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Abstract

An iterative procedure for constructing subsolutions of deterministic or

stochastic optimal control problems in discrete time with continuous state

space is introduced. The procedure generates a non-decreasing sequence of

subsolutions, giving true lower bounds on the minimal costs. Convergence

of the values at any fixed initial state is shown.
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1 Introduction

In this article we introduce a scheme for constructing subsolutions of determin-

istic or stochastic optimal control problems in discrete time with general state

space.

The optimal control problems considered here belong to the class of semi-

continuous models studied in Bertsekas and Shreve (1996, Sect. 8.3). We restrict
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attention to systems controlled over a finite time horizon. Performance is mea-

sured in terms of expected costs, which are to be minimized. The procedure

generates a non-decreasing sequence of subsolutions. In each step, state trajec-

tories starting from a fixed initial state are computed which serve to update the

current subsolution. The values of the subsolutions at the initial state will be

shown to converge from below to the minimal costs, or value function, of the

control problem.

Using subsolutions as approximations to the value function automatically

yields one-sided a posteriori error bounds, namely, lower bounds on the value

function. For minimization problems, upper bounds can always be obtained

by choosing any control policy and calculating the associated costs. The sub-

solutions produced by our scheme are also used for control synthesis, and the

costs associated with the resulting policies turn out, under mild conditions, to

converge to the minimal costs. In the case of stochastic problems, calculating

expected costs for any fixed control policy will typically involve Monte Carlo

simulation: State trajectories are computed according to the dynamics and the

given control policy based on samples of the noise random variables. The re-

sulting cost estimates are upper bounds on the value function to within a Monte

Carlo error margin only. In the case of deterministic dynamics, there is no Monte

Carlo error. Subsolutions, on the other hand, nowhere exceed the value function

and thus always give perfectly reliable lower bounds.

For the class of control problems considered here, the Principle of Dynamic

Programming (PDP) holds. Since time is discrete, the control problems can

in theory be solved by backward recursion according to the PDP. This yields

an implementable and feasible method only if the state space is finite and the

number of states not too big. The state space would have to be discretized if it

were, say, a region in Rd, as is the case for a large class of controlled continuous-

time stochastic processes and their discrete-time analogues, and the number of

discrete states would grow exponentially in the dimension d. This is related to

the so-called curse of dimensionality, which affects broad classes of stochastic

optimal control problems (cf. Chow and Tsitsiklis, 1989).

The scheme proposed here avoids discretization of the state space. By pro-

ducing two-sided a posteriori error bounds, it provides approximation guaran-

tees for each individual control problem. While the method is not simply an

application of dynamic programming, the PDP is an essential ingredient in the

proof of convergence. We present the scheme and give a proof of convergence

in a general context, our main assumption on the control problems being that
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of preservation of Lipschitz continuity by the associated Bellman operators. As

discussed in Section 6, the method can be adapted to other classes of control

problems, which are characterized in terms of certain regularity properties pre-

served by their Bellman operators (Lipschitz continuity here, convexity in the

case of convex control problems).

Subsolutions will be represented as pointwise maxima of certain base func-

tions, in this paper, conical surfaces, a choice related to the assumption of preser-

vation of Lipschitz continuity. Representation of functions as pointwise maxima

or minima of certain elementary functions plays an important role in the appli-

cation of max-plus (or min-plus) methods to optimal control; see, for instance,

McEneaney (2011), where a numerical procedure for a class of discrete-time

stochastic optimal control problems is developed.

In Dupuis and Wang (2007) efficient dynamic importance sampling schemes

are constructed based on subsolutions. The optimization problem there is a

deterministic differential game in continuous time, and subsolutions are con-

structed for the outer maximization problem. The corresponding concept in the

present context would be that of supersolutions.

A classical approach to optimal control is via the linear programming formu-

lation (e.g. Hernández-Lerma and Lasserre, 1996, Ch. 6). The approach replaces

the original control problem by a pair of infinite-dimensional constrained linear

problems. This representation can serve as a starting point for building approx-

imation procedures; see, for instance, Helmes and Stockbridge (2008) and the

references therein. A numerical procedure yielding two-sided a posteriori error

bounds for a special class of controlled continuous-time deterministic systems is

developed in Lasserre et al. (2008).

A reformulation for problems of optimal control of possibly degenerate Itô

diffusions in terms of linear minimization problems with convex constraints is

given in Fleming and Vermes (1989). Based on convex duality and the equiva-

lence between the original problem and its reformulation, it is shown that the

value function of the original problem can be represented as the pointwise supre-

mum over all smooth subsolutions of the associated Hamilton-Jacobi-Bellman

equation. In Hernández-Hernández et al. (1996), based on linear programming,

the authors show that for a broad class of continuous-time, finite horizon deter-

ministic models, the value function is the limit of a sequence of smooth approx-

imate subsolutions.

A different approach to discrete-time stochastic control problems, which al-

lows to compute two-sided bounds, has recently been proposed by Rogers (2007),
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also see Belomestny et al. (2010). It is assumed that the effect of the control

on the dynamics can be represented as a change of measure w.r.t. some refer-

ence probability measure which can be thought of as the law of an uncontrolled

Markov chain. Under this hypothesis, the problem of minimizing expected costs

(maximizing expected gain) for a fixed initial state over all non-anticipating

strategies can be rewritten as a pathwise optimization problem over determinis-

tic strategies. The constraint of non-anticipativity of strategies is accounted for

by a Lagrangian martingale term.

A Lagrange multiplier formulation is also the basis for the approach taken

in Kuhn (2009), where certain continuous-time stochastic control problems are

approximated using stage aggregation, producing upper as well as lower bounds

on the minimal costs. The resulting optimization problems are meant to be

solved by scenario-tree methods.

The rest of the paper is organized as follows. In Section 2 we describe

the class of discrete-time optimal control problems and discuss basic proper-

ties. The procedure for constructing subsolutions is introduced in Section 3.

Convergence is first studied for the special and simpler case of deterministic

systems in Section 4, and then in Section 5 in greater generality for stochastic

systems. Section 6 contains remarks on implementation, modifications and pos-

sible extensions of the procedure. In Appendix A we compare our procedure to

the classical method known as policy iteration or approximation in policy space

(cf. Puterman, 1994, p. 264). Appendix B contains some calculations regarding

discrete-time approximations to controlled Itô diffusions.

2 The class of control problems

The dynamics of the optimal control problems are described as controlled time

inhomogeneous Markov chains with state space X , action space Γ, and distur-

bance space Y. Here, X and Y are Borel subsets of complete and separable

metric spaces (X̄ , ρX) and (Ȳ, ρY ), respectively, and (Γ, ρΓ) is a separable met-

ric space assumed to be compact. The evolution of the system is determined by

a Borel measurable function Ψ: N0 ×X × Γ× Y → X , the system function.

Let µ be a probability measure on the Borel σ-algebra of Y; µ will be called

noise distribution. Let us call disturbance or noise variable any Y-valued random

variable that has distribution µ. Define the set U of Markov feedback control

policies as the set of all functions u : N0 ×X → Γ which are Borel measurable.

In order to determine the pathwise evolution of the system state, choose a
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complete probability space (Ω,F ,P) carrying an independent sequence (ξj)j∈N
of noise variables. Given any control policy u ∈ U , initial state x0 ∈ X , and

initial time j0 ∈ N0, the corresponding state sequence is recursively defined, for

each ω ∈ Ω, by

Xj0(ω)
.
= x0, Xj+1(ω)

.
= Ψ

(
j,Xj(ω), u(j,Xj(ω)), ξj+1(ω)

)
, j ≥ j0.(1)

Performance is measured in terms of expected costs over a finite deterministic

time horizon, denoted by N ∈ N. Let f : N0 × X × Γ → R, F : X → R be

lower semicontinuous functions bounded from below, the running costs and the

terminal costs, respectively. Define the cost functional J : {0, . . . , N}×X ×U →
R ∪ {∞} by setting

(2) J(j0, x0, u)
.
= E

N−1∑
j=j0

f
(
j,Xj , u(j,Xj)

)
+ F (XN )

,
where (Xj)j≥j0 is the state sequence generated according to Eq. (1) with control

policy u and Xj0 = x0. Notice that J depends on the noise variables only

through their distribution and does not depend on the particular choice of the

underlying probability space.

The value function V : {0, . . . , N}×X → R∪ {∞} of the problem is defined

by

(3) V (j0, x0)
.
= inf

u∈U
J(j0, x0, u).

For any j ∈ N0, define an operator Lj , the one-step Bellman operator at

time j, acting on functions ϕ : X → R ∪ {∞} according to

Lj(ϕ)(x)
.
= inf

γ∈Γ

{
f(j, x, γ) +

∫
Y
ϕ
(
Ψ(j, x, γ, y)

)
µ(dy)

}
, x ∈ X .(4)

The application of Lj to ϕ produces a function Lj(ϕ) : X → R ∪ {∞} that is

lower semicontinuous and bounded from below whenever ϕ : X → R ∪ {∞} is

lower semicontinuous and bounded from below.

Let us make the following assumptions:

(A1) The system function Ψ is Borel measurable and Ψ(j, x, ., .) is continuous

on Γ× Y for each (j, x) ∈ N0 ×X .

(A2) The space of control actions Γ is compact.
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(A3) The cost coefficients f , F are nonnegative and lower semicontinuous.

(A4) Costs are finite: J(0, x, u) <∞ for all x ∈ X , u ∈ U .

(A5) Lipschitz continuity is preserved: There are constants c0, c1 > 0 such

that, whenever ϕ : X → R is globally Lipschitz continuous with Lipschitz

constant Lϕ, then, for any j ∈ {0, . . . , N−1}, Lj(ϕ) is globally Lipschitz

continuous with Lipschitz constant not greater than c0 + Lϕ(1 + c1).

Assumptions (A1) – (A4) guarantee that optimal Markov feedback policies

exist and that the Principle of Dynamic Programming holds.

Lemma 1 (PDP). Grant Assumptions (A1) – (A4). Then for all x ∈ X and

all j ∈ {0, . . . , N−1},

V (j, x) = Lj
(
V (j+1, .)

)
(x).

Moreover, an optimal Markov feedback control policy exists, that is, there is

u ∈ U such that V (j, x) = J(j, x, u) for all (j, x) ∈ {0, . . . , N−1} × X .

Proof. The assertion follows from Proposition 8.6 in Bertsekas and Shreve (1996,

p. 209). Notice that, in our set-up, there is an explicit time variable, namely,

the index j ∈ {0, . . . , N}.

The class of control policies can be enlarged in different ways without chang-

ing the value function. In Section 5 we will need to consider the following weak

formulation of our control problems; cf. Definition 2.4.2 in Yong and Zhou (1999,

p. 64) in the context of continuous-time models.

Let Û denote the set of all quadruples consisting of a complete probability

space (Ω,F ,P), a filtration (Fj)j∈N0 in F , a sequence (ξj)j∈N of noise variables,

and a sequence (γj)j∈N0 of Γ-valued random variables on (Ω,F) such that ξj is

Fj-measurable, ξj+l is independent of Fj , all j, l ∈ N, and γj is Fj-measurable,

all j ∈ N0. The sequence (γj) will be referred to as a random control policy. The

dependence of (γj) on the stochastic basis (including the noise variables) may be

suppressed, and we will write (γj) ∈ Û instead of ((Ω,F ,P), (Fj), (ξj), (γj)) ∈ Û .

Given a random control policy (γj)j∈N0 ∈ Û , x0 ∈ X , j0 ∈ N0, the corre-

sponding state sequence is recursively defined, for each ω ∈ Ω, by

Xj0(ω)
.
= x0, Xj+1(ω)

.
= Ψ

(
j,Xj(ω), γj(ω), ξj+1(ω)

)
, j ≥ j0.(5)
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The costs associated with such a state sequence and random control policy are

given by

(6) Ĵ
(
j0, x0, (γj)

) .
= E

N−1∑
j=j0

f(j,Xj , γj) + F (XN )

 ,
where expectation is taken w.r.t. the probability measure of the stochastic basis

coming with (γj). The value function in the weak formulation is defined by

(7) V̂ (j0, x0)
.
= inf

(γj)∈Û
Ĵ
(
j0, x0, (γj)

)
, j0 ∈ {0, . . . , N}, x0 ∈ X .

Under Assumptions (A1) – (A4), the value function V defined in (3) over

the class of Markov feedback control policies with fixed stochastic basis coincides

with V̂ , the value function defined in (7) over the class of random control policies

with varying stochastic basis. Though results of this type are standard, we give

a proof for the sake of completeness.

Lemma 2. Grant Assumptions (A1) – (A4). Then V = V̂ .

Proof. Any Markov feedback strategy u ∈ U induces a random control policy

(γj) ∈ Û on the given probability space which gives rise to the same state

sequence and the same associated costs. It follows that V̂ ≤ V .

We show that V̂ ≥ V by backward induction. By construction, V (N, .) =

F (.) = V̂ (N, .). Suppose that V̂ (i+1, .) ≥ V (i+1, .) for some i ∈ {0, . . . , N − 1}.
It is enough to show that this implies Ĵ(i, ., (γj)) ≥ V (i, .) for all (γj) ∈ Û . Let

((Ω,F ,P), (Fj), (ξj), (γj)) ∈ Û , x0 ∈ X , and let X be determined by (5) with

j0 = i. Then

Ĵ
(
i, x0, (γj)

)
= E

f(i, x0, γi) +

N−1∑
j=i+1

f(j,Xj , γj) + F (XN )


= E

[
f(i, x0, γi)

]
+

∫
X

E

 N−1∑
j=i+1

f(j,Xj , γj) + F (XN )
∣∣∣ Xi+1 = x

PXi+1(dx)

= E
[
f(i, x0, γi)

]
+

∫
X
Ĵ
(
i+1, x, (γi,xj )

)
PXi+1(dx)

≥ E
[
f(i, x0, γi)

]
+

∫
X
V (i+1, x) PXi+1(dx),
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where (γi,xj ) indicates the random control policy induced by (γj) under the prob-

ability measure P(.|Xi+1 = x). More precisely, (γi,xj ) stands for the random

control policy ((Ω,F ,P(.|Xi+1 = x), (Fj), (ξj), (γj)) ∈ Û . Notice that the ex-

pression
∑N−1

j=i+1 f(j,Xj , γj) + F (XN ) depends on a noise variable ξj only if

j > i + 1, and in this case the law of ξj under P(.|Xi+1 = x) is µ by inde-

pendence. The inequality in the last line of the display above holds because

Ĵ(i+1, x, (γ̃j)) ≥ V (i+1, x) for all x ∈ X and all (γ̃j) ∈ Û by induction hypoth-

esis. It follows that

Ĵ
(
i, x0, (γj)

)
≥ E

[
f(i, x0, γi)

]
+

∫
X
V (i+1, x) PXi+1(dx)

= E

[
f(i, x0, γi) +

∫
Y
V
(
i+1,Ψ(i, x0, γi, y)

)
µ(dy)

]
≥ inf

γ∈Γ

{
f(i, x0, γ) +

∫
Y
V
(
i+1,Ψ(i, x0, γ, y)

)
µ(dy)

}
.

The right-hand side of the last line above equals Li(V (i+1, .))(x0), which by

Lemma 1 is equal to V (i, x0).

An important class of discrete-time control problems results from continuous-

time problems by discretization of time. Consider the optimal control of an Itô

diffusion over a finite horizon T > 0. The dynamics of the continuous-time

problem are of the form

(8) dX(t) = b
(
t,X(t), u(t)

)
dt+ σ

(
t,X(t), u(t)

)
dW (t), t > 0,

where W (.) is a d1-dimensional standard Wiener process, the drift coefficient b

is a function [0,∞)× Rd × Γ→ Rd, and the diffusion coefficient σ is a function

[0,∞) × Rd × Γ → Rd×d1 . The process u(.) in Eq. (8) is any Γ-valued process

which is progressively measurable w.r.t. the filtration induced by the Wiener

process. The corresponding costs are given by

(9) J(t0, x0, u(.))
.
= E

[∫ T

t0

f̃
(
t,X(t), u(t)

)
dt+ F̃ (X(T ))

]
,

where the cost coefficients f̃ and F̃ are functions [0,∞)×Rd×Γ→ R and Rd →
R, respectively, and X(.) solves Eq.(8) with initial condition (t0, x0) ∈ [0, T ]×Rd

under policy u(.).

A straightforward discretization of time with constant mesh size h > 0 leads

to the following discrete-time control problem: Choose the state space X to
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be Rd, the disturbance space Y to be Rd1 , each with the metric induced by

Euclidean distance, and take the original space of control actions Γ. Define the

system function Ψ: N0 × Rd × Γ× Rd1 → Rd by

(10) Ψ(j, x, γ, y)
.
= x+ h · b(jh, x, γ) +

√
h · σ(jh, x, γ)y.

As noise distribution µ we may choose the d1-variate standard normal distri-

bution. An alternative approximation is obtained when the normal distributions

are replaced with the d1-fold product of Bernoulli distributions concentrated on

{−1, 1}. More generally, we may take µ
.
= ⊗d1ν, where ν is any probability

measure on (R,B(R)) with mean zero and variance one. Last, define the time

horizon N and the cost coefficients f , F of the discrete-time problem by setting

N
.
= bTh c and, for j ∈ N0, x ∈ Rd, γ ∈ Γ, f(j, x, γ)

.
= h · f̃(jh, x, γ), F (x)

.
= F̃ (x).

Suppose that the coefficients b, σ, f̃ of the continuous-time problem are

jointly measurable, continuous in the state and control variable, and Lipschitz

continuous in the state variable, uniformly in time and control, with Lipschitz

constants Lb, Lσ, Lf̃ , respectively. Suppose, in addition, that f̃ , F̃ are non-

negative and F̃ has at most polynomial growth. Then the discrete-time control

problem just described satisfies Assumptions (A1) – (A5). In particular, As-

sumption (A5) is fulfilled if one chooses

c0
.
= Lf̃h, c1

.
= (2Lb + L2

σ)h+ L2
bh

2,(11)

see Appendix B. Notice that the constants c0, c1 are both of order one in h as h

tends to zero. This result can be seen as a simplified version of Theorem 4.1 in

Krylov (1980, p. 165), where a bound on the norm of the (generalized) gradient of

the value function of the original continuous-time model is given. If the diffusion

coefficient σ does not depend on the state, then we simply take c1
.
= Lbh.

3 A scheme for constructing subsolutions

Consider a control problem of the form described in Section 2. Recall that the

function F gives the terminal costs.

Definition 1. A function w : {0, . . . , N}×X → R which is lower semicontinuous

and bounded from below is called a subsolution of the control problem iff the

following two properties hold:

(i) w(N, x) ≤ F (x) for all x ∈ X ,
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(ii) w(j, x) ≤ Lj
(
w(j+1, .)

)
(x) for all j ∈ {0, . . . , N−1}, x ∈ X .

As a consequence of Lemma 1 and the monotonicity of the one-step Bellman

operators Lj , we have w ≤ V for any subsolution w, that is, a subsolution

nowhere exceeds the value function of the problem. Also observe that if w, w̃

are subsolutions, then so is max{w, w̃}, the pointwise maximum of w, w̃.

By Assumption (A3), all costs are nonnegative. We can easily construct a

subsolution w by setting w(j, .) = 0 for all j ∈ {0, . . . , N−1} and choosing w(N, .)

such that w(N, .) is lower semicontinuous and 0 ≤ w(N, x) ≤ F (x) for all x ∈ X .

In particular, w ≡ 0 as well as w̃(j, .) = 0, j ∈ {0, . . . , N−1}, w̃(N, .) = F (.) are

both subsolutions of the control problem.

Starting from a nonnegative Lipschitz continuous subsolution, the scheme

iteratively produces a non-decreasing sequence of Lipschitz continuous subso-

lutions. Each iteration step of the scheme consists of two parts. In the first

part, the simulation part, state trajectories are generated by forward simulation

(forward in time) with fixed initial state according to the dynamics under a

control policy which is selected based on the current subsolution. In the second

part, the update part, a new subsolution is constructed from the previous one

by backward recursion along the state trajectories computed in the simulation

part. For the sake of simplicity, we first introduce the scheme using exactly one

state trajectory at each iteration step.

Choose x0 ∈ X , the fixed initial state. Assume that the function F quan-

tifying the terminal costs is Lipschitz continuous with Lipschitz constant LF .

Let w(0) be a subsolution such that w(0)(j, .) is Lipschitz continuous with con-

stant L
(0)
j , each j ∈ {0, . . . , N}, and L

(0)
N ≤ LF and L

(0)
j ≤ c0 + L

(0)
j+1(1 + c1) if

j ∈ {0, . . . , N−1}; for instance, take w(0) ≡ 0.

The building elements for the subsolutions will be functions corresponding

to the surface of an upward pointing (or downward opening) cone in X × R.

More precisely, given x̃ ∈ X , v ∈ R, L > 0, we define the cone function with

center x̃, height v, and slope L by setting

Cone(x̃, v, L)(x)
.
= v − L · ρX(x̃, x), x ∈ X ,

where ρX is the metric on X . Recall that, according to Assumption (A5), the

one-step Bellman operators preserve Lipschitz continuity. If ϕ : X → R is

Lipschitz continuous with constant not exceeding L, then, fixing x̃ ∈ X , we have

ϕ(x) ≥ Cone(x̃, ϕ(x̃), L)(x) for all x ∈ X , and ϕ(x̃) = Cone(x̃, ϕ(x̃), L)(x̃). If

ϕ1, . . . , ϕn are Lipschitz continuous with Lipschitz constants L1, . . . , Ln, then
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the mapping X 3 x 7→ max{ϕ1(x), . . . , ϕn(x)} is Lipschitz continuous with

constant not greater than max{L1, . . . , Ln}. A Lipschitz continuous function

can therefore be arbitrarily well approximated from below on any compact set by

the pointwise maximum of a finite number of cone functions. This together with

Assumption (A5) is the reason we use maxima of cone functions in constructing

subsolutions. Building elements different from cone functions can be used if the

Bellman operators preserve other types of regularity instead of (or in addition

to) Lipschitz continuity; cf. the discussion in Section 6.

Let (ξ
(n)
j )j,n∈N be an independent collection of noise variables defined on a

complete probability space (Ω,F ,P). Starting from w(0) the scheme produces,

for each scenario ω ∈ Ω, a sequence (w
(n)
ω )n∈N of functions {0, . . . , N}×X → R.

At stage n ∈ N0, the function w
(n)
ω is nonnegative and, for each j ∈ {0, . . . , N},

w
(n)
ω (j, .) is Lipschitz continuous with Lipschitz constant bounded by L

(n)
j . The

following procedure, which is a particular instance of the general scheme and will

be referred to as the full cone construction with one trajectory at each iteration,

constructs w
(n+1)
ω from w

(n)
ω , n ∈ N0, as follows:

a) Generate one trajectory of the state sequence starting in x0 at time zero using

a control policy induced by w
(n)
ω : Set Xn

0 (ω)
.
= x0 and for j ∈ {0, . . . , N−1},

Xn
j+1(ω)

.
= Ψ

(
j,Xn

j (ω), γnj (ω), ξ
(n+1)
j+1 (ω)

)
,

γnj (ω) ∈ argminγ∈Γ

{
f(j,Xn

j (ω), γ)

+

∫
Y
w(n)
ω

(
j+1,Ψ(j,Xn

j (ω), γ, y)
)
µ(dy)

}
.

b) Construct a function w
(n+1)
ω : {0, . . . , N} ×X → R by backward recursion in

the following way:

– Set for x ∈ X

w(n+1)
ω (N, x)

.
=max

{
w(n)
ω (N, x),Cone (Xn

N (ω), F (Xn
N (ω)), LF ) (x)

}
.

– For j running from N−1 down to 0 do:

- compute vnj (ω)
.
= Lj(w(n+1)

ω (j+1, .))(Xn
j (ω)),

- let L
.
= c0 + L

(n+1)
j+1 (1 + c1) and set for x ∈ X

w(n+1)
ω (j, x)

.
=max

{
w(n)
ω (j, x),Cone

(
Xn
j (ω), vnj (ω), L

)
(x)
}
.
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The constants c0, c1 appearing above are chosen according to Assumption (A5).

Some comments concerning the procedure are in order.

Remark 1. The functions w
(n)
ω : {0, . . . , N} × X → [0,∞), n ∈ N, depend on

ω ∈ Ω; we might occasionally suppress this dependence and simply write w(n)

in place of w
(n)
ω . The functions w

(n)
ω (j, .) : X → [0,∞) are Lipschitz continuous

with Lipschitz constants uniformly bounded in n ∈ N, ω ∈ Ω, since for all

j ∈ {0, . . . , N},

(12) L
(n)
j ≤ LF

(
1 +

c0

c1

)
(1 + c1)N−j

by construction, the assumption that F is Lipschitz continuous with constant

LF and the choice of w(0).

Remark 2. The only possible source of underspecification in the full cone con-

struction is the argmin operation, that is, the choice of the minimizing control

actions in the simulation part. We will assume that the procedure uses some

fixed measurable deterministic rule to select, given x ∈ X , j ∈ N0, and a non-

negative continuous function ϕ, exactly one control action γ∗ϕ(j, x) such that

γ∗ϕ(j, x) ∈ argminγ∈Γ

{
f(j, x, γ) +

∫
Y
ϕ
(
Ψ(j, x, γ, y)

)
µ(dy)

}
.

Thus, we assume that we have chosen a Borel measurable mapping

C+(X )× N0 ×X 3 (ϕ, j, x) 7→ γ∗ϕ(j, x) ∈ Γ,

where C+(X ) is the space of all nonnegative continuous functions endowed with

the maximum norm topology. Assumptions (A1) – (A4) entail that such mea-

surable selectors exist; see, for instance, Section 3.3 in Hernández-Lerma and

Lasserre (1996, pp. 27-31). As a consequence, the full cone construction is a mea-

surable construction in the sense that the mapping Ω×{0, . . . , N}×X → [0,∞)

defined by (ω, j, x) 7→ w
(n)
ω (j, x) is measurable w.r.t. F and the Borel σ-algebras

involved. Moreover, w(n)(j, .) is measurable w.r.t. Fn0 ⊗ B(X ), where Fn0 is the

σ-algebra generated by the noise variables ξ
(k)
i , k ∈ {1, . . . , n}, i ∈ N.

Remark 3. The control actions γnj (ω), ω ∈ Ω, j ∈ {0, . . . , N}, chosen at iteration

step n ∈ N0 correspond to a random control policy in the sense of Section 2.

To see this, for n ∈ N0 and j ∈ N0, let Fnj denote the σ-algebra generated

by the noise variables ξ
(k)
i , k ∈ {1, . . . , n}, i ∈ N, and ξ

(n+1)
l , l ∈ {1, . . . , j};

in particular F0
0 = {∅,Ω}. Notice that ξ

(n+1)
l is independent of Fnj if l > j.

12



For j > N let γnj be an arbitrary Fnj -measurable Γ-valued random variable on

(Ω,F ,P). Then ((Ω,F ,P), (Fnj )j∈N0 , (γ
n
j )j∈N0 , (ξ

(n+1)
j )j∈N) is in Û . Moreover,

the state sequence Xn
j , j ∈ {0, . . . , N}, computed in the simulation part of stage

n satisfies Eq. (5) under (γnj ) with Xn
0 = x0.

In the update part of the full cone construction we define the function

w
(n+1)
ω (j, .) to be equal to the pointwise maximum of w

(n)
ω (j, .) and the cone

function Cone(Xn
j (ω), vnj (ω), L)(.). This condition in conjunction with Assump-

tion (A5) guarantees that the subsolution property of the functions w(n) is pre-

served by the update part, as the proof of Proposition 1 shows. Actually, in order

to produce a non-decreasing sequence of subsolutions we need only inequalities

in the update part. In addition, instead of using just one trajectory at each iter-

ation step, we may use M ∈ N state trajectories. A potential advantage of using

several state trajectories simultaneously (instead of just one) lies in a possibly

faster convergence of the scheme in the sense that the values computed in the

update part through application of the one-step Bellman operators (vi,nj below)

might be higher and thus closer to the minimal costs than in a one-trajectory

version that uses the same total number of state trajectories.

Choose M ∈ N, the number of simultaneous state trajectories, and let ξ
(i,n)
j ,

j, n ∈ N, i ∈ {1, . . . ,M}, be an independent collection of noise variables defined

on some complete probability space (Ω,F ,P). Fix an initial state x0 ∈ X and

choose a nonnegative subsolution w(0) as above. The general scheme with M

trajectories at each iteration then produces w
(n+1)
ω from w

(n)
ω , n ∈ N0, as follows:

a) Generate M trajectories of the state sequence starting in x0 at time zero using

a control policy induced by w
(n)
ω : Set Xi,n

0 (ω)
.
= x0 and for j ∈ {0, . . . , N−1},

Xi,n
j+1(ω)

.
= Ψ

(
j,Xi,n

j (ω), γi,nj (ω), ξ
(i,n+1)
j+1 (ω)

)
,

γi,nj (ω) ∈ argminγ∈Γ

{
f(j,Xi,n

j (ω), γ)

+

∫
Y
w(n)
ω

(
j+1,Ψ(j,Xi,n

j (ω), γ, y)
)
µ(dy)

}
,

where i ∈ {1, . . . ,M}.

b) Construct a function w
(n+1)
ω : {0, . . . , N} ×X → R by backward recursion in

the following way:

– Choose w
(n+1)
ω (N, .) Lipschitz continuous with constant L

(n+1)
N such that

w
(n)
ω (N, x) ≤ w(n+1)

ω (N, x) ≤ F (x) for all x ∈ X .
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– For j running from N−1 down to 0 do:

- compute vi,nj (ω)
.
= Lj(w(n+1)

ω (j+1, .))(Xi,n
j (ω)), i ∈ {1, . . . ,M},

- let L
.
= c0 + L

(n+1)
j+1 (1 + c1) and choose w

(n+1)
ω (j, .) Lipschitz con-

tinuous with Lipschitz constant L
(n+1)
j such that, for all x ∈ X ,

w
(n+1)
ω (j, x) ≥ w(n)

ω (j, x) and

w(n+1)
ω (j, x) ≤ max

{
w(n)
ω (j, x), max

i∈{1,...,M}
Cone(Xi,n

j (ω), vi,nj (ω), L)(x)

}
.

The functions generated according to the general scheme, which comprises

the full cone construction as a special case, are subsolutions.

Proposition 1. Grant Assumptions (A1) – (A5). Let w(0) be a nonnegative

Lipschitz continuous subsolution, let x0 ∈ X , M ∈ N, ω ∈ Ω, and let (w
(n)
ω )n∈N

be any sequence of functions constructed according to the general scheme starting

from w(0) with parameters x0, M , ω. Then, for all n ∈ N0, 0 ≤ w
(n)
ω ≤ w

(n+1)
ω ,

and w
(n)
ω is a subsolution.

Proof. The inequalities 0 ≤ w
(n)
ω ≤ w

(n+1)
ω hold by construction. Since w(0) is

a (nonnegative) subsolution by hypothesis, it is enough to show that if w
(n)
ω is

a subsolution for some n ∈ N0, then w
(n+1)
ω is a subsolution. By construction,

w
(n)
ω (N, .) ≤ w

(n+1)
ω (N, .) ≤ F (.). Let j ∈ {0, . . . , N−1}. We have to show that

for all x ∈ X , Lj(w(n+1)
ω (j+1, .))(x)− w(n+1)

ω (j, x) ≥ 0. Set

v(x)
.
= Lj(w(n+1)

ω (j+1, .))(x), x ∈ X .

Since w
(n+1)
ω (j+1, .) ≥ w

(n)
ω (j+1, .), monotonicity of the one-step Bellman op-

erator implies that v(x) ≥ Lj(w(n)
ω (j+1, .))(x) for all x ∈ X . From the sub-

solution property of w
(n)
ω it follows that v(.) ≥ w

(n)
ω (j, .). By construction,

w
(n+1)
ω (j+ 1, .) is Lipschitz continuous with Lipschitz constant L

(n+1)
j+1 . This

together with Assumption (A5) implies that v(.) is Lipschitz with Lipschitz con-

stant not greater than L
.
= c0 +L

(n+1)
j+1 (1 + c1). Consequently, given any x̃ ∈ X ,

we have v(.) ≥ Cone(x̃, v(x̃), L)(.). Since vi,nj (ω) = v(Xi,n
j (ω)), i ∈ {1, . . . ,M},

by construction and v(.) ≥ w(n)
ω (j, .), it follows that for all x ∈ X ,

v(x) ≥ max

{
w(n)
ω (j, x), max

i∈{1,...,M}
Cone(Xi,n

j , (ω), vi,nj (ω), L)(x)

}
≥ w(n+1)

ω (j, x),

and hence

Lj(w(n+1)
ω (j+1, .))(x)− w(n+1)

ω (j, x) ≥ Lj(w(n+1)
ω (j+1, .))(x)− v(x) = 0.
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4 Convergence for deterministic systems

In this section, we consider the case where the controlled system is deterministic.

The system function Ψ thus does not depend on the noise variables. The class

of control policies, in this case, may be restricted to the set of deterministic

open-loop controls, that is, to the set of Γ-valued sequences. With slight abuse

of notation, the recursion in (1) for the state dynamics starting at time zero can

be rewritten as

(13) xj+1
.
= Ψ(j, xj , γj), j ∈ N0,

where x0 ∈ X and (γj)j∈N0 ⊂ Γ. The mathematical expectations in the defini-

tion of the cost functional and the one-step Bellman operator become redundant.

The costs for applying control policy (γj) ⊂ Γ to the system starting at time

zero in initial state x0 are simply

J
(
0, x0, (γj)

)
=

N−1∑
j=0

f(j, xj , γj) + F (xN ),

where (xj) is computed according to recursion (13). Let V denote the corre-

sponding value function.

Let (w(n))n∈N be the sequence of subsolutions generated according to the

full cone construction with one trajectory at each iteration and initial state x0,

starting from a nonnegative Lipschitz continuous subsolution w(0).

Denote by XN (x0) the set of all points in X which a state sequence starting

in x0 at time zero reaches in at most N steps under some control policy (γj) ⊂
Γ. If XN (x0) is contained in a compact subset of X and if the terminal costs

F are Lipschitz continuous, then the subsolutions produced by the full cone

construction converge to the value of the control problem at the initial state.

The hypothesis that XN (x0) be (contained in) a compact set is automatically

satisfied if the system function Ψ is continuous.

Theorem 1. Grant Assumptions (A1) – (A5). Assume in addition that F is

Lipschitz continuous and that the closure of XN (x0) in X is compact. Then

w(n)(0, x0) converges to V (0, x0) from below as n tends to infinity.

Proof. Lemma 1, Assumption (A5), and the Lipschitz continuity of F imply

that V (j, .) is Lipschitz continuous for each j ∈ {0, . . . , N}. By Proposition 1,

(w(n))n∈N0 is indeed a sequence of subsolutions; in particular, w(n)(j, .) ≤ V (j, .)
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for all n ∈ N0. By construction, w(n)(j, .) ≤ w(n+1)(j, .). As a consequence of

the theorem of monotone convergence of sequences,

w(j, x)
.
= lim

n→∞
w(n)(j, x), j ∈ {0, . . . , N}, x ∈ X ,

defines a real-valued function by pointwise limits. By construction and (12), the

functions w(n)(j, .) are Lipschitz continuous with Lipschitz constant uniformly

bounded over n ∈ N0 and j ∈ {0, . . . , N}. The family (w(n))n∈N thus is equicon-

tinuous, and it is uniformly bounded on compact sets (by zero from below, by

V from above). By the Arzelà-Ascoli theorem, w(n)(j, .) converges to w(j, .)

uniformly on compact subsets of X , and w(j, .) is Lipschitz continuous. Since

cl(XN (x0)) is compact by hypothesis, w(n)(j, .) converges to w(j, .) uniformly on

XN (x0).

Let xnj+1 ∈ XN (x0), γnj ∈ Γ, j ∈ {0, . . . , N−1}, be the states and control

actions generated by the algorithm at iteration step n. Thus,

xnj+1 = Ψ(j, xnj , γ
n
j ), γnj ∈ argminγ∈Γ

{
f(j, xnj , γ) + w(n)

(
j+1,Ψ(j, xnj , γ)

)}
.

Let ε > 0. Choose n ∈ N such that w(j, x) − w(n)(j, x) ≤ ε for all j ∈
{0, . . . , N}, x ∈ XN (x0). By construction,

w(n+1)(j, xnj ) ≥ Cone(xnj , v
n
j , L)(xnj ) = vnj = Lj

(
w(n+1)(j+1, .)

)
(xnj ).

Actually, w(n+1)(j, xnj ) = Lj
(
w(n+1)(j+1, .)

)
(xnj ) since Lj

(
w(n+1)(j+1, .)

)
(xnj ) ≥

w(n+1)(j, xnj ) by the subsolution property of w(n+1). Using again monotonicity,

we find that for j ∈ {0, . . . , N−1},

w(j, xnj ) ≥ w(n+1)(j, xnj )

= Lj
(
w(n+1)(j+1, .)

)
(xnj )

≥ Lj
(
w(n)(j+1, .)

)
(xnj )

= min
γ∈Γ

{
f(j, xnj , γ) + w(n)

(
j+1,Ψ(j, xnj , γ)

)}
= f(j, xnj , γ

n
j ) + w(n)(j+1, xnj+1)

≥ f(j, xnj , γ
n
j ) + w(j+1, xnj+1)− ε.

Consequently, observing that w(N, xN ) ≥ w(n+1)(N, xN ) = F (xN ), we have

w(0, x0) ≥
N−1∑
j=0

f(j, xnj , γ
n
j ) + F (xN )−N · ε

= J
(
0, x0, (γ

n
j )
)
−N · ε

≥ V (0, x0)−N · ε.
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Since ε > 0 was arbitrary, it follows that w(0, x0) ≥ V (0, x0). On the other

hand, w(0, x) ≤ V (0, x) for all x ∈ X . Therefore w(0, x0) = V (0, x0).

The proof of Theorem 1 also shows that (w(n)) converges to the value function

V along the optimal trajectories starting in x0. Moreover, the costs associated

with the control policy (γnj ), the policy induced by w(n) according to the fixed

selection mechanism, converge to the minimal costs, that is,

J
(
0, x0, (γ

n
j )
) n→∞−→ V (0, x0).

The convergence of the costs is in general not monotonic.

5 Convergence for stochastic systems

Here we return to the general setup as introduced in Section 2. We will prove

convergence of the full cone construction with one state trajectory at each step

of the iterative procedure (parameter M = 1). The proof in the case that several

state trajectories are used to update the current subsolution (parameter M > 1)

is only notationally different.

Convergence of the sequence of subsolutions to the value of the control prob-

lem at the initial state will be proved under two additional assumptions.

(A6) Given x0 ∈ X and any sequence (γnj )n∈N ⊂ Û of random control policies,

the family (Xn
j )n∈N,j∈{0,...,N} of X -valued random variables is tight, where

Xn is the solution to Eq. (5) under (γnj ) with initial state x0 at time zero.

(A7) The cost coefficients f , F are bounded from above by some constantK > 0.

Assumption (A6) about the tightness of the state sequences is to be under-

stood in the usual sense that the family of laws of the X -valued random variables

XN
j , n ∈ N, j ∈ {0, . . . , N}, is tight (e.g. Billingsley, 1999, p.59); here X is en-

dowed with its Borel σ-algebra. The assumption is clearly satisfied if the state

space X itself is compact. The assumption is needed in situations where the

system function is not continuous in the state variable or the noise distribution

µ has non-compact support. Assumption (A7) could be replaced by bounded-

ness on compact sets and an additional growth condition on the controlled state

sequences.

Let x0 ∈ X . Let (Ω,F ,P) be a complete probability space carrying an

independent collection (ξ
(n)
j )j,n∈N of noise variables. Let w(0) be a nonnegative
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Lipschitz continuous subsolution (for instance, w(0) ≡ 0). For each ω ∈ Ω, let

(w
(n)
ω )n∈N be the sequence of subsolutions generated according to the full cone

construction with initial state x0, parameter M = 1, and noise samples ξ
(n)
j (ω),

j ∈ {1, . . . , N}, n ∈ N, starting from w(0).

Theorem 2. Grant Assumptions (A1) – (A7) and assume in addition that F is

Lipschitz continuous. Then, for P-almost every ω ∈ Ω, w
(n)
ω (0, x0) converges to

V (0, x0) from below as n tends to infinity.

Proof. Lemma 1, Assumption (A5), and the Lipschitz continuity of F imply

that V (j, .) is Lipschitz continuous for each j ∈ {0, . . . , N}.
Let ω ∈ Ω. By Proposition 1, (w

(n)
ω )n∈N0 is a sequence of subsolutions.

In particular, w
(n)
ω (j, .) ≤ V (j, .) and, by construction, w

(n)
ω (j, .) ≤ w

(n+1)
ω (j, .)

for all n ∈ N0. As a consequence of the theorem of monotone convergence of

sequences,

wω(j, x)
.
= lim

n→∞
w(n)
ω (j, x), j ∈ {0, . . . , N}, x ∈ X ,

defines a real-valued function by pointwise limits, and wω ≤ V . By construction

and (12), the functions w
(n)
ω (j, .) are Lipschitz continuous with Lipschitz constant

uniformly bounded over n ∈ N0, j ∈ {0, . . . , N}, not depending on ω. It follows

that w
(n)
ω (j, .) converges to wω(j, .) as n tends to infinity uniformly on compact

subsets of X , and that wω(j, .) is Lipschitz continuous.

Let Xn
j+1(ω) ∈ X , γnj (ω) ∈ Γ, j ∈ {0, . . . , N −1}, denote the states and

control actions computed at iteration n ∈ N; thus, with Xn
0 (ω)

.
= x0,

Xn
j+1(ω) = Ψ

(
j,Xn

j (ω), γnj (ω), ξ
(n+1)
j+1 (ω)

)
,

γnj (ω) ∈ argminγ∈Γ

{
f(j,Xn

j (ω), γ)

+

∫
Y
w(n)
ω

(
j+1,Ψ(j,Xn

j (ω), γ, y)
)
µ(dy)

}
.

Let ε > 0. We show that there is n(ε) ∈ N such that the event

An,ε
.
=
{
ω ∈ Ω : wω

(
j,Xn

j

)
(ω)− w(n)

ω

(
j,Xn

j

)
(ω) ≤ ε for all j ∈ {0, . . . , N}

}
has probability P(An(ε),ε) ≥ 1 − ε. Thanks to Assumption (6) we can find a

compact set Gε ⊂ X such that

inf
n∈N

P
{
ω ∈ Ω : Xn

j (ω) ∈ Gε for all j ∈ {0, . . . , N}
}
≥ 1− ε

2
.
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Since w
(n)
ω (j, .) converges to wω(j, .) uniformly on compact subsets of X , for

each ω ∈ Ω there is n0(ε, ω) ∈ N such that wω(j, x) − w
(n)
ω (j, x) ≤ ε for all

n ≥ n0(ε, ω), j ∈ {0, . . . , N}, x ∈ Gε. Now we can choose n(ε) ∈ N such that

P {ω ∈ Ω : n0(ε, ω) ≤ n(ε)} ≥ 1− ε

2
.

Then P(An(ε),ε) ≥ 1− ε, because

An(ε),ε ⊇
{
ω ∈ Ω : n0(ε, ω) ≤ n(ε), X

n(ε)
j (ω) ∈ Gε for all j ∈ {0, . . . , N}

}
.

Set n
.
= n(ε), and let ω ∈ An,ε. By construction, monotonicity of the Bellman

operators, and the subsolution property of w
(n)
ω ,

w(n+1)
ω (j,Xn

j (ω)) = Cone(Xn
j (ω), vnj (ω), L)(xnj ) = vnj (ω),

where vnj (ω) = Lj
(
w

(n+1)
ω (j+1, .)

)
(Xn

j (ω)). Using again monotonicity of the

Bellman operators we find that for j ∈ {0, . . . , N−1},

wω(j,Xn
j (ω)) ≥ w(n+1)

ω (j,Xn
j (ω))

= Lj
(
w(n+1)
ω (j+1, .)

)
(Xn

j (ω))

≥ Lj
(
w(n)
ω (j+1, .)

)
(Xn

j (ω))

= min
γ∈Γ

{
f(j,Xn

j (ω), γ) +

∫
Y
w(n)
ω

(
j+1,Ψ(j,Xn

j (ω), γ, y)
)
µ(dy)

}
≥ f(j,Xn

j (ω), γnj (ω)) +

∫
Y
w(n)
ω

(
j+1,Ψ(j,Xn

j (ω), γnj (ω), y)
)
µ(dy)

≥ f(j,Xn
j (ω), γnj (ω)) +

∫
Y
w(n)
ω

(
j+1,Ψ(j,Xn

j (ω), γnj (ω), y)
)
µ(dy)

− w(n)
ω

(
j+1, Xn

j+1(ω)
)

+ wω(j+1, Xn
j+1(ω))− ε.

Since wω(N,Xn
N (ω)) ≥ w(n+1)

ω (N,Xn
N (ω)) = F (Xn

N (ω)), it follows that

wω(0, x0)

≥
N−1∑
j=0

f(j,Xn
j (ω), γnj (ω)) + F (Xn

N (ω))−N · ε

+

N−1∑
j=0

(∫
Y
w(n)
ω

(
j+1,Ψ(j,Xn

j (ω), γnj (ω), y)
)
µ(dy)− w(n)

ω

(
j+1, Xn

j+1(ω)
))

.
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By Assumption (A7), f , F are bounded from above by K. Since P(An,ε) ≥
1− ε, it follows that

E [w(0, x0)]

≥ E

N−1∑
j=0

f(j,Xn
j , γ

n
j ) + F (Xn

N )

−K(N + 1) · ε

+

N−1∑
j=0

E

[∫
Y
w(n)

(
j+1,Ψ(j,Xn

j , γ
n
j , y)

)
µ(dy)− w(n)

(
j+1, Xn

j+1

)]
.

By construction, Xn
j+1(ω) = Ψ(j,Xn

j (ω), γnj (ω), ξ
(n+1)
j+1 (ω)), ω ∈ Ω, where ξ

(n+1)
j+1

has distribution µ and is independent of Xn
j , γnj , and ω 7→ w

(n)
ω (j, .). Condition-

ing and an application of Fubini’s theorem show that for all j ∈ {0, . . . , N − 1},

E

[∫
Y
w(n)

(
j+1,Ψ(j,Xn

j , γ
n
j , y)

)
µ(dy)− w(n)

(
j+1, Xn

j+1

)]
= 0.

Therefore, taking into account Remark 3,

E [w(0, x0)] ≥ E

N−1∑
j=0

f(j,Xn
j , γ

n
j ) + F (Xn

N )

−K(N + 1) · ε

= Ĵ
(
0, x0, (γ

n
j )
)
−K(N + 1) · ε

≥ V̂ (0, x0)−K(N + 1) · ε.

By Lemma 2, V̂ (0, x0) = V (0, x0). Since ε > 0 was arbitrary, we have

E[w(0, x0)] ≥ V (0, x0). On the other hand, wω(0, x) ≤ V (0, x) for all x ∈ X and

all ω ∈ Ω. Therefore, for P-almost every ω ∈ Ω, wω(0, x0) = V (0, x0).

In analogy with Section 4, the proof of Theorem 2 shows that the costs

associated with the random control policy (γnj ), which is the policy induced by

w(n), converge to the minimal costs:

Ĵ
(
0, x0, (γ

n
j )
) n→∞−→ V̂ (0, x0) = V (0, x0).

The convergence of the costs is in general not monotonic.

6 Remarks on implementation and extensions

The procedure for constructing subsolutions has been introduced in a general set-

ting, which nonetheless can be extended further. In particular, state-dependent
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constraints on the control actions can be included. The one-step Bellman oper-

ators given in (4) would have to be redefined accordingly, namely, as

Lj(ϕ)(x)
.
= inf

γ∈Γ(j,x)

{
f(j, x, γ) +

∫
Y
ϕ
(
Ψ(j, x, γ, y)

)
µ(dy)

}
, x ∈ X ,

where Γ(j, x) ⊂ Γ is the set of admissible control actions at step j in state x.

If the sets Γ(j, x) depend on the state x in such a way that Assumption (A5)

holds, then the same construction as before can be used to produce convergent

sequences of subsolutions. It is also possible to deal with a non-compact control

space Γ, provided that the PDP is still valid. In this case, nearly optimal

control actions instead of minimizing control actions would have to be selected;

the tolerance in non-optimality would have to tend to zero as the number of

iterations goes to infinity in order to ensure convergence.

Convergence of the scheme has been shown in the sense of monotone con-

vergence of the subsolutions to the value function at the fixed initial state. For

deterministic systems we have, in addition, convergence to the value function

along optimal trajectories. Since the subsolution property is a global property,

the subsolutions produced by the scheme, though dependent on the initial state,

are always global lower approximations to the value function. A subsolution

w(n) = w(n,x0) produced after n iterations of the scheme with initial state x0

can be used to compute state trajectories and costs starting from a different

initial state x̃0 (control synthesis). Moreover, w(n,x0) may be taken as the initial

subsolution for running the scheme with initial state x̃0.

The full cone construction is not always implementable as it stands. Consider

the case X = Rd, and let us assume that floating point numbers are acceptable

substitutes for real numbers. The main reason why the procedure in this sit-

uation might not be directly implementable is related to the computation of

Lj(ϕ)(x), where ϕ is a nonnegative Lipschitz function and x ∈ Rd is a given

state. Indeed, the one-step Bellman operator involves a global minimization

over the action space Γ and the evaluation of an integral over the noise space Y.

If Γ, Y are finite sets of moderate cardinality, then computing Lj(ϕ)(x) poses

no difficulty and our procedure can be implemented as it stands. The same is

true for more general noise spaces Y and noise distributions µ as long as inte-

gration w.r.t. µ can be performed efficiently. The subsolutions produced by the

full cone construction are pointwise maxima of downward opening symmetric

cones. Functions of this type can be represented efficiently. Indeed, it is enough

to store, for each cone, its center, its height, and its slope, which amounts to
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one element of X plus two real numbers. The maximum is computed only when

evaluating the function at any given point.

Assumption (A5) about preservation of Lipschitz continuity by the one-step

Bellman operators holds for a broad class of discrete-time optimal control prob-

lems, and it could be relaxed even further to preservation of just local Lipschitz

continuity. The price to pay for this generality is a procedure which in general

is too conservative. In the construction of the subsolutions no regularity of the

value function other than Lipschitz continuity is exploited; in using downward

opening cones of maximal slope one presumes worst-case regularity at every

point.

Modifications in the update step of the scheme are possible and can lead to

more efficient variants for more specific models. A special but important case are

convex control problems, that is, dynamic minimization problems whose one-step

Bellman operators preserve convexity; see, for instance, Hernández-Lerma et al.

(1995), where approximations to the value function are constructed which are

monotone from above. In the case of convex control problems, subsolutions can

be represented as maxima of hyperplanes instead of conic surfaces. A detailed

description of this variant of the scheme, including numerical experiments, is

in preparation. Another particular class of problems to which the scheme can

be adapted consists of discrete-time control problems derived from continuous-

time non-degenerate stochastic control problems, which admit classical (i.e. C1,2

continuously differentiable) solutions.

The proofs of convergence given in Sections 4 and 5 use essentially three prop-

erties of the sequence of functions (w(n)) generated by the full cone construction:

the subsolution property, monotonicity (i.e., w(n) ≤ w(n+1) for all n) plus uni-

form continuity on compacts (here guaranteed by the Lipschitz property), and

the equality w(n+1)(j,Xn
j ) = Lj(w(n+1)(j+1, .))(Xn

j ) along the state trajectories

produced by the simulation part. Any modification to the update part of the

scheme that preserves these three properties also preserves convergence of the

scheme.

Appendix

A Relation to policy iteration

Policy iteration or approximation in policy space is ordinarily used to numeri-

cally solve stationary Markov control problems (cf. Puterman, 1994, Sect. 6.4).
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In Fleming and Rishel (1975, pp. 168-169), a non-stationary version is employed

to prove existence of classical solutions to the Hamilton-Jacobi-Bellman equation

associated with a class of non-degenerate controlled Itô diffusions.

Applied in the present context, policy iteration would recursively compute

strategies u(m) ∈ U and functions W (m+1) : {0, . . . , N} × X → R, m ∈ N0, as

follows. To start, at step zero, choose any feedback strategy u0 ∈ U . At step

m ∈ N do the following:

a) Given u(m−1) ∈ U , compute the function W (m) by backward recursion in

the following way:

- Set W (m)(N, x)
.
= F (x), all x ∈ X .

- For j running from N − 1 down to 0, set for x ∈ X

W (m)(j, x)
.
= f

(
j, x, u(m−1)(j, x)

)
+

∫
Y
W (m)

(
j+1,Ψ(j, x, u(m−1)(j, x), y)

)
µ(dy).

b) Given W (m), choose u(m) ∈ U such that for all j ∈ {0, . . . , N}, x ∈ X ,

um(j, x) ∈ argminγ∈Γ

{
f
(
j, x, γ

)
+

∫
Y
W (m)

(
j+1,Ψ(j, x, γ, y)

)
µ(dy)

}
.

The sequence (W (m))m∈N produced by policy iteration is non-increasing, that

is, W (m) ≥ W (m+1), and it converges to the value function V from above, uni-

formly over the state space. In contrast, the sequence of subsolutions produced

by our procedure is non-decreasing, and it converges to the value function from

below at any fixed initial state.

B Lipschitz bound for diffusion models

Consider a continuous-time controlled diffusion as given at the end of Section 2

with dynamics according to Eq. (8) and cost functional (9). Let h > 0, and define

a corresponding discrete-time problem with uniform time step h. The system

function, in particular, is defined according to (10). Let the noise distribution

µ be a product measure ⊗d1ν on B(Rd1), where ν is a probability measure on

B(R) with mean zero and variance one. Let ξ be an Rd1-valued random variable

with distribution µ.
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If the drift and diffusion coefficients b, σ and the running costs f̃ of the orig-

inal problem are Lipschitz continuous in the state variable (uniformly in time

and control) with Lipschitz constants Lb, Lσ, and Lf̃ , respectively, then Assump-

tion (A5) is satisfied for the one-step Bellman operators Lj of the discrete-time

problem. More precisely, if ϕ is a Lipschitz continuous function Rd → R with

Lipschitz constant L, then for all x, x̂ ∈ Rd, j ∈ {1, . . . , N},

|Lj(ϕ)(x)− Lj(ϕ)(x̂)|

≤ sup
γ∈Γ

{
h|f̃(j, x, γ)− f̃(j, x̂, γ)|

}
+ sup

γ∈Γ

{∫
Y

∣∣ϕ(Ψ(j, x, γ, y)
)
− ϕ

(
Ψ(j, x̂, γ, y)

)∣∣µ(dy)

}

≤ Lf̃h|x− x̂|+ L sup
γ∈Γ

{∫
Y
|Ψ(j, x, γ, y)−Ψ(j, x̂, γ, y)|µ(dy)

}

≤ Lf̃h|x− x̂|+ L sup
γ∈Γ

√
E
[
|Ψ(j, x, γ, ξ)−Ψ(j, x̂, γ, ξ)|2

]
.

Now, for all γ ∈ Γ, recalling that ξ has law µ with mean zero and covariance

matrix the identity,

E
[
|Ψ(j, x, γ, ξ)−Ψ(j, x̂, γ, ξ)|2

]
= E

[∣∣∣x− x̂+ h
(
b(jh, x, γ)− b(jh, x̂, γ)

)
+
√
h
(
σ(jh, x, γ)− σ(jh, x̂, γ)

)
ξ
∣∣∣2]

=
∣∣x− x̂+ h

(
b(jh, x, γ)− b(jh, x̂, γ)

)∣∣2 + E

[∣∣∣√h(σ(jh, x, γ)− σ(jh, x̂, γ)
)
ξ
∣∣∣2]

= |x− x̂|2 + 2h 〈x− x̂, b(jh, x, γ)− b(jh, x̂, γ)〉+ h2
∣∣b(jh, x, γ)− b(jh, x̂, γ)

∣∣2
+ h
∣∣σ(jh, x, γ)− σ(jh, x̂, γ)

∣∣2
≤
(
1 + 2Lbh+ L2

bh
2 + L2

σh
)
|x− x̂|2.

Therefore,

|Lj(ϕ)(x)− Lj(ϕ)(x̂)|

≤ Lf̃h|x− x̂|+ L
√(

1 + 2Lbh+ L2
bh

2 + L2
σh
)
|x− x̂|2

≤
(
Lf̃h+ L

(
1 + 2Lbh+ L2

bh
2 + L2

σh
))
|x− x̂|,

(14)
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showing that Assumption (A5) is satisfied if c0, c1 are chosen according to (11).

Let T be the finite time horizon of the continuous-time problem. Suppose

the terminal cost function F = F̃ is Lipschitz continuous with constant LF .

For N ∈ N, let VN denote the value function of the corresponding discrete-time

problem with step size h = T/N . By Lemma 1, VN (j, .) = Lj ◦ . . .◦LN−1(F ) for

all j ∈ {0, . . . , N −1}. Denote by LNj ∈ (0,∞] the Lipschitz constant of VN (j, .).

By (14),

LNj ≤ ĉ0
T

N
+ LNj+1

(
1 + ĉ1

T

N

)
,

where ĉ0
.
= Lf̃ , ĉ1

.
= 2Lb+L

2
bT+L2

σ are independent ofN ∈ N. It follows that the

Lipschitz constant of VN (j, .) is bounded from above by LF (1+ ĉ0
ĉ1

)(1+ ĉ1
T
N )N−j .

If N tends to infinity and j ·T/N tends to t ∈ [0, T ], then the above bound on the

Lipschitz constant (or on the norm of the weak sense first derivative) converges

to LF (1 + ĉ0
ĉ1

)eĉ1(T−t).
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