̃)2
(

M
N

)i

∧ c∞
cM

≥ 1 − ǫ̃ ∧
(
M
i

)(
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋ ≥ 1−ǫ̃

i! αi mod 2 (αγ)⌊
i
2 ⌋,where (67) has been applied. For N0 ≥ Ñ0(ǫ̃), N ≥ Ñ(ǫ̃, N0), M ≥ M̃(ǫ̃, N0, N) we have

πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

=

N0∑

i=0

( ∑

Z∈SN (i)∧ J(Z)=i

+
∑

Z∈SN (i)∧ J(Z)=i+1

)

πM

(
UN

M (Z)
)

≥ 1
2cM

N0∑

i=0

(
#SN (i)

) (
⌊ 2M

2N+1⌋
)i

((
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋ +

(
αM

1−γM

)(i+1) mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i+1
2 ⌋)as a 
onsequen
e of Proposition 2. A

ording to the 
hoi
e of N0, N , M and be
ause of (60) it holdsthat

#SN (i) ≥ 4 · (1 − ǫ̃) · Ni

i! ,
(
⌊ 2M

2N+1⌋
)i ≥ (1 − ǫ̃)2

(
M
N

)i
, c∞

cM
≥ 1 − ǫ̃.We therefore have

πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

≥ 2
c∞

(1 − ǫ̃)4
N0∑

i=0

(
M−1

i

)((
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋ +

(
αM

1−γM

)(i+1) mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i+1
2 ⌋)

≥ 2
c∞

(1 − ǫ̃)4
N0∑

i=0

(
M
i

)(
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋

≥ 2
c∞

(1 − ǫ̃)5
N0∑

i=0

1
i! α

i mod 2 (αγ)⌊
i
2 ⌋ = (1 − ǫ̃)5

c∞,N0

c∞
≥ (1 − ǫ̃)6 ≥ 1 − 6ǫ̃.36



Sin
e ǫ̃ ∈ (0, 1) was arbitrary, we may set ǫ̃ := ǫ
6 , thereby establishing (63).Let ǫ̃ > 0, N0 ∈ N. Choose Ñ ∈ N su
h that ∀N ≥ Ñ ∀ i ∈ {0, . . . , N0+1}:

⌊
√
N⌋ ≥ 2N0 + 3 ∧ 1

N
≤ ǫ̃ ∧

(
2N

2N+1

)i ≥ 1 − ǫ̃ ∧ 1 + ǫ̃ ≥ c∞
cN

≥ 1 − ǫ̃

∧ 1 + ǫ̃ ≥ N
α
· αN

1−γN
≥ 1 − ǫ̃ ∧ 1 + ǫ̃ ≥

(
N2

αγ
· αN ·γN

(1−αN )(1−γN )

)⌊ i
2 ⌋ ≥ 1 − ǫ̃,whi
h is possible be
ause of (67). Let N ∈ N with N ≥ Ñ = Ñ(ǫ̃, N0). Choose M̃ su
h that ∀M ≥

M̃ ∀ i ∈ {0, . . . , N0}:
M ≥ N ∧

(
⌊ 2M

2N+1⌋
)i ≥ (1− ǫ̃)

( 2M−(N+1)
2N

)i ≥ (1− ǫ̃)2
(

M
N

)i ∧
(
⌊ 2M

2N+1 +1⌋
)i ≤ (1+ ǫ̃)

(
M
N

)i
.Let N ≥ Ñ(ǫ̃, N0), M ≥ M̃(ǫ̃, N0, N), i ∈ {0, . . . , N0}, Z ∈ SN (i). We have to distinguish two 
ases. Inea
h 
ase the �rst step will be an appli
ation of Proposition 2.Case 1. #J(Z) = i, that is fZ has no dis
ontinuity at 0. Then

πM

(
UN

M (Z)
)
− πN (Z)

= 1
cM

(
#UN

M (Z)
)(

αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋ − 1

cN

(
αN

1−γN

)i mod 2( αN ·γN

(1−αN )(1−γN )

)⌊ i
2 ⌋

≥ 1
cM

(
⌊ 2M

2N+1⌋
)i

(1 − ǫ̃)2
(

α
M

)i mod 2( αγ
M2

)⌊ i
2 ⌋ − 1

cN
(1 + ǫ̃)2

(
α
N

)i mod 2( αγ
N2

)⌊ i
2 ⌋

≥ 1
c∞

αi mod 2 (αγ)⌊
i
2 ⌋
(

(1 − ǫ̃)5
(

M
N

)i
M−(i mod 2+2⌊ i

2 ⌋) − (1 + ǫ̃)3N−(i mod 2+2⌊ i
2 ⌋)
)

= 1
c∞

1
Ni α

i mod 2 (αγ)⌊
i
2 ⌋
(
(1 − ǫ̃)5 − (1 + ǫ̃)3

)

≥ 1
c∞

1
Ni η(α, γ,N0) (1 − 5ǫ̃− 1 − 7ǫ̃) = − 12

c∞

ǫ̃
Ni η(α, γ,N0) ≥ − 12

c∞

ǫ̃
Ni η(α, γ,N0+1),where η(α, γ, n) := max{αk mod 2 (αγ)⌊

k
2 ⌋ | k ∈ {0, . . . , n}}. On the other hand,

πM

(
UN

M (Z)
)
− πN (Z)

≤ 1
cM

(
⌊ 2M

2N+1⌋ + 1
)i

(1 + ǫ̃)2 1
Mi α

i mod 2 (αγ)⌊
i
2 ⌋ − 1

cN
(1 − ǫ̃)2 1

Ni α
i mod 2 (αγ)⌊

i
2 ⌋

≤ 1
c∞

1
Ni α

i mod 2 (αγ)⌊
i
2 ⌋
(
(1 + ǫ̃)4 − (1 − ǫ̃)3

)
≤ 18

c∞

ǫ̃
Ni η(α, γ,N0+1).Case 2. #J(Z) = i+ 1, that is fZ jumps at 0. Then

πM

(
UN

M (Z)
)
− πN (Z)

= 1
cM

(
#UN

M (Z)
)(

αM

1−γM

)(i+1) mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i+1
2 ⌋ − 1

cN

(
αN

1−γN

)(i+1) mod 2( αN ·γN

(1−αN )(1−γN )

)⌊ i+1
2 ⌋

≥ 1
c∞

1
Ni α

(i+1) mod 2 (αγ)⌊
i+1
2 ⌋( (1−ǫ̃)5

M
− (1+ǫ̃)3

N

)

≥ 1
c∞

1
Ni η(α, γ,N0 + 1) 1+7ǫ̃

N
≥ 8

c∞

ǫ̃
Ni η(α, γ,N0+1).In the same way one obtains

πM

(
UN

M (Z)
)
− πN (Z) ≤ 16

c∞

ǫ̃
Ni η(α, γ,N0+1).37



Set ǫ̃ := min{ǫ, c∞ǫ
18η(α,γ,N0+1)}, and the proof of (64) is �nished.Let ǫ̃ > 0. Choose Ñ0 ∈ N a

ording to (68) su
h that

∀N0 ≥ Ñ0 ∃Ñ ∈ N ∀N ≥ Ñ : 1 + ǫ̃ ≥ cN

c∞
≥ cN,N0

c∞
≥ 1 − ǫ̃.Making again use of Proposition 2 we have for N0 ≥ Ñ0, N ≥ N̂ = N̂(ǫ̃, N0)

N−1∑

i=N0+1

πN

(
SN (i)

)

= 2
cN

N−1∑

i=N0+1

(
N−1

i

)((
αN

1−γN

)i mod 2( αN ·γN

(1−αN )(1−γN )

)⌊ i
2 ⌋ +

(
αN

1−γN

)(i+1) mod 2( αN ·γN

(1−αN )(1−γN )

)⌊ i+1
2 ⌋)

≤ 1
cN

(cN − cN,N0
) = 1 − c∞

cN

cN,N0

c∞
≤ ǫ̃

2 .This establishes (65).B.2 Proof of Proposition 4The �rst step is to show that the 
losure of {π̃M | M ∈ N} is 
ompa
t in the Prohorov topology of
M1

+(D0). A

ording to Theorem 4 it is su�
ient to prove tightness of {π̃M |M ∈ N}, that is
∀ ǫ > 0 ∃ K̃ ⊂ D0 
ompa
t : inf{π̃M (K̃) |M ∈ N} ≥ 1 − ǫ,where 
ompa
tness means 
ompa
tness with respe
t to the Skorokhod topology of D0. Re
all fromSe
tion 4.1 the de�nition of ι̃M . For all natural numbers N0 < N ≤M we have

π̃M

(

ι̃M
(
UN

M

))

≥ πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

, where UN
M :=

⋃

Z∈SN

UN
M (Z).Let ǫ > 0. A

ording to (63) we 
an �nd natural numbers N0 < N ≤ M̃ su
h that for all M ≥ M̃ :

πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

≥ 1 − ǫ.Fix N , M̃ . In analogy to the de�nition of UN
M we set

Ã :=
⋃

Z∈SN

{

f ∈ D0

∣
∣
∣ #J̇(f) = #J̇(Z) ∧

(
∃λ ∈ Λ : sup

s∈[−r,0]

|λ(s) − s| ≤ r
2N+1 ∧ f ◦ λ = fZ

)}

.Then #J(f) ≤ N and ζf ≥ 2r
N(2N+1) for all f ∈ Ã, and by Lemma 9 we see that cl(Ã), the 
losure of Ã,is 
ompa
t with respe
t to the Skorokhod topology. By de�nition we have UN

M ⊂ Ã for all M ≥ M̃ ≥ N .De�ne
K̃ :=

M̃−1⋃

M=1

ι̃M (SM ) ∪ cl(Ã).Then K̃ is 
ompa
t in the Skorokhod topology, and with M ∈ N it holds that
π̃M (K̃) ≥







π̃M

(
ι̃M (SM )

)
= 1 if M ∈ {1, . . . , M̃ − 1},

π̃M

(
ι̃M (UN

M )
)
≥ 1 − ǫ if M ≥ M̃.38



Hen
e, inf{π̃M (K̃) | M ∈ N} ≥ 1 − ǫ. Sin
e ǫ > 0 was arbitrary, we now know that {π̃M | M ∈ N} isrelatively 
ompa
t.Let (π̃M(j))j∈N be a weakly 
onvergent subsequen
e of (π̃M )M∈N. Denote by π̃ the limit of (π̃M(j)) inthe Prohorov topology. We have to 
he
k that π̃M
w→ π̃ asM → ∞. Be
ause of Theorem 3 it is su�
ientto show that ∫

D0

φ dπ̃M
M→∞−→

∫

D0

φ dπ̃ ∀φ ∈ Cb(D0) uniformly 
ontinuous.Let φ be a bounded and uniformly 
ontinuous real fun
tion on D0 and set Kφ := sup{ |φ(f)| | f ∈ D0}.With M ∈ N it holds that
∣
∣
∣
∣

∫

φ dπ̃M −
∫

φ dπ̃

∣
∣
∣
∣
≤
∣
∣
∣
∣

∫

φ dπ̃M −
∫

φ dπ̃M(j)

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

φ dπ̃M(j) −
∫

φ dπ̃

∣
∣
∣
∣

for all j ∈ N.The 
onvergen
e π̃M(j)
w→ π̃ implies |

∫
φ dπ̃M(j) −

∫
φ dπ̃| → 0 as j → ∞. We therefore have to showthat

∀ ǫ > 0 ∀ j0 ∈ N ∃ j ≥ j0 ∃ M̃ ∈ N ∀M ≥ M̃ :

∣
∣
∣
∣

∫

φ dπ̃M −
∫

φ dπ̃M(j)

∣
∣
∣
∣
≤ ǫ.Let ǫ > 0, j0 ∈ N. Choose natural numbers N0 = N0(ǫ), Ñ = Ñ(ǫ) a

ording to (66). Choose

δ = δ(ǫ, φ) > 0 su
h that |φ(f) − φ(g)| ≤ ǫ for all f, g ∈ D0 with dS(f, g) ≤ δ. Let j ∈ N be big enoughso that j ≥ j0, M(j) ≥ Ñ and r
2M(j)+1 ≤ δ. Set N := M(j).Re
alling the de�nition of our approximation sets13 we see that dS(fZ , fZ̃) ≤ δ for all Z ∈ SN (i) and

Z̃ ∈ UN
M (Z) if i ∈ {0, . . . , N0} and M ≥ N . By the 
hoi
e of δ this implies that |φ(fZ) − φ(fZ̃)| ≤ ǫ forall su
h Z, Z̃.Finally, 
hoose a natural number M̃ = M̃(ǫ,N0, Ñ ,N) a

ording to (66). Then for M ≥ M̃
∣
∣
∣
∣

∫

φ dπ̃M −
∫

φ dπ̃N

∣
∣
∣
∣

≤ 2Kφ · ǫ +

N0∑

i=0

∑

Z∈SN (i)

∣
∣
∣
∣
φ(fZ) πN (Z) −

∑

Z̃∈UN
M

(Z)

φ(fZ̃) πM (Z̃)

∣
∣
∣
∣

≤ 2Kφ · ǫ +

N0∑

i=0

∑

Z∈SN (i)

∣
∣φ(fZ)

∣
∣ ·
∣
∣
∣πM

(
UN

M (Z)
)
− πN (Z)

∣
∣
∣ +

∑

Z̃∈UN
M

(Z)

(
φ(fZ̃) − φ(fZ)

)
πM (Z̃)

≤ 2Kφ · ǫ + ǫ ·
( N0∑

i=0

∑

Z∈SN (i)

πM

(
UN

M (Z)
)
)

+ Kφ · ǫ ·
( N0∑

i=0

N−i
(
#SN (i)

)
)

≤ 2Kφ · ǫ + ǫ · πM

(
SM

)
+ 4Kφ · ǫ ·

( N0∑

i=0

N−i
(
N−1

i

)
)

≤ 2Kφ · ǫ + ǫ + 4Kφ · ǫ ·
( ∞∑

i=0

1
i!

)

= (2Kφ + 1 + 4Kφe) · ǫ.

�B.3 Proof of Proposition 7Clearly, Fδ(0) = 0 = F (0) for all δ ∈ (0, 1). With M ∈ N let P̃M be the probability measure on B(D∞)as de�ned in Se
tion 4.1. Re
all that P̃M is the measure indu
ed by the sequen
e of 
urrent states of13The sets UN

M
(Z) were de�ned at the beginning of Se
tion 4.2.39



the Markov 
hain XM under PπM
, i. e. in the stationary regime. For δ ∈ (0, 1), M ∈ N set

FM
δ (t) := P̃M

(
τ ≤ t

∣
∣ Ãδ

)
, t ∈ [0,∞).From Proposition 6 we know that P̃M

w→ P̃ as M tends to in�nity. Che
k that for δ ∈ (0, 1), t ∈ (0,∞)the events Ãδ, Ãδ ∩ {τ ≤ t} are P̃-
ontinuity sets of B(D∞). An appli
ation of Theorem 3 yields
P̃M

(
τ ≤ t | Ãδ

) M→∞−→ P̃
(
τ ≤ t | Ãδ

)
, i. e. FM

δ (t)
M→∞−→ Fδ(t) for all δ ∈ (0, 1), t > 0.(69)For all t > 0, δ ∈ (0, 1), M ∈ N we have

∣
∣Fδ(t) − F (t)

∣
∣ ≤

∣
∣Fδ(t) − FM

δ (t)
∣
∣ +

∣
∣FM

δ (t) − F (t)
∣
∣.In view of (69) it is su�
ient to show that for ea
h t > 0 and ea
h ε > 0 there are δ0 ∈ (0, 1), M0 ∈ Nsu
h that(70) ∣

∣FM
δ (t) − F (t)

∣
∣ ≤ ε for all δ ∈ (0, δ0), M ≥M0.As in Se
tion 3.2, let (Y M

n )n∈{−M,−M+1,...} be the random sequen
e of 
urrent states on (Ω,F) at dis-
retization degree M ∈ N. Let δ ∈ (0, 1) and let M ∈ N be su
h that δ ·M ≥ 1. Set
Aj

δ,M :=
{
Y M
−⌊δM⌋ = −1, . . . , YM

−j−1 = −1, Y M
−j = 1, . . . , YM

0 = 1
}
, j ∈ {0, . . . , ⌊δM⌋−1}.Noti
e that Aj

δ,M is an event in F . The 
orresponding event in B(D∞) is given by
Ãj

δ,M :=
{
f ∈ D∞

∣
∣ ∀ l ∈ {j+1, . . . , ⌊δM⌋} : f

(
− l

M
r
)

= −1 ∧ ∀ l ∈ {0, . . . , j} : f
(
− l

M
r
)

= 1
}
.For all δ ∈ (0, 1) and all M ∈ N su
h that δ ·M ≥ 1 it holds that

PπM

(
Aj

δ,M

)
= P̃M

(
Ãj

δ,M

) for all j ∈ {0, . . . , ⌊δM⌋ − 1},

Ãδ = Ã0
δ,M ∪ . . . ∪ Ã⌊δM⌋−1

δ,M P̃M -almost surely.In analogy to (26), the de�nition of the residen
e time distribution LM (.) of dis
retization degreeM , weset
Lj

δ,M (k) := PπM

(
Y M

0 = 1, . . . , Y M
k−1 = 1, Y M

k = −1
∣
∣ Aj

δ,M

)
, k ∈ N.Then, by 
onstru
tion of FM

δ , for all δ ∈ (0, 1) and all M ∈ N su
h that δ ·M ≥ 1 we have
FM

δ (t) =

⌊ t
r

M⌋
∑

k=1

⌊δM⌋−1
∑

j=0

P̃M

(
Ãj

δ,M

∣
∣ Ãδ

)
· Lj

δ,M (k), t > 0.It is not ne
essary to 
al
ulate the probabilities P̃M (Ãj
δ,M | Ãδ). Instead, pro
eeding in a way very mu
has in Se
tion 3.2, we will estimate limes inferior and limes superior of M ·LjM

δ,M (⌊qM⌋) as M tends toin�nity, where q > 0 and (jM ) ⊂ N0 is any sequen
e su
h that jM ∈ {0, . . . , ⌊δM⌋−1} for all M ∈ N.The estimates will be uniform in δ ∈ (0, δ0] for any small δ0 > 0.In analogy to (27), the de�nition of the tail 
onstant KM , we set for δ ∈ (0, 1) and M big enough
Kj

δ,M := PπM

(
Y M
−⌊δM⌋ = 1, . . . , Y M

−j−1 = 1, Y M
−j = 1, . . . , Y M

M−⌊δM⌋ = 1
∣
∣ Aj

δ,M

)
.Be
ause of the shift invarian
e of Y M under PπM

, the above de�nition of Kj
δ,M is really analogue to thatof KM . Exploiting the stationarity of XM under PπM

, we obtain
Kj

δ,M =
πM

(
(

⌊δM⌋−j
︷ ︸︸ ︷

−1, . . . ,−1,

M−⌊δM⌋+j+1
︷ ︸︸ ︷

1, . . . , 1)
)

πM

(
{(∗, . . . , ∗
︸ ︷︷ ︸

M−⌊δM⌋

,−1, . . . ,−1
︸ ︷︷ ︸

⌊δM⌋−j

, 1, . . . , 1
︸ ︷︷ ︸

j+1

)}
) .
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As a 
onsequen
e of Proposition 2, the formula for the stationary distributions πM , we see that Kj
δ,M isthe same for all j ∈ {0, . . . , ⌊δM⌋−1}. Pro
eeding as in the derivation of (29) we �nd that(71) Kj

δ,M =
2

(

1 +
√

γ̃M

α̃M

)(
1 +

√
η̃M

)M−⌊δM⌋
+
(

1 −
√

γ̃M

α̃M

)(
1 −√

η̃M

)M−⌊δM⌋ =: Kδ,M .In order to 
al
ulate Lj
δ,M we apply Proposition 2 again in a way similar to that of Se
tion 3.2. Let

δ ∈ (0, 1), letM ∈ M be su
h that ⌊δM⌋ ≥ 1, and j ∈ {0, . . . , ⌊δM⌋−1}. Then for k ∈ {1, . . . ,M−⌊δM⌋}

Lj
δ,M (k) =

√
γ̃M

2
·Kδ,M ·

(√

γ̃M

(
(1 +

√

η̃M )M−⌊δM⌋−k + (1 −
√

η̃M )M−⌊δM⌋−k
)

+
√

α̃M

(
(1 +

√

η̃M )M−⌊δM⌋−k − (1 −
√

η̃M )M−⌊δM⌋−k
))

.

(72a)While Lj
δ,M (k) in (72a) does not vary with j as long as k ≤M−⌊δM⌋, for k ∈ {M−⌊δM⌋+1, . . . ,M−j}it holds that

Lj
δ,M (k) = Kδ,M · γM · (1 − γM )k−M+⌊δM⌋−1,(72b)and for k ≥M−j+1 we have

Lj
δ,M (k) = Kδ,M · αM · (1 − γM )⌊δM⌋−j · (1 − αM )k−M+j−1.(72
)Now, let the dis
retization degree M tend to in�nity, where we assume that s
aling relation (31) holdsfor some rates α, γ. From (71) we see that
K∞,δ := lim

M→∞
KM,δ =

2
(
1 +

√
γ
α

)
e(1−δ)

√
αγ +

(
1 −

√
γ
α

)
e−(1−δ)

√
αγ

=

√
α√

α cosh
(
(1 − δ)

√
αγ
)

+
√
γ sinh

(
(1 − δ)

√
αγ
) .

(73)Let q > 0 and let (jM ) ⊂ N0 be any sequen
e su
h that jM ∈ {0, . . . , ⌊δM⌋−1} for all M ∈ N. If
q ∈ (0, 1−δ], then from (72a) we �nd that(74a) lim

M→∞
M · LjM

δ,M

(
⌊qM⌋

)
=

√
γ ·Kδ,∞ ·

(√
γ cosh

(√
αγ(1−δ−q)

)
+
√
α sinh

(√
αγ(1−δ−q)

))

.If q ∈ (1−δ, 1), then a rough estimate of (72b) and (72
), respe
tively, yields
lim sup
M→∞

M · LjM

δ,M

(
⌊qM⌋

)
≤ max{α, γ} ·Kδ,∞,

lim inf
M→∞

M · LjM

δ,M

(
⌊qM⌋

)
≥ min{α, γ} ·Kδ,∞ · e−δγ · e−(q+δ−1)α.

(74b)On the other hand, if q ≥ 1, then by (72
) we have
lim sup
M→∞

M · LjM

δ,M

(
⌊qM⌋

)
≤ α ·Kδ,∞ · e−(q−1)α,

lim inf
M→∞

M · LjM

δ,M

(
⌊qM⌋

)
≥ α ·Kδ,∞ · e−δγ · e−(q+δ−1)α.

(74
)Noti
e that 
onvergen
e in (73) as well as in (74) is uniform in δ ∈ (0, δ0] for arbitrary δ0 ∈ (0, 1). Ifwe let δ tend to zero, we re
over the residen
e time distribution density fL of Proposition 3. Taking thetime dis
retization into a

ount, we obtain f̃L as given by (36) instead of fL.Given t > 0, ε > 0, uniform 
onvergen
e of (Lj
δ,M ) in δ and dominated 
onvergen
e of the 
orre-sponding residen
e time distribution densities over the interval (0, t] imply that we 
an �nd δ0 ∈ (0, 1)and M0 ∈ N su
h that inequality (70) is ful�lled. The assertion of Proposition 7 then follows.
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