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Abstract

The subject of the present paper is a simpli�ed model for a symmetric bistable system with memory
or delay, the reference model, which in the presence of noise exhibits a phenomenon similar to what
is known as stochastic resonance. The reference model is given by a one dimensional parametrized
stochastic di�erential equation with point delay, basic properties whereof we check.

With a view to capturing the e�ective dynamics and, in particular, the resonance-like behavior of
the reference model we construct a simpli�ed or reduced model, the two state model, �rst in discrete
time, then in the limit of discrete time tending to continuous time. The main advantage of the
reduced model is that it enables us to explicitly calculate the distribution of residence times which
in turn can be used to characterize the phenomenon of noise-induced resonance.

Drawing on what has been proposed in the physics literature, we outline a heuristic method for
establishing the link between the two state model and the reference model. The resonance character-
istics developed for the reduced model can thus be applied to the original model.

2000 AMS subject classi�cations: primary 34K50, 60H10; secondary 60G17, 34K11, 34K13,
34K18, 60G10.

Key words and phrases: stochastic di�erential equation; delay di�erential equation; stochastic
resonance; e�ective dynamics; Markov chain; stationary process; stochastic synchronization.

1 Introduction

Stochastic resonance in a narrower sense is the random ampli�cation of a weak periodic signal induced by
the presence of noise of low intensity such that the signal ampli�cation is maximal at a certain optimal
non-zero level of noise. In addition to weak additive noise and a weak periodic input signal there is a
third ingredient in systems where stochastic resonance can occur, namely a threshold or a barrier that
induces several (in our case two) macroscopic states in the output signal.

Consider a basic, yet fundamental example. Let V be a symmetric one dimensional double well
potential. A common choice for V is the standard quartic potential, see Fig. 1 a). The barrier mentioned
above is in this case the potential barrier of V separating the two local minima. Assume that the periodic
input signal is sinusoidal and the noise white. The output of such a system is described by the stochastic
di�erential equation (SDE)

(1) dX(t) = −
(
V ′
(
X(t)

)
+ a · sin

(
2π
T t
))
dt + σ · dW (t), t ≥ 0,

where W is a standard one dimensional Wiener process, σ ≥ 0 a noise parameter, V ′ the �rst order
derivative of the double well potential V , a ≥ 0 the amplitude and T > 0 the period of the input signal.

∗This work was partially supported by the DFG research center Matheon (FZT 86) in Berlin.
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As an alternative to the system view, equation (1) can be understood as describing the overdamped
motion of a small particle in the potential landscape V in the presence of noise and under the in�uence
of an exterior periodic force. It was originally proposed by Benzi et al. (1981, 1982) and Nicolis (1982) as
an energy balance model designed to explain the succession of ice and warm ages in paleoclimatic records
as a phenomenon of quasi periodicity in the average global temperature on Earth.

If a = 0, i. e. in the absence of a periodic signal, equation (1) reduces to an autonomous SDE which has
two metastable states corresponding to the two local minima of V . With σ > 0 su�ciently small, the
di�usion will spend most of its time near the positions of these minima. In the presence of weak noise,
there are two distinct time scales, a short one corresponding to the quadratic variation of the Wiener
process, and a long one proportional to the average time it takes the di�usion to travel from one of the
metastable states to the other.

The fact that the time scale induced by the noise process is small in comparison with the mean
residence time as σ tends to zero should allow us to disregard small intrawell �uctuations when we are
interested in the interwell transition behavior.

Suppose a > 0 small enough so that there are no interwell transitions in case σ = 0, i. e. in the deterministic
case. The input signal then slightly and periodically tilts the double well potential V . We now have two
di�erent mean residence times, namely the average time the particle stays in the shallow well and the
average time of residence in the deep well. Of course, both time scales also depend on the noise intensity.

Notice that deep and shallow well change roles every half period T
2 . Given a su�ciently long period

T , the noise intensity can now be tuned in such a way as to render the occurence of transitions from
the shallow to the deep well probable within one half period, while this time span is too short for the
occurrence of transitions in the opposite direction. At a certain noise level the output signal will exhibit
quasi periodic transition behavior, thereby inducing an ampli�cation of the input signal.

For a more comprehensive description of stochastic resonance, examples, variants and applications thereof
see Gammaitoni et al. (1998) or Anishchenko et al. (1999). What models that exhibit stochastic resonance
have in common is the quasi periodicity of the output at a certain non-zero noise level. More generally,
stochastic resonance is an instance of noise-induced order.

In view of the fact that the system given by equation (1) can work as a random ampli�er it seems natural
to take the frequency spectrum of the output signal as basis for a measure of resonance. The most
common measure of this kind is the spectral power ampli�cation (SPA) coe�cient. Another measure of
resonance based on the frequency spectrum is the signal to noise ratio (SNR). For a detailed analysis see
Pavlyukevich (2002).

In general, when measuring stochastic resonance, it is assumed that the solution is in a �stationary
regime�. Since equation (1) is time dependent for a > 0 we cannot expect (X(t))t≥0 to be a stationary
process. Transforming the non-autonomous SDE (1) into an autonomous SDE with state space R× S1,
one can recover the time homogeneous Markov property and a unique invariant probability measure exists,
cf. Imkeller and Pavlyukevich (2002). In section 3 we will make use of the same idea of appropriately
enlarging the state space in order to regain a time homogeneous Markov model.

A di�erent starting point for a measure of resonance � the one that will be adopted here � is the distri-
bution of intrawell residence times. Observe that the roles of the two potential wells are interchangeable.

A third class of measures of resonance is provided by methods of quantifying (un)certainty, in par-
ticular by the entropy of a distribution. This agrees well with the view of stochastic resonance as an
instance of noise-induced order.

The fact that with σ > 0 and a > 0 small a typical solution to (1) spends most of its time near the
positions of the two minima of the double well potential V suggests to identify the two potential wells
with their respective minima. The state space R of the non-autonomous SDE thus gets reduced to two
states, say −1 and 1, corresponding to the left and the right well, respectively.

According to an idea of McNamara and Wiesenfeld (1989) the e�ective dynamics of equation (1) can
be captured in the two state model by constructing a {−1, 1}-valued time inhomogeneous Markov chain
with certain (time dependent) transition rates. These rates are determined as the rates of escape from
the potential well of the tilted double well potential which corresponds to the reduced state in question.
An approximation of the rate of escape from a parabolic potential well is given in the limit of small noise
by the Kramers formula, cf. section 5.
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In the physics literature, a standard ansatz for calculating the two state process given time dependent
transition rates is to solve an associated di�erential equation for the probabilities of occupying state ±1
at time t, a so-called master equation (cf. Gammaitoni et al., 1998).

An advantage of the reduced model is its simplicity. It should be especially useful in systems with more
than two meta-stable states. Although it is intuitively plausible to apply a two state �lter, there is
possibly a problem with the measure of resonance, for it might happen that with the same notion of
tuning stochastic resonance would be detected in the two state model, while no optimal noise level, i. e.
no point of stochastic resonance, exists in the continuous case. This is, indeed, a problem for the SPA
coe�cient and related measures, see Pavlyukevich (2002). The reason is that in passing to the reduced
model small intrawell �uctuations are ��ltered out�, while they decisively contribute to the SPA coe�cient
in the original model.

Measures of resonance based on the distribution of intrawell residence times, however, do not have
this limitation, that is they are robust under model reduction as Herrmann et al. (2003) show.

In equation (1) replace the term that represents the periodic input signal with a term that corresponds
to a force dependent on the state of the solution path a �xed amount of time into the past, that is replace
the periodic signal with a point delay. This yields what will be our reference model, see equation (2).

The idea to study such equations with regard to noise-induced resonance seems to originate with Ohira
and Sato (1999). Their analysis, though, is of limited use, because they make too strong assumptions on
independence between the components of the reduced model which they consider in discrete time only.

A better analysis of the reduced model for an important special choice of equation (2) can be found
in Tsimring and Pikovsky (2001). The same model is the object of recent studies by Masoller (2003),
Houlihan et al. (2004) and Curtin et al. (2004), and it will be our standard example, too.

While the measure of resonance applied by Tsimring and Pikovsky (2001) is essentially the �rst peak
in the frequency spectrum, in the other articles focus is laid on the residence time distribution in the
reduced model, which is compared with numerical simulations of the original dynamics. Under certain
simplifying assumptions, approximative analytical results are obtained via a master equation approach,
where the master equation is a DDE instead of an ODE.

In section 5 we follow Tsimring and Pikovsky (2001) in establishing the link between the reduced and
the reference model. Results by Masoller (2003) show that the density of the residence time distribution
has a characteristic jump. She proposes to take the height of this jump as a measure of resonance, and
we will follow her proposal, supplementing it by an alternative.

Our approach is di�erent, though, in that we do not use any kind of master equation. Instead, we
construct a reduced model with enlarged state space, which has the Markov property and which allows
us to explicitly calculate the stationary distributions as well as the residence time distributions.

2 The reference model

Consider the one dimensional motion of a small particle in the presence of large friction and additive
white noise subject to the in�uence of two additional forces: one dependent on the current position of the
particle and corresponding to a symmetric double well potential V , the other dependent on the position of
the particle a certain amount of time r in the past and corresponding to a symmetric single well potential
U , where the position of the extremum of U coincides with the position of the saddle point of V .

Without loss of generality we may assume that the saddle point of the potential V is at the origin and
the extrema are located at (−1,−L) and (1,−L) respectively, where L > 0 is the height of the potential
barrier. A standard choice for V is the quartic potential x 7→ L(x4 − 2x2).

Instead of U we will consider β ·U , where β is a scalar, that serves to �adjust� explicitly the strength
of the delay force. An admissible function for U is the parabola x 7→ 1

2x
2. In fact, with this choice of

U and taking as potential V the quartic potential with L = 1
4 we �nd ourselves in the setting that was

studied by Tsimring and Pikovsky (2001).1

The dynamics that govern the motion of a Brownian particle as described above can be expressed by the
following stochastic delay di�erential equation describing our reference model

(2) dX(t) = −
(
V ′
(
X(t)

)
+ β · U ′

(
X(t− r)

))
dt + σ · dW (t), t ≥ 0,

1Our notation is slightly di�erent from that of equation (1) in Tsimring and Pikovsky (2001: p. 1). In particular, their
parameter ε, indicating the �strength of the feedback�, corresponds to −β, here.
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Figure 1: Graphs on the interval [−2, 2] of a) quartic double well potential V , b) quadratic delay potential
U : x 7→ 1

2
x2, c) absolute value delay potential U : x 7→ |x|, x ∈ R \ (−δ, δ), smoothly continued on (−δ, δ).

where W (.) is a standard one dimensional Wiener process, r > 0 the time delay, V ′, U ′ are the �rst
derivatives of V and U , respectively, β ∈ R is a parameter regulating the intensity of the delay force and
σ ≥ 0 a noise parameter. In the special case σ = 0 equation (2) becomes a DDE, while in case β = 0 we
have an ordinary SDE.

The above description of the two potentials is compatible with the following conditions on V and U :

V,U ∈ C2(R),(3a)

V (x) = V (−x), U(x) = U(−x) for all x ∈ R,(3b)

V ′(x) = 0 i� x ∈ {−1, 0, 1}, U ′(x) = 0 i� x = 0,(3c)

V ′′(−1) = V ′′(1) > 0,(3d)

sup{V ′(x) | x ∈ (−∞,−1) ∪ (0, 1)} ≤ 0, sup{U ′(x) | x ∈ (−∞, 0)} ≤ 0.(3e)

A rather technical restriction on the geometry of V and U is the following: We assume that a constant
Rpot greater than the positive root of V exists such that V and U are linear on R \ (−Rpot, Rpot). In
view of the symmetry of V and U it is su�cient to require that

there exists Rpot > 1 such that for all x ∈ [Rpot,∞) :
V (x) = V ′(Rpot) · (x−Rpot) + V (Rpot) and U(x) = U ′(Rpot) · (x−Rpot) + U(Rpot).

(4)

This condition is needed in order to ensure the existence of an invariant probability measure for X
according to Scheutzow Scheutzow (1983, 1984) which is stated in this setting. We conjecture that this
existence persists provided that the potential gradients of V and U have at least linear growth at in�nity
and the growth of −V ′ is dominated by the growth of βU ′, i. e. lim supR→∞−

V ′(R)
βU ′(R) < 1 (see Proposition

1 below). Henceforth, whenever the reference model is concerned, we will suppose that conditions (3)
and (4) are satis�ed.

By applying results from the literature we check some important properties of equation (2). See Mo-
hammed (1984, 1996) with regard to existence and uniqueness of solutions and the Markov property of
the segment process Xt = [s 7→ X(t − s), s ∈ [−r, 0]], t ≥ 0, Scheutzow (1983, 1984), where conditions
can be found that guarantee the existence of a stationary distribution, and Larssen (2002) for a version
of the Yamada-Watanabe theorem on weak uniqueness.

Proposition 1. Suppose that V , U satisfy conditions (3) and (4). Let σ ≥ 0, β ∈ R be given. Then the

following holds for equation (2):

1. Strong and weak solutions exist for every probability measure on B(C([−r, 0])) as initial distribution,
and the solutions are unique in the respective sense.

2. The segment solution processes enjoy the strong Markov property.

3. If σ > 0 and β > −V
′(Rpot)

U ′(Rpot)
, then a unique invariant probability measure π exists for the segment

process, which converges in total variation to π for every initial distribution.
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Let us have a look at basic parameter settings for equation (2). The simplest and least interesting choice
of parameters is σ = 0 and β = 0, i. e. no noise and no delay. In this case, (2) reduces to a one dimensional
ordinary di�erential equation with two stable solutions, namely −1 and 1, and an instable trivial solution.

The dynamics of the general deterministic delay equation, i. e. σ = 0, β 6= 0, is not obvious for all
combinations β ∈ R, r > 0. In Redmonda et al. (2002) stabilization of the trivial solution and the
corresponding bifurcation points are studied. The parameter region such that the zero solution is stable
is contained in β ≥ 1, r ∈ [0, 1].2 This is not the parameter region we are interested in, here. Recall from
section 1 that stochastic resonance is a phenomenon concerned with an increase of order in the presence
of weak non-zero noise. For large |β| the delay force would be predominant. Similarly, with r small the
noise would not have enough time to in�uence the dynamics.

Indeed, we must be careful in our choice of β lest we end up with a randomly perturbed deterministic
oscillator. Solutions to equation (2) exhibit periodic behaviour even for β > 0 comparatively small.

If β = 0 and σ > 0, then our SDDE (2) reduces to an ordinary SDE. Of interest is again the case of
small noise. A Brownian particle moving along a solution trajectory spends most of its time �uctuating
near the position of the minimum of one or the other potential well, while interwell transitions only
occasionally occur.

Now, let σ > 0 and |β| be small enough so that the corresponding deterministic system does not exhibit
oscillations. Let us suppose �rst that β is positive. Then the e�ect of the delay force should be that of
favouring interwell transitions whenever the Brownian particle is currently in the same potential well it
was in r units of time in the past, while transitions should become less likely whenever the particle is
currently in the well opposite to the one it was in before. Notice that the in�uence of the delay force
alone is insu�cient to trigger interwell transitions. In fact, with σ > 0 not too big, transitions are rare
and a typical solution trajectory will still be found near the position of one or the other minimum of V
with high probability.

Consider what happens if the noise intensity increases. Of course, interwell transitions become more
frequent, while at the same time the intrawell �uctuations increase in strength. But there is an additional
e�ect: As we let the noise grow stronger interwell transitions occur at time intervals of approximately
the same length, namely at intervals between r and 2r, with high probability. The solution trajectories
exhibit quasi-periodic switching behaviour at a non-zero noise level. This is what we may call an instance
of stochastic resonance.

Further increasing the noise intensity leads to ever growing intrawell �uctuations which eventually
destroy the quasi-periodicity of the interwell transitions. When the noise is too strong, the potential
barrier of V has no substantial impact anymore and random �uctuations easily crossing the barrier are
predominant.

Suppose β is negative. The e�ect of the delay force, now, is that of pushing the Brownian particle out of
the potential well it is currently in whenever the particle's current position is on the side of the potential
barrier opposite to the one remembered in the past. Sojourns of duration longer than r, on the other
hand, become prolonged due to the in�uence of the delay which in this case renders transitions less likely.

In order to obtain some kind of regular transition behaviour a higher noise level as compared to the
case of positive β is necessary. Of course, one could change time scales by increasing the delay time
r, thereby allowing for lower noise intensities. In section 5 we will state more precisely what regular
transition behaviour means in case β < 0, yet we will not subsume it under the heading of stochastic
resonance.

3 The two state model in discrete time

Applying the ideas sketched in section 1, we develop a reduced model with the aim of capturing the
e�ective dynamics of the reference model. To simplify things further we start with discrete time. As
the segment process associated with the unique solution to (2), the reference model equation, enjoys the
strong Markov property, it is reasonable to approximate the transition behaviour of that solution by a
sequence of Markov chains. One unit of time in the discrete case corresponds to r/M time units in the
original model, where the delay interval [−r, 0] is divided into M ∈ N equally spaced subintervals.

2Our parameter β corresponds to −α in equation (1.3) of Redmonda et al. (2002).
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After de�ning the approximating Markov chains we obtain an explicit formula for their stationary
distributions which will be useful in calculating, for each M ∈ N, the residence time distribution in the
stationary regime and deriving its density function in the limit of discrete time tending to continuous
time. Finally, based on the residence time distributions, we introduce two simple measures of resonance.

The results on Markov chains we need are elementary and can be found, for example, in Brémaud
(1999), which will be our standard reference.

3.1 A sequence of Markov chains and stationary distributions

LetM ∈ N be the discretization degree, that is the number of subintervals of [−r, 0]. The current state of
the process we have to construct can attain only two values, say −1 and 1, corresponding to the positions
of the two minima of the double-well potential V . Now, there are M + 1 lattice points in [−r, 0] that
delimit theM equally spaced subintervals, giving rise to 2M+1 possible states in the enlarged state space.

Let SM := {−1, 1}M+1 denote the state space of the Markov chain with time unit r/M . Elements of
SM will be written as (M+1)-tuples having {−1, 1}-valued entries indexed (from left to right) from −M
to 0. This choice of the index range serves as a mnemonic device to recall how we have discretized the
delay interval [−r, 0]. Thus, l ∈ {−M, . . . , 0} corresponds to the point l · r/M in continuous time.

To embed the discrete into the time continuous model, let α, γ be positive real numbers. If X(.) is the
unique solution to (2) in the case of �interesting� noise parameter σ and delay parameter β, one may think
of α as the escape rate of X(.) from one of the two potential wells under the condition X(t) ≈ X(t− r)
and of γ as the escape rate of X(.) under the condition X(t) ≈ −X(t− r). All of the parameters of the
reference model, including the delay length and the geometry of the potentials U and V , will enter the
discrete model through the transition rates α and γ, cf. section 5.

In the discrete model of degree M , instead of two di�erent transition rates we have two di�erent
transition probabilities αM and γM with αM = Rsc(α,M), γM = Rsc(γ,M), where Rsc is an appropriate
scaling function. In analogy to the time discretization of a Markov process we set

(5) Rsc : {α, γ} × N 3 (η,N) 7→ η
α+γ · (1− e

−α+γ
N ) ∈ (0, 1).

Let Z = (Z(−M), . . . , Z(0)), Z̃ = (Z̃(−M), . . . , Z̃(0)) be elements of SM . A transition from Z to Z̃ shall
have positive probability only if the following shift condition holds:

(6) ∀ l ∈ {−M, . . . ,−1} : Z̃(l) = Z(l+1).

Example. Take the element (−1, 1,−1) ∈ S2. According to the shift condition, starting from (−1,1,−1)
there are at most two transitions with positive probability, namely to the elements (1,−1, 1) and
(1,−1,−1). ♦

If (6) holds for Z and Z̃ then there are two cases to distinguish which correspond to the conditions
X(t) ≈ X(t− r) and X(t) ≈ −X(t− r), respectively. Denote by pM

ZZ̃
the probability to get from state Z

to state Z̃. Under condition (6) we must have

Z(0) = Z(−M) then pM
ZZ̃

=

{
αM if Z̃(0) 6= Z(0),

1− αM if Z̃(0) = Z(0),

Z(0) 6= Z(−M) then pM
ZZ̃

=

{
γM if Z̃(0) 6= Z(0),

1− γM if Z̃(0) = Z(0).

(7)

The fact that � because of (5) � we always have αM , γM ∈ (0, 1), implies

pM
ZZ̃
6= 0 i� shift condition (6) is satis�ed.(8)

Now de�ne PM := (pM
ZZ̃

)Z,Z̃∈SM
. Clearly, PM is a 2M+1 × 2M+1 transition matrix. For every M ∈ N

we may choose an SM -valued process (XM
n )n∈N0 on some measurable space (ΩM ,FM ) and probability

measures PMZ , Z ∈ SM , on FM such that under PMZ the discrete process XM is a homogeneous Markov
chain with transition matrix PM and initial condition PMZ (XM

0 = Z) = 1.
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If ν is a probability measure on the power set ℘(SM ) then, as usual, PMν will denote the probability
measure on FM such that XM is a Markov chain with transition matrix PM and initial distribution ν
with respect to PMν . When there is no ambiguity about the probability measure PM , we will write Pν
instead of PMν .

From relation (8), characterizing the non-zero entries ofPM , it follows thatPM and the associated Markov
chains are irreducible. They are also aperiodic, because the time of residence in state (−1, . . . ,−1),
for example, has positive probability for any �nite number of steps. Since the state space SM is �nite,
irreducibility implies positive recurrence, and these two properties together are equivalent to the existence
of a uniquely determined stationary distribution on the state space, cf. Brémaud (1999: pp. 104-105).
Therefore, for every M ∈ N, we have a uniquely determined probability measure πM on ℘(SM ) such that
3

(9) πM (Z̃) =
∑
Z∈SM

πM (Z) pM
ZZ̃

for all Z̃ ∈ SM .

There is a simple characterization of the stationary distribution πM in terms of the number of �jumps� of
the elements of SM .4 Let Z = (Z(−M), . . . , Z(0)) be an element of SM , and de�ne the number of jumps
of Z as

J (Z) := #
{
j ∈ {−M+1, . . . , 0}

∣∣ Z(j) 6= Z(j−1)
}
.

The global balance equations (9) then lead to

Proposition 2 (Number of jumps formula). Let M ∈ N. Set α̃M := αM
(1−γM ) , γ̃M := γM

(1−αM ) , η̃M :=
α̃M · γ̃M . Then for all Z ∈ SM the following formula holds

(10) πM (Z) =
1
cM

α̃
bJ (Z)+1

2 c
M γ̃

bJ (Z)
2 c

M =
1
cM

α̃
J (Z) mod 2
M η̃

bJ (Z)
2 c

M ,

where cM := 2 ·
M∑
j=0

(
M
j

)
α̃ j mod 2
M η̃

b j2 c
M .

Let cM be the normalizing constant from proposition 2. By splitting up the sum in the binomial formula
we see that

(11) cM =
(

1 +
√

α̃M
γ̃M

)(
1 +

√
η̃M
)M +

(
1−

√
α̃M
γ̃M

)(
1−

√
η̃M
)M

.

3.2 Residence time distributions

Let YM be the {−1, 1}-valued sequence of current states of XM , that is 5

YMn :=

{
(XM

n )(0) if n ∈ N,
(XM

0 )(n) if n ∈ {−M, . . . , 0}.

Denote by LM (k) the probability to remain exactly k units of time in the same state conditional on the
occurrence of a jump, that is

(12) LM (k) = PπM (YMn = 1, . . . , YMn+k−1 = 1, YMn+k = −1 | YMn−1 = −1, YMn = 1), k ∈ N,

where n ∈ N is arbitrary. The above conditional probability is well de�ned, because

PπM
(
YM−1 = −1, YM0 = 1

)
= πM

(
{(∗, . . . , ∗,−1, 1)}

)
> 0.

Here, {(∗, . . . , ∗,−1, 1)} denotes the set {Z ∈ SM | Z(−1) = −1, Z(0) = 1}. By symmetry the roles of −1
and 1 in (12) are interchangeable. Under PπM not only XM is a stationary process, but � as a coordinate

3For the probability of a singleton {Z} under a discrete measure ν we just write ν(Z).
4At the moment, �number of changes of sign� would be a label more precise for J (Z), but cf. section 4.
5Recall the tuple notation for elements of SM .
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projection � YM is stationary, too, although it does not, in general, enjoy the Markov property. We note
that LM (k), k ∈ N, gives the residence time distribution of the sequence of current states of XM in the
stationary regime.

Observe that LM (.) has a �geometric tail�. To make this statement precise set

(13) KM := PπM
(
YM0 = −1, YM1 = 1, . . . , YMM = 1

∣∣ YM0 = −1, YM1 = 1
)
.

In view of the �extended Markov property� of YM , that is the Markov property of the segment chain
XM , we have

(14) LM (k) = (1− γM ) ·KM · αM · (1− αM )k−M−1, k ≥M + 1,

where (1− γM ) ·KM is the probability mass of the geometric tail. Stationarity of PπM implies

KM =
πM
(
(−1, 1, . . . , 1)

)
πM
(
{(∗, . . . , ∗,−1, 1)}

) .
From proposition 2 we see that

πM
(
(−1, 1, . . . , 1)

)
=

α̃M
cM

,

and arranging the elements of {(∗, . . . , ∗,−1, 1)} according to their number of jumps we obtain

πM
(
{(∗, . . . , ∗,−1, 1)}

)
=

α̃M
2cM

·
((

1 +
√

γ̃M
α̃M

)(
1 +

√
η̃M
)M−1 +

(
1−

√
γ̃M
α̃M

)(
1−

√
η̃M
)M−1

)
.

We therefore have

(15) KM =
2(

1 +
√

γ̃M
α̃M

)(
1 +
√
η̃M
)M−1 +

(
1−

√
γ̃M
α̃M

)(
1−
√
η̃M
)M−1

.

In a similar fashion we can calculate LM (k) for k ∈ {1, . . . ,M}. We obtain

LM (M) =
PπM

(
YM0 = −1, YM1 = 1, . . . , YMM = 1, YMM+1 = −1

)
πM
(
{(∗, . . . , ∗,−1, 1)}

) = γM ·KM ,(16a)

and for k ∈ {1, . . . ,M − 1}

LM (k) =
√
γ̃M
2
·KM ·

(√
γ̃M
(
(1 +

√
η̃M )M−1−k + (1−

√
η̃M )M−1−k)

+
√
α̃M

(
(1 +

√
η̃M )M−1−k − (1−

√
η̃M )M−1−k)).(16b)

More interesting than the residence time distribution in the case of discrete time is to know the behaviour
of this distribution in the limit of discretization degree M tending to in�nity.

Recall the de�nition of scaling function Rsc according to equation (5) for some numbers α, γ > 0. If
αM = Rsc(α,M) and γM = Rsc(γ,M) for all M ∈ N, then � with the usual notation O(.) for the order
of convergence � we have

αM =
α

M
+O(

1
M2

), γM =
γ

M
+O(

1
M2

).(17)

Indeed, if condition (17) holds between the transition probabilities αM , γM , M ∈ N, and some positive
transition rates α, γ, then we can calculate the normalizing constant cM , the �tail constant� KM and the
density function of the residence time distribution in the limit M →∞.
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Proposition 3. Let αM , γM ∈ (0, 1), M ∈ N. Suppose that the sequences (αM )M∈N, (γM )M∈N satisfy

relation (17) for some positive real numbers α, γ. Then cM and KM converge to c∞ and K∞, respectively,
as M →∞, where

c∞ := lim
M→∞

cM =
(

1 +
√

α
γ

)
e
√
αγ +

(
1−

√
α
γ

)
e−
√
αγ = 2 ·

∞∑
k=0

1
k!
αk mod 2 (αγ)b

k
2 c,(18)

K∞ := lim
M→∞

KM =
2(

1 +
√

γ
α

)
e
√
αγ +

(
1−

√
γ
α

)
e−
√
αγ

=
√
α√

α cosh(
√
αγ) +

√
γ sinh(

√
αγ)

.(19)

De�ne a function fL : (0,∞) 7→ R, q 7→ fL(q) := lim
M→∞

M · LM
(
bqMc

)
. Then

(20) fL(q) =


√
γ ·K∞ ·

(√
γ cosh

(√
αγ(1− q)

)
+
√
α sinh

(√
αγ(1− q)

))
if q ∈ (0, 1],

K∞ · α · exp
(
−α(q − 1)

)
if q > 1.

Observe that fL as de�ned in proposition 3 is indeed the density of a probability measure on (0,∞). In
case α = γ this probability measure is just an exponential distribution with parameter α (= γ). If α 6= γ
then fL has a discontinuity at position 1, where the height of the jump is

(21) fL(1+)− fL(1−) = K∞ · (α− γ).

Clearly, the restrictions of fL to (0, 1] and (1,∞), respectively, are still strictly decreasing functions,
and fL(q), q ∈ (1,∞), is again the density of an exponential distribution, this time with parameter α
( 6= γ) and total probability mass K∞. The function fL(q), q ∈ (0, 1), is the density of a mixture of two
�hyperbolic� distributions with the geometric mean

√
αγ of α and γ as parameter and total probability

mass 1−K∞. The ratio between the hyperbolic cosine and the hyperbolic sine density is
√
γ to

√
α.

Recall how at the beginning of this section we interpreted the discretization degree M as the number of
subintervals of [−r, 0], where r > 0 is the length of the delay that appears in equation (2). Let us assume
that the numbers α, γ are functions of the parameters of our reference model, in particular of the noise
parameter σ and the length of the delay r. Then we should interpret the density fL as being de�ned
on normalized time, that is one unit of time corresponds to r units of time in the reference model. The
density of the residence time distribution for the two state model in continuous time should therefore
read

(22) f̃L(t) := 1
rfL

(
t
r

)
, t ∈ (0,∞).

Before we may call f̃L the density of a residence time distribution, we have to justify the passage to the
limit M → ∞ at the level of distributions of the Markov chains XM , which underlie the de�nition of
LM . We return to this issue in section 4.

3.3 Two measures of resonance

Drawing on the residence time distribution of the Markov chain XM we introduce simple characteristics
that provide us with a notion of quality of tuning for the reduced model in discrete time.

We consider XM and the resonance characteristics to be de�ned in the stationary regime only, be-
cause by doing so we can guarantee that an eventual resonance behaviour of the trajectories of XM is
independent of transitory behaviour. We know that PM is a positive recurrent, irreducible and aperiodic
transition matrix and, therefore, the distribution of XM

n converges to πM in total variation as n → ∞
for every initial distribution of X0 (Brémaud, 1999: p. 130). In section 2 we saw an analogous result for
the segment process of a solution to equation (2).

Assume that the transition probabilities αM , γM are related to some transition rates α, γ by means
of a smooth scaling function like (5), for example, such that condition (17) is satis�ed. Under this
assumption we let the discretization degree M tend to in�nity. Assume further that α, γ are functions
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of the parameters of the reference model, in particular, that α = α(σ), γ = γ(σ) are C2-functions of the
noise parameter σ ∈ (0,∞). The resonance characteristics can then be understood as functions of σ.

Recall that the residence time distribution LM has a geometric tail in the sense that LM (k), k ≥M+1,
renormalized by the factor (1−γM ) ·KM is equivalent to a geometric distribution on N\{1, . . . ,M} with
KM as de�ned by (13). The distribution which LM induces on {1, . . . ,M} is given � up to a renormalizing
factor � by equations (16b) and (16a). A natural characteristic seems to be the jump in the density of the
residence time distribution fL obtained above. In discrete time, i. e. with discretization degree M ∈ N,
we set

(23) υM := M ·
(
LM (M+1)− LM (M)

)
.

Because of (14), (16a) and (21) we have

υM = M ·KM ·
(
(1− γM ) · αM − γM

)
, υ∞ := lim

M→∞
υM = K∞ · (α− γ).(24)

To consider the height of the discontinuity of fL as a measure of resonance has already been proposed
by Masoller (2003). Following her proposal we de�ne what stochastic resonance means according to the
jump characteristic.

De�nition 1. Let M ∈ N ∪ {∞}, and suppose that the following conditions hold:

(i) υM as a function of the noise parameter σ is twice continuously di�erentiable,

(ii) lim
σ↓0

υM (σ) = 0,

(iii) υ′M has a smallest root σopt ∈ (0,∞).

If υM has a global maximum at σopt, then let us say that the Markov chain XM or, in case M =∞, the
reduced model de�ned by the family (XN )N∈N exhibits stochastic resonance and call σopt the resonance
point. If υM has a global minimum at σopt, then let us say that the Markov chain XM (or, in case
M =∞, the reduced model) exhibits pseudo-resonance and call σopt the pseudo-resonance point.

Alternatively, we may take the probability of transitions in a certain time window as characteristic of the
resonance e�ect. For M ∈ N and q ∈ (0, 1] de�ne

κ̂M :=
M∑
k=1

LM (k), κ
(q)
M :=

b(q+1)Mc∑
k=M+1

LM (k).(25)

By summation over k we see from (14) that

κ̂M = 1− (1− γM ) ·KM , κ
(q)
M = (1− γM ) ·KM ·

(
1− (1− αM )bqMc

)
,(26)

and letting M tend to in�nity we get

κ̂∞ := lim
M→∞

κ̂M = 1−K∞, κ(q)
∞ := lim

M→∞
κ

(q)
M = K∞ · (1− e−q·α).(27)

Recall thatM steps in time of the chain XM or the {−1, 1}-valued process YM correspond to an amount
of time r in the reference model. Thus, κ̂M corresponds to the probability of remaining at most time r
in one and the same state, while κ(q)

M approximates the probability of state transitions occuring in a time
window corresponding to (r, (q+1)r] of length q · r given a transition at time zero.

In (25) we could have allowed for a �window width� q > 1. The interesting case, however, is a small

time window, because then κ(q)
M measures the probability of transitions within the second delay interval.

For q = 1 the two components of our resonance measure correspond to time windows of equal length,
that is κ̂M gives the probability of transitions within the �rst delay interval, while κ(1)

M is the probability
of hopping events occurring in the second delay interval. Since LM is geometrically distributed on
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N \ {1, . . . ,M}, κ(1)
M majorizes the transition probability for all time windows of the same length starting

after the end of the �rst delay interval. Let us write κM for κ(1)
M .

The idea of the following de�nition is to maximize quasi-periodicity by �nding a noise level such that
sojourns in the same state become neither too long nor too short. Here, short sojourns are those that
last less than the length of one delay interval, long sojourns those that last longer than the length of
two delay intervals. Observe that if the current state of XM remains the same for more than M steps in
discrete time, then the in�uence of the delay will be constant until a transition occurs.

De�nition 2. Let M ∈ N ∪ {∞}, and suppose that the following conditions hold:

(i) κM as a function of the noise parameter σ is twice continuously di�erentiable with values in the
unit interval,

(ii) lim
σ↓0

(κ̂M + κM )(σ) = 0,

(iii) κM has a unique global maximum at σopt ∈ (0,∞).

If κM (σopt) > κ̂M , then let us say that the Markov chain XM or, in case M = ∞, the reduced model
de�ned by the family (XN )N∈N exhibits stochastic resonance of strength κM (σopt), and call σopt the
resonance point, else let us speak of pseudo-resonance and call σopt the pseudo-resonance point.

In the above de�nition we might have taken a shorter time window than the second delay interval. A
natural choice would have been the probability of transitions occuring in a time window corresponding
to (r, (1 + q)r] normalized by the window width. In the limit M →∞ we obtain

(28) lim
q↓0

1
q
· κ(q)
∞ = K∞ · α = fL(1+).

Here, fL is the density of the residence time distribution from proposition 3 and fL(1+) is the right-hand
limit appearing in equation (21), which gives the height of the discontinuity of fL.

Of course, de�nition 2 could be modi�ed in other ways, most importantly by allowing the time window
that corresponds to κM to �oat. This would be necessary for a distributed delay. Suppose that in the
reference model instead of the point delay we had a delay supported on [−r,−δ] for some δ > 0. Then
a reasonable starting point for a measure of resonance could be a time window of length r with its left
boundary �oating from δ to r. Notice that a distributed delay (in the reference or in the reduced model)
can be chosen in such a way as to render continuous the density fL.

4 The two state model in continuous time

Our aim in this section is to justify the passage from time discretization degree M to the limit M →∞.
Recall that we proved convergence for the residence times as M → ∞ to reasonable limiting quantities.
So the section will discuss limiting processes for which these are the residence times in equilibrium. For
M ∈ N the Markov chain XM takes its values in the �nite space SM with cardinality 2M+1. The �rst
thing to be done, therefore, is to choose a common state space for the Markov chains. This will be
D0 := D{−1,1}([−r, 0]), the space of all {−1, 1}-valued cadlag functions, i. e. right-continuous functions
with left limits, on the interval [−r, 0], endowed with the Skorokhod topology.6

Recall how in section 3.1 we partitioned the delay interval [−r, 0]. Time step n ∈ {−M,−M+1, . . .}
with respect to the chain XM was said to correspond to point n · rM in continuous time. Keeping in
mind this correspondence we embed the spaces SM , M ∈ N, into D0, which allows us to look upon the
stationary distributions πM as being probability measures on B(D0) and to view the random sequences
XM as being D0-valued Markov chains.

Now, because of shift condition (6) one may regard XM as being a process with trajectories in
D∞ := D{−1,1}([−r,∞)), the space of all {−1, 1}-valued cadlag functions on the in�nite interval [−r,∞),

6Cf. Billingsley (1999: Ch. 2).
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endowed with the Skorokhod topology.7 If the discretization of time is taken into account, then the chain
XM induces a probability measure on B(D∞) for every initial distribution over SM ⊂ D0.

First, one establishes weak convergence of the stationary distributions or, equivalently, convergence
of the πM with respect to the Prohorov metric induced by the Skorokhod topology doS on D0, then weak
convergence of the laws on B(D∞).

The embedding of SM , the state space of the Markov chain XM , into D0 in a sense reverses what one
does when approximating solutions to stochastic delay di�erential equations by Markov chains in discrete
time.8 Approximation results of this kind can be found in Scheutzow (1983, 1984). The method is quite
powerful as Lorenz (2003) shows, where weak convergence of the approximating processes to solutions
of multi-dimensional autonomous SDDEs is related to a martingale problem that can be associated with
the coe�cients of the target equation.

Of course, D0 is a toy space compared to C([−r, 0],Rd). Notice, however, that linear interpolation as
in the case of C([−r, 0],Rd) is excluded, because the only continuous functions in D0 are the two constant
functions −1 and 1.

Let M ∈ N, Z ∈ SM , and associate with Z = (Z(−M), . . . , Z(0)) a function fZ : [−r, 0]→ {−1, 1} de�ned
by

fZ(t) := Z(0) · 1{0}(t) +
−1∑

i=−M
Z(i) · 1[i rM ,(i+1) rM )(t), t ∈ [−r, 0].

Clearly, fZ ∈ D0. Hence, ι̃M : Z 7→ fZ de�nes a natural injection SM ↪→ D0, which induces the following
embedding of probability measures on ℘(SM ) into the set of probability measures on B(D0).

M1
+(SM ) 3 µ 7→ µ̃ :=

∑
Z∈SM

µ(Z) · δfZ ∈M1
+(D0),

where δf is the Dirac or point measure concentrated on f ∈ D0.
Denote by π̃M the probability measure on B(D0) associated with the stationary distribution πM for

the chain XM , and write X̃M for the corresponding D0-valued Markov chain. Since all we have done so
far is a reinterpretation of the state space the results obtained in section 3 regarding XM are also valid
for X̃M .

Let M ∈ N. Let ν be a distribution on ℘(SM ) and denote by PMν the probability measure on FM such

that XM is a Markov chain with transition matrix PM and initial distribution XM
0

d∼ ν. For a �point
distribution� on Z ∈ SM write PMZ .

For f ∈ D0 let Z(f) be the element of SM such that Z(i) = f( r
M ·i) for all i ∈ {−M, . . . , 0}. Let

(YMn )n∈{−M,−M+1,...} be the sequence of current states of XM as de�ned at the beginning of section 3.2.
Write

ỸM (t) := YMb trMc
, t ≥ −r.

For A ∈ B(D∞) set

P̃Mf (A) := PMZ(f)

(
ỸM ∈ A

)
, P̃M (A) := PMπM

(
ỸM ∈ A

)
,

thereby de�ning probability measures on B(D∞). Note that P̃Mf , P̃M are well de�ned and correspond to

the distribution of XM with XM
0

d∼ Z(f) and XM
0

d∼ πM , respectively.

The proof of convergence follows the usual strategy for this kind of problem. First, we check that the
closure of {π̃M | M ∈ N} is compact inM1

+(D0) with respect to the Prohorov topology. Now, (D0, d
◦
S)

is also complete. According to the Prohorov compactness criterion it is therefore su�cient to show that
the set {π̃M |M ∈ N} is tight.

For the second step, choose any limit point π̃ ∈M1
+(D0) of {π̃M |M ∈ N}, which exists according to

the �rst step. It remains to show that π̃ is the unique limit point of (π̃M ).

7Cf. Billingsley (1999: � 16) or Ethier and Kurtz (1986: Ch. 3 � 5).
8Under suitable conditions the approximating time series converge in distribution to the (weakly unique) solution of the

SDDE.
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Proposition 4. Suppose the sequences of transition probabilities (αM )M∈N, (γM )M∈N satisfy relation

(17) for some transition rates α, γ > 0. Then there is a probability measure π̃ on B(D0) such that π̃M
converges weakly to π̃ as M tends to in�nity.

Weak convergence of the sequence (P̃M ) in M1
+(D∞) can be demonstrated applying results from semi-

martingale theory as developed in Jacod and Shiryaev (1987).

Proposition 5. Suppose scaling relation (17) holds. Let P̃M , M ∈ N, be de�ned as above, and let π̃ be

the weak limit of (πM )M∈N according to proposition 4. Then there is a probability measure P̃ ∈M1
+(D∞)

such that P̃M
w→ P̃ and the restriction of P̃ to B(D0) is given by π̃.

Let M ∈ N and LM (k), k ∈ N, be the residence time distribution from section 3.2. One �rst checks that

(29) LM (k) = P̃M
(
ξ = r

M · k
)
, k ∈ N,

where ξ is the interjump time. Suppose that scaling relation (17) is satis�ed. Let P̃ ∈ M1
+(D∞) be the

weak limit of (P̃M ) according to proposition 5, and let f̃L be as de�ned by (22). Then it can be shown
that f̃L is the density of the residence time distribution associated with P̃ .

5 Connection between the reduced and the reference model

The aim of this section is to provide a heuristic way of establishing the missing link between our original
model, which is given by equation (2), and the reduced model developed in section 3. The situation here
is quite similar to the one that was studied by Tsimring and Pikovsky (2001), and we will closely follow
their approach in deriving a relation between the transition rates α, γ and the parameters of the original
model.

The main ingredient in �nding such a relation is the so-called Kramers rate, which gives an asymptotic
approximation of the time a Brownian particle needs in order to escape from a parabolic potential well
in the presence of white noise only as the noise intensity tends to zero. By means of the Kramers rate
we calculate escape rates from potentials that should mirror the �e�ective dynamics� of solutions to
equation (2). The resonance characteristics de�ned in subsection 3.3 can then be written down explicitly
as functions of the noise parameter σ, which allows us to numerically calculate the resonance point and to
compare the optimal noise intensity according to the two state model with the behaviour of the original
model.

Let U be a smooth double well potential with the positions of the two local minima at xleft and xright,
respectively, xleft < xright, the position of the saddle point at xmax ∈ (xleft, xright) and such that
U(x)→∞ as |x| → ∞. An example for U is the double well potential V from sections 1 and 2. Consider
the SDE

(30) dX(t) = −U ′
(
X(t)

)
dt + σ · dW (t), t ≥ 0,

where W (.) is a standard one dimensional Wiener process with respect to a probability measure P and
σ > 0 is a noise parameter. Denote by Xx,σ a solution of equation (30) starting in Xx,σ(0) = x, x ∈ R.
With y ∈ R let τy(Xx,σ) be the �rst time Xx,σ reaches y, that is we set

τy(Xx,σ) := inf{t ≥ 0 | Xx,σ = y}.

Since we are interested in the transition behaviour of the di�usion, we need estimates for the distribution
of τy(Xx,σ) when x and y belong to di�erent potential wells.

In the limit of small noise the Freidlin-Wentzell theory of large deviations (Freidlin and Wentzell,
1998) allows to determine the exponential order of τy(Xx,σ) by means of the so-called quasipotential
Q(x, y) associated with the double well potential U . One may think of Q(x, y) as measuring the work a
Brownian particle has to do in order to get from position x to position y. The following transition law
holds.
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Theorem 1 (Freidlin-Wentzell). Let Q be the quasipotential associated with U , let x ∈ (−∞, xmax),
y ∈ (xmax, xright]. Set ql := Q(xleft, xmax). Then

lim
σ↓0

σ2 · ln
(
EP
(
τy(Xx,σ

))
= ql,(31a)

lim
σ↓0

P

(
exp
(ql − δ

σ2

)
< τy(Xx,σ) < exp

(ql + δ

σ2

))
= 1 for all δ > 0.(31b)

Moreover, Q(xleft, xmax) = 2
(
U(xmax)− U(xleft)

)
. If x ∈ (xmax,∞), y ∈ [xleft, xmax) then ql has to be

replaced with qr := Q(xright, xmax).

We notice that in travelling from position x in the left potential well to y ∈ (xmax, xright], a position in
the downhill part of the right well, the transition time in the limit of small noise is determined exclusively
by the way up from position xleft of the left minimum to position xmax of the potential barrier.

A typical path of Xx,σ, if σ > 0 is small, will spend most of its time near the positions of the two
minima of the double well potential. Typically, the di�usion will reach the minimum of the potential well
where it started, before it can cross the potential barrier at xmax and enter the opposite well.

Theorem 1 implies the existence of di�erent time scales for equation (30). On the one hand, there is
the time scale induced by the Wiener process, where one unit of time can be chosen as 1

σ2 , that is the
time it takes the quadratic variation process associated with σW (.) to reach 1. On the other hand, there
is the mean escape time given by (31a), which is proportional to exp

(
2L
σ2

)
, where L > 0 is the height of

the potential barrier. Clearly, with σ > 0 small, the time scale induced by the white noise is negligible in
comparison with the escape time scale.

Moreover, if U(xleft) 6= U(xright), then there are two di�erent heights Ll and Lr for the potential
barrier depending on where the di�usion starts. Suppose, for example, that Ll < Lr. According to (31b),
waiting a time of order exp

(
2Ll+δ
σ2

)
with 0 < δ < 2(Lr − Ll) one would witness transitions from the left

well to the right well, but no transition in the opposite direction. If the waiting time was of an exponential
order less than exp

(
2Ll
σ2

)
, there would be no interwell transitions at all, where �no transitions� means that

the probability of a transition occurring tends to zero as σ → 0. Thus, by slightly and periodically tilting
a symmetric double well potential quasi-periodic transitions can be enforced provided the tilting period
is of the right exponential order. This is the mechanism underlying stochastic resonance.

Now, let us suppose that τy(Xx,σ), where x < xmax and y ∈ (xmax, xright], is exponentially distributed
with rate rK > 0 such that

(32) rK ∼ exp
(
−

2
(
U(xmax)− U(xleft)

)
σ2

)
.

Equations (31a) and (31b) of theorem 1 would be ful�lled. In the physics literature it is generally assumed
that τy(Xx,σ) obeys an exponential distribution with rate rK provided σ > 0 is su�ciently small. This is
known as Kramers' law, and rK is accordingly called the Kramers rate of the respective potential well.
It is, moreover, assumed that the proportionality factor missing in (32) can be speci�ed as a function of
the curvature of U at the positions of the minimum and the potential barrier, respectively. The Kramers
rate thus reads

(33) rK = rK(σ,U) =

√
| U ′′(xleft)U ′′(xmax) |

2π
exp

(
−2| U(xleft)− U(xmax) |

σ2

)
.

Observe that both the assumption of exponentially distributed interwell transition times and formula
(33) for the Kramers rate are empirical approximations, where the noise parameter σ is supposed to be
su�ciently small.

Well known results for one-dimensional di�usions, extended to the multi-dimensional framework in
recent papers by Bovier et al. (2002a,b), show that in the limit of small noise the distribution of the
interwell transition time indeed approaches an exponential distribution with a noise-dependent rate that
asymptotically satis�es relation (32). The order of the approximation error can also be quanti�ed. For
our purposes, however, Kramers' law and the Kramers rate as given by equation (33) will be good enough.
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In subsection 3.1 we introduced the transition rates α, γ as being switching rates in the two state model
conditional on whether or not the current state agrees with the last remembered state. The idea, now, is
to �nd two �e�ective� potentials Uα, Uγ such that α is proportional to the Kramers rate describing the
escape time distribution from potential Uα, while γ is proportional to the Kramers rate for potential Uγ ,
where the Kramers rate is given by formula (33). More precisely, we must have

(34) α = α(σ) = r · rK(σ,Uα), γ = γ(σ) = r · rK(σ,Uγ).

Note that the inclusion of the delay time r as a proportionality factor is necessary, because in the
construction of our two state model we took one unit of time as equivalent to the length of the interval
[−r, 0].

There is an important point to be made here. In the discussion of section 3 we assumed that X(t) ≈ 1 or
X(t) ≈ −1. The error of this approximation is of �rst order in β, and its contribution to the delay force
is proportional to β2 U ′′(1) +O(β3), i. e. of the second order in β. As long as we content ourselves with
an approximation of �rst order in β, two states corresponding to the positions of the minima around −1
and 1 should be enough in order to model the e�ective dynamics of the reference equation. If we wanted
to capture the in�uence of second order terms in the delay force, we would have to build up a model of
four states corresponding to the positions ±xα, ±xγ of the minima of the distorted potential V .9

The problem disappears, of course, if U ′ is constant except on a small symmetric interval (−δ, δ)
around the origin (see Fig. 1 c), for in this case the delay force would not depend on the particular value
of X(t− r) provided |X(t− r)| ≥ δ.

Let L := V (0)−V (1) be the height of the potential barrier of V . Set ρ := |V ′′(0)V ′′(1)|, η := V ′′′(1)U ′(1)
(V ′′(1))2 ,

η̃ := U ′(1)
L . Neglecting terms of order higher than one, from (33) we obtain

α = α(σ) ≈ r ·
√
ρ (1− η β)

2π
exp

(
−2L (1− η̃ β)

σ2

)
,(35a)

γ = γ(σ) ≈ r ·
√
ρ (1 + η β)

2π
exp

(
−2L (1 + η̃ β)

σ2

)
.(35b)

Recall that the Kramers rate is exact only in the small noise limit. Thus, for the formulae (35a) to
become the actual rates of escape it is necessary that σ tends to zero. If the rates α, γ as functions of
r and σ are to converge to some �nite non-zero values, we must have σ → 0 and r → ∞ such that 1

σ2

and ln(r) are of the same order. There remain errors due to the �rst order approximations of V , V ′′ and
U , which make sense only if V , U are su�ciently regular and the delay parameter β is of small absolute
value.

In subsection 3.3 we de�ned two measures of resonance, namely the jump height υM of the residence
time distribution density and the probabilities κ̂M , κM of transitions within the �rst and second delay
interval, respectively.10 Recall that M ∈ N ∪ {∞} is the degree of discretization, where M =∞ denotes
the limitM →∞. We restrict attention to the caseM =∞, that is to the two state model in continuous
time.

Suppose the transition rates α, γ are functions of the reference model parameters as given by (35a) read
as equalities. In particular, α, γ are functions of the delay length r and the noise parameter σ. Let us
further suppose that the delay parameter β is of small absolute value, r > 0 is big enough so that the
critical parameter region for σ lies within the scope of formula (35a), and that the remaining parameters
are su�ciently nice.

As a consequence of the exponential form the Kramers rate possesses, we notice that

√
αγ = r ·

√
ρ

2π
· 4
√

1− η2β2 exp
(
− 2L
σ2

)
≈ r ·

√
ρ

2π
exp

(
− 2L
σ2

)
.

9Cf. also the numerical results in Curtin et al. (2004).
10The jump height measure corresponds to a measure of resonance proposed by Masoller (2003).
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In �rst order of β, the geometric mean
√
αγ of α, γ coincides with the transition rate arising in case

β = 0, that is when there is no delay. Compare this with proposition 3, which states that the residence
time density f̃L is distributed on the �rst delay interval according to a mixed hyperbolic sine - cosine
distribution with parameter

√
αγ.

The conditions of de�nitions 1 and 2 are satis�ed. If β > 0, then the reduced model exhibits stochastic
resonance according to both de�nitions. According to the jump height measure there is no e�ect in case
β = 0 and pseudo-resonance in case β < 0, while the time window measure does not distinguish between
β = 0 and β < 0, classifying both cases as pseudo-resonance.

Let us specify the potentials V and U according to the model studied by Tsimring and Pikovsky (2001),
that is V is the standard quartic potential and U a parabola, see Fig. 1. For the constants appearing in
formula (35a) we have

L = 1
4 , ρ = 2, η =

3
2
, η̃ = 4.

With r = 500, β = 0.1, for example, we obtain the resonance point συ ≈ 0.32 according to the jump
height measure, while the time window measure yields σκ ≈ 0.29 with probability κ∞(σκ) ≈ 0.88 for
transitions occurring in the second delay interval.

Assume β is negative. Again, both measures yield an optimal noise level. With β = −0.1 we have
συ ≈ 0.30 as the noise level that maximizes the jump height in f̃L. According to the time window
measure optimal noise level is at σκ ≈ 0.34, but κ∞(σκ) ≈ 0.02, that is sojourns of duration between r
and 2r are rare.

Figure 2: Graphs on [0, 2] of the density fL of the residence time distribution in normalized time. Parameters of
the original model: r = 500, a) σ = 0.30, β = 0.1, b) σ = 0.30, β = −0.1, c) σ = 0.35, β = −0.1.

There seems to be a discrepancy, now, between the predicted optimal noise level and the level of �most
regular� transition behaviour which one would expect from numerical simulation. This is true especially
with regard to the jump height measure, the pseudo-resonance point συ being too low.

The problem is that the expected residence time at the level of optimal noise in case β < 0 is long
compared with r. In spite of the fact that long residence times are rare, there is a high probability of
�nding a solution path remaining in one and the same state for the length of many delay intervals or of
witnessing a quasi-periodic transition behaviour break down.

For example, let σ = 0.30, β = 0.1. The expected residence time is then about 1.16r, while with
σ = 0.30 and β = −0.1 the expected residence time is around 4.62r. Moreover, with β negative the
exponential part of the residence time distribution has a �heavy tail� in the sense that long sojourns
receive a relatively high probability, cf. Fig. 2.

These properties of the residence time distribution support the distinction made in de�nitions 1 and
2 between stochastic resonance and pseudo-resonance.

6 Conclusions and open questions

The main advantage of the two state model which has been our concern for most of this work is that it
provides a tool for the analysis of the phenomenon of noise-induced resonance in systems with delay.
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The reference model introduced in section 2 is a more elaborate system exhibiting stochastic resonance.
Basic features of this model are the extended Markov property and the existence of an invariant probability
measure. Both properties carry over to the two state model.

By �rst studying the two state model in discrete time we obtained an explicit characterization of its
stationary distribution. It was thus possible to calculate the residence time distribution which in turn
served as starting point for the de�nition of two simple measures of resonance. The characterization
of the stationary distributions in discrete time together with the passage to the time limit also allows
to calculate measures of resonance di�erent from those considered here, for example the entropy of a
distribution.

In section 5 a heuristic link between the reference and the two state model was outlined. The two
state model seems to reliably mirror those aspects of the reference model that are responsible for the
phenomenon of stochastic resonance. Observe that we did not show whether the dynamics of the original
model in the limit of small noise is reducible to the two state model nor whether the resonance measures
considered here are indeed robust under model reduction.

There are di�erent ways in which to proceed. The reference model could be modi�ed, for example,
by substituting a distributed delay for the point delay. Clearly, the white noise could be replaced with
noise of di�erent type, and higher dimensional equations may be considered.

Lastly, the passage to continuous time as addressed in section 4 should be a special case of more
general convergence results for continuous time Markov chains with delay.
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