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Peter ImkellerInstitut für MathematikHumboldt-Universität zu BerlinUnter den Linden 610099 BerlinGermanyAugust 7, 2005AbstratThe subjet of the present paper is a simpli�ed model for a symmetri bistable system with memoryor delay, the referene model, whih in the presene of noise exhibits a phenomenon similar to whatis known as stohasti resonane. The referene model is given by a one dimensional parametrizedstohasti di�erential equation with point delay, basi properties whereof we hek.With a view to apturing the e�etive dynamis and, in partiular, the resonane-like behavior ofthe referene model we onstrut a simpli�ed or redued model, the two state model, �rst in disretetime, then in the limit of disrete time tending to ontinuous time. The main advantage of theredued model is that it enables us to expliitly alulate the distribution of residene times whihin turn an be used to haraterize the phenomenon of noise-indued resonane.Drawing on what has been proposed in the physis literature, we outline a heuristi methodfor establishing the link between the two state model and the referene model. The resonaneharateristis developed for the redued model an thus be applied to the original model.2000 AMS subjet lassi�ations: primary 34K50, 60H10; seondary 60G17, 34K11, 34K13,34K18, 60G10.Key words and phrases: stohasti di�erential equation; delay di�erential equation; stohastiresonane; e�etive dynamis; Markov hain; stationary proess; stohasti synhronization.1 IntrodutionStohasti resonane in a narrower sense is the random ampli�ation of a weak periodi signal indued bythe presene of noise of low intensity suh that the signal ampli�ation is maximal at a ertain optimalnon-zero level of noise. In addition to weak additive noise and a weak periodi input signal there is athird ingredient in systems where stohasti resonane an our, namely a threshold or a barrier thatindues several (in our ase two) marosopi states in the output signal.Consider a basi, yet fundamental example. Let V be a symmetri one dimensional double wellpotential. A ommon hoie for V is the standard quarti potential, see Fig. 1 a). The barrier mentioned
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above is in this ase the potential barrier of V separating the two loal minima. Assume that the periodiinput signal is sinusoidal and the noise white. The output of suh a system is desribed by the stohastidi�erential equation (SDE)(1) dX(t) = −
(

V ′(X(t)
)

+ a · sin
(

2π
T
t
))

dt + σ · dW (t), t ≥ 0,where W is a standard one dimensional Wiener proess, σ ≥ 0 a noise parameter, V ′ the �rst orderderivative of the double well potential V , a ≥ 0 the amplitude and T > 0 the period of the input signal.As an alternative to the system view, Equation (1) an be understood as desribing the overdampedmotion of a small partile in the potential landsape V in the presene of noise and under the in�ueneof an exterior periodi fore. It was originally proposed by Benzi et al. [1, 2℄ and Niolis [3℄ as an energybalane model designed to explain the suession of ie and warm ages in paleolimati reords as aphenomenon of quasi periodiity in the average global temperature on Earth.If a = 0, i. e. in the absene of a periodi signal, Equation (1) redues to an autonomous SDE whih hastwo metastable states orresponding to the two loal minima of V . With σ > 0 su�iently small, thedi�usion will spend most of its time near the positions of these minima. In the presene of weak noise,there are two distint time sales, a short one orresponding to the quadrati variation of the Wienerproess, and a long one proportional to the average time it takes the di�usion to travel from one of themetastable states to the other.The fat that the time sale indued by the noise proess is small in omparison with the meanresidene time as σ tends to zero should allow us to disregard small intrawell �utuations when we areinterested in the interwell transition behavior.Suppose a > 0 small enough so that there are no interwell transitions in ase σ = 0, i. e. in the deter-ministi ase. The input signal then slightly and periodially tilts the double well potential V . We nowhave two di�erent mean residene times, namely the average time the partile stays in the shallow welland the average time of residene in the deep well. Of ourse, both time sales also depend on the noiseintensity.Notie that deep and shallow well hange roles every half period T
2 . Given a su�iently long period

T , the noise intensity an now be tuned in suh a way as to render the ourreneof transitions from the shallow to the deep well probable within one half period, while this timespan is too short for the ourrene of transitions in the opposite diretion. At a ertain noise level theoutput signal will exhibit quasi periodi transition behavior, thereby induing an ampli�ation of theinput signal.For a more omprehensive desription of stohasti resonane and its wide �eld of appliations in many�elds of siene and engineering see Gammaitoni et al. [4℄ or Anishhenko et al. [5℄. Very reently ithas been used in eonomis related models designed for the explanation of non-linear market phenom-ena suh as rashes and bubbles, see Krawieki and Holyst [6℄. In their model, the external periodifore orresponds to a weak external information arrying signal. What models that exhibit stohastiresonane have in ommon is the quasi periodiity of the output at a ertain non-zero noise level. Moregenerally, stohasti resonane is an instane of noise-indued order.In view of the fat that the system given by Equation (1) an work as a random ampli�er it seemsnatural to take the frequeny spetrum of the output signal as basis for a measure of resonane. Themost ommon measure of this kind is the spetral power ampli�ation (SPA) oe�ient. Another measureof resonane based on the frequeny spetrum is the signal to noise ratio (SNR). For a detailed analysissee Pavlyukevih [7℄. 2



In general, when measuring stohasti resonane, it is assumed that the solution is in a �stationaryregime�. Sine Equation (1) is time dependent for a > 0 we annot expet (X(t))t≥0 to be a stationaryproess. Transforming the non-autonomous SDE (1) into an autonomous SDE with state spae R × S1,one an reover the time homogeneous Markov property and a unique invariant probability measureexists, f. Imkeller and Pavlyukevih [8℄. In Setion 3 we will make use of the same idea of appropriatelyenlarging the state spae in order to regain a time homogeneous Markov model.A di�erent starting point for a measure of resonane � the one that will be adopted here � is the distri-bution of intrawell residene times. Observe that the roles of the two potential wells are interhangeable.A third lass of measures of resonane is provided by methods of quantifying (un-)ertainty, inpartiular by the entropy of a distribution. This agrees well with the view of stohasti resonane as aninstane of noise-indued order.The fat that with σ > 0 and a > 0 small a typial solution to (1) spends most of its time near thepositions of the two minima of the double well potential V suggests to identify the two potential wellswith their respetive minima. The state spae R of the non-autonomous SDE thus gets redued to twostates, say −1 and 1, orresponding to the left and the right well, respetively.Aording to an idea of MNamara and Wiesenfeld [9℄ the e�etive dynamis of Equation (1) anbe aptured in the two state model by onstruting a {−1, 1}-valued time inhomogeneous Markov hainwith ertain (time dependent) transition rates. These rates are determined as the rates of esape fromthe potential well of the tilted double well potential whih orresponds to the redued state in question.An approximation of the rate of esape from a paraboli potential well is given in the limit of small noiseby the Kramers formula, f. Setion 5.In the physis literature, a standard ansatz for alulating the two state proess given time dependenttransition rates is to solve an assoiated di�erential equation for the probabilities of oupying state ±1at time t, a so-alled master equation [f. 4℄.An advantage of the redued model is its simpliity. It should be espeially useful in systems with morethan two meta-stable states. Although it is intuitively plausible to apply a two state �lter, there ispossibly a problem with the measure of resonane, for it might happen that with the same notion oftuning stohasti resonane would be deteted in the two state model, while no optimal noise level, i. e.no point of stohasti resonane, exists in the ontinuous ase. This is, indeed, a problem for the SPAoe�ient and related measures, see Pavlyukevih [7℄. The reason is that in passing to the redued modelsmall intrawell �utuations are ��ltered out�, while they deisively ontribute to the SPA oe�ient inthe original model.Measures of resonane based on the distribution of intrawell residene times, however, do not havethis limitation, that is they are robust under model redution as Herrmann et al. [10℄ show.In Equation (1) replae the term that represents the periodi input signal with a term that orrespondsto a fore dependent on the state of the solution path a �xed amount of time into the past, that is replaethe periodi signal with a point delay. This yields what will be our referene model, see Equation (2).The idea to study suh equations with regard to noise-indued resonane seems to originate withOhira and Sato [11℄. Their analysis, though, is of limited use, beause they make too strong assumptionson independene between the omponents of the redued model whih they onsider in disrete timeonly.A better analysis of the redued model for an important speial hoie of Equation (2) an be foundin Tsimring and Pikovsky [12℄. The same model is the objet of reent studies by Masoller [13℄, Houlihanet al. [14℄ and Curtin et al. [15℄, and it will be our standard example, too.3



While the measure of resonane applied by Tsimring and Pikovsky [12℄ is essentially the �rst peakin the frequeny spetrum, in the other artiles fous is laid on the residene time distribution in theredued model, whih is ompared with numerial simulations of the original dynamis. Under ertainsimplifying assumptions, approximative analytial results are obtained via a master equation approah,where the master equation is a DDE instead of an ODE.In Setion 5 we follow Tsimring and Pikovsky [12℄ in establishing the link between the redued andthe referene model. Results by Masoller [13℄ show that the density of the residene time distributionhas a harateristi jump. She proposes to take the height of this jump as a measure of resonane, andwe will follow her proposal, supplementing it by an alternative.Our approah is di�erent, though, in that we do not use any kind of master equation. Instead, weonstrut a redued model with enlarged state spae, whih has the Markov property and whih allowsus to expliitly alulate the stationary distributions as well as the residene time distributions.2 The referene modelConsider the one dimensional motion of a small partile in the presene of large frition and additivewhite noise subjet to the in�uene of two additional fores: one dependent on the urrent positionof the partile and orresponding to a symmetri double well potential V , the other dependent on theposition of the partile a ertain amount of time r in the past and orresponding to a symmetri singlewell potential U , where the position of the extremum of U oinides with the position of the saddle pointof V .Without loss of generality we may assume that the saddle point of the potential V is at the origin andthe extrema are loated at (−1,−L) and (1,−L) respetively, where L > 0 is the height of the potentialbarrier. A standard hoie for V is the quarti potential x 7→ L(x4 − 2x2).Instead of U we will onsider β ·U , where β is a salar, that serves to �adjust� expliitly the strengthof the delay fore. An admissible funtion for U is the parabola x 7→ 1
2x

2. In fat, with this hoie of
U and taking as potential V the quarti potential with L = 1

4 we �nd ourselves in the setting that wasstudied by Tsimring and Pikovsky [12℄.1 Another reasonable hoie for U would be a funtion whose�rst derivative equals the sign funtion outside a small symmetri interval around 0 and is smoothlyontinued on this interval (see Fig. 1).
-2 2

-1

1

2a)

-1 1

.............................................................................................................................................................................................................................
....................

.....................................................................................................................................
..........
.........
........
........
........
.......
........
.......
........
.......
........
.......
........
.......
.......
........
.......
.......
........
.......
.......
.......
..

-2 -1 1 2

-1

1

2b)......
......
..............................................................................................................................................

...........
.........
........
......
......
.....
.....
......
......
......
......
......
......
......
.....
.
..

-2 -1 1 2

-1

1

2c)..................................................................................................................................
.......
.....
.....
.....
.....
.....
......
......
......
......
......
......
......
......
......
......
......
....

Figure 1: Graphs on the interval [−2, 2] of a) quarti double well potential V , b) quadrati delay potential
U : x 7→ 1

2
x2, ) absolute value delay potential U : x 7→ |x|, x ∈ R \ (−δ, δ), smoothly ontinued on (−δ, δ).1Our notation is slightly di�erent from that of Equation (1) in Tsimring and Pikovsky [12, p. 1℄. In partiular, theirparameter ǫ, indiating the �strength of the feedbak�, orresponds to −β, here.4



2.1 The underlying SDDEThe dynamis that govern the motion of a Brownian partile as desribed above an be expressed by thefollowing stohasti delay di�erential equation determining our referene model:(2) dX(t) = −
(
V ′(X(t)

)
+ β · U ′(X(t− r)

))
dt + σ · dW (t), t ≥ 0,where W (.) is a standard one dimensional Wiener proess on a probability spae (Ω,F ,P) adapted to a�ltration (Ft)t≥0 satisfying the usual onditions, r > 0 is the time delay, V ′, U ′ are the �rst derivativesof V and U , respetively, β ∈ R is a parameter regulating the intensity of the delay fore and σ ≥ 0 anoise parameter. In the speial ase σ = 0 Equation (2) beomes a DDE, while in ase β = 0 we havean ordinary SDE.As initial ondition at time zero one presribes an F0-measurable C([−r, 0])-valued random variable

ξ suh that E(‖ξ‖2
∞) <∞ and X0 = ξ P-almost surely. Here, X0 denotes the segment of X at time zero.More generally,

Xt :=
[
s 7→ X(t+ s), s ∈ [−r, 0]

]is the segment at time t ≥ 0, and (Xt)t≥0 the segment proess assoiated with X, provided a solution
(X(t))t≥−r to Equation (2) exists. The initial segment may, of ourse, be deterministi, i. e. X0 = f forsome funtion f ∈ C([−r, 0]).The above desription of the two potentials is ompatible with the following onditions on V and U :

V,U ∈ C
2(R),(3a)

V (x) = V (−x) for all x ∈ R, U(x) = U(−x) for all x ∈ R,(3b)
V ′(x) = 0 i� x ∈ {−1, 0, 1}, U ′(x) = 0 i� x = 0,(3)
V ′′(−1) = V ′′(1) > 0,(3d)
sup{V ′(x) | x ∈ (−∞,−1) ∪ (0, 1)} ≤ 0, sup{U ′(x) | x ∈ (−∞, 0)} ≤ 0.(3e)If V ′ and U ′ are bounded or satisfy a linear growth ondition, then results from the literature ensureexistene of a unique strong solution for every F0-measurable C([−r, 0])-valued square integrable randomvariable and a (weakly) unique weak solution for every probability measure on B(C([−r, 0])) as initialondition. The segment proesses assoiated with those solutions enjoy the strong Markov property, seeMohammed [16, 17℄.Let R > 0 and let VR, UR be funtions suh that VR and UR have bounded derivatives, while agreeingwith V and U , respetively, on the interval [−R,R]. By onsidering Equation (2) with V , U replaed by

VR, UR we see that unique solutions exist up to an explosion time.In order to prevent explosion of solutions to Equation (2) we need growth onditions on V and U .We hoose them in a way suh as to give us ontrol over the impat of the delay potential U in termsof the potential funtion V . In addition to onditions (3) let us assume that for some positive onstants
R̂0, η̂ and δ we have

U ′(x) > 0 for all x ∈ (0,∞),(4a)
U ′′(x) ≥ 0 for all x ∈ R, V ′′(x) ≥ 0 for all x ∈ R \ [−R̂0, R̂0],(4b)
V ′(x)

U ′(3x)
≥ η̂ · |x|1+δ for all x ∈ R \ [−R̂0, R̂0].(4)Without loss of generality we may assume δ ∈ (0, 1]. Heneforth, whenever the referene model isonerned, we will suppose that onditions (3) and (4) are satis�ed. These onditions not only guarantee5



existene and uniqueness of solutions, but also the existene of a stationary distribution as will be shownnext.Both, non-explosion as well as stationarity, an be heked by the �one step method�. Let b : [0, r]×R → Rbe a ontinuous funtion, loally Lipshitz in the seond variable (uniformly in the �rst) and suh thatfor some positive onstants R0, η we have(5) x · b(t, x) ≤ −η · |x| for all t ∈ [0, r], x ∈ R \ [−R0, R0].Growth ondition (5) guarantees existene of a unique strong solution to the non-autonomous SDE(6) dY (t) = b
(
t, Y (t)

)
dt + σ · dW (t), t ∈ [0, r],for every F0-measurable real valued square integrable random variable as initial ondition for Y (0), seeDurrett [18, pp. 190-192℄.2 Moreover, E(|Y (0)|2) <∞ implies E(‖Yr‖2

∞) <∞.Let y ∈ R and let Y y be a solution to Equation (6) with deterministi initial ondition Y (0) = y. For
R > 0 denote by τR the time of �rst exit of Y y from the interval (−R,R), that is we set

τR := inf
{
t ∈ [0, r]

∣
∣ |Y y(t)| ≥ R

}
,with inf ∅ = ∞ by onvention. A one dimensional version of Proposition 1.4 in Herrmann et al. [20℄ yieldsthe following estimate for the probability that Y y leaves the interval (−R,R) within time r provided Ris big enough. For any λ > 1 it holds that

P
(
τR ≤ r

)
≤ 6

( r

σ2
η2 + 2

)

exp

(

−2(λ− 1)

λσ2
η R

) for all R ≥ λ(R0 ∨ |y|).(7)For f ∈ C([−r, 0]) de�ne the drift oe�ient bf by
bf (t, x) := −V ′(x) − β · U ′(f(t− r)

)
, (t, x) ∈ [0, r] × R.With (t, x) ∈ [0, r] × R we have

x · bf (t, x) = − xV ′(x) − β xU ′(f(t− r)
) ∣

∣ apply (3b)
= − |x|U ′(3|x|

) V ′(x)

U ′(3x)
− β xU ′(f(t− r)

) ∣
∣ apply (4b)

≤ − |x|U ′(3|x|
) V ′(x)

U ′(3x)
+ |β| |x|U ′(‖f‖∞

)
.Set KV := sup{−x · V ′(x) | x ∈ [−R̂0, R̂0]}. Beause of (4) we �nd that

x · bf (t, x) ≤







KV + |β| R̂0 U
′(‖f‖∞

) if |x| < R̂0,

−η̂ U ′(3|x|
)
|x|2+δ + |β| |x|U ′(‖f‖∞

) if |x| ≥ R̂0.If ‖f‖∞ ≥ 3
(
R̂0 ∨ 2|β|

η̂
∨ 1
), then(8) x · bf (t, x) ≤







KV + |β| R̂0 U
′(‖f‖∞

) if |x| < R̂0,

1
3 |β| ‖f‖∞ U ′(‖f‖∞

) if R̂0 ≤ |x| < 1
3‖f‖∞,

− η̂
18 ‖f‖1+δ

∞ U ′(‖f‖∞) |x| if |x| ≥ 1
3‖f‖∞.2Alternatively, we ould invoke Theorem 10.2.2 in Strook and Varadhan [19℄ and the fat that pathwise uniquenessholds. 6



In partiular, provided that ‖f‖∞ ≥ 3
(
R̂0 ∨ 2|β|

η̂
∨ 1
), we have(9) x · bf (t, x) ≤ −ηf |x| for all t ∈ [0, r], |x| ≥ 1

3‖f‖∞,where ηf := η̂
18 ‖f‖1+δ

∞ U ′(‖f‖∞).Clearly, inequality (9) implies growth ondition (5) if we replae b with bf and R0 with 1
3‖f‖∞. Notiethat (5) is also satis�ed for bf when ‖f‖∞ is small. In this ase we would estimate the produt x ·bf (t, x)by applying (4) and observing that U ′(x) is greater than some positive onstant for all positive x bigenough.Let (X(t)t∈[−r,τ̂) be a strong solution to Equation (2) for some admissible initial ondition ξ up toexplosion time τ̂ . We have to show that τ̂ = ∞ P-a. s.Suppose τ̂ > n · r P-almost surely for some n ∈ N0. This will ertainly be the ase if we take n = 0.Set s := n · r. By hypothesis, (X(t))t∈[−r,s] is well de�ned as a solution to Equation (2) up to time s. Let

ω ∈ Ω, and set f := Xs(ω). Observe that Xs(ω̃) = f for almost all ω̃ ∈ Ω with respet to the probabilitymeasure P(.|Fs)(ω).In Equation (6) replae the drift b with bf and presribe f(0) as initial ondition. Notie that bfful�lls a growth ondition like (5). The fat that there is a unique strong solution to Equation (6) nowimplies that, P(.|Fs)(ω)-almost surely, (X(s+ t))t∈[0,r] exists and satis�es (6). Consequently, τ̂ > s+ rwith probability one under P(.|Fs)(ω).Sine P(A) = E(P(A|Fs)) for any event A ∈ F , we see that τ̂ > n · r entails τ̂ > (n+1)r. Proeedingby indution, we onlude that solutions to our referene Equation (2) annot explode in �nite time.Stationarity is studied in Sheutzow [21, 22℄ for equations of a speial form. Let F be a real valuedBorel measurable and loally bounded funtional on C([−1, 0]), where loally bounded means boundedon bounded subsets. Consider the SDDE(10) dX̃(t) = F (X̃t)dt + dW (t), t ≥ 0.By appropriately saling time and spae one an bring SDDEs with delay length r 6= 1 or noise parameter
σ 6= 1, as long as both are positive, into the form of Equation (10). Let us speify F as(11) F (g) := −

√
r

σ
·
(

V ′(σ
√
r · g(0)

)
+ β · U ′(σ

√
r · g(−1)

))

, g ∈ C([−1, 0]).Sine the oordinate projetions are measurable and V ′, U ′ are loally bounded ontinuous funtionsbeause of (3a), F is Borel measurable and loally bounded.Let g ∈ C([−1, 0]) and assume that X̃ together with a Wiener proess (W̃ , (F̃t)t≥0) on (Ω̃, F̃ , P̃) isa weak solution to (10) with F as just de�ned and X̃0 = g P̃-almost surely. Set f(t) := σ
√
r · g( t

r
),

t ∈ [−r, 0]. Let X together with a Wiener proess (W, (Ft)t≥0) on (Ω,F ,P) be a weak solution of (2) suhthat P(X0 = f) = 1. Then the proesses (X(t))t≥−r and (σ
√
r · X̃( t

r
))t≥−r have the same distribution[f. 21, p. 31℄. Therefore, if σ > 0, then our referene equation an be transformed into an instane ofEquation (10).Theorem 1 ites part of Theorem 3 and Theorem 4 from Sheutzow [22, pp. 47-48, 54℄. Strong existeneand pathwise uniqueness learly imply weak existene and uniqueness in distribution. Notie that inorder to have a weak solution for any initial distribution it is su�ient to hek existene of solutions forall deterministi initial onditions.Theorem 1 (Sheutzow). Let F be a Borel measurable and loally bounded funtional on C([−1, 0]).Assume that weak existene and uniqueness hold for Equation (10). Let L : C([−1, 0]) → [0,∞) be Borelmeasurable, and set for R ≥ 0

AR := − sup
{
Ẽg

(
L(X̃1)

)
− L(g)

∣
∣ g ∈ C([−1, 0]), ‖g‖∞ ≥ R

}
.7



Here, Ẽg means expetation with respet to the probability measure of a weak solution for (10) withdeterministi initial ondition g.1. Let ((X̃, W̃ ), (Ω̃, F̃ , P̃), (F̃t)) be a weak solution to (10) with arbitrary initial distribution ν. There isat most one invariant probability measure π for Equation (10). If an invariant probability measure
π exists, then

P̃X̃t

t→∞→ π in total variation.2. If A0 ∨ 0 <∞ and 0 ≤ limR→∞
A0∨0
AR

< 1, then (10) possesses an invariant probability measure.As Lyapunov funtional L we hoose
L(g) := ‖g‖∞ + |g(0)|, g ∈ C([−1, 0]).Notie that beside onditions (4) only properties (3a) and (3b) are needed in order to derive growthestimates (8) and (9). For g ∈ C([−1, 0]) de�ne the resaled drift ondition b̃g by

b̃g(t, x) :=
√

r

σ
· bfg

(
r · t, σ√r · x

)
, (t, x) ∈ [0, 1] × R, where fg(t) := σ

√
r · g

(
t
r

)
, t ∈ [−r, 0].In partiular, ‖fg‖∞ = σ

√
r · ‖g‖∞. Set R̃0 := 3

σ
√

r

(
R̂0 ∨ 2|β|

η̂
∨ 1
). If ‖g‖∞ ≥ R̃0 then inequality (9)entails that(12) x · b̃g(t, x) ≤ −η̃g |x| for all t ∈ [0, 1], |x| ≥ 1

3‖g‖∞,where
η̃g :=

√
r

σ
ηfg

= η̂
18 · σδ · r1+ δ

2 · ‖g‖1+δ
∞ · U ′(σ

√
r · ‖g‖∞

)
.In analogy to Equation (6), we onsider non-autonomous SDEs of the form(13) dỸ (t) = b̃

(
t, Ỹ (t)

)
dt + dW (t), t ∈ [0, 1].The drift oe�ient b̃ has to be hosen in aordane with the deterministi initial ondition of Equa-tion (10). For g ∈ C([−1, 0]) denote by Ỹ g the (strongly) unique solution to Equation (13) with b̃g inplae of b̃ and initial ondition g(0). Let τ̃R denote the time of �rst exit of Ỹ g from the interval (−R,R),where R > 0, that is we set

τ̃R := inf
{
t ∈ [0, 1]

∣
∣ |Ỹ g(t)| ≥ R

}
,with inf ∅ = ∞ by onvention. As a onsequene of (7), provided that ‖g‖∞ ≥ R̃0, with λ > 1 we have

P
(
τ̃R ≤ 1

)
≤ 6

(
η̃2

g + 2
)
exp

(

−2(λ− 1)

λ
η̃g R

) for all R ≥ λ
(

1
3‖g‖∞ ∨ |g(0)|

)
.(14)First, we turn to estimating the expeted supremum of |Ỹ g|. Set yg := 1

3‖g‖∞ ∨ |g(0)|. For ‖g‖∞ ≥ R̃0and any λ > 1 it holds that
E
(
‖Ỹ g

1 ‖∞
)

=

∞∫

0

P

(

sup
t∈[0,1]

|Ỹ g(t)| > R

)

dR ≤ λ yg +

∞∫

λyg

P (τ̃R ≤ 1) dR
∣
∣ apply (14)

≤ λ yg + 6
(
η̃2

g + 2
)
·

∞∫

λyg

exp

(

−2(λ− 1)

λ
η̃g R

)

dR

= λ yg +
3λ(η̃2

g + 2)

(λ− 1)η̃g

· exp

(

−2(λ− 1)

λ
η̃g yg

)

≤ λ
(

1
3‖g‖∞ ∨ |g(0)|

)
+

3λ

λ− 1

(

η̃g +
2

η̃g

)

· exp

(

−2(λ− 1)

3
η̃g ‖g‖∞

)

.8



Therefore, given a > 1 we �nd R(a) > 0 suh that for all g ∈ C([−1, 0]) with ‖g‖∞ ≥ R(a) it holds that(15) E
(
‖Ỹ g

1 ‖∞
)

≤







a
3 ‖g‖∞ if |g(0)| ≤ 1

3‖g‖∞,

a|g(0)| if |g(0)| > 1
3‖g‖∞.Seond, we try to �nd an upper bound for the expeted value of |Ỹ g|. Clearly, if |g(0)| ≤ 1

3‖g‖∞, theninequality (15) implies E(|Y g(1)|) ≤ a
3‖g‖∞. Assume that |g(0)| > 1

3‖g‖∞. Girsanov's theorem impliesthat the stohasti equation(16) Z(t) = x −
t∫

0

θ · sgn
(
Z(s)

)
ds + W̃ (t), t ∈ [0, 1],where W̃ is a standard Wiener proess, possesses a (weakly) unique weak solution for any hoie of theparameters x ∈ R, θ > 0.Set x := |g(0)| − 1

3‖g‖∞, θ := η̃g, and let Zg be a solution proess satisfying (16) with x, θ on anappropriate stohasti basis. By symmetry and beause of growth inequality (12), we �nd that
E
(
|Ỹ g(t)|

)
≤ 1

3‖g‖∞ + Ẽ
(
|Zg(t)|

) for all t ∈ [0, 1].Notie that Zg is a Brownian motion with two-valued drift started at x = |g(0)| − 1
3‖g‖∞, and |Zg| is are�eted Brownian motion with drift −η̃g. The transition probabilities of Zg an be omputed expliitly,see Karatzas and Shreve [23, pp. 437-441℄. It holds that

Ẽ
(
‖Zg(1)‖∞

)
=

∞∫

0

z√
2π

(

exp

(

−1

2
(x− z − θ)2

)

+ exp

(

2θx− 1

2
(x+ z + θ)2

))

dz

+

∞∫

0

2zθ exp
(
−2θz

) 1√
2π

∞∫

x+z

exp

(

−1

2
(v − θ)2

)

dv dz.Observe that 1
3‖g‖∞ ≤ x ≤ ‖g‖∞, that is x is of order ‖g‖∞, while θ = η̃g is of order at least ‖g‖1+δ

∞ .Therefore, Ẽ(‖Zg(1)‖∞) goes to zero as ‖g‖∞ tends to in�nity. We onlude that, given a > 1, there is
R̃(a) > 0 suh that for all g ∈ C([−1, 0]) with ‖g‖∞ ≥ R̃(a) it holds that(17) E

(
|Ỹ g(1)|

)
≤ a

3 ‖g‖∞.Observe that A0 as de�ned in Theorem 1 is �nite. Estimates (15) and (17) imply that AR tends toin�nity as R goes to in�nity. Theorem 1 thus guarantees existene of an invariant probability measure.Let us summarize our �ndings.Proposition 1. Suppose that V , U satisfy onditions (3) and (4). Let σ ≥ 0, β ∈ R be given. Then thefollowing holds for Equation (2):1. For every F0-measurable C([−r, 0])-valued random variable as initial ondition there is a (pathwise)unique strong solution.2. The segment solution proesses enjoy the strong Markov property.3. If σ > 0, then there is a unique invariant probability measure π for the segment proess, whihonverges in total variation to π for every initial distribution.9



The additional onditions (4) are rather rude and ould be varied in many ways. For example, onemight relax ondition (4) by requiring a ratio between V ′ and U ′ of order one instead of order 1+δprovided the growth of U ′ is of polynomial order δ.A di�erent restrition on the geometry of V and U would be the following: Assume that a onstant
Rpot greater than the positive root of V exists suh that V and U are linear on R\ [−Rpot, Rpot]. Clearly,this ondition would not allow V to be a paraboli or quarti potential. In this setting, however, thedelay parameter β beomes important. By appealing to Theorem 5 in Sheutzow [22, pp. 55-56℄ we �ndthat a stationary distribution exists if σ > 0 and β > −V ′(Rpot)

U ′(Rpot)
, while no invariant measure exists inase β < −V ′(Rpot)

U ′(Rpot)
.2.2 Basi parameter settingsLet us have a look at basi parameter settings for Equation (2). The simplest and least interestinghoie of parameters is σ = 0 and β = 0, i. e. no noise and no delay. In this ase, (2) redues to a onedimensional ordinary di�erential equation with two stable solutions, namely −1 and 1, and an instabletrivial solution.The dynamis of the general deterministi delay equation, i. e. σ = 0, β 6= 0, is not obvious forall ombinations β ∈ R, r > 0. In Redmonda et al. [24℄ stabilization of the trivial solution and theorresponding bifuration points are studied. The parameter region suh that the zero solution is stableis ontained in β ≥ 1, r ∈ [0, 1].3 This is not the parameter region we are interested in, here. Reall fromSetion 1 that stohasti resonane is a phenomenon onerned with an inrease of order in the preseneof weak non-zero noise. For large |β| the delay fore would be predominant. Similarly, with r small thenoise would not have enough time to in�uene the dynamis.Indeed, we must be areful in our hoie of β lest we end up with a randomly perturbed deterministiosillator. Solutions to Equation (2) exhibit periodi behavior even for β > 0 omparatively small.If β = 0 and σ > 0, then our SDDE (2) redues to an ordinary SDE. Of interest is again the ase ofsmall noise. A Brownian partile moving along a solution trajetory spends most of its time �utuatingnear the position of the minimum of one or the other potential well, while interwell transitions onlyoasionally our.Now, let σ > 0 and |β| be small enough so that the orresponding deterministi system does not exhibitosillations. Let us suppose �rst that β is positive. Then the e�et of the delay fore should be that offavouring interwell transitions whenever the Brownian partile is urrently in the same potential well itwas in r units of time in the past, while transitions should beome less likely whenever the partile isurrently in the well opposite to the one it was in before. Notie that the in�uene of the delay forealone is insu�ient to trigger interwell transitions. In fat, with σ > 0 not too big, transitions are rareand a typial solution trajetory will still be found near the position of one or the other minimum of Vwith high probability.Consider what happens if the noise intensity inreases. Of ourse, interwell transitions beome morefrequent, while at the same time the intrawell �utuations inrease in strength. But there is an additionale�et: As we let the noise grow stronger interwell transitions our at time intervals of approximatelythe same length, namely at intervals between r and 2r, with high probability. The solution trajetoriesexhibit quasi-periodi swithing behavior at a non-zero noise level. This is what we may all an instaneof stohasti resonane.3Equation (1.3) in Redmonda et al. [24℄ is our standard example with V the quarti potential, where −α orrespondsto our parameter β. 10



Further inreasing the noise intensity leads to ever growing intrawell �utuations whih eventuallydestroy the quasi-periodiity of the interwell transitions. When the noise is too strong, the potentialbarrier of V has no substantial impat anymore and random �utuations easily rossing the barrier arepredominant.Suppose β is negative. The e�et of the delay fore, now, is that of pushing the Brownian partile out ofthe potential well it is urrently in whenever the partile's urrent position is on the side of the potentialbarrier opposite to the one remembered in the past. Sojourns of duration longer than r, on the otherhand, beome prolonged due to the in�uene of the delay whih in this ase renders transitions less likely.In order to obtain some kind of regular transition behavior a higher noise level as ompared to thease of positive β is neessary. Of ourse, one ould hange time sales by inreasing the delay time
r, thereby allowing for lower noise intensities. In Setion 5 we will state more preisely what regulartransition behavior means in ase β < 0, yet we will not subsume it under the heading of stohastiresonane.3 The two state model in disrete timeApplying the ideas skethed in Setion 1, we develop a redued model with the aim of apturing thee�etive dynamis of the referene model. To simplify things further we start with disrete time. Asthe segment proess assoiated with the unique solution to (2), the referene model equation, enjoys thestrong Markov property, it is reasonable to approximate the transition behavior of that solution by asequene of Markov hains. One unit of time in the disrete ase orresponds to r/M time units in theoriginal model, where the delay interval [−r, 0] is divided into M ∈ N equally spaed subintervals.After de�ning the approximating Markov hains we obtain an expliit formula for their stationarydistributions whih will be useful in alulating, for eah M ∈ N, the residene time distribution in thestationary regime and deriving its density funtion in the limit of disrete time tending to ontinuoustime. Finally, based on the residene time distributions, we introdue two simple measures of resonane.The results on Markov hains we need are elementary and an be found, for example, in Brémaud[25℄, whih will be our standard referene.3.1 A sequene of Markov hains and stationary distributionsLet M ∈ N be the disretization degree, that is the number of subintervals of [−r, 0]. The urrent stateof the proess we have to onstrut an attain only two values, say −1 and 1, orresponding to thepositions of the two minima of the double-well potential V . Now, there areM +1 lattie points in [−r, 0]that delimit the M equally spaed subintervals, giving rise to 2M+1 possible states in the enlarged statespae.Let SM := {−1, 1}M+1 denote the state spae of the Markov hain with time unit r/M . Elements of
SM will be written as (M+1)-tuples having {−1, 1}-valued entries indexed (from left to right) from −Mto 0. This hoie of the index range serves as a mnemoni devie to reall how we have disretized thedelay interval [−r, 0]. Thus, l ∈ {−M, . . . , 0} orresponds to the point l · r/M in ontinuous time.To embed the disrete into the time ontinuous model, let α, γ be positive real numbers. If X(.) is theunique solution to (2) in the ase of �interesting� noise parameter σ and delay parameter β, one may thinkof α as the esape rate of X(.) from one of the two potential wells under the ondition X(t) ≈ X(t− r)and of γ as the esape rate of X(.) under the ondition X(t) ≈ −X(t− r). All of the parameters of thereferene model, inluding the delay length and the geometry of the potentials U and V , will enter thedisrete model through the transition rates α and γ, f. Setion 5.11



In the disrete model of degree M , instead of two di�erent transition rates we have two di�erenttransition probabilities αM and γM with αM = Rsc(α,M), γM = Rsc(γ,M), where Rsc is an appropriatesaling funtion. In analogy to the time disretization of a Markov proess we set(18) Rsc : {α, γ} × N ∋ (η,N) 7→ η
α+γ

· (1 − e−
α+γ

N ) ∈ (0, 1).Let Z = (Z(−M), . . . , Z(0)), Z̃ = (Z̃(−M), . . . , Z̃(0)) be elements of SM . A transition from Z to Z̃ shallhave positive probability only if the following shift ondition holds:(19) ∀ l ∈ {−M, . . . ,−1} : Z̃(l) = Z(l+1).Example. Take the element (−1, 1,−1) ∈ S2. Aording to the shift ondition, starting from (−1,1,−1)there are at most two transitions with positive probability, namely to the elements (1,−1, 1) and
(1,−1,−1). ♦If (19) holds for Z and Z̃ then there are two ases to distinguish whih orrespond to the onditions
X(t) ≈ X(t − r) and X(t) ≈ −X(t − r), respetively. Denote by pM

ZZ̃
the probability to get from state

Z to state Z̃. Under ondition (19) we must have
Z(0) = Z(−M) then pM

ZZ̃
=







αM if Z̃(0) 6= Z(0),

1 − αM if Z̃(0) = Z(0),

Z(0) 6= Z(−M) then pM
ZZ̃

=







γM if Z̃(0) 6= Z(0),

1 − γM if Z̃(0) = Z(0).

(20)The fat that � beause of (18) � we always have αM , γM ∈ (0, 1), implies
pM

ZZ̃
6= 0 i� shift ondition (19) is satis�ed.(21)Set PM := (pM

ZZ̃
)Z,Z̃∈SM

. Clearly, PM is a 2M+1 × 2M+1 transition matrix. For every M ∈ N hoose an
SM -valued disrete proess (XM

n )n∈N0
on some measurable spae (ΩM ,FM ) and probability measures

PM
Z , Z ∈ SM , on FM suh that under PM

Z the proessXM is a homogeneous Markov hain with transitionmatrix PM and initial ondition PM
Z (XM

0 = Z) = 1.If ν is a probability measure on the power set ℘(SM ) then, as usual, let PM
ν denote the probabilitymeasure on FM suh that XM is a Markov hain with transition matrix PM and initial distribution νwith respet to PM

ν . Write Pν instead of PM
ν , when there is no ambiguity about the measure PM .From relation (21), haraterizing the non-zero entries of PM , it follows that PM and the assoi-ated Markov hains are irreduible. They are also aperiodi, beause the time of residene in state

(−1, . . . ,−1), for example, has positive probability for any �nite number of steps. Sine the state spae
SM is �nite, irreduibility implies positive reurrene, and these two properties together are equivalentto the existene of a uniquely determined stationary distribution on the state spae, f. Brémaud [25,pp. 104-105℄. Therefore, for every M ∈ N, we have a uniquely determined probability measure πM on
℘(SM ) suh that4(22) πM (Z̃) =

∑

Z∈SM

πM (Z) pM
ZZ̃

for all Z̃ ∈ SM .4For the probability of a singleton {Z} under a disrete measure ν we just write ν(Z).12



There is a simple haraterization of the stationary distribution πM in terms of the number of �jumps� ofthe elements of SM .5 Let Z = (Z(−M), . . . , Z(0)) be an element of SM , and de�ne the number of jumpsof Z as
J (Z) := #

{

j ∈ {−M+1, . . . , 0}
∣
∣ Z(j) 6= Z(j−1)

}

.The global balane equations (22) then lead toProposition 2 (Number of jumps formula). Let M ∈ N. Set α̃M := αM

(1−γM ) , γ̃M := γM

(1−αM ) , η̃M :=

α̃M · γ̃M . Then for all Z ∈ SM the following formula holds(23) πM (Z) =
1

cM
α̃

⌊J (Z)+1
2 ⌋

M γ̃
⌊J (Z)

2 ⌋
M =

1

cM
α̃

J (Z) mod 2
M η̃

⌊J (Z)
2 ⌋

M ,where cM := 2 ·
M∑

j=0

(
M
j

)
α̃ j mod 2

M η̃
⌊ j

2 ⌋
M .Proof. The right-hand part of Equation (23) is just a rearrangement of the middle part. For Z ∈ SMde�ne
ψM (Z) := α̃

⌊J (Z)+1
2 ⌋

M γ̃
⌊J (Z)

2 ⌋
M .We then have cM =

∑

Z∈SM
ψM (Z), beause J (Z) ∈ {0, . . . ,M} for every Z ∈ SM , and with j ∈

{0, . . . ,M} there are exatly 2 ·
(
M
j

) elements in SM having j jumps.Let Z = (Z(−M), . . . , Z(0)) be an element of SM . De�ne elements Z̃, Ẑ of SM as
Z̃ :=

(
Z(−1), Z(−M), . . . , Z(−1)

)
, Ẑ :=

(
−Z(−1), Z(−M), . . . , Z(−1)

)
.Beause of (20) and (21) the global balane Equations (22) redue to(24) πM (Z) =







(1 − αM ) · πM (Z̃) + (1 − γM ) · πM (Ẑ) if Z(−1) = Z(0),

αM · πM (Z̃) + γM · πM (Ẑ) if Z(−1) = −Z(0).Equations (24) determine πM up to a multipliative onstant. Of ourse, ∑Z∈SM
πM (Z) = 1, and wehave already seen that 1

cM

∑

Z∈SM
ψM (Z) = 1. It is therefore su�ient to show that ψM (Z), Z ∈ SM ,satisfy (24). Let Z, Z̃,Ẑ be elements of SM as above. Then

J (Z̃) =







J (Z) if Z(−M) = Z(0),

J (Z) + 1 if Z(−M) = −Z(−1) = −Z(0),

J (Z) − 1 if Z(−M) = Z(−1) = −Z(0),

J (Ẑ) =







J (Z) if Z(−M) = −Z(0),

J (Z) + 1 if Z(−M) = Z(−1) = Z(0),

J (Z) − 1 if Z(−M) = Z(0) = −Z(−1),and ψM (Z̃), ψM (Ẑ) an now be alulated. This yields the assertion.Let cM be the normalizing onstant from Proposition 2. By splitting up the sum in the binomial formulawe see that(25) cM =
(

1 +
√

α̃M

γ̃M

)(
1 +

√

η̃M

)M
+
(

1 −
√

α̃M

γ̃M

)(
1 −

√

η̃M

)M
.5At the moment, �number of hanges of sign� would be a label more preise for J (Z), but f. Setion 4.13



3.2 Residene time distributionsLet Y M be the {−1, 1}-valued sequene of urrent states of XM , that is 6
Y M

n :=







(XM
n )(0) if n ∈ N,

(XM
0 )(n) if n ∈ {−M, . . . , 0}.Denote by LM (k) the probability to remain exatly k units of time in the same state onditional on theourrene of a jump, that is(26) LM (k) = PπM

(Y M
n = 1, . . . , YM

n+k−1 = 1, Y M
n+k = −1 | Y M

n−1 = −1, Y M
n = 1), k ∈ N,where n ∈ N is arbitrary. The above onditional probability is well de�ned, beause

PπM

(
Y M
−1 = −1, Y M

0 = 1
)

= πM

(
{(∗, . . . , ∗,−1, 1)}

)
> 0.Here, {(∗, . . . , ∗,−1, 1)} denotes the set {Z ∈ SM | Z(−1) = −1, Z(0) = 1}. By symmetry the roles of −1and 1 in (26) are interhangeable. Under PπM

not only XM is a stationary proess, but � as a oordinateprojetion � Y M is stationary, too, although it does not, in general, enjoy the Markov property. We notethat LM (k), k ∈ N, gives the residene time distribution of the sequene of urrent states of XM in thestationary regime.Observe that LM (.) has a �geometri tail�. To make this statement preise set(27) KM := PπM

(
Y M

0 = −1, Y M
1 = 1, . . . , Y M

M = 1
∣
∣ Y M

0 = −1, Y M
1 = 1

)
.In view of the �extended Markov property� of Y M , that is the Markov property of the segment hain

XM , we have(28) LM (k) = (1 − γM ) ·KM · αM · (1 − αM )k−M−1, k ≥M + 1,where (1 − γM ) ·KM is the probability mass of the geometri tail. Stationarity of PπM
implies

KM =
πM

(
(−1, 1, . . . , 1)

)

πM

(
{(∗, . . . , ∗,−1, 1)}

) .From Proposition 2 we see that
πM

(
(−1, 1, . . . , 1)

)
=

α̃M

cM
,and arranging the elements of {(∗, . . . , ∗,−1, 1)} aording to their number of jumps we obtain

πM

(
{(∗, . . . , ∗,−1, 1)}

)
=

α̃M

2cM
·
((

1 +
√

γ̃M

α̃M

)(
1 +

√

η̃M

)M−1
+
(

1 −
√

γ̃M

α̃M

)(
1 −

√

η̃M

)M−1
)

.We therefore have(29) KM =
2

(

1 +
√

γ̃M

α̃M

)(
1 +

√
η̃M

)M−1
+
(

1 −
√

γ̃M

α̃M

)(
1 −√

η̃M

)M−1
.In a similar fashion we an alulate LM (k) for k ∈ {1, . . . ,M}. We obtain

LM (M) =
PπM

(
Y M

0 = −1, Y M
1 = 1, . . . , Y M

M = 1, Y M
M+1 = −1

)

πM

(
{(∗, . . . , ∗,−1, 1)}

) = γM ·KM ,(30a)6Reall the tuple notation for elements of SM . 14



and for k ∈ {1, . . . ,M − 1}

LM (k) =

√
γ̃M

2
·KM ·

(√

γ̃M

(
(1 +

√

η̃M )M−1−k + (1 −
√

η̃M )M−1−k
)

+
√

α̃M

(
(1 +

√

η̃M )M−1−k − (1 −
√

η̃M )M−1−k
))

.

(30b)More interesting than the residene time distribution in the ase of disrete time is to know the behaviorof this distribution in the limit of disretization degree M tending to in�nity.Reall the de�nition of saling funtion Rsc aording to Equation (18) for some numbers α, γ > 0.If αM = Rsc(α,M) and γM = Rsc(γ,M) for all M ∈ N, then � with the usual notation O(.) for theorder of onvergene � we have
αM =

α

M
+ O(

1

M2
), γM =

γ

M
+ O(

1

M2
).(31)Indeed, if ondition (31) holds between the transition probabilities αM , γM , M ∈ N, and some positivetransition rates α, γ, then we an alulate the normalizing onstant cM , the �tail onstant� KM andthe density funtion of the residene time distribution in the limit M → ∞.Proposition 3. Let αM , γM ∈ (0, 1), M ∈ N. Suppose that the sequenes (αM )M∈N, (γM )M∈N satisfyrelation (31) for some positive real numbers α, γ. Then cM and KM onverge to c∞ and K∞, respetively,as M → ∞, where

c∞ := lim
M→∞

cM =
(

1 +
√

α
γ

)

e
√

αγ +
(

1 −
√

α
γ

)

e−
√

αγ = 2 ·
∞∑

k=0

1

k!
αk mod 2 (αγ)⌊

k
2 ⌋,(32)

K∞ := lim
M→∞

KM =
2

(
1 +

√
γ
α

)
e
√

αγ +
(
1 −

√
γ
α

)
e−

√
αγ

=

√
α√

α cosh(
√
αγ) +

√
γ sinh(

√
αγ)

.(33)De�ne a funtion fL : (0,∞) 7→ R by q 7→ fL(q) := lim
M→∞

M · LM

(
⌊qM⌋

). Then(34) fL(q) =







√
γ ·K∞ ·

(√
γ cosh

(√
αγ(1 − q)

)
+

√
α sinh

(√
αγ(1 − q)

)) if q ∈ (0, 1],

K∞ · α · exp
(
−α(q − 1)

) if q > 1.Proof. If relation (31) holds, then in order to derive (32) and (33) from (25) and (29), respetively, it issu�ient to observe that (1 + a
N

+ O( 1
N2 ))N N→∞→ ea for every a ∈ R. The last part of (32) is obtainedby series expansion. Similarly, expression (34) for fL follows from Equations (30a), (30b) and (28).Observe that fL as de�ned in Proposition 3 is indeed the density of a probability measure on (0,∞). Inase α = γ this probability measure is just an exponential distribution with parameter α (= γ). If α 6= γthen fL has a disontinuity at position 1, where the height of the jump is(35) fL(1+) − fL(1−) = K∞ · (α− γ).Clearly, the restritions of fL to (0, 1] and (1,∞), respetively, are still stritly dereasing funtions,and fL(q), q ∈ (1,∞), is again the density of an exponential distribution, this time with parameter α( 6= γ) and total probability mass K∞. The funtion fL(q), q ∈ (0, 1), is the density of a mixture of two�hyperboli� distributions with the geometri mean √

αγ of α and γ as parameter and total probabilitymass 1 −K∞. The ratio between the hyperboli osine and the hyperboli sine density is √γ to √
α.15



Reall how at the beginning of this setion we interpreted the disretization degree M as the number ofsubintervals of [−r, 0], where r > 0 is the length of the delay that appears in Equation (2). Let us assumethat the numbers α, γ are funtions of the parameters of our referene model, in partiular of the noiseparameter σ and the length of the delay r. Then we should interpret the density fL as being de�nedon normalized time, that is one unit of time orresponds to r units of time in the referene model. Thedensity of the residene time distribution for the two state model in ontinuous time should thereforeread(36) f̃L(t) := 1
r
fL

(
t
r

)
, t ∈ (0,∞).Before we may all f̃L the density of a residene time distribution, we have to justify the passage to thelimit M → ∞ at the level of distributions of the Markov hains XM , whih underlie the de�nition of

LM . We return to this issue in Setion 4.3.3 Two measures of resonaneDrawing on the residene time distribution of the Markov hain XM we introdue simple haraterististhat provide us with a notion of quality of tuning for the redued model in disrete time.We onsider XM and the resonane harateristis to be de�ned in the stationary regime only,beause by doing so we an guarantee that an eventual resonane behavior of the trajetories of XM isindependent of transitory behavior. We know that PM is a positive reurrent, irreduible and aperioditransition matrix and, therefore, the distribution of XM
n onverges to πM in total variation as n → ∞for every initial distribution of X0 [25, p. 130℄. In Setion 2 we saw an analogous result for the segmentproess of a solution to Equation (2).Assume that the transition probabilities αM , γM are related to some transition rates α, γ by meansof a smooth saling funtion like (18), for example, suh that ondition (31) is satis�ed. Under thisassumption we let the disretization degree M tend to in�nity. Assume further that α, γ are funtionsof the parameters of the referene model, in partiular, that α = α(σ), γ = γ(σ) are C

2-funtions of thenoise parameter σ ∈ (0,∞). The resonane harateristis an then be understood as funtions of σ.Reall that the residene time distribution LM has a geometri tail in the sense that LM (k), k ≥M+1,renormalized by the fator (1 − γM ) · KM is equivalent to a geometri distribution on N \ {1, . . . ,M}with KM as de�ned by (27). The distribution whih LM indues on {1, . . . ,M} is given � up to arenormalizing fator � by Equations (30b) and (30a). A natural harateristi seems to be the jump inthe density of the residene time distribution fL obtained above. In disrete time, i. e. with disretizationdegree M ∈ N, we set(37) υM := M ·
(
LM (M+1) − LM (M)

)
.Beause of (28), (30a) and (35) we have

υM = M ·KM ·
(
(1 − γM ) · αM − γM

)
, υ∞ := lim

M→∞
υM = K∞ · (α− γ).(38)To onsider the height of the disontinuity of fL as a measure of resonane has already been proposed byMasoller [13℄. Following her proposal we de�ne what stohasti resonane means aording to the jumpharateristi.De�nition 1. Let M ∈ N ∪ {∞}, and suppose that the following onditions hold:(i) υM as a funtion of the noise parameter σ is twie ontinuously di�erentiable,16



(ii) lim
σ↓0

υM (σ) = 0,(iii) υ′M has a smallest root σopt ∈ (0,∞).If υM has a global maximum at σopt, then let us say that the Markov hain XM or, in ase M = ∞, theredued model de�ned by the family (XN )N∈N exhibits stohasti resonane and all σopt the resonanepoint. If υM has a global minimum at σopt, then let us say that the Markov hain XM (or, in ase
M = ∞, the redued model) exhibits pseudo-resonane and all σopt the pseudo-resonane point.Alternatively, we may take the probability of transitions in a ertain time window as harateristi ofthe resonane e�et. For M ∈ N and q ∈ (0, 1] de�ne

κ̂M :=
M∑

k=1

LM (k), κ
(q)
M :=

⌊(q+1)M⌋
∑

k=M+1

LM (k).(39)By summation over k we see from (28) that
κ̂M = 1 − (1 − γM ) ·KM , κ

(q)
M = (1 − γM ) ·KM ·

(
1 − (1 − αM )⌊qM⌋),and letting M tend to in�nity we get

κ̂∞ := lim
M→∞

κ̂M = 1 −K∞, κ(q)
∞ := lim

M→∞
κ

(q)
M = K∞ · (1 − e−q·α).(40)Reall thatM steps in time of the hain XM or the {−1, 1}-valued proess Y M orrespond to an amountof time r in the referene model. Thus, κ̂M orresponds to the probability of remaining at most time

r in one and the same state, while κ(q)
M approximates the probability of state transitions ourring in atime window orresponding to (r, (q+1)r] of length q · r given a transition at time zero.In (39) we ould have allowed for a �window width� q > 1. The interesting ase, however, is a smalltime window, beause then κ(q)

M measures the probability of transitions within the seond delay interval.For q = 1 the two omponents of our resonane measure orrespond to time windows of equal length,that is κ̂M gives the probability of transitions within the �rst delay interval, while κ(1)
M is the probabilityof hopping events ourring in the seond delay interval. Sine LM is geometrially distributed on

N\{1, . . . ,M}, κ(1)
M majorizes the transition probability for all time windows of the same length startingafter the end of the �rst delay interval. Let us write κM for κ(1)

M .The idea of the following de�nition is to maximize quasi-periodiity by �nding a noise level suh thatsojourns in the same state beome neither too long nor too short. Here, short sojourns are those thatlast less than the length of one delay interval, long sojourns those that last longer than the length oftwo delay intervals. Observe that if the urrent state of XM remains the same for more than M stepsin disrete time, then the in�uene of the delay will be onstant until a transition ours.De�nition 2. Let M ∈ N ∪ {∞}, and suppose that the following onditions hold:(i) κM as a funtion of the noise parameter σ is twie ontinuously di�erentiable with values in theunit interval,(ii) lim
σ↓0

(κ̂M + κM )(σ) = 0,(iii) κM has a unique global maximum at σopt ∈ (0,∞).17



If κM (σopt) > κ̂M , then let us say that the Markov hain XM or, in ase M = ∞, the redued modelde�ned by the family (XN )N∈N exhibits stohasti resonane of strength κM (σopt), and all σopt theresonane point, else let us speak of pseudo-resonane and all σopt the pseudo-resonane point.In the above de�nition we might have taken a shorter time window than the seond delay interval. Anatural hoie would have been the probability of transitions ourring in a time window orrespondingto (r, (1 + q)r] normalized by the window width. In the limit M → ∞ we obtain(41) lim
q↓0

1

q
· κ(q)

∞ = K∞ · α = fL(1+).Here, fL is the density of the residene time distribution from Proposition 3 and fL(1+) is the right-handlimit appearing in Equation (35), whih gives the height of the disontinuity of fL.Of ourse, De�nition 2 ould be modi�ed in other ways, most importantly by allowing the time windowthat orresponds to κM to �oat. This would be neessary for a distributed delay. Suppose that in thereferene model instead of the point delay we had a delay supported on [−r,−δ] for some δ > 0. Thena reasonable starting point for a measure of resonane ould be a time window of length r with its leftboundary �oating from δ to r. Notie that a distributed delay (in the referene or in the redued model)an be hosen in suh a way as to render ontinuous the density fL.4 The two state model in ontinuous timeOur aim in this setion is to justify the passage from time disretization degreeM to the limitM → ∞ asundertaken in Setions 3.2 and 3.3. To this end we will look for a proess in ontinuous time that is thelimit in distribution of the Markov hains XM , M ∈ N, in the stationary regime. We an then onsiderthe distribution of residene times for this new proess and show that it oinides with the limit of theresidene time distributions in disrete time whih was alulated in Setion 3.2. Sine the measures ofresonane introdued in Setion 3.3 were de�ned over the (disrete) residene time distributions, we mayonlude that in this ase, too, the passage to the limit M → ∞ is admissible.For M ∈ N the Markov hain XM takes its values in the �nite spae SM with ardinality 2M+1.The �rst thing to be done, therefore, is to hoose a ommon state spae for the Markov hains. Thiswill be D0 := D{−1,1}([−r, 0]), the spae of all {−1, 1}-valued àdlàg funtions, i. e. right-ontinuousfuntions with left limits, on the interval [−r, 0], endowed with the Skorokhod topology. This simplestof all Skorokhod spaes is introdued in detail in Appendix A.3, while in Appendix A.5 we present
D∞ := D{−1,1}([−r,∞)), the spae of all {−1, 1}-valued àdlàg funtions on the in�nite interval [−r,∞).Reall how in Setion 3.1 we partitioned the delay interval [−r, 0]. Time step n ∈ {−M,−M+1, . . .}with respet to the hain XM was said to orrespond to point n · r

M
in ontinuous time. Keeping in mindthis orrespondene, in Setion 4.1 we embed the spaes SM , M ∈ N, into D0, whih allows us to lookupon the stationary distributions πM as being probability measures on B(D0) and to view the randomsequenes XM as being D0-valued Markov hains.Now, beause of shift ondition (19) from Setion 3.1 one may regard XM as being a proess withtrajetories in D∞. If the disretization of time is taken into aount, then the hain XM indues aprobability measure on B(D∞) for every initial distribution over SM ⊂ D0.Weak onvergene of the stationary distributions or, equivalently, onvergene of the πM with respetto the Prohorov metri indued by the Skorokhod topology onD0 will be established in Setion 4.2. Weakonvergene of the distributions on B(D∞) is the objet of Setion 4.3.Finally, in Setion 4.4, we return to the question of identity between the residene time distributionfor the limit proess and the one we obtained above as the limit of disrete distributions.18



4.1 Embedding of the disrete-time hainsFirst we interpret the �nite enlarged state spae SM as a subset of D0. After that, we hange philosophyand regard a hain XM as being equivalent to a {−1, 1}-valued àdlàg proess.The embedding of SM , the state spae of the Markov hain XM , into D0 is in a sense the reverse ofwhat one does when approximating solutions to stohasti delay di�erential equations by Markov hainsin disrete time.7 Approximation results of this kind were obtained for the multi-dimensional version ofEquation (10) by Sheutzow [21, 22℄. The method is more powerful, though, as Lorenz [26℄ shows, whereweak onvergene of the approximating proesses to solutions of multi-dimensional SDDEs is related toa martingale problem that an be assoiated with the oe�ients of the target equation.Of ourse, D0 is a toy spae ompared to C([−r, 0],Rd). Notie, however, that linear interpolationas in the ase of C([−r, 0],Rd) is exluded, beause the only ontinuous funtions in D0 are the twoonstant funtions −1 and 1.Let M ∈ N, Z ∈ SM , and assoiate with Z = (Z(−M), . . . , Z(0)) a funtion fZ : [−r, 0] → {−1, 1} de�nedby
fZ(t) := Z(0) · 1{0}(t) +

−1∑

i=−M

Z(i) · 1[i r
M

,(i+1) r
M

)(t), t ∈ [−r, 0].Clearly, fZ ∈ D0. Hene, ι̃M : Z 7→ fZ de�nes a natural injetion SM →֒ D0, whih indues the followingembedding of probability measures on ℘(SM ) into the set of probability measures on B(D0).
M1

+(SM ) ∋ µ 7→ µ̃ :=
∑

Z∈SM

µ(Z) · δfZ
∈ M1

+(D0),where δf is the Dira or point measure onentrated on f ∈ D0.Denote by π̃M the probability measure on B(D0) assoiated with the stationary distribution πM forthe hain XM , and write X̃M for the orresponding D0-valued Markov hain. Sine all we have done sofar is a reinterpretation of the state spae the results obtained in Setion 3 regarding XM are also validfor X̃M .Although the embedding ι̃M given above is natural in view of how the delay interval [−r, 0] shouldbe partitioned aording to Setion 3.1, it is not the only one possible. Indeed, one ould selet di�erentinterpolation points in the de�nition of fZ . As the degree of disretization M inreases the ompleteSkorokhod distane between the di�erent funtions fZ , Z ∈ SM being �xed, tends to zero, and theonvergene results stated in Setions 4.2 and 4.3 still hold true.Following the notation of Appendix A.3, for Z ∈ SM we write
J(Z) := J(fZ), J̇(Z) := J̇(fZ), ζZ := ζfZ

,thereby denoting the sets of (inner) disontinuities or jumps of Z, and the minimal distane between twodisontinuities. Notie that our new de�nition of J(Z) agrees with the number of jumps J (Z) de�nedin Setion 3.1 in the sense that #J(Z) = J (Z).Reall the notation of Setion 3.1. Let ν be a distribution on ℘(SM ) and denote by PM
ν the probabilitymeasure on FM suh that XM is a Markov hain with transition matrix PM and initial distribution

XM
0

d∼ ν. For a �point distribution� on Z ∈ SM write PM
Z .7Under suitable onditions the approximating time series onverge in distribution to the (weakly unique) solution of theSDDE. 19



For f ∈ D0 let Z(f) be the element of SM suh that Z(i) = f( r
M

·i) for all i ∈ {−M, . . . , 0}. Let
(Y M

n )n∈{−M,−M+1,...} be the sequene of urrent states of XM as de�ned at the beginning of Setion 3.2.Write
Ỹ M (t) := Y M

⌊ t
r

M⌋, t ≥ −r.For A ∈ B(D∞) set
P̃

M

f (A) := PM
Z(f)

(
Ỹ M ∈ A

)
, P̃M (A) := PM

πM

(
Ỹ M ∈ A

)
,thereby de�ning probability measures on B(D∞). Note that P̃

M

f , P̃M are well de�ned and orrespondto the distribution of XM with XM
0 = Z(f) PM -almost surely and XM

0
d∼ πM , respetively.4.2 Convergene of the stationary distributions on D0The aim of this setion is to prove that the sequene (π̃M )M∈N of probability measures on B(D0) induedby the sequene (πM ) of stationary distributions onverges weakly to a probability measure π̃. Sine

(D0, d
◦
S) is separable, Theorem 3 in Appendix A.1 says that weak onvergene of (π̃M ) to π̃ is equivalentto onvergene under the Prohorov metri indued by d◦S .The proof follows the usual strategy for this kind of onvergene. First, we hek that the losureof {π̃M | M ∈ N} is ompat in M1

+(D0) with respet to the Prohorov topology. Now, (D0, d
◦
S) is alsoomplete. Aording to the Prohorov ompatness riterion, ited as Theorem 4 in Appendix A.1, it istherefore su�ient to show that the set {π̃M |M ∈ N} is tight.For the seond step, hoose a limit point π̃ ∈ M1

+(D0) of {π̃M | M ∈ N}, whih exists aording tothe �rst step. It remains to show that any onvergent subsequene of (π̃M ) atually onverges to π̃.Before embarking on the atual proof of onvergene we need some tehnial preparation, whihonsists in de�ning suitable approximation sets and estimating their probability under the measures πM .Let N ∈ N, Z ∈ SN , and set for M ∈ N \ {1, . . . , N−1}

UN
M (Z) :=

{

Z̃ ∈ SM

∣
∣
∣ #J̇(Z̃) = #J̇(Z) ∧

(
∃λ ∈ Λ : sup

s∈[−r,0]

|λ(s) − s| ≤ r
2N+1 ∧ fZ̃ ◦ λ = fZ

)}

.For N big enough in omparison to r, UN
M (Z) ⊂ SM is the set of elements Z̃ ∈ SM suh that dS(fZ , fZ̃) ≤

r
2N+1 . Furthermore, #J(fZ̃) = #J(fZ) for all Z̃ ∈ UN

M (Z).Notie that fZ̃ is not neessarily an approximation of fZ with respet to the omplete metri d◦S ,beause the slope of λ an be of order N for all admissible time transformations.Reall from Proposition 2 that the probability πM (Z) of an element Z ∈ SM under the stationarydistribution πM depends only on the number of jumps of Z. It will be useful to partition SM into subsetsof elements whih have equal number of inner jumps. Set
SM (i) :=

{

Z ∈ SM

∣
∣ #J̇(fZ) = i

}

, i ∈ {0, . . . ,M−1}.Clearly, SM = SM (0)∪ . . .∪ SM (M−1) is a pairwise disjoint union. For Z, Z̃ ∈ SM (i) we have |#J(Z)−
#J(Z̃)| ∈ {0, 1}. Notie that we presribed #J̇(Z) = #J̇(Z̃) instead of #J(Z) = #J(Z̃) in the de�nitionof SM (i). Elements Z ∈ SM suh that fZ jumps at position 0 play a speial role, as their aumulatedprobability under πM tends to zero as M tends to in�nity.Before establishing this point, we need two lemmata, see Appendix B. Lemma 1 estimates thenumber of elements of SM (i) and UN

M (Z), respetively. Lemma 2 shows that for M ∈ N large most ofthe probability mass of πM is onentrated on elements of SM whih have a number of jumps small inomparison to M . 20



It is even su�ient to restrit attention to elements of UN
M (Z), where Z ∈ SN is suh that thenumber of jumps of Z is small in omparison to N whih in turn must be small against M . We also seethat the probability of a set UN

M (Z) under πM gives a good approximation of the probability whih the�generating� element Z ∈ SN reeives under πN .If we ompare probabilities with respet to probability measures πM for di�erent indies M ∈ N,we have to assume that an appropriate relation holds between the orresponding transition probabilities
αM , γM asM varies. We assume saling relation (31) as in Setion 3.2, where we onsidered onvergeneof the residene time distributions.For M ∈ N let π̃M ∈ M1

+(D0) be the probability measure whih orresponds to the stationary distribu-tion πM , if we embed SM into D0 as was done in Setion 4.1.Proposition 4. Suppose the sequenes of transition probabilities (αM )M∈N, (γM )M∈N satisfy relation(31) for some transition rates α, γ > 0. Then there is a probability measure π̃ on B(D0) suh that (π̃M )onverges weakly to π̃ as M tends to in�nity.Proof. Lemma 2 from Appendix B.1 must be applied several times, see Appendix B.2.For some speial sets we an alulate their probability with respet to π̃.Proposition 5. Let π̃ be the weak limit of (π̃M )M∈N aording to Proposition 4. For i ∈ N0 set
Hi := {f ∈ D0 | #J(f) = #J̇(f) = i}, Ĥi := {f ∈ D0 | #J(f) = #J̇(f)+1 = i+1}.Then for all i ∈ N0

π̃(Hi) =
2

c∞ · i! · α
⌊ i+1

2 ⌋γ ⌊ i
2 ⌋, π̃(Ĥi) = 0.Proof. Observe that Hi, Ĥi, i ∈ N0, are disjoint losed subsets of D0, beause onvergene with respetto the Skorokhod topology on D0 preserves the number of inner jumps.8 Indeed, Hi, Ĥi, i ∈ N0, are theonneted omponents of D0, and they are also open sets, beause dS(f, g) = 2 for all f, g ∈ D0 suhthat f(0) 6= g(0) or #J̇(f) 6= #J̇(g).The assertion now follows from Theorem 3 in Appendix A.1, Proposition 2, Equations (33) and (60)of Proposition 3 and Lemma 1 in Appendix B.1, respetively, under saling ondition (31).4.3 Convergene of the hain distributions on D∞Let the notation be that of Setion 4.1, let us write D := D{−1,1}([0,∞)), DR := DR([0,∞)) and reall

D0 = D{−1,1}([−r, 0]), D0
R

= DR([−r, 0]), D∞ = D{−1,1}([−r,∞)), D∞
R

= DR([−r,∞)). All spaes omewith their respetive Skorokhod topology, and D ⊂ DR, D0 ⊂ D0
R
are losed subsets.We sketh a proof for weak onvergene of the sequene (P̃M ) in M1

+(D∞) applying results fromsemimartingale theory as developed in Jaod and Shiryaev [27℄.A semimartingale with values inDR is desribed in terms of its harateristis, a triplet (B,C, ν), whereBis a trunated preditable proess (�drift�), C the quadrati variation proess of the ontinuous martingalepart and ν a random measure, namely the ompensator of the jump measure of the semimartingale [27,pp. 75-76℄.Any probability measure Q on B(D) gives the distribution of a {−1, 1}-valued jump proess. Theharateristis (B,C, ν) of suh a proess take on a speial form. One may hoose a ontinuous trunation8Skorokhod onvergene in D∞ does not neessarily preserve the number of jumps.21



funtion with support ontained in (−2, 2), thereby eliminating the ontribution of B. The quadrativariation proess C of the ontinuous martingale part disappears, beause the only ontinuous funtionsin D are the two onstant funtions −1 and 1. The important harateristi is therefore the ompensatormeasure ν. If Q orresponds to a {−1, 1}-valued proess in disrete time, then the ompensator an bealulated expliitly [27, pp. 93-94℄.Let M ∈ N, Z ∈ SM and let P̃
M

Z be the orresponding probability measure on B(D∞) as de�nedin Setion 4.1. Reall that P̃
M

Z is the distribution of the {−1, 1}-valued àdlàg proess (Ỹ M (t))t≥−rindued by the sequene Y M of urrent states of XM when time disretization is taken into aount.Denote by (Y (t))t≥−r the anonial proess on D∞ and by (Ft)t≥−r the anonial �ltration in B(D∞).Notie that (Y (t))t≥−r under P̃
M

Z is equivalent to the proess (Ỹ M (t))t≥−r under PM
Z and that thejumps of (Y (t))t≥0 under P̃

M

Z are onentrated on { r
M
k | k ∈ N}. We an now alulate the ompensatormeasure ν̃M,Z : D∞ × [0,∞) × R → [0,∞] of (Y (t))t≥0 under P̃

M

Z in terms of the inrement proessof Y . Observe that ν̃M,Z is determined by the integral proesses (ψ ∗ ν̃M,Z)t≥0, ψ any bounded Borelfuntion.9 Set s(k) := r
M

·k, k ∈ {−M,−M+1, . . .}. Aording to II.3.11 in Jaod and Shiryaev [27,p. 94℄ it holds for all funtions ψ, all t ≥ 0, ω̃ ∈ D∞ (all probabilities with respet to P̃
M

Z )
(ψ ∗ ν̃M,Z)t(ω̃) =

⌊ t
r

M⌋
∑

k=1

E

(

ψ
(
Y (s(k)) − Y (s(k−1))

)
· 1Y (s(k)) 6=Y (s(k−1))

∣
∣ Fs(k−1)

)

(ω̃)

=

⌊ t
r

M⌋
∑

k=1

E

(

. . .
∣
∣ σ
(
Y (s(k−M−1)), . . . , Y (s(k−1))

))

(ω̃)

= 1(ω̃(s(−M)),...,ω̃(s(0)))=Z(ω̃) ·
⌊ t

r
M⌋
∑

k=1

ψ(2) · P
(
Y (s(k)) = 1

∣
∣ Y (s(k−M−1)) = −1, Y (s(k−1)) = −1

)
· 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=−1(ω̃)

+ ψ(2) · P
(
Y (s(k)) = 1

∣
∣ Y (s(k−M−1)) = 1, Y (s(k−1)) = −1

)
· 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=−1(ω̃)

+ ψ(−2) · P
(
Y (s(k)) = −1

∣
∣ Y (s(k−M−1)) = 1, Y (s(k−1)) = 1

)
· 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=1(ω̃)

+ ψ(−2) · P
(
Y (s(k)) = −1

∣
∣ Y (s(k−M−1)) = −1, Y (s(k−1)) = 1

)
· 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=1(ω̃)

= 1...(ω̃) ·
⌊ t

r
M⌋
∑

k=1

ψ(2) ·
(
αM · 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=−1(ω̃) + γM · 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=−1(ω̃)

)

+ ψ(−2) ·
(
αM · 1ω̃(s(k−M−1)=1,ω̃(s(k−1))=1(ω̃) + γM · 1ω̃(s(k−M−1)=−1,ω̃(s(k−1))=1(ω̃)

)
,where Bayes' formula has been applied.Let f ∈ D0 with f(0) = f(0−), and write Z(f) = Z(f,M) for the element of SM suh that fZ(f) = f .The ompensator measure ν̃M,Z(f) then indues a random measure

νM,f : DR × [0,∞) × R → [0,∞], νM,f (ω) := ν̃M,Z(f)(θf (ω)), where
θf : DR → D∞

R
θf (ω)(t) := f(t) · 1[−r,0)(t) + ω(t) · 1[0,∞)(t).Assume that saling relation (31) is satis�ed for some positive transition rates α, γ. Then for all funtions9See Jaod and Shiryaev [27, p. 66℄ for a de�nition of the integral proess w. r. t. a random measure.22



ψ : R → R, ω ∈ DR, t ≥ 0 it holds that
lim

M→∞
ψ ∗ νM,f

t (ω) =

∫ t

0

ψ(2) ·
(
α · 1ω̃(s−r)=−1,ω̃(s)=−1(θf (ω)) + γ · 1ω̃(s−r)=1,ω̃(s)=−1(θf (ω))

)
ds

+

∫ t

0

ψ(−2) ·
(
α · 1ω̃(s−r)=1,ω̃(s)=1(θf (ω)) + γ · 1ω̃(s−r)=−1,ω̃(s)=1(θf (ω))

)
ds,whih de�nes a random measure νf : DR × [0,∞) × R → [0,∞].Let µ : DR × [0,∞) × R → [0,∞] be the jump measure assoiated to the D-valued proess (Y (t))t≥0, f.Jaod and Shiryaev [27, pp. 68-69℄. We have for all funtions ψ : R → R, ω ∈ DR, t ≥ 0

(ψ ∗ µ)t(ω) =
∑

0<s≤t

1ω(s) 6=ω(s−)(ω) ·
(
ψ(2) · 1ω(s)=1,ω(s−)=−1(ω) + ψ(−2) · 1ω(s)=−1,ω(s−)=1(ω)

)
.Theorem IX.2.31 in Jaod and Shiryaev [27, p. 495℄ guarantees the existene of a probability measure

Qf on B(DR) suh that
• Qf

(
{ω ∈ DR | ω(0) = f(0)}

)
= 1,

• the anonial proess is a semimartingale under Qf with harateristis (0, 0, νf ).We notie that Qf (D) = 1. Let us interpret Qf as a probability measure on B(D). Aording toTheorem II.2.21 in Jaod and Shiryaev [27, p. 80℄ the seond property implies that
• (ψ ∗ µ− ψ ∗ νf )t≥0 is a loal martingale under Qf for every funtion ψ : R → R.Observe that Theorem IX.2.31 does not guarantee uniqueness of the probability measure Qf . Here, how-ever, uniqueness an be established by onsidering sequenes of stopping times τ1, τ2, . . . whih exhaustthe jump positions. The above loal martingale property must then be applied to show that any twosolution measures to the semimartingale problem oinide on the sets {τn ≤ t} for all t ≥ 0, n ∈ N.Reall that every element ω ∈ D is determined by its value ω(0) and the positions of its disontinuities.By the uniqueness theorem of measure theory we see that Qf is uniquely determined.Let p : D∞ → D be the natural projetion. Then Theorem IX.3.21 in Jaod and Shiryaev [27, p. 505℄implies that P̃

M

Z(f,M) ◦ p−1 w→ Qf in M1
+(D). De�ne a probability measure P̃

f ∈ M1
+(D∞) by P̃

f
:=

Qf ◦ θ−1
f . We have δZ(f,M)

w→ δf in M1
+(D0). In view of Qf ({ω ∈ DR | ω(0) = f(0)}) = 1 we onludethat P̃

M

Z(f,M)
w→ P̃

f .The last step is to show that (P̃M ) onverges weakly, that is in plae of a deterministi initial ondition
f ∈ D0 we have π̃M ∈ M1

+(D0) as initial distribution. Let π̃ be the weak limit of (π̃M ) aording toProposition 4. As a onsequene of Proposition 5 we have π̃({f ∈ D0 | f(0) = f(0−)}) = 1. De�ne
P̃ ∈ M1

+(D∞) by
P̃(A) :=

∫

D0

P̃
f
(A) dπ̃(f), A ∈ B(D∞).If f1, . . . , fn ∈ D0 with fi(0) = fi(0−), i ∈ {1, . . . , n}, then any onvex ombination of the sequenes

(P̃
M

Z(f1,M)), . . . , (P̃
M

Z(fn,M)) onverges weakly to the orresponding onvex ombination of the measures
P̃

f1
, . . . , P̃

fn . An approximation argument analogous to that in the proof of Proposition 4 leads toProposition 6. Suppose saling relation (31) holds. Let P̃M , M ∈ N, be de�ned as in Setion 4.1,and let π̃ be the weak limit of (πM )M∈N aording to Proposition 4. Then there is a probability measure
P̃ ∈ M1

+(D∞) suh that P̃M
w→ P̃. 23



4.4 Residene times revisitedIn Setion 3.2 we alulated the residene time distribution for the two state model of disretizationdegree M for eah M ∈ N. We then let M tend to in�nity in order to obtain the residene timedistribution and its density funtion in the �ontinuous time� limit.At that stage, however, we had not yet established the existene of a orresponding limit proess.This was done in Setion 4.3, where we saw that (P̃M ), the sequene of distributions indued by the twostate hains in disrete time, onverges weakly to a probability measure P̃ on B(D∞). We are now in aposition to show that any proess with distribution P̃ has the same residene time distribution as theone obtained in Setion 3.2.On the probability spae (D∞,B(D∞), P̃) a proess with distribution P̃ is, of ourse, given by theanonial proess of oordinate projetions pt : D∞ → {−1, 1}, beause pt is Borel measurable for all
t ≥ −r, f. Appendix A.4. We ontinue to work diretly on the anonial spae. De�ne a mapping

τ : D∞ → [0,∞], τ(f) := inf{t ≥ 0 | f(t) = −1}.(42)Then τ is Borel measurable as we have
τ−1[0, t] = p−1

0 {−1} ∪
∞⋂

n=0

n⋃

k=1

p−1
0 {1} ∩ . . . ∩ p−1

k−1
n

t
{1} ∩ p−1

k
n

t
{−1} for all t ≥ 0,where the àdlàg property of the elements of D∞ has been exploited. Beause of this property thein�mum in (42) is really a minimum provided τ <∞. We notie that τ is a stopping time with respetto the natural �ltration in B(D∞) and that τ is �nite P̃-almost surely.For eah δ ∈ (0, 1) denote by Ãδ the event that in the time interval [−δr, 0] there is exatly one jump,that jump going from −1 to 1. This means we set(43) Ãδ :=

{
f ∈ D∞

∣
∣ ∃ δ̃ ∈ [0, δ) : f(t) = −1 ∀ t ∈ [−δr,−δ̃r) ∧ f(t) = 1 ∀ t ∈ [−δ̃r, 0]

}
.Observe that Ãδ ∈ B(D∞) and P̃(Ãδ) > 0 for all δ ∈ (0, 1). The distribution funtion of τ onditionalon the event of exatly one jump from −1 to 1 �just before� time zero an be approximated by funtionsof the form(44) Fδ(t) := P̃

(
τ ≤ t

∣
∣ Ãδ

)
, t ∈ [0,∞),where δ > 0 must be small. Sine τ is P̃-almost surely �nite and Ãδ has positive probability under P̃,the funtion Fδ indeed determines a probability distribution on [0,∞).Let f̃L be the residene time distribution density in the limit of disretization degree M tending toin�nity as given by (36). Set(45) F (t) :=

∫ t

0

f̃L(s)ds, t ∈ [0,∞).We have to show that Fδ(t) tends to F (t) as δ goes to zero for eah t ∈ [0,∞). In (42) and (43), thede�nitions of τ and Ãδ, respetively, instead of time zero we ould have hosen any starting time t0 ≥ 0,see Appendix B.3, whih gives a proof ofProposition 7. Suppose saling relation (31) holds. Let the distribution funtions Fδ, δ ∈ (0, 1), and Fbe de�ned by (44) and (45), respetively. Then
lim
δ↓0

Fδ(t) = F (t) for all t ∈ [0,∞).24



5 Connetion between the redued and the referene modelThe aim of this setion is to provide a heuristi way ofestablishing the missing link between our original model, whih is given by Equation (2), and theredued model developed in Setion 3. The situation here is quite similar to the one that was studied byTsimring and Pikovsky [12℄, and we will losely follow their approah in deriving a relation between thetransition rates α, γ and the parameters of the original model.The main ingredient in �nding suh a relation is the so-alled Kramers rate, whih gives an asymptotiapproximation of the time a Brownian partile needs in order to esape from a paraboli potential wellin the presene of white noise only as the noise intensity tends to zero. By means of the Kramers ratewe alulate esape rates from potentials that should mirror the �e�etive dynamis� of solutions toEquation (2). The resonane harateristis de�ned in Setion 3.3 an then be written down expliitly asfuntions of the noise parameter σ, whih allows us to numerially alulate the resonane point and toompare the optimal noise intensity aording to the two state model with the behavior of the originalmodel.Let U be a smooth double well potential with the positions of the two loal minima at xleft and xright,respetively, xleft < xright, the position of the saddle point at xmax ∈ (xleft, xright) and suh that
U(x) → ∞ as |x| → ∞. An example for U is the double well potential V from Setions 1 and 2. Considerthe SDE(46) dX(t) = −U ′(X(t)

)
dt + σ · dW (t), t ≥ 0,where W (.) is a standard one dimensional Wiener proess with respet to a probability measure P and

σ > 0 is a noise parameter. Denote by Xx,σ a solution of Equation (46) starting in Xx,σ(0) = x, x ∈ R.With y ∈ R let τy(Xx,σ) be the �rst time Xx,σ reahes y, that is we set
τy(Xx,σ) := inf{t ≥ 0 | Xx,σ = y}.As we are interested in the transition behavior of the di�usion, we need estimates for the distribution of

τy(Xx,σ) when x and y belong to di�erent potential wells.In the limit of small noise the Freidlin-Wentzell theory of large deviations [28℄ allows to determinethe exponential order of τy(Xx,σ) by means of the so-alled quasipotential Q(x, y) assoiated with thedouble well potential U . One may think of Q(x, y) as measuring the work a Brownian partile has to doin order to get from position x to position y. The following transition law holds.Theorem 2 (Freidlin-Wentzell). Let Q be the quasipotential assoiated with U , let x ∈ (−∞, xmax),
y ∈ (xmax, xright]. Set ql := Q(xleft, xmax). Then

lim
σ↓0

σ2 · ln
(
EP

(
τy(Xx,σ

))
= ql,(47a)

lim
σ↓0

P

(

exp
(ql − δ

σ2

)

< τy(Xx,σ) < exp
(ql + δ

σ2

))

= 1 for all δ > 0.(47b)Moreover, Q(xleft, xmax) = 2
(
U(xmax)−U(xleft)

). If x ∈ (xmax,∞), y ∈ [xleft, xmax) then ql has to bereplaed with qr := Q(xright, xmax).We notie that in traveling from position x in the left potential well to y ∈ (xmax, xright], a position inthe downhill part of the right well, the transition time in the limit of small noise is determined exlusivelyby the way up from position xleft of the left minimum to position xmax of the potential barrier.25



A typial path of Xx,σ, if σ > 0 is small, will spend most of its time near the positions of the twominima of the double well potential. Typially, the di�usion will reah the minimum of the potentialwell where it started, before it an ross the potential barrier at xmax and enter the opposite well.Theorem 2 implies the existene of di�erent time sales for Equation (46). On the one hand, thereis the time sale indued by the Wiener proess, where one unit of time an be hosen as 1
σ2 , that is thetime it takes the quadrati variation proess assoiated with σW (.) to reah 1. On the other hand, thereis the mean esape time given by (47a), whih is proportional to exp

(
2L
σ2

), where L > 0 is the height ofthe potential barrier. Clearly, with σ > 0 small, the time sale indued by the white noise is negligiblein omparison with the esape time sale.Moreover, if U(xleft) 6= U(xright), then there are two di�erent heights Ll and Lr for the potentialbarrier depending on where the di�usion starts. Suppose, for instane, that Ll < Lr. Aording to (47b),waiting a time of order exp
(

2Ll+δ
σ2

) with 0 < δ < 2(Lr − Ll) one would witness transitions from the leftwell to the right well, but no transition in the opposite diretion. If the waiting time was of an exponentialorder less than exp
(

2Ll

σ2

), there would be no interwell transitions at all, where �no transitions� meansthat the probability of a transition ourring tends to zero as σ → 0. Thus, by slightly and periodiallytilting a symmetri double well potential quasi-periodi transitions an be enfored provided the tiltingperiod is of the right exponential order. This is the mehanism underlying stohasti resonane.Now, let us suppose that τy(Xx,σ), where x < xmax and y ∈ (xmax, xright], is exponentially distributedwith rate rK > 0 suh that(48) rK ∼ exp
(

−2
(
U(xmax) − U(xleft)

)

σ2

)

.Equations (47a) and (47b) of Theorem 2 would be ful�lled. In the physis literature it is generallyassumed that τy(Xx,σ) obeys an exponential distribution with rate rK provided σ > 0 is su�ientlysmall. This is known as Kramers's law, and rK is aordingly alled the Kramers rate of the respetivepotential well. It is, moreover, assumed that the proportionality fator missing in (48) an be spei�ed asa funtion of the urvature of U at the positions of the minimum and the potential barrier, respetively.The Kramers rate thus reads(49) rK = rK(σ,U) =

√

| U ′′(xleft)U ′′(xmax) |
2π

exp

(

−2| U(xleft) − U(xmax) |
σ2

)

.Observe that both the assumption of exponentially distributed interwell transition times and formula(49) for the Kramers rate are empirial approximations, where the noise parameter σ is supposed to besu�iently small.Well known results for one-dimensional di�usions, extended to the multi-dimensional framework inreent papers by Bovier et al. [29, 30℄, show that in the limit of small noise the distribution of theinterwell transition time indeed approahes an exponential distribution with a noise-dependent rate thatasymptotially satis�es relation (48). The order of the approximation error an also be quanti�ed. Forour purposes, however, Kramers's law and the Kramers rate as given by Equation (49) will be goodenough.In Setion 3.1 we introdued the transition rates α, γ as being swithing rates in the two state modelonditional on whether or not the urrent state agrees with the last remembered state. The idea, now, isto �nd two �e�etive� potentials Uα, Uγ suh that α is proportional to the Kramers rate desribing theesape time distribution from potential Uα, while γ is proportional to the Kramers rate for potential Uγ ,where the Kramers rate is given by formula (49). More preisely, we must have(50) α = α(σ) = r · rK(σ,Uα), γ = γ(σ) = r · rK(σ,Uγ).26



Note that the inlusion of the delay time r as a proportionality fator is neessary, beause in theonstrution of our two state model we took one unit of time as equivalent to the length of the interval
[−r, 0].There is an important point to be made here. In the disussion of Setion 3 we assumed that X(t) ≈ 1 or
X(t) ≈ −1. The error of this approximation is of �rst order in β, and its ontribution to the delay foreis proportional to β2 U ′′(1) + O(β3), i. e. of the seond order in β. As long as we ontent ourselves withan approximation of �rst order in β, two states orresponding to the positions of the minima around −1and 1 should be enough in order to model the e�etive dynamis of the referene equation. If we wantedto apture the in�uene of seond order terms in the delay fore, we would have to build up a model offour states orresponding to the positions ±xα, ±xγ of the minima of the distorted potential V .10The problem disappears, of ourse, if U ′ is onstant exept on a small symmetri interval (−δ, δ)around the origin (see Fig. 1 ), for in this ase the delay fore would not depend on the partiular valueof X(t− r) provided |X(t− r)| ≥ δ.Let L := V (0)−V (1) be the height of the potential barrier of V . Set ρ := |V ′′(0)V ′′(1)|, η := V ′′′(1) U ′(1)

(V ′′(1))2 ,
η̃ := U ′(1)

L
. Negleting terms of order higher than one, from (49) we obtain

α = α(σ) ≈ r ·
√

ρ (1 − η β)

2π
exp

(

−2L (1 − η̃ β)

σ2

)

,(51a)
γ = γ(σ) ≈ r ·

√

ρ (1 + η β)

2π
exp

(

−2L (1 + η̃ β)

σ2

)

.(51b)Reall that the Kramers rate is exat only in the small noise limit. Thus, for the formulae (51a) tobeome the atual rates of esape it is neessary that σ tends to zero. If the rates α, γ as funtions of
r and σ are to onverge to some �nite non-zero values, we must have σ → 0 and r → ∞ suh that 1

σ2and ln(r) are of the same order. There remain errors due to the �rst order approximations of V , V ′′ and
U , whih make sense only if V , U are su�iently regular and the delay parameter β is of small absolutevalue.In Setion 3.3 we de�ned two measures of resonane, namely the jump height υM of the residene timedistribution density and the probabilities κ̂M , κM of transitions within the �rst and seond delay interval,respetively.11 Reall that M ∈ N∪{∞} is the degree of disretization, where M = ∞ denotes the limit
M → ∞. We restrit attention to the ase M = ∞, that is to the two state model in ontinuous time.Suppose the transition rates α, γ are funtions of the referene model parameters as given by (51a) readas equalities. In partiular, α, γ are funtions of the delay length r and the noise parameter σ. Let usfurther suppose that the delay parameter β is of small absolute value, r > 0 is big enough so that theritial parameter region for σ lies within the sope of formula (51a), and that the remaining parametersare su�iently nie.As a onsequene of the exponential form the Kramers rate possesses, we notie that

√
αγ = r ·

√
ρ

2π
· 4
√

1 − η2β2 exp
(
− 2L

σ2

)
≈ r ·

√
ρ

2π
exp

(
− 2L

σ2

)
.In �rst order of β, the geometri mean √

αγ of α, γ oinides with the transition rate arising in ase
β = 0, that is when there is no delay. Compare this with Proposition 3, whih states that the residenetime density f̃L is distributed on the �rst delay interval aording to a mixed hyperboli sine - osinedistribution with parameter √αγ.10Cf. also the numerial results in Curtin et al. [15℄.11The jump height measure orresponds to a measure of resonane proposed by Masoller [13℄.27



The onditions of De�nitions 1 and 2 are satis�ed. If β > 0, then the redued model exhibits stohastiresonane aording to both de�nitions. Aording to the jump height measure there is no e�et in ase
β = 0 and pseudo-resonane in ase β < 0, while the time window measure does not distinguish between
β = 0 and β < 0, lassifying both ases as pseudo-resonane.Let us speify the potentials V and U aording to the model studied by Tsimring and Pikovsky [12℄,that is V is the standard quarti potential and U a parabola, see Fig. 1. For the onstants appearing informula (51a) we have

L = 1
4 , ρ = 2, η =

3

2
, η̃ = 4.With r = 500, β = 0.1, for example, we obtain the resonane point συ ≈ 0.32 aording to the jumpheight measure, while the time window measure yields σκ ≈ 0.29 with probability κ∞(σκ) ≈ 0.88 fortransitions ourring in the seond delay interval.Assume β is negative. Again, both measures yield an optimal noise level. With β = −0.1 we have

συ ≈ 0.30 as the noise level that maximizes the jump height in f̃L. Aording to the time windowmeasure optimal noise level is at σκ ≈ 0.34, but κ∞(σκ) ≈ 0.02, that is sojourns of duration between rand 2r are rare.
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igure 2: Graphs on [0, 2] of the density fL of the residene time distribution in normalized time. Parametersof the original model: r = 500, a) σ = 0.30, β = 0.1, b) σ = 0.30, β = −0.1, ) σ = 0.35, β = −0.1.There seems to be a disrepany, now, between the predited optimal noise level and the level of �mostregular� transition behavior whih one would expet from numerial simulation. This is true espeiallywith regard to the jump height measure, the pseudo-resonane point συ being too low.The problem is that the expeted residene time at the level of optimal noise in ase β < 0 is longompared with r. In spite of the fat that long residene times are rare, there is a high probability of�nding a solution path remaining in one and the same state for the length of many delay intervals or ofwitnessing a quasi-periodi transition behavior break down.For example, let σ = 0.30, β = 0.1. The expeted residene time is then about 1.16r, while with
σ = 0.30 and β = −0.1 the expeted residene time is around 4.62r. More importantly, with β negativethe exponential part of the residene time distribution has a �heavy tail� in the sense that long sojournsreeive a relatively high probability, f. Fig. 2.These properties of the residene time distribution support the distintion made in De�nitions 1 and2 between stohasti resonane and pseudo-resonane.28



6 Conlusions and open questionsThe main advantage of the two state model whih has been our onern for most of this work is that itprovides a tool for the analysis of the phenomenon of noise-indued resonane in systems with delay.The referene model introdued in Setion 2 is a more elaborate system exhibiting stohasti reso-nane. Basi features of this model are the extended Markov property and the existene of an invariantprobability measure. Both properties arry over to the two state model.By �rst studying the two state model in disrete time we obtained an expliit haraterization of itsstationary distribution. It was thus possible to alulate the residene time distribution whih in turnserved as starting point for the de�nition of two simple measures of resonane. The haraterizationof the stationary distributions in disrete time together with the passage to the time limit also allowsto alulate measures of resonane di�erent from those onsidered here, for example the entropy of adistribution.In Setion 5 a heuristi link between the referene and the two state model was outlined. The twostate model seems to reliably mirror those aspets of the referene model that are responsible for thephenomenon of stohasti resonane. Observe that we did not show whether the dynamis of the originalmodel in the limit of small noise is reduible to the two state model nor whether the resonane measuresonsidered here are indeed robust under model redution.There are di�erent ways in whih to proeed. The referene model ould be modi�ed, for example,by substituting a distributed delay for the point delay. Clearly, the white noise ould be replaed withnoise of di�erent type, and higher dimensional equations may be onsidered.Lastly, the passage to ontinuous time as addressed in Setion 4 should be a speial ase of moregeneral onvergene results for ontinuous time Markov hains with delay.A Skorokhod spaes and weak onvergeneA.1 Weak onvergene in separable metri spaesThe results summarized in this setion are taken from Ethier and Kurtz [31, h. 3 �� 1-3℄ and Billingsley[32, � 2℄. Let (S, d) be a separable metri spae, and denote by M1
+(S) the set of probability measureson the Borel σ-algebra B(S). De�ne the Prohorov metri ρ by

ρ(P, P̂) := inf
{
ǫ > 0 | P(G) ≤ P̂(Gǫ) + ǫ for all losed G ⊆ S

}
, P, P̂ ∈ M1

+(S),where Gǫ := {x ∈ S | infy∈G d(x, y) < ǫ}. Then ρ is indeed a metri, and (M1
+(S), ρ) is a separablemetri spae. If, in addition, (S, d) is omplete, then (M1

+(S), ρ) is omplete, too [31, p. 101℄.Denote by Cb(S) the spae of all bounded ontinuous funtions on (S, d), topologized with the supremumnorm. A sequene (Pn)n∈N of probability measures on B(S) is said to onverge weakly to a probabilitymeasure P ∈ M1
+(S), in symbols Pn

w→ P, i�
∀ f ∈ Cb(S) :

∫

S

f dPn
n→∞−→

∫

S

f dP .The next theorem gives di�erent haraterizations of weak onvergene and states that weak onvergeneis equivalent to onvergene in the Prohorov metri [31, p. 108℄. Reall that we assume (S, d) to beseparable. In an arbitrary metri spae onvergene under ρ would still imply weak onvergene and itsharaterizations, but the onverse would not neessarily hold.29



Let P ∈ M1
+(S). A set A ⊆ S is alled a P-ontinuity set i� A ∈ B(S) and P(∂A) = 0, i. e. A isBorel measurable and its boundary is a P-null set.Theorem 3. Let (Pn)n∈N ⊆ M1

+(S), P ∈ M1
+(S). The following onditions are equivalent:(i) lim

n→∞
ρ(Pn,P) = 0,(ii) Pn

w→ P,(iii) ∫
S

f dPn
n→∞−→

∫

S

f dP for all uniformly ontinuous funtions f ∈ Cb(S),(iv) lim sup
n→∞

Pn(A) ≤ P(A) for all losed sets A ⊆ S,(v) lim inf
n→∞

Pn(A) ≥ P(A) for all open sets A ⊆ S,(vi) lim
n→∞

Pn(A) = P(A) for all P-ontinuity sets A ⊆ S.Useful in proving onvergene in M1
+(S) is the Prohorov riterion for ompatness, provided the under-lying metri spae is omplete [31, p. 104℄.Theorem 4 (Prohorov). Let Γ ⊆ M1

+(S), and suppose that (S, d) is omplete. Then the followingonditions are equivalent:(i) Γ is tight, i. e. ∀ ǫ > 0 ∃A ⊂ S ompat : infP∈Γ P(A) ≥ 1 − ǫ,(ii) ∀ ǫ > 0 ∃A ⊂ S ompat : infP∈Γ P(Aǫ) ≥ 1 − ǫ,(iii) the losure of Γ is ompat in the Prohorov topology.The mapping theorem states that under a measurable map weak onvergene arries over to the sequeneof image measures if the set of disontinuities of the mapping is negligible with respet to the originallimit measure [32, p. 21℄.Theorem 5. Let (Pn)n∈N ⊂ M1
+(S), P ∈ M1

+(S). Let (S′, d′) be a seond metri spae and ξ : S → S′be a B(S′)-B(S)-measurable map. Denote by Jξ the set of disontinuities of ξ.If Pn
w→ P and P(Jξ) = 0 then Pn ◦ξ−1 w→ P ◦ξ−1.A.2 The Skorokhod spae D

0
RHere, we gather results and de�nitions from Billingsley [32, �� 12-13℄ on the nature of D0

R
:= DR([−r, 0]),the Skorokhod spae of all real valued àdlàg funtions on the �nite interval [−r, 0], i. e. of funtions

f : [−r, 0] → R suh that
f(t+) := lim

s↓t
f(s) = f(t) for all t ∈ [−r, 0), f(t−) := lim

s↑t
f(s) exists for eah t ∈ (−r, 0].It is possible to de�ne Skorokhod spaes of funtions with values in more general spaes than R. In fat,the theory an be developed for DE([−r, 0]) essentially in the same way as for D0

R
as long as E is a Polishspae, i. e. a omplete and separable metri spae.Let f be any real valued funtion on [−r, 0]. De�ne the modulus of àdlàg ontinuity as

w̃(f, δ) := inf
{

max
i∈{1,...,n}

w(f, [ti−1, ti))
∣
∣ n ∈ N, −r = t0 < . . . < tn = 0,

min
i∈{1,...,n}

(ti − ti−1) > δ
}
, δ ∈ (0, r),

(52) 30



where w(., .) is the modulus of uniform ontinuity de�ned as
w(f, I) := sup

s,t∈I

|f(s) − f(t)|, I ⊆ [−r, 0] an interval.(53)A funtion f : [−r, 0] → R is in D0
R
if and only if limδ↓0 w̃(f, δ) = 0, f. Billingsley [32, p. 123℄.Denote by Λ := {λ : [−r, 0] → [−r, 0] | λ bijetive and stritly inreasing} the set of �time transforma-tions� on [−r, 0]. For all λ ∈ Λ we have λ(−r) = −r, λ(0) = 0, and λ is ontinuous. On Λ de�ne apseudo-norm

‖λ‖Λ := sup
s,t∈[−r,0], s 6=t

∣
∣ln

(
λ(t) − λ(s)

t− s

)
∣
∣, λ ∈ Λ.Let f , g be elements of D0

R
, and de�ne the distanes dS , d◦S as

dS(f, g) := inf
{
ǫ > 0

∣
∣ ∃λ ∈ Λ : sup

t∈[−r,0]

|λ(t) − t| ≤ ǫ ∧ sup
t∈[−r,0]

|f(t) − g(λ(t))| ≤ ǫ
}
,(54)

d◦S(f, g) := inf
{
ǫ > 0

∣
∣ ∃λ ∈ Λ : ‖λ‖Λ ≤ ǫ ∧ sup

t∈[−r,0]

|f(t) − g(λ(t))| ≤ ǫ
}
.(55)Both funtionals, dS and d◦S , measure the distane between f and g in terms of the supremum norm

‖f − g ◦ λ‖∞. In addition, dS requires that time transformations λ di�er as little as possible from theidentity on [−r, 0], while d◦S puts an extra restrition on the slope of the transformations.The most important di�erene between dS and d◦S lies in the fat that they give rise to di�erent sets ofCauhy sequenes. Theorem 6 is a summary of Billingsley [32, pp. 125-129℄.Theorem 6. Let dS, d◦S be de�ned as above. Then D0
R
is a separable metri spae under dS as well asunder d◦S. Both metris generate the same topology, alled the Skorokhod topology.Equipped with the Skorokhod topology, D0

R
is a Polish spae, and d◦S is a omplete metri, while D0

Ris not omplete under dS.The example below illustrates why dS does not de�ne a omplete metri on D0
R
. The sequene to beonstruted is a Cauhy sequene with respet to dS , the only possible limit point of whih lies outsidethe spae of àdlàg funtions. The same sequene is not Cauhy under d◦S .Example. Choose t0 ∈ [−r, 0). For n ∈ N big enough set fn := 2 · 1In

− 1, where In := [t0, t0 + 2−n).Then (fn) ⊂ D0
R
is a Cauhy sequene of {−1, 1}-valued funtions with respet to the metri dS , and

fn(t)
n→∞→ −1 for all t 6= t0, but dS(fn,−1) = 2 for all n ∈ N, and f := 2 · 1{t0} − 1 is no àdlàgfuntion. ♦The following riterion, whih is Theorem 12.3 in Billingsley [32, p. 130℄, is an analogue of the Arzelà-Asoli theorem for ompatness in spaes of ontinuous funtions.Theorem 7. Let A ⊆ D0

R
. Then the losure of A is ompat in the Skorokhod topology if and only if thefollowing two onditions hold:(i) sup

f∈A

sup
t∈[−r,0]

|f(t)| <∞,(ii) lim
δ↓0

sup
f∈A

w̃(f, δ) = 0. 31



A.3 The Skorokhod spae D0There are two equivalent ways of topologizing D0 := D{−1,1}([−r, 0]), the spae of all {−1, 1}-valuedàdlàg funtions on the �nite interval [−r, 0]. The �rst is to de�ne metris dS , d◦S in analogy to Ap-pendix A.2, where |.− .| should be interpreted as a metri on {−1, 1}. In fat, if (E, d) is a metri spae,one an de�ne the Skorokhod spae DE([−r, 0] with its aompanying metris. If, in addition, (E, d) isomplete and separable, then an analogue of Theorem 6 holds.12The seond option is to restrit the metris dS , d◦S and the Skorokhod topology of D0
R
to D0. Thisworks, beause D0 is a losed subset of D0

R
with respet to the Skorokhod topology. Theorem 6 nowimplies that D0 is a separable metri spae under dS , and omplete and separable under d◦S , as is the asefor D0

R
. De�ne the moduli of ontinuity w, w̃ by restrition or in analogy to (52) and (53), respetively.For f ∈ D0 de�ne J(f), the set of disontinuities or jumps, and ζf , the minimal distane between twodisontinuities or an inner disontinuity and one of the boundary points of [−r, 0], as

J(f) :=
{
t ∈ (−r, 0]

∣
∣ f(t) 6= f(t−)

}
,

ζf := min
{
|t− s|

∣
∣ t, s ∈ J(f) ∪ {−r, 0}

}
,where f(t−) is the left-hand limit of f at t. Set J̇(f) := J(f) ∩ (−r, 0), the set of inner disontinuitiesof f . Notie that the only possible disontinuity of f not in J̇(f) is 0, the right boundary of [−r, 0].Proposition 8. Let f ∈ D0, δ ∈ (0, r), and let I ⊆ [−r, 0] be an interval. Then

w(f, I) ∈ {0, 2}, w(f, I) = 0 ⇔ f is onstant on the interval I,(56)
#J(f) ∈ N0,(57)
w̃(f, δ) ∈ {0, 2}, w̃(f, δ) = 0 ⇔ ζf > δ.(58)Proof. Obviously, |f(s) − f(t)| ∈ {0, 2} for all s, t ∈ [−r, 0], and (56) is a onsequene of (53), thede�nition of w.If there were an f ∈ D0 with #J(f) = ∞, one ould hoose a sequene (tn)n∈N ⊂ J(f) suh that

tn
n→∞→ t and tn 6= t for all n ∈ N. Sine f is a àdlàg funtion, there would be δl, δr > 0 suh that f isonstant on the intervals (t− δl, t), (t, t+ δr), exept if t were a boundary point of [−r, 0], in whih aseonly one of the onstants δl, δr ould be hosen appropriately. In any ase, tn ∈ (t−δl, t) or tn ∈ (t, t+δr)for n big enough, a ontradition, beause f annot be onstant on an open interval and at the sametime have a disontinuity in it.Clearly, w̃(f, δ) ∈ {0, 2}. Suppose w̃ = 0. Then there are m ∈ N and a partition −r = t0 < . . . <

tm = 0 suh that ti − ti−1 > δ and w(f, [ti−1, ti)) = 0 for all i ∈ {0, . . . ,m}. Hene, f is onstant oneah interval [ti−1, ti), and the minimal distane between two disontinuities or an inner disontinuityand the boundary of [−r, 0] is at least min{(ti − ti−1) | i ∈ {0, . . . ,m}}.Conversely, ζf > δ implies w̃(f, δ) = 0, beause −r = t0 < . . . < tm = 0 forms a suitable partition of
[−r, 0], if one hooses m = #J̇(f)+1 and takes as t1, . . . , tm−1 the inner disontinuities of f .Theorem 7, whih states neessary and su�ient onditions for ompatness in D0

R
, takes on a simpleform in the present ontext.Proposition 9. Let A ⊆ D0. Then the losure of A is ompat in the Skorokhod topology if and only if

inf{ζf | f ∈ A} > 0.12Skorokhod spaes for E-valued funtions on the in�nite interval [0,∞) are de�ned in Ethier and Kurtz [31℄.32



Proof. Condition (i) of Theorem 7 is satis�ed for any A ⊆ D0. Hene, we must show that ondition (ii)of 7 is equivalent to inff∈A ζf > 0.Let f ∈ D0, then w̃(f, δ) ∈ {0, 2} for all δ ∈ (0, r). Therefore, limδ↓0 supf∈A w̃(f, δ) = 0 if and only ifthere exists δ0 ∈ (0, r) suh that for all δ ∈ (0, δ0) and all f ∈ A we have w̃(f, δ) = 0. Aording to (58)the latter ondition is equivalent to the existene of δ0 ∈ (0, r) suh that ζf ≥ δ0 for all f ∈ A, whih inturn is just inff∈A ζf > 0.Condition inff∈A ζf > 0 implies supf∈A #J(f) <∞, but the onverse impliation does not hold, as anbe seen by onsidering the sequene (fn) de�ned in the example of Appendix A.2.A.4 The spae D
∞
RDenote by D∞

R
:= DR([−r,∞)) the spae of all real valued àdlàg funtions on the interval [−r,∞).Observe that a àdlàg funtion on [−r,∞) has at most ountably many points of disontinuity [31,p. 116℄. It is possible to de�ne Skorokhod metris on D∞

R
in a way similar to that of Appendix A.2, f.Ethier and Kurtz [31, h. 3 � 5℄.There are two noteworthy di�erenes, though, beause the interval the elements of D∞

R
live on is nolonger bounded to the right. In the de�nitions whih orrespond to (54) and (55) one needs a �fadingfuntion� or a �fading series� to guarantee �niteness of the metris. More importantly, the speial rolewhih the right boundary plays in (53) and in the de�nition of the set of time transformations Λ has noounterpart with D∞

R
.An alternative is provided by Billingsley [32, � 16℄, where a onnetion is established between D∞

R
andSkorokhod spaes over �nite intervals. Observe that all de�nitions and properties of D0

R
= DR([−r, 0])arry over to the spae DR([−r, t]) for any t ∈ (−r,∞). Set

θt : D∞
R

∋ f 7→ f|[−r,t·r] ∈ DR([−r, t · r]), t > −1.Let m ∈ N0. Set Dm
R

:= DR([−r,m · r]). Write dm, d◦m for the orresponding Skorokhod metris, andde�ne a funtion hm and a �ontinuous restrition� ψm by
hm(t) :=







1 if t ∈ [−r, (m−1)r),

m− t
r

if t ∈ [(m−1)r,m · r),
0 if t ≥ m · r,

ψm : D∞
R

∋ f 7→ θm(f · hm) ∈ Dm
R
.De�ne a Skorokhod metri d◦∞ on D∞

R
by(59) d◦∞(f, g) :=

∞∑

m=0

2−m
(

1 ∧ d◦m
(
ψm(f), ψm(g)

))

.An equivalent (but inomplete) Skorokhod metri d∞ an be de�ned as in (59) by replaing the metris
d◦m with dm [32, p. 168℄. Now de�ne a metri on the produt of the spaes Dm

R
, m ∈ N0, that is one sets

ΠD :=

∞∏

m=0

Dm
R
, d̃◦∞

(
(fm)m∈N0

, (gm)m∈N0

)
:=

∞∑

m=0

2−m
(
1 ∧ d◦m(fm, gm)

)
.We have the following embedding theorem [32, p. 170℄.33



Theorem 8. De�ne Ψ : D∞
R

→ ΠD by f 7→ (θm(f · hm))m∈N0
. Then1. Ψ is an isometry with respet to d◦∞ and d̃◦∞,2. Ψ(D∞

R
) ⊂ ΠD is losed,3. (ΠD, d̃
◦
∞) is a Polish spae, and so is (D∞

R
, d◦∞).The natural projetion pt : D∞

R
∋ f 7→ f(t) ∈ R is Borel measurable for eah t ≥ −r, and pt is ontinuousat f ∈ D∞

R
if and only if f is ontinuous at t. The projetions generate B(D∞

R
) and form a anonialproess [32, p. 172℄. Notie that the restritions θt, t > −1, are measurable, too.The following proposition haraterizes onvergene in D∞

R
in terms of onvergene of the restritedsequenes [32, p. 169℄.Proposition 10. Let fn, n ∈ N, f be elements of D∞

R
. Then fn

n→∞→ f w. r. t. d◦∞ if and only if
θt(fn)

n→∞→ θt(f) in DR([−r, t · r]) for every ontinuity point t · r of f .A.5 The Skorokhod spae D∞First observe that for any t > −r the spae D{−1,1}([−r, t]) of all {−1, 1}-valued àdlàg funtions on
[−r, t] an be de�ned in analogy to the spae D0.Denote by D∞ := D{−1,1}([−r,∞)) the set of all {−1, 1}-valued àdlàg funtions on [−r,∞). Clearly,
D∞ is a subset of D∞

R
, but it is also losed with respet to the Skorokhod topology of D∞

R
as an be seenfrom Proposition 10 and Appendix A.3. We may therefore restrit the topology of D∞

R
and its metris

d∞, d◦∞, thus topologizing D∞.B Convergene to ontinuous timeB.1 Approximating sets in SMLemma 1.
∀M ∈ N ∀ i ∈ {0, . . . ,M − 1} : #SM (i) = 4 ·

(
M−1

i

)
,(60)

∀N ∈ N ∀Z1, Z2 ∈ SN ∀M ≥ N : Z1 6= Z2 ⇒ UN
M (Z1) ∩ UN

M (Z2) = ∅,(61)
∀N ∈ N ∀ i ∈ {0, . . . , ⌊

√
N⌋ − 1} ∀M ≥ N ∀Z ∈ SN (i) :

(⌊
2M

2N+1

⌋)i

≤ #UN
M (Z) ≤

(⌊
2M

2N+1

⌋
+ 1
)i

.
(62)Proof. Any element f ∈ ι̃M

(
SM (i)

) an be desribed as follows. Choose i out of M−1 possible positionsfor the inner disontinuities, and deide on the binary values of f(−r), f(0). This determines f , and(60) follows.Let Z1 = (Z
(−N)
1 , . . . , Z

(0)
1 ), Z2 = (Z

(−N)
2 , . . . , Z

(0)
2 ) be elements of SN . By de�nition of UN

M (.), for
UN

M (Z1) ∩ UN
M (Z2) 6= ∅ we must have #J̇(Z1) = #J̇(Z2) as well as Z(−N)

1 = Z
(−N)
2 and Z(0)

1 = Z
(0)
2 .Suppose that Z1, Z2 have the same number of inner disontinuities and agree at −N and 0, but still

Z1 6= Z2. Then Z1, Z2 di�er in the position of at least one inner disontinuity, that is to say thereis s1 ∈ (−r, 0) suh that s1 ∈ J(Z1) \ J(Z2); by symmetry, there is also s2 ∈ (−r, 0) suh that s2 ∈
J(Z2) \ J(Z1). Selet suh an s2, then |s− s2| ≥ r

N
for all s ∈ J(Z1).34



Let Z̃1 be an element of UN
M (Z1). Then for any inner disontinuity s ∈ J̇(Z1) there is exatly one

s̃ ∈ J̇(Z̃1) suh that |s̃− s| ≤ r
2N+1 , and vie versa. The same holds true for any element Z̃2 of UN

M (Z2)with respet to Z2. In partiular, there is s̃2 ∈ J̇(Z̃2) suh that |s̃2 − s2| ≤ r
2N+1 . But s̃2 6∈ J(Z̃1),beause |s̃2 − s̃| ≥ r

N
− 2r

2N+1 > 0 for all s̃ ∈ J(Z̃1). Sine Z̃1, Z̃2 were arbitrary, this establishes (61).An element Z̃ ∈ UN
M (Z) is determined by the positions of its #J̇(Z) inner disontinuities, where

{
k · r

M
− r | k ∈ {1, . . . ,M−1}

}is the set of possible suh positions. If s ∈ J̇(Z), then there is k ∈ {1, . . . , N−1} with s = k · r
N

− r, andit exists exatly one s̃ ∈ J̇(Z̃) suh that s̃ ∈ [s− r
2N+1 , s+

r
2N+1 ]. Equation (62) is now a onsequene of

⌊ 2M
2N+1⌋ ≤ #

({
k · r

M
− r

∣
∣ k ∈ {1, . . . ,M−1}

}
∩ [s− r

2N+1 , s+ r
2N+1 ]

)

≤ ⌊ 2M
2N+1⌋ + 1,for all s ∈ {k · r

N
− r | k ∈ {1, . . . , N−1}}, and the fat that #J̇(Z) = i for Z ∈ SN (i).Lemma 2. Let M , N , N0 be natural numbers suh that N0 < N ≤ M , let ǫ > 0, and de�ne theexpressions ψ1, ψ2 and ψ3 as

ψ1 := πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

≥ 1 − ǫ,

ψ2 := ∀ i ∈ {0, . . . , N0} ∀Z ∈ SN (i) :
∣
∣πM

(
UN

M (Z)
)
− πN (Z)

∣
∣ ≤ ǫ

N i
,

ψ3 :=

N−1∑

i=N0+1

πN

(
SN (i)

)
≤ ǫ.Suppose that the sequenes of transition probabilities (αM )M∈N, (γM )M∈N satisfy relation (31) for sometransition rates α, γ > 0. Then for all ǫ > 0

∃ Ñ0 ∈ N ∀N0 ≥ Ñ0 ∃ Ñ ∈ N ∀N ≥ Ñ ∃ M̃ ∈ N ∀M ≥ M̃ : ψ1,(63)
∀N0 ∈ N ∃ Ñ ∈ N ∀N ≥ Ñ ∃ M̃ ∈ N ∀M ≥ M̃ : ψ2,(64)

∃ Ñ0 ∈ N ∀N0 ≥ Ñ0 ∃ Ñ ∈ N ∀N ≥ Ñ : ψ3.(65)Finally, it holds that
∀ ǫ > 0 ∃N0, Ñ ∈ N ∀N ≥ Ñ ∃ M̃ ∈ N ∀M ≥ M̃ : ψ1 ∧ ψ2 ∧ ψ3.(66)Proof. Formula (66) follows by �putting together� (63), (64) and (65), where N0 = N0(ǫ) an be hosenas the maximum of Ñ0 aording to (63) and Ñ0 aording to (65), Ñ = Ñ(ǫ,N0) as the maximum ofthe respetive variables Ñ , and in the same way for M̃ = M̃(ǫ,N0, Ñ ,N).The remaining formulae will be established one by one. Let ǫ > 0, without loss of generality ǫ < 1.Reall Proposition 2, where the normalizing onstant cM for the probability measure πM was de�ned,and Equation (32) of Proposition 3, where we obtained an expliit expression for c∞ = limM→∞ cM . Inanalogy to Propositions 2 and 3, respetively, we set

cM,M0
:= 2 ·

M0∑

k=0

(
M

k

)( αM

1 − γM

)k mod 2( αM · γM

(1 − αM )(1 − γM )

)⌊ k
2 ⌋
, M ∈ N, M0 ∈ {1, . . . ,M}.

c∞,M0
:= 2 ·

M0∑

k=0

1

k!
αk mod 2 (αγ)⌊

k
2 ⌋, M0 ∈ N,35



Beause of relation (31) it holds that ∀ ǫ̃ ∈ (0, 1) ∀M0 ∈ N ∃ M̃ ∈ N ∀M ≥ M̃ ∀ {0, . . . ,M0}:(67) (1 + ǫ̃) · (αγ)k ≥

∧ (1 + ǫ̃)α ≥

∧ 1 ≥

M2k ·
(

αM ·γM

(1−αM )(1−γM )

)k

M · αM

1−γM

M ·...·(M−2k+1)
M2k ≥ M ·...·(M−2k)

M2k+1

≥ (1 − ǫ̃) · (αγ)k

≥ (1 − ǫ̃)α

≥ 1 − ǫ̃.In view of the above we have
∀ ǫ̃ ∈ (0, 1) ∃ M̃0 ∈ N ∀M0 ≥ M̃0 ∃ M̃ ∈ N ∀M ≥ M̃ :

1 ≥ c∞,M0

c∞
≥ 1 − ǫ̃ ∧ M ≥ M0 ∧

∣
∣
cM,M0

c∞
− 1
∣
∣+
∣
∣
c∞

cM,M0

− 1
∣
∣ ≤ ǫ̃.

(68)To onlude the preparations, reall that for Z ∈ SM (i), where M ∈ N, i ∈ {0, . . . ,M−1}, we have
#J(Z) ∈ {i, i+1}, and that exatly half of the elements of SM (i) has a disontinuity at 0.Let ǫ̃ > 0. Choose Ñ0 ∈ N suh that c∞,N0

c∞
≥ 1− ǫ̃ for all N0 ≥ Ñ0. Let N0 ∈ N with N0 ≥ Ñ0 = Ñ0(ǫ̃).Choose Ñ ∈ N suh that ∀N ≥ Ñ ∀ i ∈ {0, . . . , N0}:

(
2

2N+1

)i ≥ 1−ǫ̃
Ni and 1

Ni

(
N−1

i

)
≥ 1−ǫ̃

i! .Let N ∈ N with N ≥ Ñ = Ñ(ǫ̃, N0). Choose M̃ suh that ∀M ≥ M̃ ∀ i ∈ {0, . . . , N0}:
(
⌊ 2M

2N+1⌋
)i ≥

( 2M−(2N+1)
2N+1

)i ≥ (1 − ǫ̃)
( 2M−(2N+1)

2N

)i ≥ (1 − ǫ̃)2
(

M
N

)i

∧ c∞
cM

≥ 1 − ǫ̃ ∧
(
M
i

)(
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋ ≥ 1−ǫ̃

i! αi mod 2 (αγ)⌊
i
2 ⌋,where (67) has been applied. For N0 ≥ Ñ0(ǫ̃), N ≥ Ñ(ǫ̃, N0), M ≥ M̃(ǫ̃, N0, N) we have

πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

=

N0∑

i=0

( ∑

Z∈SN (i)∧ J(Z)=i

+
∑

Z∈SN (i)∧ J(Z)=i+1

)

πM

(
UN

M (Z)
)

≥ 1
2cM

N0∑

i=0

(
#SN (i)

) (
⌊ 2M

2N+1⌋
)i

((
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋ +

(
αM

1−γM

)(i+1) mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i+1
2 ⌋)as a onsequene of Proposition 2. Aording to the hoie of N0, N , M and beause of (60) it holdsthat

#SN (i) ≥ 4 · (1 − ǫ̃) · Ni

i! ,
(
⌊ 2M

2N+1⌋
)i ≥ (1 − ǫ̃)2

(
M
N

)i
, c∞

cM
≥ 1 − ǫ̃.We therefore have

πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

≥ 2
c∞

(1 − ǫ̃)4
N0∑

i=0

(
M−1

i

)((
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋ +

(
αM

1−γM

)(i+1) mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i+1
2 ⌋)

≥ 2
c∞

(1 − ǫ̃)4
N0∑

i=0

(
M
i

)(
αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋

≥ 2
c∞

(1 − ǫ̃)5
N0∑

i=0

1
i! α

i mod 2 (αγ)⌊
i
2 ⌋ = (1 − ǫ̃)5

c∞,N0

c∞
≥ (1 − ǫ̃)6 ≥ 1 − 6ǫ̃.36



Sine ǫ̃ ∈ (0, 1) was arbitrary, we may set ǫ̃ := ǫ
6 , thereby establishing (63).Let ǫ̃ > 0, N0 ∈ N. Choose Ñ ∈ N suh that ∀N ≥ Ñ ∀ i ∈ {0, . . . , N0+1}:

⌊
√
N⌋ ≥ 2N0 + 3 ∧ 1

N
≤ ǫ̃ ∧

(
2N

2N+1

)i ≥ 1 − ǫ̃ ∧ 1 + ǫ̃ ≥ c∞
cN

≥ 1 − ǫ̃

∧ 1 + ǫ̃ ≥ N
α
· αN

1−γN
≥ 1 − ǫ̃ ∧ 1 + ǫ̃ ≥

(
N2

αγ
· αN ·γN

(1−αN )(1−γN )

)⌊ i
2 ⌋ ≥ 1 − ǫ̃,whih is possible beause of (67). Let N ∈ N with N ≥ Ñ = Ñ(ǫ̃, N0). Choose M̃ suh that ∀M ≥

M̃ ∀ i ∈ {0, . . . , N0}:
M ≥ N ∧

(
⌊ 2M

2N+1⌋
)i ≥ (1− ǫ̃)

( 2M−(N+1)
2N

)i ≥ (1− ǫ̃)2
(

M
N

)i ∧
(
⌊ 2M

2N+1 +1⌋
)i ≤ (1+ ǫ̃)

(
M
N

)i
.Let N ≥ Ñ(ǫ̃, N0), M ≥ M̃(ǫ̃, N0, N), i ∈ {0, . . . , N0}, Z ∈ SN (i). We have to distinguish two ases. Ineah ase the �rst step will be an appliation of Proposition 2.Case 1. #J(Z) = i, that is fZ has no disontinuity at 0. Then

πM

(
UN

M (Z)
)
− πN (Z)

= 1
cM

(
#UN

M (Z)
)(

αM

1−γM

)i mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i
2 ⌋ − 1

cN

(
αN

1−γN

)i mod 2( αN ·γN

(1−αN )(1−γN )

)⌊ i
2 ⌋

≥ 1
cM

(
⌊ 2M

2N+1⌋
)i

(1 − ǫ̃)2
(

α
M

)i mod 2( αγ
M2

)⌊ i
2 ⌋ − 1

cN
(1 + ǫ̃)2

(
α
N

)i mod 2( αγ
N2

)⌊ i
2 ⌋

≥ 1
c∞

αi mod 2 (αγ)⌊
i
2 ⌋
(

(1 − ǫ̃)5
(

M
N

)i
M−(i mod 2+2⌊ i

2 ⌋) − (1 + ǫ̃)3N−(i mod 2+2⌊ i
2 ⌋)
)

= 1
c∞

1
Ni α

i mod 2 (αγ)⌊
i
2 ⌋
(
(1 − ǫ̃)5 − (1 + ǫ̃)3

)

≥ 1
c∞

1
Ni η(α, γ,N0) (1 − 5ǫ̃− 1 − 7ǫ̃) = − 12

c∞

ǫ̃
Ni η(α, γ,N0) ≥ − 12

c∞

ǫ̃
Ni η(α, γ,N0+1),where η(α, γ, n) := max{αk mod 2 (αγ)⌊

k
2 ⌋ | k ∈ {0, . . . , n}}. On the other hand,

πM

(
UN

M (Z)
)
− πN (Z)

≤ 1
cM

(
⌊ 2M

2N+1⌋ + 1
)i

(1 + ǫ̃)2 1
Mi α

i mod 2 (αγ)⌊
i
2 ⌋ − 1

cN
(1 − ǫ̃)2 1

Ni α
i mod 2 (αγ)⌊

i
2 ⌋

≤ 1
c∞

1
Ni α

i mod 2 (αγ)⌊
i
2 ⌋
(
(1 + ǫ̃)4 − (1 − ǫ̃)3

)
≤ 18

c∞

ǫ̃
Ni η(α, γ,N0+1).Case 2. #J(Z) = i+ 1, that is fZ jumps at 0. Then

πM

(
UN

M (Z)
)
− πN (Z)

= 1
cM

(
#UN

M (Z)
)(

αM

1−γM

)(i+1) mod 2( αM ·γM

(1−αM )(1−γM )

)⌊ i+1
2 ⌋ − 1

cN

(
αN

1−γN

)(i+1) mod 2( αN ·γN

(1−αN )(1−γN )

)⌊ i+1
2 ⌋

≥ 1
c∞

1
Ni α

(i+1) mod 2 (αγ)⌊
i+1
2 ⌋( (1−ǫ̃)5

M
− (1+ǫ̃)3

N

)

≥ 1
c∞

1
Ni η(α, γ,N0 + 1) 1+7ǫ̃

N
≥ 8

c∞

ǫ̃
Ni η(α, γ,N0+1).In the same way one obtains

πM

(
UN

M (Z)
)
− πN (Z) ≤ 16

c∞

ǫ̃
Ni η(α, γ,N0+1).37



Set ǫ̃ := min{ǫ, c∞ǫ
18η(α,γ,N0+1)}, and the proof of (64) is �nished.Let ǫ̃ > 0. Choose Ñ0 ∈ N aording to (68) suh that

∀N0 ≥ Ñ0 ∃Ñ ∈ N ∀N ≥ Ñ : 1 + ǫ̃ ≥ cN

c∞
≥ cN,N0

c∞
≥ 1 − ǫ̃.Making again use of Proposition 2 we have for N0 ≥ Ñ0, N ≥ N̂ = N̂(ǫ̃, N0)

N−1∑

i=N0+1

πN

(
SN (i)

)

= 2
cN

N−1∑

i=N0+1

(
N−1

i

)((
αN

1−γN

)i mod 2( αN ·γN

(1−αN )(1−γN )

)⌊ i
2 ⌋ +

(
αN

1−γN

)(i+1) mod 2( αN ·γN

(1−αN )(1−γN )

)⌊ i+1
2 ⌋)

≤ 1
cN

(cN − cN,N0
) = 1 − c∞

cN

cN,N0

c∞
≤ ǫ̃

2 .This establishes (65).B.2 Proof of Proposition 4The �rst step is to show that the losure of {π̃M | M ∈ N} is ompat in the Prohorov topology of
M1

+(D0). Aording to Theorem 4 it is su�ient to prove tightness of {π̃M |M ∈ N}, that is
∀ ǫ > 0 ∃ K̃ ⊂ D0 ompat : inf{π̃M (K̃) |M ∈ N} ≥ 1 − ǫ,where ompatness means ompatness with respet to the Skorokhod topology of D0. Reall fromSetion 4.1 the de�nition of ι̃M . For all natural numbers N0 < N ≤M we have

π̃M

(

ι̃M
(
UN

M

))

≥ πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

, where UN
M :=

⋃

Z∈SN

UN
M (Z).Let ǫ > 0. Aording to (63) we an �nd natural numbers N0 < N ≤ M̃ suh that for all M ≥ M̃ :

πM

(N0⋃

i=0

⋃

Z∈SN (i)

UN
M (Z)

)

≥ 1 − ǫ.Fix N , M̃ . In analogy to the de�nition of UN
M we set

Ã :=
⋃

Z∈SN

{

f ∈ D0

∣
∣
∣ #J̇(f) = #J̇(Z) ∧

(
∃λ ∈ Λ : sup

s∈[−r,0]

|λ(s) − s| ≤ r
2N+1 ∧ f ◦ λ = fZ

)}

.Then #J(f) ≤ N and ζf ≥ 2r
N(2N+1) for all f ∈ Ã, and by Lemma 9 we see that cl(Ã), the losure of Ã,is ompat with respet to the Skorokhod topology. By de�nition we have UN

M ⊂ Ã for all M ≥ M̃ ≥ N .De�ne
K̃ :=

M̃−1⋃

M=1

ι̃M (SM ) ∪ cl(Ã).Then K̃ is ompat in the Skorokhod topology, and with M ∈ N it holds that
π̃M (K̃) ≥







π̃M

(
ι̃M (SM )

)
= 1 if M ∈ {1, . . . , M̃ − 1},

π̃M

(
ι̃M (UN

M )
)
≥ 1 − ǫ if M ≥ M̃.38



Hene, inf{π̃M (K̃) | M ∈ N} ≥ 1 − ǫ. Sine ǫ > 0 was arbitrary, we now know that {π̃M | M ∈ N} isrelatively ompat.Let (π̃M(j))j∈N be a weakly onvergent subsequene of (π̃M )M∈N. Denote by π̃ the limit of (π̃M(j)) inthe Prohorov topology. We have to hek that π̃M
w→ π̃ asM → ∞. Beause of Theorem 3 it is su�ientto show that ∫

D0

φ dπ̃M
M→∞−→

∫

D0

φ dπ̃ ∀φ ∈ Cb(D0) uniformly ontinuous.Let φ be a bounded and uniformly ontinuous real funtion on D0 and set Kφ := sup{ |φ(f)| | f ∈ D0}.With M ∈ N it holds that
∣
∣
∣
∣

∫

φ dπ̃M −
∫

φ dπ̃

∣
∣
∣
∣
≤
∣
∣
∣
∣

∫

φ dπ̃M −
∫

φ dπ̃M(j)

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

φ dπ̃M(j) −
∫

φ dπ̃

∣
∣
∣
∣

for all j ∈ N.The onvergene π̃M(j)
w→ π̃ implies |

∫
φ dπ̃M(j) −

∫
φ dπ̃| → 0 as j → ∞. We therefore have to showthat

∀ ǫ > 0 ∀ j0 ∈ N ∃ j ≥ j0 ∃ M̃ ∈ N ∀M ≥ M̃ :

∣
∣
∣
∣

∫

φ dπ̃M −
∫

φ dπ̃M(j)

∣
∣
∣
∣
≤ ǫ.Let ǫ > 0, j0 ∈ N. Choose natural numbers N0 = N0(ǫ), Ñ = Ñ(ǫ) aording to (66). Choose

δ = δ(ǫ, φ) > 0 suh that |φ(f) − φ(g)| ≤ ǫ for all f, g ∈ D0 with dS(f, g) ≤ δ. Let j ∈ N be big enoughso that j ≥ j0, M(j) ≥ Ñ and r
2M(j)+1 ≤ δ. Set N := M(j).Realling the de�nition of our approximation sets13 we see that dS(fZ , fZ̃) ≤ δ for all Z ∈ SN (i) and

Z̃ ∈ UN
M (Z) if i ∈ {0, . . . , N0} and M ≥ N . By the hoie of δ this implies that |φ(fZ) − φ(fZ̃)| ≤ ǫ forall suh Z, Z̃.Finally, hoose a natural number M̃ = M̃(ǫ,N0, Ñ ,N) aording to (66). Then for M ≥ M̃
∣
∣
∣
∣

∫

φ dπ̃M −
∫

φ dπ̃N

∣
∣
∣
∣

≤ 2Kφ · ǫ +

N0∑

i=0

∑

Z∈SN (i)

∣
∣
∣
∣
φ(fZ) πN (Z) −

∑

Z̃∈UN
M

(Z)

φ(fZ̃) πM (Z̃)

∣
∣
∣
∣

≤ 2Kφ · ǫ +

N0∑

i=0

∑

Z∈SN (i)

∣
∣φ(fZ)

∣
∣ ·
∣
∣
∣πM

(
UN

M (Z)
)
− πN (Z)

∣
∣
∣ +

∑

Z̃∈UN
M

(Z)

(
φ(fZ̃) − φ(fZ)

)
πM (Z̃)

≤ 2Kφ · ǫ + ǫ ·
( N0∑

i=0

∑

Z∈SN (i)

πM

(
UN

M (Z)
)
)

+ Kφ · ǫ ·
( N0∑

i=0

N−i
(
#SN (i)

)
)

≤ 2Kφ · ǫ + ǫ · πM

(
SM

)
+ 4Kφ · ǫ ·

( N0∑

i=0

N−i
(
N−1

i

)
)

≤ 2Kφ · ǫ + ǫ + 4Kφ · ǫ ·
( ∞∑

i=0

1
i!

)

= (2Kφ + 1 + 4Kφe) · ǫ.

�B.3 Proof of Proposition 7Clearly, Fδ(0) = 0 = F (0) for all δ ∈ (0, 1). With M ∈ N let P̃M be the probability measure on B(D∞)as de�ned in Setion 4.1. Reall that P̃M is the measure indued by the sequene of urrent states of13The sets UN

M
(Z) were de�ned at the beginning of Setion 4.2.39



the Markov hain XM under PπM
, i. e. in the stationary regime. For δ ∈ (0, 1), M ∈ N set

FM
δ (t) := P̃M

(
τ ≤ t

∣
∣ Ãδ

)
, t ∈ [0,∞).From Proposition 6 we know that P̃M

w→ P̃ as M tends to in�nity. Chek that for δ ∈ (0, 1), t ∈ (0,∞)the events Ãδ, Ãδ ∩ {τ ≤ t} are P̃-ontinuity sets of B(D∞). An appliation of Theorem 3 yields
P̃M

(
τ ≤ t | Ãδ

) M→∞−→ P̃
(
τ ≤ t | Ãδ

)
, i. e. FM

δ (t)
M→∞−→ Fδ(t) for all δ ∈ (0, 1), t > 0.(69)For all t > 0, δ ∈ (0, 1), M ∈ N we have

∣
∣Fδ(t) − F (t)

∣
∣ ≤

∣
∣Fδ(t) − FM

δ (t)
∣
∣ +

∣
∣FM

δ (t) − F (t)
∣
∣.In view of (69) it is su�ient to show that for eah t > 0 and eah ε > 0 there are δ0 ∈ (0, 1), M0 ∈ Nsuh that(70) ∣

∣FM
δ (t) − F (t)

∣
∣ ≤ ε for all δ ∈ (0, δ0), M ≥M0.As in Setion 3.2, let (Y M

n )n∈{−M,−M+1,...} be the random sequene of urrent states on (Ω,F) at dis-retization degree M ∈ N. Let δ ∈ (0, 1) and let M ∈ N be suh that δ ·M ≥ 1. Set
Aj

δ,M :=
{
Y M
−⌊δM⌋ = −1, . . . , YM

−j−1 = −1, Y M
−j = 1, . . . , YM

0 = 1
}
, j ∈ {0, . . . , ⌊δM⌋−1}.Notie that Aj

δ,M is an event in F . The orresponding event in B(D∞) is given by
Ãj

δ,M :=
{
f ∈ D∞

∣
∣ ∀ l ∈ {j+1, . . . , ⌊δM⌋} : f

(
− l

M
r
)

= −1 ∧ ∀ l ∈ {0, . . . , j} : f
(
− l

M
r
)

= 1
}
.For all δ ∈ (0, 1) and all M ∈ N suh that δ ·M ≥ 1 it holds that

PπM

(
Aj

δ,M

)
= P̃M

(
Ãj

δ,M

) for all j ∈ {0, . . . , ⌊δM⌋ − 1},

Ãδ = Ã0
δ,M ∪ . . . ∪ Ã⌊δM⌋−1

δ,M P̃M -almost surely.In analogy to (26), the de�nition of the residene time distribution LM (.) of disretization degreeM , weset
Lj

δ,M (k) := PπM

(
Y M

0 = 1, . . . , Y M
k−1 = 1, Y M

k = −1
∣
∣ Aj

δ,M

)
, k ∈ N.Then, by onstrution of FM

δ , for all δ ∈ (0, 1) and all M ∈ N suh that δ ·M ≥ 1 we have
FM

δ (t) =

⌊ t
r

M⌋
∑

k=1

⌊δM⌋−1
∑

j=0

P̃M

(
Ãj

δ,M

∣
∣ Ãδ

)
· Lj

δ,M (k), t > 0.It is not neessary to alulate the probabilities P̃M (Ãj
δ,M | Ãδ). Instead, proeeding in a way very muhas in Setion 3.2, we will estimate limes inferior and limes superior of M ·LjM

δ,M (⌊qM⌋) as M tends toin�nity, where q > 0 and (jM ) ⊂ N0 is any sequene suh that jM ∈ {0, . . . , ⌊δM⌋−1} for all M ∈ N.The estimates will be uniform in δ ∈ (0, δ0] for any small δ0 > 0.In analogy to (27), the de�nition of the tail onstant KM , we set for δ ∈ (0, 1) and M big enough
Kj

δ,M := PπM

(
Y M
−⌊δM⌋ = 1, . . . , Y M

−j−1 = 1, Y M
−j = 1, . . . , Y M

M−⌊δM⌋ = 1
∣
∣ Aj

δ,M

)
.Beause of the shift invariane of Y M under PπM

, the above de�nition of Kj
δ,M is really analogue to thatof KM . Exploiting the stationarity of XM under PπM

, we obtain
Kj

δ,M =
πM

(
(

⌊δM⌋−j
︷ ︸︸ ︷

−1, . . . ,−1,

M−⌊δM⌋+j+1
︷ ︸︸ ︷

1, . . . , 1)
)

πM

(
{(∗, . . . , ∗
︸ ︷︷ ︸

M−⌊δM⌋

,−1, . . . ,−1
︸ ︷︷ ︸

⌊δM⌋−j

, 1, . . . , 1
︸ ︷︷ ︸

j+1

)}
) .
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As a onsequene of Proposition 2, the formula for the stationary distributions πM , we see that Kj
δ,M isthe same for all j ∈ {0, . . . , ⌊δM⌋−1}. Proeeding as in the derivation of (29) we �nd that(71) Kj

δ,M =
2

(

1 +
√

γ̃M

α̃M

)(
1 +

√
η̃M

)M−⌊δM⌋
+
(

1 −
√

γ̃M

α̃M

)(
1 −√

η̃M

)M−⌊δM⌋ =: Kδ,M .In order to alulate Lj
δ,M we apply Proposition 2 again in a way similar to that of Setion 3.2. Let

δ ∈ (0, 1), letM ∈ M be suh that ⌊δM⌋ ≥ 1, and j ∈ {0, . . . , ⌊δM⌋−1}. Then for k ∈ {1, . . . ,M−⌊δM⌋}

Lj
δ,M (k) =

√
γ̃M

2
·Kδ,M ·

(√

γ̃M

(
(1 +

√

η̃M )M−⌊δM⌋−k + (1 −
√

η̃M )M−⌊δM⌋−k
)

+
√

α̃M

(
(1 +

√

η̃M )M−⌊δM⌋−k − (1 −
√

η̃M )M−⌊δM⌋−k
))

.

(72a)While Lj
δ,M (k) in (72a) does not vary with j as long as k ≤M−⌊δM⌋, for k ∈ {M−⌊δM⌋+1, . . . ,M−j}it holds that

Lj
δ,M (k) = Kδ,M · γM · (1 − γM )k−M+⌊δM⌋−1,(72b)and for k ≥M−j+1 we have

Lj
δ,M (k) = Kδ,M · αM · (1 − γM )⌊δM⌋−j · (1 − αM )k−M+j−1.(72)Now, let the disretization degree M tend to in�nity, where we assume that saling relation (31) holdsfor some rates α, γ. From (71) we see that
K∞,δ := lim

M→∞
KM,δ =

2
(
1 +

√
γ
α

)
e(1−δ)

√
αγ +

(
1 −

√
γ
α

)
e−(1−δ)

√
αγ

=

√
α√

α cosh
(
(1 − δ)

√
αγ
)

+
√
γ sinh

(
(1 − δ)

√
αγ
) .

(73)Let q > 0 and let (jM ) ⊂ N0 be any sequene suh that jM ∈ {0, . . . , ⌊δM⌋−1} for all M ∈ N. If
q ∈ (0, 1−δ], then from (72a) we �nd that(74a) lim

M→∞
M · LjM

δ,M

(
⌊qM⌋

)
=

√
γ ·Kδ,∞ ·

(√
γ cosh

(√
αγ(1−δ−q)

)
+
√
α sinh

(√
αγ(1−δ−q)

))

.If q ∈ (1−δ, 1), then a rough estimate of (72b) and (72), respetively, yields
lim sup
M→∞

M · LjM

δ,M

(
⌊qM⌋

)
≤ max{α, γ} ·Kδ,∞,

lim inf
M→∞

M · LjM

δ,M

(
⌊qM⌋

)
≥ min{α, γ} ·Kδ,∞ · e−δγ · e−(q+δ−1)α.

(74b)On the other hand, if q ≥ 1, then by (72) we have
lim sup
M→∞

M · LjM

δ,M

(
⌊qM⌋

)
≤ α ·Kδ,∞ · e−(q−1)α,

lim inf
M→∞

M · LjM

δ,M

(
⌊qM⌋

)
≥ α ·Kδ,∞ · e−δγ · e−(q+δ−1)α.

(74)Notie that onvergene in (73) as well as in (74) is uniform in δ ∈ (0, δ0] for arbitrary δ0 ∈ (0, 1). Ifwe let δ tend to zero, we reover the residene time distribution density fL of Proposition 3. Taking thetime disretization into aount, we obtain f̃L as given by (36) instead of fL.Given t > 0, ε > 0, uniform onvergene of (Lj
δ,M ) in δ and dominated onvergene of the orre-sponding residene time distribution densities over the interval (0, t] imply that we an �nd δ0 ∈ (0, 1)and M0 ∈ N suh that inequality (70) is ful�lled. The assertion of Proposition 7 then follows.
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