A two state model for noise-induced resonance in bistable

systems with delay

Markus Fischer

4th March 2005






Abstract

The subject of the present work is a simplified model for a symmetric bistable system with memory
or delay, the reference model, which in the presence of noise exhibits a phenomenon similar to what is
known as stochastic resonance. The reference model is given by a one dimensional parametrized stochastic
differential equation with point delay, basic properties whereof we check.

With a view to capturing the effective dynamics and, in particular, the resonance-like behaviour of
the reference model we construct a simplified or reduced model, the two state model, first in discrete
time, then in the limit of discrete time tending to continuous time. The main advantage of the reduced
model is that it enables us to explicitly calculate the distribution of residence times which in turn can be
used to characterize the phenomenon of noise-induced resonance.

Drawing on what has been proposed in the physics literature, we outline a heuristic method for
establishing the link between the two state model and the reference model. The resonance characteristics

developed for the reduced model can thus be applied to the original model.

The present work is a slightly modified version of my Diploma thesis, which was submitted to the Depart-
ment of Mathematics at Humboldt University Berlin in March 2004. The thesis was supervised by Prof.
Peter Imkeller and Prof. Salah-FEldin A. Mohammed.
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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist ein vereinfachtes Modell zur Beschreibung des Auftretens eines
als stochastische Resonanz bekannten Phinomens in Systemen mit Gedéchtnis. Stochastische Resonanz
ist ein quasi-deterministisches Verhalten, das sich in zufillig gestérten Systemen bei einer bestimmten
niedrigen, aber von null verschiedenen Intensitit des Storrauschens zeigt.

Das Ausgangsmodell fiir ein solches System ist hier durch eine eindimensionale parametrisierte sto-
chastische Differentialgleichung mit Gedéachtnis gegeben. Einige wesentliche Eigenschaften der Gleichung
werden vorgestellt.

Die Konstruktion des vereinfachten Modells erfolgt in zwei Schritten, zunéchst in diskreter Zeit,
dann im Grenziibergang zu stetiger Zeit. Dadurch ist es méglich, Gréflen anzugeben, die das Phinomen
der stochastischen Resonanz im vereinfachten Modell quantitativ erfassen. Insbesondere lassen sich die
stationdre Verteilung und die Verteilung der Aufenthaltszeiten explizit berechnen. Letztere dient der
Definition zweier Resonanzmafle. Schliefilich wird eine Heuristik zur Herstellung der Verbindung mit dem

Ausgangsmodell entwickelt.
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Chapter 1

Introduction

The subject of the present work is a simplified model for a symmetric bistable system with memory,
the reference model, which in the presence of noise exhibits a phenomenon similar to what is known as
stochastic resonance.

A system with memory or delay is one whose evolution depends not only on the current state but
also on the past. The reference model is given by a one dimensional parametrized stochastic differential
equation with point delay. It will be described in chapter 2.

With a view to capturing the effective dynamics and, in particular, the resonance-like behaviour of
the reference model we construct a simplified or reduced model, the two state model, first in discrete
time, then in the limit of discrete time tending to continuous time. This is done in chapters 3 and 4.
The main advantage of the reduced model is that it enables us to explicitly calculate the distribution of
residence times which in turn can be used to characterize the phenomenon of noise-induced resonance.

Drawing on what has been proposed in the physics literature, in chapter 5 we present a heuristic
method for establishing the link between the two state model and the reference model. The resonance

characteristics developed for the reduced model can thus be applied to the original model.

In sections 1.1 and 1.2 of this chapter we briefly describe what stochastic resonance is and how to quantify
it. In section 1.3 we introduce the idea of model reduction, which is fundamental to the approach
taken here. Results from the physics literature about noise-induced resonance in systems with delay are

summarized in section 1.4.

1.1 The phenomenon of stochastic resonance

Stochastic resonance in a narrower sense is the random amplification of a weak periodic signal induced by
the presence of noise of low intensity such that the signal amplification is maximal at a certain optimal
non-zero level of noise. In addition to weak additive noise and a weak periodic input signal there is a
third ingredient in systems where stochastic resonance can occur, namely a threshold or a barrier that
induces two macroscopic states in the output signal.

Let us consider a basic, yet fundamental example. Let V be a symmetric one dimensional double
well potential. A common choice for V is the standard quartic potential, see figure 1.1a). The barrier
mentioned above is in this case the potential barrier of V' separating the two local minima. Assume that
the periodic input signal is sinusoidal and the noise white. The output of such a system is given by the
stochastic differential equation (SDE)

(1.1) dX(t) = —(V’(X(t))—f—a-sin(%”t))dt +oo-dW(t), t>0,
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where W(.) is a standard one dimensional Wiener process, o > 0 a noise parameter, V’ the first order
derivative of the double well potential V', a > 0 the amplitude and T > 0 the period of the input signal.

As an alternative to the system view, equation (1.1) can be understood as describing the overdamped
motion of a small particle in the potential landscape V in the presence of noise and under the influence of
a periodic force. It was originally proposed by Benzi et al. (1981, 1982) and Nicolis (1982) as an energy
balance model designed to explain the quasi periodicity in climate changes over the last 700000 years,
where the solution process describes the average global temperature on Earth and the weak input signal
reflects the variation of the solar constant due to an oscillation of the Earth’s eccentricity caused by the

gravitational influence of Jupiter.'

If a =0, i.e. in the absence of a periodic signal, then equation (1.1) reduces to
(1.2) dX(t) = =V'(X(t))dt + o-dW(t), t=>0.

The autonomous SDE (1.2) has two metastable states corresponding to the two local minima of V. With
o > 0 sufficiently small, the diffusion will spend most of its time near the positions of these minima.
In the presence of weak noise, there are two distinct time scales, one corresponding to the quadratic
variation of the Wiener process, the other proportional to the average time it takes the diffusion to travel
from one of the metastable states to the other.

In section 5.1 we cite results which give approximations for the mean intrawell residence time and the
residence time distribution in case a = 0. The fact that the time scale induced by the noise process is
small in comparison with the mean residence time as ¢ tends to zero should allow us to disregard small

intrawell fluctuations when we are interested in the interwell transition behaviour.

a) 2 _ b) 2 | C) 2 .
14 1 14
-1 1 -1 1 -1 1
T | | ) T | | ) T | | )
-2 2 -2 2 -2 2
-1- -1- -1-

Figure 1.1: Graphs on the interval [—2,2] of a) symmetric quartic double well potential V' : z — im‘l — %mz, b)

tilted double well potential z — V(x) + az, c) tilted double well potential z — V() — az, where a = 0.1.

Suppose a > 0 small enough so that there are no interwell transitions in case ¢ = 0, i. e. in the deterministic
case. The input signal then slightly and periodically tilts the double well potential V', see figure 1.1b) -¢),
where deflection is maximal. We now have two different mean residence times, namely the average time
the particle stays in the shallow well and the average time of residence in the deep well. Of course, both
time scales also depend on the noise intensity.

Notice that deep and shallow well change roles every half period % Given a sufficiently long period
T, the noise intensity can now be tuned in such a way as to render the occurrence of transitions from
the shallow to the deep well probable within one half period, while this time span is too short for the
occurrence of transitions in the opposite direction. At a certain noise level the output signal will exhibit
quasi periodic transition behaviour, thereby inducing an amplification of the input signal.

For a more comprehensive description of stochastic resonance, examples, variants and applications thereof

see Gammaitoni et al. or Anishchenko et al. (1999). What models that exhibit stochastic resonance have

LCf. the introduction in Imkeller and Pavlyukevich (2002).
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in common is the quasi periodicity of the output at a certain non-zero noise level. More generally,
stochastic resonance is an instance of noise-induced order. We now turn to the question of how to
quantify it.

1.2 Measures of resonance

In view of the fact that the system given by equation (1.1) can work as a random amplifier it seems
natural to take the frequency spectrum of the output signal as basis for a measure of resonance. The

most common measure of this kind is the spectral power amplification (SPA) coefficient defined as

)

X (o, T) := ‘/01 E, (X(Ts) -exp(ZW\/—_ls))ds ’

where X is a solution to (1.1) with noise parameter o > 0 and input period T' > 0 and p is the invariant
probability measure on the enlarged state space R x S1.2

In general, when measuring stochastic resonance, it is assumed that the solution is in a “stationary
regime”. Since equation (1.1) is time dependent for a > 0 we cannot expect (X (¢)):>o to be a stationary
process. Transforming the non-autonomous SDE (1.1) into an autonomous SDE with state space R x S*,
one can recover the time homogeneous Markov property and a unique invariant probability measure exists,
cf. Imkeller and Pavlyukevich (2002). In chapter 3, when constructing our reduced model, we will make
use of the same idea of appropriately enlarging the state space in order to regain a time homogeneous
Markov model.

There are other measures of resonance based on the frequency spectrum, e. g. the signal to noise ratio;
for a detailed analysis see Pavlyukevich (2002).

A different starting point for a measure of resonance is the distribution of intrawell residence times.
Observe that — because of symmetry — the roles of the two potential wells are interchangeable. We will
return to the residence time distribution in the next two sections.

A third class of measures of resonance is provided by methods of quantifying (un)certainty, in par-
ticular by the entropy of a distribution. This agrees well with the view of stochastic resonance as an

instance of noise-induced order.

1.3 The idea of model reduction

The fact that with ¢ > 0 and a > 0 small a typical solution to (1.1) spends most of its time near the
positions of the two minima of the double well potential V' suggests to identify the two potential wells
with their respective minima. The state space R of the non-autonomous SDE thus gets reduced to two
states, say —1 and 1, corresponding to the left and the right well, respectively.

How can the effective dynamics of equation (1.1) be imitated in the two state model? According
to an idea of McNamara and Wiesenfeld (1989) one constructs a {—1, 1}-valued time inhomogeneous
Markov chain with certain (time dependent) transition rates. These rates are determined as the rates of
escape from the potential well of the tilted double well potential which corresponds to the reduced state
in question. At times k- T + %, k € N, for example, the rate of transition from —1 to 1 is the rate at
which a diffusion started in the left well would in the absence of periodic forcing leave that well and

escape to the right well, see figure 1.1b).

2The circle S corresponds to the phase angle of the periodic input signal. Note that time has been rescaled.
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An approximation of the rate of escape from a (parabolic) potential well is given in the limit of small
noise by the Kramers formula. In section 5.1 we cite this empirical formula together with mathematical
results that partially justify its application.

In the physics literature, a standard ansatz for calculating the two state process given time dependent
transition rates W (.) is to solve an associated differential equation for the probabilities ny (¢) of occupying
state £1 at time ¢, the so-called master equation (cf. Gammaitoni et al.):

(1.3) nt(t) = —(Wa(t) + We(t))na (¢) + W (t), t>0.

An advantage of the reduced model is its simplicity. It should be especially useful in systems with more
than two meta-stable states. Although it is intuitively plausible to apply a two state filter, there is
possibly a problem with the measure of resonance, for it might happen that with the same notion of
tuning stochastic resonance would be detected in the two state model, while no optimal noise level, i.e.
no point of stochastic resonance, exists in the continuous case. This is, indeed, a problem for the SPA
coefficient and related measures, see Pavlyukevich (2002). The reason is that in passing to the reduced
model small intrawell fluctuations are “filtered out”, while they decisively contribute to the SPA coefficient
in the original model.

Measures of resonance based on the distribution of intrawell residence times, however, do not have
this limitation, that is they are robust under model reduction as Herrmann et al. (2003) show. The simple
measures of resonance which we use in chapters 3 and 5 in connection with the delay equation will be
based on the distribution of residence times in the reduced model belonging to that equation. Although

it is our expectation that those measures are robust under state reduction, we cannot prove this, here.

1.4 Existing results about noise-induced resonance with delay

In equation (1.1) replace the term that represents the periodic input signal with a term that corresponds
to a force dependent on the state of the solution path a fixed amount of time into the past, that is replace
the periodic signal with a point delay. This yields what will be our reference model, see equation (2.1).

The idea to study such equations with regard to noise-induced resonance seems to originate with OQhira
and Sato (1999). Their analysis, though, is of limited use, because they make too strong assumptions on
independence between the components of the reduced model which they consider in discrete time only.

A better analysis of the reduced model for an important special choice of equation (2.1) can be found
in Tsimring and Pikovsky (2001). The same model is the object of recent studies by Masoller (2003),
Houlihan et al. (2004) and Curtin et al. (2004), and it will be our standard example, too.

While the measure of resonance applied by Tsimring and Pikovsky (2001) is essentially the first peak
in the frequency spectrum, in the other articles focus is laid on the residence time distribution in the
reduced model, which is compared with numerical simulations of the original dynamics. Approximative
analytical results are obtained via the master equation approach, where in place of equation (1.3) a
deterministic delay differential equation is considered and some simplifying assumptions are made.

In chapter 5 we will follow Tsimring and Pikovsky (2001) in establishing the link between the reduced
and the reference model. Results by Masoller (2003) show that the density of the residence time distri-
bution has a characteristic jump. She proposes to take the height of this jump as a measure of resonance,
and we will follow her proposal, supplementing it by an alternative.

Our approach will be different, though, in that we do not use any kind of master equation. Instead,
we will construct a reduced model with enlarged state space, which has the Markov property and which

allows us to explicitly calculate the stationary distributions as well as the residence time distributions.



Chapter 2

The reference model

In what follows we specify a model that shows resonance-like behaviour for suitable parameter choices.
This will be our reference model. It is given by a parameterised one dimensional stochastic delay differen-
tial equation (SDDE), our reference equation, and comprises the example that was studied by Tsimring
and Pikovsky (2001).

Basic properties of the reference equation are discussed in section 2.2, while section 2.3 heuristically
describes “interesting” parameter regions. A comparison between noise-induced resonance with delay and

classical stochastic resonance concludes this chapter.

2.1 DMotion of a Brownian particle in a symmetric bistable system

A system that exhibits the phenomenon we are interested in can be illustrated as follows: Consider the
one dimensional motion of a small particle in the presence of large friction and additive white noise
subject to the influence of two additional forces: one dependent on the current position of the particle
and corresponding to a symmetric double well potential V', the other dependent on the position of the
particle a certain amount of time r in the past and corresponding to a symmetric single well potential U,
where the position of the extremum of U coincides with the position of the saddle point of V.

Without loss of generality we may assume that the saddle point of the potential V' is at the origin and
the extrema are located at (=1, —L) and (1, —L) respectively, where L > 0 is the height of the potential
barrier. A standard choice for V is the quartic potential x — L(z* — 222).

Instead of U we will consider 3- U, where 3 is a scalar, that serves to “adjust” explicitly the strength
of the delay force. An admissible function for U is the parabola z — %332. In fact, with this choice of
U and taking as potential V' the quartic potential with L = i we find ourselves in the setting that was
studied by Tsimring and Pikovsky (2001).! Another reasonable choice for U would be a function whose
first derivative equals the sign function outside a small symmetric interval around 0 and is smoothly

continued on this interval (see figure 2.1).

The dynamics that govern the motion of a Brownian particle as described above can be expressed by the

following stochastic delay differential equation
(2.1) dX(t) = = (V'(X®)+B8-U'(X(t—r)))dt + o-dW(t), t=>0,

where W (.) is a standard one dimensional Wiener process, r > 0 the time delay, V', U’ are the first

derivatives of V and U, respectively, § € R is a parameter regulating the intensity of the delay force

LOur notation is slightly different from that of equation (1) in Tsimring and Pikovsky (2001:p.1). Tn particular, their
parameter ¢, indicating the “strength of the feedback”, corresponds to —/3, here.
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Figure 2.1: Graphs on the interval [—2,2] of a) quartic double well potential V| b) quadratic delay potential

U:z— %2°, c) absolute value delay potential U : z +— |z|,2 € R\ (—¢, ), smoothly continued on (—¢,€).

and o > 0 a noise parameter. In the special case 0 = 0 equation (2.1) becomes a deterministic delay

differential equation, while in case 3 = 0 we have an SDE of the form (1.2).

The above description of the two potentials is compatible with the following conditions on V and U:

(2.2a) V,U € C*(R),

(2.2b) V(z) =V (—x), U(x) =U(—x) forallz e R,
(2.2¢) Vi@)=0 iff ze{-1,0,1}, U'z) =0 iff z=0,

(2.2d) V'"(-1)=V"(1) >0,

(2.2¢) sup{V'(z) | z € (—o0,—1) U (0,1)} <0, sup{U’(z) | z € (—00,0)} <0,
(2.2f) inf{V'(z) | z € (—1,0) U (1,00)} > 0, inf{U’(z) | z € (0,00)} > 0.

A further restriction on the geometry of V' and U will prove useful in section 2.2, where we derive some
properties of equation (2.1). Let us assume that a constant R, greater than the positive root of V' exists
such that V and U are linear on R\ (—Rpos, Rpot)- In view of the symmetry of V' and U it is sufficient
to require that

there exists R, > 1 such that for all z € [Rpot,00) :

(2'3) V(x) _ V/(Rpot) . (1‘ — Rpot) + V(Rpot) and U(.’E) = U/(Rpot) : (l‘ - RPOt) + U(Rp"t)'

Henceforth, whenever the reference model is concerned, we will suppose that conditions (2.2) and (2.3)
are satisfied. Certainly, (2.3) is more restrictive than necessary, yet it is not too limiting, since R
can be chosen arbitrarily big, while the pathwise solutions to (2.1) will stay with high probability in a
bounded interval containing the positions of the two minima of the double well potential V', provided the
parameters o and || are small enough, cf. sections 2.3 and 5.1.

2.2 Properties of the underlying SDDE

By applying results from the literature we check some important properties of (2.1), the reference model
equation. Our main sources are Mohammed (1984, 1996) with regard to existence and uniqueness of
solutions and the Markov property, and Scheutzow (1983, 1984), where conditions can be found that
guarantee the existence of a stationary distribution.

2.2.1 Strong and weak solutions: existence and uniqueness

Let a, b be real-valued Borel measurable functionals defined on C([—r,0]), where C([—r,0]) is equipped
with the supremum norm ||.||s, which makes it a Banach space. For our purposes it is sufficient to
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consider autonomous stochastic delay differential equations of the following form:
(2.4) dX(t) = a(Xy)dt + b(Xy) - dW (t), t >0,

where W(.) is a standard one dimensional Wiener process and X, := [[-r,0] 3 s — X(t 4 s)] the
X-segment of delay length r at time ¢ > 0.

As in the case of stochastic differential equations without memory there are two notions of a solution
and two associated definitions of uniqueness (cf. Karatzas and Shreve, 1991: pp. 285-286,300-301). The
definitions given here in a form adapted to our simplified setting can be found in Mohammed (1996: p. 10),
Scheutzow (1983: pp. 12-14) or Larssen (2002).2

Definition 2.1. Let (2, F,P) be a probability space equipped with a filtration (F;);>¢ satisfying the
usual conditions and an (F;)-adapted standard one dimensional Wiener process (W (t));>0. Let & be a
C([—r,0])-valued Fy-measurable random variable. Then equation (2.4) has a strong solution with initial
condition £ at time 0, if a real-valued process (X (t));>_, exists on (Q,F) such that

(i) (X(t))e>0 is (Fi)-adapted and X (s) is Fp-measurable for every s € [—r, 0],
(ii) the trajectories [—r,00) 3 t — X (¢) € R are continuous P-a.s.,
(iii) integrability: (fo la(X,)| + b*(X,))ds < 00) =1 for all ¢ > 0,
(iv) integral version of (2.4): X(t) = X(0) + fot s)ds + fo s)dW (s) for all t > 0 P-a.s.,
(v) Xo=¢& P-a.s.

Definition 2.2. Let (Q,F,P) be any probability space that carries a filtration (F;);>o satisfying the
usual conditions and an (F;)-adapted standard one dimensional Wiener process (W (t));>o.

A strong solution X of (2.4) with respect to (W, (F;)) and an Fp-measurable initial condition is
unique, if any other strong solution X of (2.4) with respect to the same Wiener process, filtration and
initial condition is indistinguishable from X, i.e. P(X(t) = X (t) Vt > —r) = 1.

If all strong solutions of (2.4) are unique (for every choice of the filtered probability space and the
adapted Wiener process, and for all initial conditions that allow for a strong solution), then one says that

strong uniqueness holds for equation (2.4) or, equivalently, for the functionals a, b.

Definition 2.3. Let v be a probability measure on B(C([—r,0])). Then equation (2.4) has a weak solution
with initial distribution v at time 0, if a triple ((X, W), (Q, F,P), (F:)) exists such that

(i) (©,F,P) is a probability space equipped with a filtration (F;);>¢ satisfying the usual conditions,
(i) W= (W(t))i>0 is an (F;)-adapted standard one dimensional Wiener process,

(iii) X = (X (t))¢>—r is a P-a.s. pathwise continuous real-valued process on (2, F) such that (X (¢));>0
is (F:)-adapted and X (s) is Fp-measurable for every s € [—r, 0],

(iv) integrability: (fo la(Xs)| + b*(X,))ds < oo) =1 for all t > 0,
(v) integral version of (2.4): X(t) = X(0) + fg a(Xs)ds + fo s)dW (s) for all t > 0 P-a.s.,

(vi) Xo has distribution v with respect to P.

2Mohammed (1984, 1996) considers only strong solutions.
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Definition 2.4. A weak solution ((X, W), (Q, F,P), (F1)) of (2.4) with initial distribution v is unique, if
for any other weak solution ((X, W), (Q,F,P), (F;)) of (2.4) with the same initial distribution it holds
that X has the same distribution with respect to P as X with respect to P.

If all weak solutions of (2.4) are unique, then it is said that weak uniqueness holds for equation (2.4)

or, equivalently, for the functionals a, b.

There is a second notion of uniqueness for weak solutions, analogous to the one of definition 2.2.

Definition 2.5. A weak solution ((X, W), (Q,F,P), (F:)) of (2.4) is pathwise unique, if the existence of
another weak solution (X, W), (Q, F,P), (1)) of (2.4) such that Xy = X P-a.s. implies that P(X () =
Xt)Vt>—r)=1.

If all weak solutions of (2.4) are pathwise unique, then we say that pathwise uniqueness holds for

equation (2.4) or, equivalently, for the functionals a, b.

The following result is a reduced one dimensional version of theorem 1.2 in Mohammed (1996: p. 12).

Theorem 2.1 (Mohammed). Let (W (t))i>0 be an adapted standard one dimensional Wiener process on
a probability space (2, F,P) which carries a filtration (Fi)i>o satisfying the usual conditions. Suppose

that the functionals a, b are locally Lipschitz and satisfy a linear growth condition, more precisely:

For every n € N there is a constant Cp, > 0 such that for all f,g € C([—r,0])

(locLip) .
with |[fllco, gllec < Cn: la(f) —alg)l + [b(f) = b(g)] < Cn-[If = glloo,
There is a constant C > 0 such that for all f € C([-r,0]) :

(Growth) .
[a(HI+ 1B < C- (T + [ flloo)-

If € is a C([—

7,0])-valued random variable such that Ep(||¢||%) < oo, then there exists a unique strong
solution (X (t))i>—r of (2.4) with initial condition . In this case, for all T > 0 it holds that

Bp(( swp [X(1)))*) < ox,
te[—r,T]

Ep (| X:]1%) < C- (1+Ep(|l€]|2)) for allt € [0,T] and some constant C' > 0.

The existence of a strong solution obviously implies the existence of a weak solution. As for weak unique-
ness, this is not an immediate consequence of strong existence and uniqueness. In the case of ordinary
stochastic differential equations a result of Yamada and Watanabe states that pathwise uniqueness im-
plies weak uniqueness. A proof thereof is given in Karatzas and Shreve (1991: pp. 308-310). That proof

carries over to the more general case of stochastic delay differential equations, see Larssen (2002).

Theorem 2.2 (Yamada, Watanabe et al.). Pathwise uniqueness of (2.4) implies weak uniqueness.

As any weak solution is also a strong solution with respect to the probability space, filtration and Wiener
process it comes with, strong uniqueness of equation (2.4) implies pathwise uniqueness, which in turn

implies weak uniqueness.
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2.2.2 Markov property

With r» = 0 equation (2.4) reduces to an ordinary stochastic differential equation. In this case, if weak
uniqueness holds for all point measures on B(R), i.e. all deterministic initial conditions, and if the
coefficients a, b are locally bounded and measurable, then the solution process (X (¢));>0 (on the canonical
space) enjoys the strong Markov property with respect to the Brownian standard filtration (cf. Karatzas
and Shreve, 1991: 319-322).

An analogous result in the situation of non-zero delay is the Markov property of the C([—r, 0])-valued
segment process (X;);>o, while the solution process (X (t));>—r, in general, lacks such property. In the
special case, where the diffusion functional b is constant, a proof of the strong Markov property of the
segment process under assumptions similar to the situation of zero delay can be found in Scheutzow
(1983: pp. 31-32). Here, we cite a reduced one dimensional version of theorem II.1 from Mohammed

(1996: p. 17), which is more in bearing with the hypotheses of theorem 2.1.

Theorem 2.3 (Mohammed). Let (W (t)):>0 be a standard one dimensional Wiener process on a prob-
ability space (2, F,P), and let (Fi)i>0 be the accompanying complete Brownian filtration. Suppose that
the functionals a, b are globally Lipschitz, that is:

There is a constant C' > 0 such that for all f,g € C(|—r,0]) :
la(f) = alg)| + [b(f) = b(g)] < C-[If = glloe-

Let f € C([-7,0]) and denote by (X7 (t));>_, the strong solution of (2.4) with initial condition f. Define

(globLip)

p(f,t,B) = P(X] € B), fecC(-r0), t>0, BeB(C(-r0)).

Then for every f € C([—r,0]) the process (th)tzo is a C([—r,0])-valued Markov process with respect to

(Fi)t>0, and p is a time-homogeneous transition function for x}).

As for ordinary stochastic differential equations, one can associate with the transition function p or,
equivalently, the Markov family {(X[)tzo | f € C([-r,0])} a contraction semigroup. To this purpose, let
C;, := Cy(C(][—r,0])) be the space of all bounded and continuous real-valued functions on C([—r,0]), and
equip C, with the supremum norm. For ¢ > 0 define the linear operator T; : C, — Cj by setting

T,(6)(f) = Ep(6(X{)), ¢€Cy feC(-r0).

The first part of theorem II.2 in Mohammed (1996: p. 18) states that (7};);>¢ is, indeed, a one-parameter
contraction semigroup on C;. At this point, there arises a difficulty peculiar to delay equations: If
r > 0, then the semigroup (7}):>0 “is never strongly continuous on Cjp under the sup norm” (Mohammed,
1996: 18), that is, for any family of solutions to (2.4), there exists ¢ € C; such that ||T:(¢) — ¢|| /4 0 as
t > 0 tends to zero.

The reason for this lies in the fact that not even the shift semigroup on Cy is strongly continuous on
the whole space (Mohammed, 1996:11.2 (iii)), where the shift or “static” contraction semigroup is the one
associated with the family of solutions to the trivial equation dXf(¢) = 0, ¢t > 0, with initial condition
f € C([-r,0]). While X/ (t) = X7(0) for all ¢ > 0, the segment X/, in general, is not equal to X = .
We shall encounter a similar problem in chapter 4, where a delay process with only two possible current
states will be constructed.

There is a way out, however. If one considers “weak” convergence on C; with respect to the set of all
finite regular Borel measures, it turns out that (73) is weakly continuous (Mohammed, 1996:I1.1 (ii)). The

semigroup can then be characterized by means of a weak infinitesimal generator in the sense of Dynkin
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(1965: p. 37). Such a characterization was developed in Mohammed (1984), where a formula for the weak

infinitesimal generator in terms of the coefficients of equation (2.4) is given.?

2.2.3 Stationarity

In this section we will see that under assumptions (2.2) and (2.3) the reference equation (2.1) possesses
an invariant probability measure for all choices of positive o and 3 greater than some negative constant.
This means there is a probability measure v on B(C([—r,0])) such that any weak solution of (2.1) with
initial distribution v is stationary.? Here, stationarity of a process is defined as follows (cf. Scheutzow,
1983:23).

Definition 2.6. Let I be one of the sets Z, N, Ng, R or RT. Let X = (X(t))ser1 be a stochastic process
on the probability space (Q, F,P) with values in a measurable space (S,S). For h € I define the shifted
process X" by setting X(")(t) := X(t + h), t € I. Then X is called stationary if for every h € I the
processes X and X" have the same distribution.

Stationarity is studied in Scheutzow (1983, 1984) for equations of a special form. Let W(.) be a stan-
dard one dimensional Wiener process and F' a real-valued Borel measurable and bounded functional on
C(]-1,0]). Consider the SDDE

(2.5) dX(t) = F(X,)dt +dW(t), t>0.

By appropriately scaling time and space one can bring SDDEs with delay length r # 1 or noise parameter

o # 1, as long as both are positive, into the form of equation (2.5). Let us specify F as

Flg) = Y0 (V{7 -g(0) + 8- U/ (07 - 9(-1)). g€ C(-L0).

Since the coordinate projections are measurable and V', U’ are bounded continuous functions because of
(2.2a) and (2.3), F is Borel measurable and bounded.

Let f € C([~1,0]) and assume that X together with a Wiener process (W, (F;)i>0) on (2, F,P) is
a weak solution of (2.5) with F as just defined and X, = f P-almost surely. Set f(t) == oyr- f(%),
t € [-r,0]. Let X together with a Wiener process (W, (F)i>0) on (2, F,P) be a weak solution of
(2.1) such that P(Xo = f) = 1. Then the processes (X(¢));>—, and (o/T - X(%))tz—r have the same
distribution (cf. Scheutzow, 1983: 31). Therefore, if o > 0, then our reference equation can be transformed

into an instance of equation (2.5).

Theorem 2.4 cites theorem 1.7 from Scheutzow (1983:pp.17-18) and part of theorem 3 and theorem 5
from Scheutzow (1984: pp.47-48,55-56).

Theorem 2.4 (Scheutzow). Let the functional F' be bounded and measurable as above, let v be a proba-
bility measure on B(C([—r,0])). Denote by f the minimum and by f the mazimum of f € C([-r,0]).

1. Equation (2.5) has a unique weak solution with initial distribution v.
2. Let (X, W), (2, F,P),(F)) be a weak solution of (2.5) with initial distribution v. Then there is

at most one invariant probability measure 7 for equation (2.5), and if it exists then

t—oo

Px, — m in total variation.

3See Mohammed (1984: pp. 70-111) and Mohammed (1996: pp. 20-25).

4In this case, a strong solution with initial condition having distribution v would also be stationary. For our purposes
the concept of weak solution is more convenient, because the definitions of resonance we will give in section 3.4 for the
reduced model depend only on the distribution of the underlying process.
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8. IfF(f)- f — —oco as f — oo and F(f) - f — —o0 as f — —oo for all f € C([—r,0]), then (2.5)

possesses an invariant probability measure.

To conclude we apply the results we have seen so far to our reference model.

Proposition 2.1. Suppose that V', U satisfy conditions (2.2) and (2.3). Let ¢ > 0, 8 € R be given.
Then the following holds for equation (2.1), which describes the reference model:

1. Strong and weak solutions exist for every probability measure on B(C([—r,0])) as initial distribution,

and the solutions are unique in the respective sense.

2. The solution processes enjoy the strong Markov property.

3. If c >0 and 3 > —Z,Eg’;z;;, then a unique invariant probability measure exists.

Proof. Theorems 2.1 and 2.2 guarantee weak and strong existence and uniqueness of solutions to equation
(2.1) for all parameter choices and all deterministic initial conditions. An argument as in Scheutzow
(1983: pp. 17-18) shows that in place of point distributions one may take probability measures as initial
conditions.

The Markov property is a consequence of theorem 2.3. Since weak uniqueness holds, theorem 1 from
Scheutzow (1984:p.42) implies that solutions to (2.1) have the Markov property even with respect to
stopping times.

The existence of an invariant probability measure is an application of the third part of theorem 2.4
and condition (2.3) on the growth of the potentials V', U. O
In the situation of proposition 2.1, if ¢ > 0 and § < f‘ljjggzzg, then there is no invariant probability
measure for equation (2.1). To see this, let (X, W), (2, F,P),(F:)) be a weak solution of (2.1) with
deterministic initial condition f € C([—r,0]) such that f < —Rpo. Set pu:= V'(Rpot) + 3+ U'(Rpot), then
p < 0. Define A := {X(t) < —Rpot — v > 0}. The probability of the event A with respect to P

2
follows from the distribution of the supremum of a Brownian motion with negative drift, that is

P(A)=1-P (ig%)f(()) — ‘—g‘t +o-W(t) > —Rpot) =1—exp (—7‘”‘(‘]((00)'2_}%”“)) > 0.
If equation (2.1) had an invariant probability measure, then the convergence part of theorem 2.4 would
imply weak convergence of the distribution of X (¢) to some probability measure on B(R) as ¢t — oco. But

P(A) > 0, a contradiction to the compact exhaustability of probability measures on Polish spaces.

2.3 Heuristical description and numerical simulation

Let us have a look at basic parameter settings for equation (2.1). Suppose that conditions (2.2) and (2.3)
are satisfied. To illustrate the discussion we made some numerical simulation of our reference equation,
where we chose as double well potential V' the standard quartic potential and as delay potential U
a parabola (see figure 2.1). Solutions to equation (2.1) were obtained by approximation with time
series, using appropriately scaled i.i.d. Bernoulli trials as approximation of the noise process. Results by

Scheutzow (1983, 1984) and Lorenz (2003) guarantee weak convergence of such schemes.

The simplest and least interesting choice of parameters is ¢ = 0 and § = 0, i.e. no noise and no delay.
In this case, (2.1) reduces to a one dimensional ordinary differential equation with two stable solutions,

namely —1 and 1, and an instable trivial solution.
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The dynamics of the general deterministic delay equation, i.e. ¢ = 0, 8 # 0, is not obvious for all
combinations 8 € R, » > 0. In Redmonda et al. (2002) stabilization of the trivial solution and the
corresponding bifurcation points are studied. The parameter region such that the zero solution is stable
is contained in 3 > 1, r € [0,1].> This is not the parameter region we are interested in, here. Recall from
1.1 that stochastic resonance is a phenomon concerned with an increase of order in the presence of weak
non-zero noise. For large |5] the delay force would be predominant. Similarly, with r small the noise
would not have time enough to influence the dynamics.

Indeed, we must be careful in our choice of 3 lest we end up with a randomly perturbed deterministic
oscillator. Solutions to equation (2.1) exhibit periodic behaviour even for § > 0 comparatively small.
This is illustrated in figures 2.2 and 2.3. With 8 = 0.39, the solution periodically switches between the
two stable equilibria, while with 8 = 0.38 it converges to the stable equilibrium near which it was started.
The switching behaviour does not depend on the special choice of the delay time r > 0. Clearly, the
behaviour of a deterministic solution may crucially depend on the choice of the initial condition, while

for o > 0 all solutions converge towards the stationary regime.5

X(t) _
1+ )
| T T T T T T T T T T T T
-r 0 iy 51 101 t
—_—

Figure 2.2: Deterministic solution, i.e. ¢ = 0, of (2.1) with » = 500, 8 = 0.39 and initial condition —1 on [—r, 0].

X(t)
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Figure 2.3: Deterministic solution, i.e. ¢ = 0, of (2.1) with » = 500, 8 = 0.38 and initial condition —1 on [—r, 0].

If 3 =0 and o > 0, then our SDDE (2.1) reduces to the SDE (1.2), cf. also section 5.1. Of interest is
again the case of small noise. A Brownian particle moving along a solution trajectory spends most of
its time fluctuating near the position of the minimum of one or the other potential well, while interwell

transitions only occasionally occur.

Now, let o > 0 and |3| be small enough so that the corresponding deterministic system does not exhibit
oscillations. Let us suppose first that g is positive. Then the effect of the delay force should be that of
favouring interwell transitions whenever the Brownian particle is currently in the same potential well it

was in r units of time in the past, while transitions should become less likely whenever the particle is

50ur parameter 3 corresponds to —a in equation (1.3) of Redmonda et al. (2002).
6 Unfortunately, we do not know of estimates on the rate of convergence towards stochastic equilibrium. In the simulations,

we chose a “pre-period” of 100 times the length of the delay (10007 in case 3 < 0) in order to get solutions approaching the
stationary regime (distance in total variation with respect to the segment process). The rate of convergence depends, of
course, on the value of o > 0.
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currently in the well opposite to the one it was in before. Notice that the influence of the delay force
alone is insufficient to trigger interwell transitions. In fact, with ¢ > 0 not too big, transitions are rare
and a typical solution trajectory will still be found near the position of one or the other minimum of V'

with high probability, see figure 2.4.

X(t)
1 ot ]
T T T T T T T T T T T T T
100r 1051 110r t
-1

Figure 2.4: Typical path of a solution to (2.1) with ¢ = 0.2, 3 = 0.1 and r = 500 from time 100r to 113r. Noise

and delay are too weak to induce frequent interwell transitions.

Consider what happens if the noise intensity increases. Of course, interwell transitions become more
frequent, while at the same time the intrawell fluctuations increase in strength, see figure 2.5. But there
is an additional effect: As we let the noise grow stronger interwell transitions occur at time intervals of
approximately the same length, namely at intervals between r and 2r, with high probability. The solution
trajectories exhibit quasi-periodic switching behaviour at a non-zero noise level, see figure 2.6. This is

what we may call an instance of stochastic resonance.

s I .

T
105r

Figure 2.5: Typical path of a solution to (2.1) with ¢ = 0.25, 3 = 0.1 and r = 500 from time 1007 to 113r.

Interwell transitions become more frequent.
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Figure 2.6: Typical path of a solution to (2.1) with ¢ = 0.30, 8 = 0.1 and r = 500 from time 1007 to 113r.

Interwell transitions at intervals between r and 2r; quasi-periodic switching behaviour: Stochastic resonance!

Further increasing the noise intensity leads to ever growing intrawell fluctuations which eventually destroy
the quasi-periodicity of the interwell transitions, see figures 2.7 and 2.8. When the noise is too strong,
the potential barrier of V' has no substantial impact anymore and random fluctuations easily crossing the

barrier are predominant, see figure 2.9.
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Figure 2.7: Typical path of a solution to (2.1) with ¢ = 0.35, 8 = 0.1 and r = 500 from time 100r to 113r. Large
random fluctuations begin to destroy the quasi-periodic switching behaviour.
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Figure 2.8: Typical path of a solution to (2.1) with ¢ = 0.40, 8 = 0.1 and r = 500 from time 100r to 113r. Large

random fluctuations destroy the quasi-periodic switching behaviour.

-1

Suppose [ is negative. The effect of the delay force, now, is that of pushing the Brownian particle out of
the potential well it is currently in whenever the particle’s current position is on the side of the potential
barrier opposite to the one remembered in the past. Sojourns of duration longer than r, on the other
hand, become prolonged due to the influence of the delay which in this case renders transitions less likely.

In order to obtain some kind of regular transition behaviour a higher noise level as compared to the
case of positive 3 is necessary. Of course, one could change time scales by increasing the delay time r,
thereby allowing for lower noise intensities. Typical solution trajectories for ¢ = 0.35 and o = 0.40 are
depicted in figures 2.10 and 2.11. Notice that we have chosen a longer pre-run period than with g > 0,
namely 10007 instead of 100r, in order to let the system come closer to the stationary regime.

In chapter 5 we will state more precisely what regular transition behaviour means in case 0 < 0, yet

we will not subsume it under the heading of stochastic resonance.

2.4 Classical stochastic resonance versus resonance with delay

Here, we compare some of the main features of equation (1.1), which is a prototypical example of a model
that shows stochastic resonance, with those of equation (2.1), which describes our reference model. Let
us suppose the symmetric double well potential V' is the same in both cases.

If we have a = 0 and 8 = 0, then both equations reduce to the same SDE, namely equation (1.2).
Recall from section 1.1 that in the presence of weak noise there are two distinct time scales, one corre-
sponding to the quadratic variation of the Wiener process, the other proportional to the average time it
takes the diffusion to travel from one of the two metastable states to the other.

Now, let a > 0, B # 0 be of small absolute value. Then a third time scale enters the scene, namely the
period T of the harmonic signal in case of equation (1.1), the length of the delay r > 0 in case of equation
(2.1). Notice that the delay length r should be equated with the half perlod of the periodic signal.

What is more than a new time scale is the fact that the corresponding periodic or delay force alters
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Figure 2.9: Typical path of a solution to (2.1) with ¢ = 0.50, 8 = 0.1 and r = 500 from time 100r to 113r. Large

random fluctuations, noise is too strong.

Figure 2.10: Typical path of a solution to (2.1) with o = 0.35, 8 = —0.1 and r = 500 from time 10007 to 1013r.

Noise is comparatively strong, delay force prolongs long sojourns and favours short switching transitions.

the symmetric potential landscape creating a shallow and a deep potential well, thereby splitting up the
time scale induced by the interwell transitions into two: one corresponding to transitions from the shallow
to the deep well, the other corresponding to transitions in the opposite direction. By tuning the noise
intensity o to the periodic or delay force the behaviour of the solution trajectories can now be changed in
such a way as to yield an optimal macroscopic response to the modulating force at an optimal non-zero
noise level.

What an “optimal macroscopic response” and the corresponding “optimal noise level” is depends, of
course, on the measure of resonance. Natural measures in the context of equation (1.1) seem to be those
based on the frequency spectrum of the output signal in view of the fact that there is an harmonic input
signal. The main difficulty with these measures is that they quantify not only the macroscopic, but
also the microscopic behaviour of the solution process and it is often unclear how to tell their respective
contributions apart; cf. sections 1.2 and 1.3.

In equation (2.1), there is nothing that could be regarded as an harmonic input signal. Natural
measures in this context are those based on the interwell transition time or residence time distribution.

In section 3.4 we will define two such measures for the reduced model.

Notwithstanding the similarities sketched above there are important differences between the model for
classical stochastic resonance and the delay model. The harmonic signal in equation (1.1) can be regarded
as an external force, because it is — as a deterministic function — independent of the filtration generated
by the solution process. The delay term in equation (2.1), on the contrary, depends on the solution
process itself and is measurable with respect to (FX,). Clearly, the harmonic signal periodically alters
the potential landscape, no matter in what way the solution process evolves, while the quasi-periodicity
of the delay force must be derived from the solution process itself.

At this point we should mention a difference between the two models that can be overcome. The
harmonic signal of equation (1.1) causes the potential landscape to change smoothly. The tilting of the
double well potential V' due to the delay force, though being continuous, is less regular, because it depends

on the point value of a trajectory of usually unbounded variation. In addition, interwell transitions take
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Figure 2.11: Typical path of a solution to (2.1) with ¢ = 0.40, 8 = —0.1 and r = 500 from time 1000r to 1013r.

Large random fluctuations, short intrawell sojourns.

place almost instantaneously, triggering almost instantaneous changes of sign in the delay force. This
effect could partially be transferred to the classical model by replacing the sinus function in (1.1) with an
appropriate periodic step function. The other way round, the two models can be brought into line with
one another by introducing a distributed delay in equation (2.1) instead of a point delay.

A more formal distinction regards the Markov property. Equation (1.1) is a non-autonomous SDE,
equation (2.1) an autonomous SDDE. Solutions are real-valued stochastic processes indexed by ¢ € [0, 00)
in the first case and ¢ € [—r,00) in the second. As such they are non-Markovian. In order to recover the
Markov property one has to enlarge the state space. In case of equation (1.1) this leads to processes with
values in R x S, while solutions of (2.1) are C([—r, 0])-valued Markov processes.

Last but not least, while it makes little difference whether the amplitude a in equation (1.1) is positive
or allowed to be negative, there is an important difference in the transition behaviour of solutions to (2.1)
depending on the sign of the delay parameter .



Chapter 3

The two state model in discrete time

Applying the ideas presented in section 1.3, we will develop a reduced model with the aim of capturing
the effective dynamics of the reference model from chapter 2. To simplify things further we start with
discrete time. As the segment process associated with the unique solution to (2.1), the reference model
equation, enjoys the strong Markov property, it is reasonable to approximate the transition behaviour of
that solution by a sequence of Markov chains. One unit of time in the discrete case corresponds to r/M
time units in the original model, where the delay interval [—r, 0] is divided into M € N equally spaced
subintervals.

In section 3.1 the approximating Markov chains are defined, while in section 3.2 an explicit formula
for their stationary distributions is obtained. In section 3.3 we make use of this formula in order to
calculate, for each M € N, the residence time distribution in the stationary regime and then derive its
density function in the limit of discrete time tending to continuous time. Finally, in section 3.4, based
on the residence time distributions, we introduce two simple measures of resonance.

The results on Markov chains we need are elementary and can be found, for example, in Brémaud
(1999), which will be our standard reference.

3.1 A sequence of Markov chains

Let M € N be the discretisation degree, that is the number of subintervals of [—r,0]. The current state of
the process we have to construct can attain only two values, say —1 and 1, corresponding to the positions
of the two minima of the double-well potential V. Now, there are M + 1 lattice points in [—r,0] that
delimit the M equally spaced subintervals, giving rise to 21 possible states in the enlarged state space.

Let Sy := {—1,1}M*! denote the state space of the Markov chain with time unit r/M. Elements
of Sy will often be written as (M +1)-tuples having {—1, 1}-valued entries indexed (from left to right)
from —M to 0. The strange choice of the index range serves to recall how we have discretized the delay
interval [—r,0]. Thus, [ € {—M,...,0} corresponds to the point ! - /M in continuous time. This is, of
course, only a mnemonic, the link to the reference model has to be established in a different way.

To this purpose, let a, v be positive real numbers. If X(.) is the unique solution to (2.1) in the case
of “interesting” noise parameter ¢ and delay parameter § then one may think of o as the escape rate of
X (.) from one of the two potential wells under the condition X (¢) ~ X (¢ —r) and of v as the escape rate
of X (.) under the condition X (t) ~ —X (¢ — r). All of the parameters of the reference model, including
the delay length and the geometry of the potentials U and V, will enter the discrete model through the
transition rates « and «y. In section 5.2 we derive an approximation formula for the transition rates and

discuss the assumptions underlying their introduction.

17
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In the discrete model of discretisation degree M, instead of two different transition rates we have two
different transition probabilities aps and vpr with aps = Rse(o, M), Yo = Rse(y, M), where R, is an
appropriate scaling function. In analogy to the time discretisation of a Markov process we set

(3.1) Rye:(0,00) x N3 (1, N) = 2 . (1 — e~ “%") € (0, 1).

a+y

Let Z = (ZCM) . 70, 7z = (ZM) . Z©) be elements of Sy;. A transition from Z to Z shall
have positive probability only if the following shift condition holds:

(3.2) Vie{-M,...,-1}: z® =z,

Ezample. Take the element (—1,1,—1) € Sy. According to the shift condition, starting from (—1,1,—1)
there are at most two transitions with positive probability, namely to the elements (1,—1,1) and

(1,-1,-1). O

If (3.2) holds for Z and Z then there are two cases to distinguish which correspond to the conditions
X(t)~ X(t—r) and X(t) = —X(t —r), respectively. Denote by pgfz the probability to get from state Z
to state Z. Under condition (3.2) we must have

Mo )am it 20 2 z0),
= P2z~ e Z0) _ 70
l—ay if 20=z

)

(3.3) N
Yr if 70 £ z0)

7O £ 7Moo Mo
77 1=y i 200 = 20,
The fact that because of (3.1) we always have ans, vy € (0,1), implies

(3.4) p?z #0 < shift condition (3.2) is satisfied.

Now define Py, := (pAZ/[Z)Z,ZeSM' Clearly, Py is a 2M+1 x 2M+1 transition matrix. Interpreting the
elements of Sy; as binary numbers, where —1 has to be read as 0, P is of the form (only non-zero
entries are indicated)

Cur

Cum

Cum

_— (l—apm apm O 0 ~ — (1=vym ym O 0
where C,; = ( 0 0 vt 1—%1) and Cyr = ( 0 0 aum 1—aM)'

Ezample. The following table illustrates the transition matrix Py, for M = 2.
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~1 -1 -1 -1 1 1 1

1 -1 1 1 1 1 1 1

-1 1 -1 1 -1 1 1
(-1,—-1,-1)" | 1—as o 0 0 0 0
(-1,-1, 1T 0 Y2 1—, 0 0
(-1, 1,-1)" 0 0 0 0 1—ao s 0
(-1, 1, 1" 0 0 0 0 0 0 7o 11—
( 1,—1,-D)7 [ 1—m, Yo 0 0 0 0 0 0
(1,-1, 1" 0 0 o 1— oy 0 0 0 0
(1, 1,-1)" 0 0 0 0 1— Yo 0 0
(1, 1, 1 0 0 0 0 0 0 o 1—as

¢

For every M € N we may choose an Sys-valued process (X),,en, on some measurable space (Qar, Far)
and probability measures PAZ4, Z € Sy, on Fjpy such that under P% the discrete process XM is a
homogeneous Markov chain with transition matrix Py, and initial condition P} (XM = Z) = 1.

If v is a probability measure on the power set p(Sys) then, as usual, Pﬂ/f will denote the probability
measure on Fys such that XM is a Markov chain with transition matrix P,; and initial distribution v
with respect to PM. Since Sy is finite, we have

P =" u(2)PY.
ZeSm
When there is no ambiguity about the probability measure PM . we will write P, instead of Py . For the

probability of a singleton {Z} under a discrete measure v let us just write v(Z).

3.2 Stationary distributions

From relation (3.4), characterizing the non-zero entries of Py, it follows that Py, and the associ-
ated Markov chains are irreducible. They are also aperiodic, because the time of residence in state
(=1,...,—1), for example, has positive probability for any finite number of steps.

Now, if the transition matrix of a homogeneous Markov chain is finite-dimensional or, what is the
same, the state space is finite, irreducibility implies positive recurrence, and these two properties together
are equivalent to the existence of a uniquely determined stationary distribution on the state space, cf.
Brémaud (1999: pp. 104-105). Therefore, for every M € N, we have a uniquely determined probability

measure 7y, on ©(Sys) such that

ny = myPu, thatis
(3.6) mu(Z) = > mu(Z)p),  forall Z e Sy.

ZESnm

Note that X is a stationary process on (a7, Fas, Pr,,) in the sense of definition 2.6, where the index set
Iis chosen to be Ny, because X%_l 2 XM with respect to P,,, for every n € Ny and X%_l is independent
of o(XM,..., XM ) given o(XM), since XM has the Markov property.
There is a simple characterization of the stationary distribution 7y, in terms of the number of “jumps”
of the elements of Sy;. Let Z = (Z(=M) ... Z(©)) be an element of Sy, and define the number of jumps
of Z as

T(2) = # {j € {-M+1,...,0}| 29 # ZU*U} .
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At the moment, “number of changes of sign” would be a label more precise for J(Z) than “number of
jumps” in view of the fact that we have not yet defined what a jump for Z should be. This will become
clear in section 4.2. Let us here make use of the new notation.

Proposition 3.1 (Number of jumps formula). Let M € N. Set ayps := (12%4)’ Am = (1:’%, Ty =

an Yy - Then for all Z € Spy it holds that

1 &+, 1@ 1 . 7(Z) mod 2 - | L2
(37) FJV[(Z) — 50&]\&[ 2 J’Y]\EI 5 — 5041\4( ) ,'7]\&[ p) J’
M - i
where cpr == 2- Y (JJV[) @X/ImOdQ ﬁvaJQJ-
=0

Proof. The right-hand part of equation (3.7) is just a rearrangement of the middle part. For Z € Sy,
define
_ | L@t | 22
Yu(Z) = a,; 2 T 2 -
We then have cyy = > o5, ¥m(Z), because J(Z) € {0,...,M} for every Z € Sy, and with j €
{0,..., M} there are exactly 2 - (A]J) elements in Sy, having j jumps.

Let Z = (ZM) .. Z(©) be an element of Sy;. Define elements Z, Z of Sy as

Z:= (20,2 zED), 7= (-2, zM 0750,

9

Because of (3.3) and (3.4) the global balance equations (3.6) reduce to

(1—an) - mu(Z) + (L= ym) -maa(2) i 200 = 200,

(3.8) (Z) = ) .
Oz]V['WM(Z)Jr’}/M'WM(Z) if 7z = _z0)

Equations (3.8) determine 7 up to a multiplicative constant. Of course, >, g 7m(Z) = 1, and we
have already seen thaNt E% Yo zes, YMm(Z) = 1. Tt is therefore sufficient to show that ¥ (Z), Z € S,
satisfy (3.8). Let Z, Z,Z be elements of Sy; as above. Then

J(Z) if Z(=M) = 70,
1 if ZzCM) =z = _70)
J(Z)—1 if zGM) = zED = _7(0)

J(Z) it ZzGM) = _z0)
J(2) = {J(2)+1 if zM = z(-1 = 70
J(Z) -1 if zCM =70 = _z(=D,

and ¥p(Z), ¥ar(Z) can now be calculated. This yields the assertion. O
From proposition 3.1 we see that 7j; is symmetric in the sense that for all (Z(’M), R Z(O)) € Sum
r((ZzCM 0 Z2O)) = 7((=2CM, -2 = 7((29,...,2M)).

For later use, it is convenient to take note of the following lemma.
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Lemma 3.1. Let a, b, n be positive real numbers. For n € Ny set
b

o= o) = 3 (a4 =)0 v+ g (a2 ) -0V

o= bu(a,bn) = Sb+a Vi) (1 V)" + 2= a- Vi) (1 - Vi)™

Then
12 ; 1251 .
_ k) . K\
(3.92) = (Z <2k)77) @t ( D <2k+1)77) b,
k=0 k=0
12 . 1251 .
9h = LA k+11Y | )
(3.9) bn ( <2k)”) b+ (2 <2k+1)” )
k=0 k=0
Proof. Splitting up the sum in the binomial formula applied to (14 /7)™ gives
5, 125 ,
1+/n)" = kot SN
(1£vn) 2 <2k>” ( > (2k+1)” )‘/ﬁ
k=0 k=0
The assertion follows by linear combination of (1 + ,/7)" and (1 — /7)". O

The sequences (a;,), (b,) defined in lemma 3.1 above, arise as the result of a Fibonacci-like iteration if

we set ag := a, by := b and recursively define
Gp = Qp—1 + bn—ly by = n:Gp—1+ bn—17 n €N

Let cps be the normalizing constant from proposition 3.1. Then (3.9a) of lemma 3.1 implies

o e = (B () v

3.3 Residence time distributions

Let M € N\ {1}, let the transition probabilities aps, var, the transition matrix P, the associated
Sar-valued Markov chain XM on (27, Fas), the stationary distribution 73 on ©(Sys) and the induced

probability measure P,,, on Fjs be defined as in sections 3.1 and 3.2 above.

Let YM be the {—1,1}-valued sequence of current states of X that is we set!

(XMYO) if neN,

n

(XY™ if ne{-M,...,0}.

yM .=

n

Now define

(3.11) Ly(k) :=Pr, (Yo" =1,....", =1,y =-1|YY =-1YM=1), kel

Ly (k) gives the probability to remain exactly k units of time in the same state conditional on the

occurrence of a jump. Note that Lys(.) is well defined, because

Pry (YM = 1, ¥M =1) = 7 ({(4,..., %, —1,1)}) > 0.

IRecall the tuple notation for elements of Sy;.
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Here, {(*,...,% —1,1)} denotes the set {Z € Sp; | Z"Y = —1,Z(® = 1}. Because of the symmetry
properties of Py, and 7y the roles of —1 and 1 in (3.11) are interchangeable. Under P,,, not only X

is a stationary process, but as a coordinate projection YM is stationary, too, although it does not, in

™™

general, enjoy the Markov property. For any n € N, we have

Ly(k) = Pry, (M =1,... Y8, =1vM, =-11yM, =-1YM=1), kel

n

We note that Ly(k), k € N, gives the residence time distribution of the sequence of current states of

XM in the stationary regime.
We observe that Ljs(.) has a “geometric tail”. To make this statement precise set
(3.12) Ky =Pr, (YM=-1YM=1,... )Y/ =1 =-1,{" =1).

In view of the “extended Markov property” of Y™ that is the Markov property of the segment chain
XM we have
(3.13) Lyu(k) = Pry, ((YM =-1,YM =1,.. .,V =n{¥i,=1... . vyM=1v =-1}
| {YOM = _1aY1M = 1})
= (1—ym) Ky-ap-T—ap)"™ k>M+1,
where (1 — «a7) - Ky is the probability mass of the geometric tail. Stationarity of P

v ((-1,1,...,1))
Tm ({(*, ek, —1 1)}) '

implies that

M

Ky =

From proposition 3.1 we see that

QN
-1,1,...,1)) = —
7TM(( ) ) )) CM7
and arranging the elements of {(x,...,*,—1,1)} according to their number of jumps we obtain
M—2
1 M—=2\ ,_ i1 mod2 ~ |2FL  id9mod2 . |it2
WM({(*,---7*,—1,1)}) = o Z( ’ >(a1\]/[+1 dzm\bgj + a]f/;’Q dQnAEIz J)
§=0
M-—2 1\4;3
_am (M —-2 ~j> ( M—2 ~j+1>
_CM<Z(2j>nM+Z2+1M
3=0 7=0
M—2 M—-3
. =2 J(M—2>~])~ N (L D) J(M—2)~] . >
M) TM . 77M) ™M
=0 N =\l
Qg 5 —\ M—1 - —\ M-1
= E.((ur g—g)(1+\/nM) +(1— g—x)(l— Tin) )

where in the last part of the above equation lemma 3.1 has been applied. We therefore have
2

5 —\ M—1 5 —\M-1"
(1 /20) (v (1= /22 (1= Vi)
In a similar fashion we can calculate Ly (k) for k € {1,..., M}. We first notice that
Poy, (YM=-1YM=1,... V) =1V, =-1)

)

(3.14) Ky =

7TM((_1, 1,...,1,-1)
WM({(*, oo =11}

(3.15b) Ly (M—1) =
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Now, let k € {1,...,M—2}. Set n := M —2—Fk and denote by {(—1,1,...,1,—1,%,...,%)} the set
{(ZeSy | ZzCM = 1, 7MY =1 (MR — 1 z(=M+k+1) — 11, Then
T ({(=1,1,...,1,=1,%,...,%)}) cm

LM(k‘) = ﬂM({(*,,,,,*,fl’l)}) = @ KM WM({(—LL...,1,—1,*,...,*)})

~ j+2mod 2 ~ | 2] ~ j+3mod 2 ~ | 12]
(aM Ui + ajy Ui )

_ L5 5]
nm ny_.j; n <41
= — . K- J J
2w (3 (3)) + (3 (5))
7=0 7=0
3] o\ SR I .
+ ( < >7~71\]/1) o + < Z < . )771\]4) dM)
= 2j = 25+1
M & — n+1 5 — n+1
- 7-KM-<(1+,/TQ;)(1+\/nM) +(1—./&—g)(1—«/w) )
where we have again made use of lemma (3.1). A last rearrangement yields for k£ € {1,...,M — 1}

In@) = Y2 Ky (Vi (o V) (1))
o (1 VA (1 ),

More interesting than the residence time distribution in the case of discrete time is to know this distri-

(3.16)

bution in the limit of discretisation degree M tending to infinity.

Recall (3.1) from section 3.1, where a scaling function Rg. was defined for some numbers o,y > 0. If
apy = Rse(a, M) and vy = Rge(y, M) for all M € N, then — with the usual notation O(.) for the order
of convergence we have
(317) an = 1+ O ), = L4 O,

Indeed, if condition (3.17) holds between the transition probabilities aps, yar, M € N, and some positive
transition rates «, 7y, then we can calculate the normalizing constant c,;, the “tail constant” K, and the
density function of the residence time distribution in the limit M — oo.

Proposition 3.2. Let ap,vym € (0,1), M € N. Suppose that the sequences (anr)men, (Yamr)men
satisfy relation (3.17) for some positive real numbers o, v. Then ¢y and Ky converge to coo and

Koo, respectively, as M — oo, where

(318)  ci= lm ey = (1+,/2)eV™ 4+ (1-/2)e V™ = 2. Z% kmod 2 (o) L5)
k=0
2 V/a
319) Ko = lim Ky = _ . ,
(3.19) it M T (T D) eV + (1— /T)e Va1 | Jacosh(y/ar) + /7 sinh(y/ay)

Define a function fr, : (0,00) — fr(q) := ]\/}im M- LM(LqMJ). Then

V7 Ko (\/_cosh(\/_(lfq))+\/Esmh(\/_(1fq))> if ¢q€(0,1],

K ~a-exp(—a(q—1)) if qg>1.

(3.20) frla) =



24 CHAPTER 3. THE TWO STATE MODEL IN DISCRETE TIME

Proof. Tfrelation (3.17) holds, then in order to derive (3.18) and (3.19) from (3.10) and (3.14), respectively,
it is sufficient to observe that (1 + % + O(7z)) N2 @ for every a € R. The last part of (3.18) is
obtained by series expansion. Similarly, expression (3.20) for f;, follows from equations (3.15a), (3.16)
and (3.13). O

Observe that fr, as defined in proposition 3.2 is indeed the density of a probability measure on (0, c0). In
case « = ~ this probability measure is just an exponential distribution with parameter « (= 7). If a # ~
then fr has a discontinuity at position 1, where the height of the jump is

(3:21) fo4) = ful=) = Ke-(a—7).

Clearly, the restrictions of f, to (0,1] and (1,00), respectively, are still strictly decreasing functions,
and f1.(q), ¢ € (1,00), is again the density of an exponential distribution, this time with parameter «
(# ~) and total probability mass K. The function f1(q), ¢ € (0,1), is the density of a mixture of two
“hyperbolic” distributions with the geometric mean /a7y of o and v as parameter and total probability
mass 1 — K. The ratio between the hyperbolic cosine and the hyperbolic sine density is /¥ to \/a.

Recall how at the beginning of section 3.1 we interpreted the discretisation degree M as the number of
subintervals of [—r, 0], where r > 0 is the length of the delay that appears in equation (2.1). Anticipating
the discussion of chapter 5, let us assume that the numbers «, v are functions of the parameters of our
reference model, in particular of the noise parameter ¢ and the length of the delay r. Then we should
interpret the density fr as being defined on normalized time, that is one unit of time corresponds to r
units of time in the reference model. The density of the residence time distribution for the two state

model in continuous time should therefore read as

(3.22) o) =1f (L),  te(0,00).

Before we may call fL the density of a residence time distribution, we have to justify the passage to the
limit M — oo at the level of distributions of the Markov chains X, which underlie the definition of

Lys. This is the subject of chapter 4. We will return to the issue of residence times in section 4.5.

3.4 Two measures of resonance

Drawing on the residence time distribution of the Markov chain X that was studied in section 3.3 we
introduce simple characteristics that provide us with a notion of quality of tuning for the reduced model
in discrete time.

We consider XM and the resonance characteristics to be defined in the stationary regime only, because
by doing so we have the guarantee that an eventual resonance behaviour of the trajectories of XM is
independent of the initial distribution. From section 3.2 we know that Pj; is a positive recurrent,
irreducible and aperiodic transition matrix and, therefore, the distribution of X converges to s in
total variation as n — oo for every initial distribution of Xy (Brémaud, 1999:p. 130). In section 2.2.3
we saw an analogous result for the segment process of a solution to (2.1), the equation of the reference

model.

Let us assume that the transition probabilities ays, vps are related to some transition rates «, v by means
of a smooth scaling function like (3.1), for example, such that condition (3.17) is satisfied. Under this
assumption we let the discretisation degree M tend to infinity. Assume further that «, + are functions
of the parameters of the reference model, in particular, that o = a(c), v = (o) are C?-functions of
the noise parameter o € (0,00). The resonance characteristics can then be understood as functions of o.

This view enables us to define what we mean by stochastic resonance in the two state model.
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Recall from section 3.3 that the residence time distribution Lj; has a geometric tail in the sense that
Ly (k), k > M+1, renormalized by the factor (1 — vas) - K is equivalent to a geometric distribution
on N\ {1,..., M} with K)s as defined by (3.12). The distribution which L,; induces on {1,..., M} is
given — up to a renormalizing factor — by equations (3.16) and (3.15a). A natural characteristic seems to
be the jump in the density of the residence time distribution f; that we encountered in section 3.3. In
discrete time, i.e. with discretisation degree M € N, we set

(3.23) vpg o= M- (Ly(M+1) — Ly (M)).
Because of (3.13), (3.15a) and (3.21) we have

(3.24) iy
(3.25) Voo 1=

M- Ky (1= 7ur) - anr — ),

A}EHOOUM = Ko (a—7).

To consider the height of the discontinuity of f; as a measure of resonance has already been proposed

by Masoller (2003), cf. section 1.4. Following this proposal we define what stochastic resonance means

according to the jump characteristic.

Definition 3.1. Let M € NU {co}, and suppose that the following conditions hold:
(i) v as a function of the noise parameter o is in C2((0, 00)),

(i) E?OIUM(U) =0,

(iii) v}, has a smallest root o,y € (0, 00).

If vps has a global maximum at o,, then let us say that the Markov chain XM or, in case M = oo, the
reduced model defined by the family (XN)NGN exhibits stochastic resonance and call o,y the resonance
point. If vy has a global minimum at o,,:, then let us say that the Markov chain X M (or, in case

M = oo, the reduced model) exhibits pseudo-resonance and call o,,; the pseudo-resonance point.

Alternatively, we may take the probability of transitions in a certain time window as characteristic of the
resonance effect. For M € N and ¢ € (0, 1] define

M (q+1)M]
(3.26) fing = Lo (k), kD= 3" Lu(k).
k=1 k=M+1

By summation over k we see from (3.13) that

(3.27a) Ry = 1—(1 =) K,
(3.27b) KD = (=) Kar- (1= (1= app) ™)),

and letting M tend to infinity we get

M*)OO
(328b) K(()g) = ]\}141/)1100 HS\?[) — Koo . (1 . eiq.a),

Recall that M steps in time of the chain X* or the {—1, 1}-valued process Y correspond to an amount

of time r in the reference model. Thus, kj; corresponds to the probability of remaining at most time r in
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one and the same state, while ngg[) approximates the probability of state transitions occurring in a time

window corresponding to (7, (g+1)r] of length ¢ -  given a transition at time zero.>
In (3.26) we could have allowed for a “window width” ¢ > 1. The interesting case, however, is a small

(q)
M

time window, because then k},/ measures the probability of transitions within the second delay interval.

For ¢ = 1 the two components of our resonance measure correspond to time windows of equal length,
that is s)s gives the probability of transitions within the first delay interval, while HE&I) is the probability
of hopping events occurring in the second delay interval. Since Lj; is geometrically distributed on
N\{1,..., M}, ng\? majorizes the transition probability for all time windows of the same length starting

after the end of the first delay interval. Let us write k), for ng\?.

The idea of the following definition is to maximize quasi-periodicity by finding a noise level such that
sojourns in the same state become neither too long nor too short. Here, short sojourns are those that
last less than the length of one delay interval, long sojourns those that last longer than the length of
two delay intervals. Observe that if the current state of X remains the same for more than M steps in

discrete time, then the influence of the delay will be constant until a transition occurs.
Definition 3.2. Let M € NU {0}, and suppose that the following conditions hold:
(i) kar as a function of the noise parameter o is in C2((0, 00), [0, 1]),

(i) lim(Aas + ar)(0) =0,

ol

(i) xas has a unique global maximum at o, € (0, 00).

If kar(oopt) > R, then let us say that the Markov chain XM or, in case M = oo, the reduced model
defined by the family (X)yen exhibits stochastic resonance of strength Kk (Oopt), and call o,y the

resonance point, else let us speak of pseudo-resonance and call o,y the pseudo-resonance point.

In the above definition we might have taken a shorter time window than the second delay interval. A
natural choice would have been the probability of transitions occurring in a time window corresponding
to (r, (1 + g)r] normalized by the window width. In the limit M — oo we obtain

1
(3.29) lim - k9 = Keo-a = fo(14).
ql0 ¢q
Here, fy, is the density of the residence time distribution from proposition 3.2 and fj,(1+) is the right-hand
limit appearing in equation (3.21), which gives the height of the discontinuity of fy .

Of course, definition 3.2 could be modified in other ways, most importantly by allowing the time window
that corresponds to ks to float. This would be necessary for a distributed delay. Suppose that in the
reference model instead of the point delay we had a delay supported on [—r, —§] for some § > 0. Then
a reasonable starting point for a measure of resonance could be a time window of length r with its left
boundary floating from ¢ to r.

Notice that a distributed delay (in the reference or in the reduced model) can be chosen in such a

way as to render continuous the density fr.

As the resonance characteristics are defined over the distribution of the Markov chain X™ in the sta-
tionary regime, it is natural to ask, how the distributions of X, M € N, behave in the limit M — oo.
More precisely, we shall study weak convergence of those distributions on a suitable Skorokhod space.

This task is carried out in chapter 4.

2 Again, the time correspondence is to be understood as a means of illustration only. We are not yet in a position to
make those statements precise.



Chapter 4

The two state model in continuous time

Our aim in this chapter is to justify the passage from time discretisation degree M to the limit M — oo
as undertaken in sections 3.3 and 3.4. To this end we will look for a process in continuous time that is the
limit in distribution of the Markov chains X™, M € N, in the stationary regime. We can then consider
the distribution of residence times for this new process and show that it coincides with the limit of the
residence time distributions in discrete time which was calculated in section 3.3. Since the measures of
resonance introduced in section 3.4 were defined over the (discrete) residence time distributions, we may
conclude that in this case, too, the passage to the limit M — oo is admissible.

For M € N the Markov chain X takes its values in the finite space Sy; with cardinality 21,
The first thing to be done, therefore, is to choose a common state space for the Markov chains. This
will be Dy := Dy_y13([-7,0]), the space of all {—1,1}-valued cadlag functions, i.e. right-continuous
functions with left limits, on the interval [—r, 0], endowed with the Skorokhod topology. This simplest
of all Skorokhod spaces is introduced in detail in section 4.1.1, while in section 4.1.2 we present D, :=
Dy_1.1y([~7r,00)), the space of all {1, 1}-valued cadlag functions on the infinite interval [, 00).

Recall how in section 3.1 we partitioned the delay interval [—r,0]. Time step n € {—-M,—-M+1,...}
with respect to the chain X™ was said to correspond to point 7 - 37 in continuous time. Keeping in
mind this correspondence we embed the spaces Sy;, M € N, into Dy, which allows us to look upon the
stationary distributions m; as being probability measures on B(Dp) and to view the random sequences
XM as being Dy-valued Markov chains. This is done in section 4.2.1.

Now, because of the shift condition (3.2) from section 3.1 one may regard X as being a process
with trajectories in D... If the discretisation of time is taken into account, then the chain X induces
a probability measure on B(D) for every initial distribution over Sy; C Dy. The induced measures are
defined in section 4.2.2.

Weak convergence of the stationary distributions or, equivalently, convergence of the 7,; with respect
to the Prohorov metric induced by the Skorokhod topology on Dy will be established in section 4.3. Weak
convergence of the distributions on B(Dy,) is the object of section 4.4.

Finally, in section 4.5, we return to the question of identity between the residence time distribution

for the limit process and the one we obtained above as the limit of discrete distributions.

4.1 {—1,1}-valued cadlag functions

Here, we specialize results from the literature on the Skorokhod spaces DS = Dg([—r,0]) and D =
Dg([—r, 00), summarized in appendices A.2 and A.3, respectively, to the corresponding Skorokhod spaces

of {—1,1}-valued cadlag functions, namely Do = D;_; 11([-7,0]) and Do, = Dy_1,13([~7,00)).

27
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4.1.1 The Skorokhod space D,

There are two equivalent ways of topologizing Dy. The first is to define metrics dg, dg in analogy to
appendix A.2, where |. — .| should be interpreted as a metric on {—1,1}. In fact, if (E,d) is a metric
space, one can define the Skorokhod space Dg([—r,0] with its accompanying metrics. If, in addition,
(E,d) is complete and separable, then an analogue of theorem A.4 holds.!

The second option is to restrict the metrics dg, d% and the Skorokhod topology of DY to Do. This
works, because Dy is a closed subset of D} with respect to the Skorokhod topology. Theorem A.4 now
implies that Dy is a separable metric space under dg, and complete and separable under dg, as is the case
for DY. Define the moduli of continuity w, w by restriction or in analogy to (A.1) and (A.2), respectively.

For f € Dy define J(f), the set of discontinuities or jumps, and (s, the minimal distance between two

discontinuities or an inner discontinuity and one of the boundary points of [—r, 0], as

J(f) {te (0| f®) #f0t-)},
¢r = min{|t—s||t,seJ(f)U{-r0}},

where f(t—) is the left-hand limit of f at t. Set J(f) := J(f) N (—r,0), the set of inner discontinuities of
f. Notice that the only possible discontinuity of f not in J(f) is 0, the right boundary of [—r,0].

Proposition 4.1. Let f € Dy, 6 € (0,7), and let I C [—r,0] be an interval. Then

(4.1) w(f,I) € {0,2}, w(f,I) =0 & fis constant on the interval I,
(4.2) #J(f) € No,
(43)  alf.0) € (0,2}, B0 =0 & >4

Proof. Obviously, |f(s) — f(t)] € {0,2} for all s,t € [-r,0], and (4.1) is a consequence of (A.2), the
definition of w.

If there were an f € Dy with #J(f) = oo, one could choose a sequence (t,)neny C J(f) such that
tn, "= tand t, #tfor all n € N. Since f is a cadlag function, there would be &;,8, > 0 such that f is
constant on the intervals (¢ — d;,t), (¢,t + d,.), except if ¢ were a boundary point of [—r, 0], in which case
only one of the constants d;, d,- could be chosen appropriately. In any case, t,, € (t—0;,t) or ¢, € (t,t+0,)
for n big enough, a contradiction, because f cannot be constant on an open interval and at the same
time have a discontinuity in it.

Clearly, w(f,0) € {0,2}. Suppose w = 0. Then there are m € N and a partition —r = t5 < ... <
t,, = 0 such that t; —t;—1 > § and w(f, [t;—1,t;)) =0 for all s € {0,...,m}. Hence, f is constant on each
interval [t;—1,¢;), and the minimal distance between two discontinuities or an inner discontinuity and the
boundary of [—r,0] is at least min{(¢; — t;—1) | i € {0,...,m}}.

Conversely, (y > ¢ implies w(f,0) = 0, because —r =ty < ... < t,, = 0 forms a suitable partition of
[—r,0], if one chooses m = #.J(f)+1 and takes as ti,...,t,_1 the inner discontinuities of f. O
Theorem A.5, which states necessary and sufficient conditions for compactness in DY, takes on a simple

form in the present context.

Proposition 4.2. Let A C Dy. Then the closure of A is compact in the Skorokhod topology if and only
if inf{(y | f € A} > 0.

ISkorokhod spaces for E-valued functions on the infinite interval [0, co) are defined in Ethier and Kurtz (1986).
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Proof. Condition (i) of theorem A.5 is satisfied for any A C Dy. Hence, we must show that condition (ii)
of A.5 is equivalent to infreq (¢ > 0.

Let f € Dy, then w(f,d) € {0,2} for all § € (0,7). Therefore, lims|osup e 4 W(f,0) = 0 if and only if
there exists dg € (0,r) such that for all § € (0,dp) and all f € A we have w(f,d) = 0. According to (4.3)
the latter condition is equivalent to the existence of §y € (0,7) such that ¢y > dy for all f € A, which in
turn is just infrea ¢y > 0. O

Condition inf e ¢y > 0 implies sup ;¢ 4 #J(f) < 0o, but the converse implication does not hold, as can
be seen by considering the sequence (f,,) defined in the example of appendix A.2.

4.1.2 The Skorokhod space D,

First observe that for any ¢ > —r the space D{_; 13([—r,1]) of all {—1,1}-valued cadlag functions on
[—7,t] can be defined in analogy to the space Dy.

Denote by Do, = D{_; 13([—7,00)) the set of all {1, 1}-valued cadlag functions on [—r, 00). Clearly,
D is a subset of Dg°, but it is also closed with respect to the Skorokhod topology of Dg° as can be seen
from proposition A.1 and section 4.1.1. We may therefore restrict the topology of DR° and its metrics

doo, d2, thus topologizing D.

4.2 Embedding of the discrete-time chains

First we interpret the finite enlarged state space Sj; as a subset of Dy. After that, we change philosophy

and regard a chain X™ as being equivalent to a {—1,1}-valued cadlag process.

4.2.1 Embedding into D,

The embedding of Sy, the state space of the Markov chain X*, into Dy is in a sense the reverse of
what one does when approximating solutions to stochastic delay differential equations by Markov chains
in discrete time.? Approximation results of this kind were obtained for the multi-dimensional version of
equation (2.5) by Scheutzow (1983, 1984). The method is more powerful, though, as Lorenz (2003) shows,
where weak convergence of the approximating processes to solutions of the multi-dimensional version of
(2.4) is related to a martingale problem that can be associated with the coefficients of the target equation.

Of course, Dy is a toy space compared to C([—r,0], R%). Notice, however, that linear interpolation as
in the case of C([—r,0],R?) is excluded, because the only continuous functions in Dy are the two constant

functions —1 and 1.
Let M € N, Z € Sy, and associate with Z = (Z(=M) ... Z(0)) a function fz : [-r,0] — {—1,1} defined
by

—1
fz) =29 1y (t) + Y ZW 1y 1y (), tE[-1,0],
i=—M

Clearly, f7 € Dgy. Hence, s : Z — fz defines a natural injection Sy; < Dy, which induces the following
embedding of probability measures on p(Sps) into the set of probability measures on B(Dy).

M) s fii= Y w(Z) -85, € MY (Do),

ZESMm

2Under suitable conditions the approximating time series converge in distribution to the (weakly unique) solution of the
SDDE.
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where d is the Dirac or point measure concentrated on f € Dy.

Denote by 7ps the probability measure on B(Dg) associated with the stationary distribution 7y for
the chain XM, and write XM for the corresponding Dy-valued Markov chain. Since all we have done so
far is a reinterpretation of the state space the results obtained in chapter 3 regarding X™ are also valid
for XM

Although the embedding 7y given above is natural in view of how the delay interval [—r, 0] should
be partitioned according to section 3.1, it is not the only one possible. Indeed, one could select different
interpolation points in the definition of fz. As the degree of discretisation M increases the complete
Skorokhod distance between the different functions fz, Z € Sj; being fixed, tends to zero, and the

convergence results stated in 4.3 and 4.4 still hold true.

Following the notation of section 4.1.1, for Z € S, we write

J(Z) = J(fz), J(Z) = J(fz), (z = (s

thereby denoting the sets of discontinuities or jumps of Z, and the minimal distance between two dis-
continuities. Notice that our new definition of J(Z) agrees with the number of jumps J(Z) defined in
section 3.2 in the sense that #J(Z) = J(Z).

For the proof of convergence it will be useful to partition Sy; into subsets of elements which have equal
number of inner jumps. With ¢ € {0,..., M —1} set

Sar(i) == {Z €S | #J(f2) = z}

M—1
We then have Sy = |J Sa (i) a pairwise disjoint union.
i=0

4.2.2 Embedding into D,

Let M € N. Recall the notation of section 3.1. Let v be a distribution on (Sys) and denote by P
the probability measure on Fj; such that X* is a Markov chain with transition matrix P,; and initial
distribution X} L. For a “point distribution” on Z € Sy, write ng.

For f € Dy let Z(f) be the element of Sy, such that Z(*) = f(47-1) for all i € {—=M,...,0}. Let
(Y,fVI)ne{_M)_M_HW} be the sequence of current states of X as defined at the beginning of section 3.3.
Write

YM(t) = Yy, t= -

For A € B(Dy) set

~ M ~ ~ ~
Py (A) == Py (Y™ € A), Pr(A) = PY (YM € A),

™M

~M ~
thereby defining probability measures on B(D,). Note that P, , Pys are well defined and correspond to
the distribution of X™ with X/ L Z(f) and X! L 701, respectively.

4.3 Convergence of the stationary distributions on D,

The aim of this section is to prove that the sequence (7ps)aen of probability measures on the Borel
o-algebra B(Dy) converges weakly to a probability measure 7. Since (Dy,d%) is separable, theorem A.1
says that weak convergence of (7y/) to 7 is equivalent to convergence under the Prohorov metric induced
by d%.
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The proof follows the usual strategy for this kind of convergence. First, we check that the closure
of {Tar | M € N} is compact in M2 (Dy) with respect to the Prohorov topology. Now, (Do, dg) is also
complete. According to the Prohorov compactness criterion, cited as theorem A.2 in the appendix, it is
therefore sufficient to show that the set {7y, | M € N} is tight.

For the second step, choose a limit point @ € M? (Do) of {7 | M € N}, which exists according to
the first step. It remains to show that 7 is the unique limit point of (7).

Before embarking on the actual proof of convergence we need some technical preparation, which

consists in defining suitable approximation sets and estimating their probability under the measures my;.

4.3.1 Preliminaries

In order to construct compact sets for the proof of tightness we need special subsets of Sp;. Let N € N,
Z € Sy, and set for M e N\ {1,...,N—1}

uN(2) = {Z €Sm ‘ #J(Z)=#J(Z) A (FreA: es[upo] IA(s) =8| < ayg A fz0A= fz)}
se[—r,
For N big enough in comparison to 7, UY,(Z) C Sy is the set of elements Z € Sy such that ds(fz, f5) <
a1 Furthermore, #J(fz) = #J(fz) for all Z e UN.(2).
Notice that f; is not necessarily an approximation of fz with respect to the complete metric dg,
because the slope of A can be of order IV for all admissible time transformations.

Recall from proposition 3.1 that the probability my;(Z) of an element Z € Sj; under the stationary
distribution 7, depends only on the number of jumps of Z. The sets Sps(i), ¢ € {0,..., M —1}, form a
partition of Sy into subsets of elements of equal number of inner discontinuities. For Z, Z € Sar () we
have |#.J(Z) — #J(Z)| € {0,1}. Notice that we prescribed #.(Z) = #.J(Z) instead of #.J(Z) = #.J(2)
in the definition of Sy (7). Elements Z € Sy, such that fz jumps at position 0 play a special role, as their
accumulated probability under 7y, tends to zero as M tends to infinity.

Before establishing this point in section 4.3.2, we need two more lemmata. Let us start by estimating
the number of elements of Sy, (i) and UL, (Z), respectively.

Lemma 4.1.

(4.4) VM eNVie{0,...,M—1}: #Sy@i) = 4- (M),
(4.5) VNENVZ,Z, eSN\YM>N: 7y # Zy = UN(Z)nUN(Z2) =0,

VN eNVie{0,...,|VN|—1}VM >NV Z e Sy(i):

o (1)) < #0%@) < (1A% 1)

Proof. Any element f € Iy (SM (z)) can be described as follows. Choose i out of M —1 possible positions
for the inner discontinuities, and decide on the binary values of f(—r), f(0). This determines f, and
(4.4) follows.

Let Z; = (Zf_N),...,Zfo)), Zy = (ZQ(_N),...,ZQ(O)) be elements of Sy. By definition of UY;(.), for
UN(Z,) N UN(Zy) # 0 we must have #.J(Z1) = #.J(Z) as well as 2™ = Z{™) and 29 = z{V.
Suppose that Z;, Z; have the same number of inner discontinuities and agree at —N and 0, but still
7y # Zy. Then Zy, Z, differ in the position of at least one inner discontinuity, that is to say there is s €
(—7,0) such that sy € J(Z1)\ J(Z2); by symmetry, there is also s2 € (—r,0) such that sy € J(Z2)\ J(Z1).
Select such an sg, then |s — s3| > + for all s € J(Z1).
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Let Z, be an element of UY,(Z;). Then for any inner discontinuity s € J(Z;) there is exactly one
§ € J(Zy) such that |5 — 5| < an+1» and vice versa. The same holds true for any element Zo of UN.(Z)
ﬁ. But gg g J(Zl),

with respect to Zs. In particular, there is 59 € J(Zg) such that |35 — so| <
because |3 — 5| >  — 21\2,:_1 > 0 for all 5 € J(Z,). Since Z;, Z» were arbitrary, this establishes (4.5).

An element Z € UY,(Z) is determined by the positions of its #.J(Z) inner discontinuities, where {k - i
r|ke{l,...,M—1}} is the set of possible such positions. If s € J(Z), then there is k € {1,..., N—1}
with s = k- £ —r, and it exists exactly one 5 € J(Z) such that § € [s — vt S T angi)- Equation (4.6)
is now a consequence of

L2]2V—A_{_1j < #({k.%—r|ke{l,...,M—l}}ﬂ[s—2]\;’+1,5+2]\f+1]) < Lﬁvj\_{lj—kl,

forall s € {k- & —7|ke{l,...,N=1}}, and the fact that #J(Z) =i for Z € Sy(i). O

The second lemma shows that for M € N large most of the probability mass of 7, is concentrated
on elements of Sp; which have a number of jumps small in comparison to M. It is even sufficient to
restrict attention to elements of UY,(Z), where Z € Sy is such that the number of jumps of Z is small
in comparison to N which in turn must be small against M. We also see that the probability of a set
UAN4(Z) under 7, gives a good approximation of the probability which the “generating” element Z € Sy
receives under 7y .

If we compare probabilities with respect to probability measures 7, for different indices M € N, we
have to assume that an appropriate relation holds between the corresponding transition probabilities ay,
~vnm as M varies. We assume scaling relation (3.17) as in section 3.3, where we considered convergence of
the residence time distributions.

Lemma 4.2. Let M, N, Ny be natural numbers such that N9 < N < M, let ¢ > 0, and define the
expressions V1, ¥ and Y3 as

No
P o= ﬂM(U U U]AYI(Z)) > 1—e¢,
i=0 ZeS (i)
Uy = Vi€{0,...,No}VZeSn(i): |mu(UN(2) —7n(2)| < —,
N-1
wg = Z FN(SN(i)) < e
i=Np+1

Suppose that the sequences of transition probabilities (cuar) men, (Yar) men satisfy relation (3.17) for some

transition rates o,y > 0. Then for all ¢ > 0

(4.7) INy eNVNy>NgINeNVN>NIMeNVM>M: 1,
(4.8) VNo e NINeNVN>NIMeNVM >M: s,
(4.9) IJNoeNVNy >Ny INeNVN>N: 3.

Finally, it holds that

(4.10) Ve>03INy,NeNYN>NIMeNVM>M: ¢ Ay A 3.
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Proof. Formula (4.10) follows by “putting together” (4.7), (4.8) and (4.9), where Ny = Ny(e) can be chosen
as the maximum of Ny according to (4.7) and Ny according to (4.9), N = N(e, Np) as the maximum of
the respective variables N, and in the same way for M = M (e, Ny, N, N).

The remaining formulae will be established one by one. Let ¢ > 0, without loss of generality ¢ < 1.
Recall proposition 3.1, where the normalizing constant cj; for the probability measure 7, was defined,
and equation (3.18) of proposition 3.2, where we obtained an explicit expression for c.o = limps— o0 Cas-

In analogy to propositions 3.1 and 3.2, respectively, we set

mod 2 anv - L%]
oMMy =2 Z( )(1—7M)k d <(1—QZ)(YA17M)>

Coo, My =2 Z k' km0d2(a’y)L%J My EN,

, MeN, Mye{l,...,M}.

Because of relation (3.17) it holds that Vé € (0,1) VMo e N3IM e NYM > M V{0,..., My}

_ e k -
(4.11) 1+8)-(an)® > M. (G=isi—) > (1-8)-(a)"
A (1+8a = M. 2 > (1-&a
Al > M""‘(AJZIQE%H) > M"Mgﬁfzk) > 1-¢

In view of the above we have

Vée (0,1)3IMy e NV My > My3IM eNVM > M :

(4.12) 1> Coo, M

| MM, 1|+yCC°° —1| < &
M, My

>1—-€¢ N M > M, A

Coo

To conclude the preparations, recall that for Z € Sy(i), where M € N, ¢ € {0,..., M —1}, we have
#J(Z) € {i,i+1}, and that exactly half of the elements of S;;(7) has a discontinuity at 0.

Let € > 0. Choose Ny € N such that %ETNO >1—éfor all Ny > Ny. Let Ny € N with Ny > Ny = No(é).
Choose N € N such that YN > N Vi € {0,..., No}:

(sr) 2 5 and (V7)) 2

Let N € N with N > N = N(&, Ny). Choose M such that VM > M Vi e {0,...,No}:

(L%

e J) (%)i > (1) (REEN) > (1 - (M)
Coo a i mod 2 an- 4] —& _imo i
Ao a—E A (V) (5Rs) T () P > a2 (ag) e,

where (4.11) has been applied. For Ny > N0(€), N > ]\7(6, No), M > M(é, Ny, N) we have

wU U @) = 3 Y ¢+ Y o)

=0 ZeSn (4) i=0 ZeSn(i)AJ(Z)=i ZeSn(i)AJ(Z)=i+1

No
2 201M Zo <#SN(i)) (Lzzzv

M)

o i mod 2 s L4 o (i+1) mod 2 - (=24
(22 ) ™ (mzape ) B 4 () () )

as a consequence of proposition 3.1. According to the choice of Ny, N, M and because of (4.4) it holds
that

#Sn(0) 2 4-(1-9- 5, (135D = 0-9*(%), = =x1-e
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We therefore have

wMGLJW@)

1=0ZeSn (i)

No )
« ¢ mod 2 Qe L%J « (i+1) mod 2 an - L#J
p2a ) () B (qea (Dot (e 5

vV
§ [
—
—

|
™
—
S
—~
S
|

-
SN—"
/N
—~

i

B i mod 2 an - 3]
Z-9" 3 () (25) ™ (i)

Y

> Za-9 Y Laimd2anlEl = (1-gPe > (1-9% > 1-6e

Coo

Since € € (0,1) was arbitrary, we may set € := §, thereby establishing (4.7).

Let € > 0, Ny € N. Choose N € N such that YN > N Vi € {0,..., No+1}:

~ i ~ ~ ~

[VN] > 2No+3 A § <é A (3hg) > 1-¢ A 1+eé> &= >1-¢
~ N ~ ~ N2 . L4] ~
ACLHEZ DoEp 2 1-8 A 14E2 (G mmatom) | 2 176

which is possible because of (4.11). Let N € N with N > N = N(& Ny). Choose M such that
VM >MVYie{0,...,No}:

M >N A (25 > -3 > 1-92(3)" A (124 +1)) < a+9(%)"

Let N > N(¢,Ny), M > M (&, Ny, N), i € {0,...,No}, Z € Sy(i). We have to distinguish two cases. In
each case the first step will be an application of proposition 3.1.

Case 1. #J(Z) =i, that is fz has no discontinuity at 0. Then
v (UN(2)) — 7n(2)

ay \¢mod?2 aM VM L;j ay \tmod?2 aNIN L%j
= oo (#UN(2) (72)) (oaty) - o (1225) (Tatsm)

1=vm (I—am)(1—vm en \1—n (I1-an)(1-v~
i ~ imod 2/ g\ | 3] ~ imod 2/ g~y 2]
> (a7 ™ GR) ™ - S+ (%)™ (8
> i o mod 2 (O"}/)L%J ((1 . €)5(%)1M7(1 mod 2+2|£]) _ (1 + €)3N7(i mod 2+2[%J)>
= L Laimd2a)lil((1-8° - (1+¢)?)
> é%n(%%]\fo) (1_56_1_7€) = _01;%77(04777]\[0) > _61:%77(@777]\704_1)7

where 7(, v, n) := max{a® ™42 (ay)l2) | k € {0,...,n}}. On the other hand,

T (U (2)) — 7w (2)

< %(LQIQ\[J\?Flj+1)i(1+€)2%aim0d2(a’y>\-%d —ﬁ(l—E)Q%aim°d2(a’7)L%J
< L Eam™ZanlE 1+t -(1-9%) < B &Sl No+D).
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Case 2. #J(Z) =i+ 1, that is fz jumps at 0. Then

(U (2)) — 7n(2)

oy N mod2, oy Y oy (D mod2, 4. E=y
= & (#UN2) ()™ (aaiitty) T = ()™ (amimm)

i mo it1 —&)® )3
g#a(ﬂ) 42 (o)L (%f%)

Coo

>

> gy, No+1)HE > 2 &nla,v, No+1).

Coo = c

In the same way one obtains

- C

™ (U31(2)) = 7n(2) < 1_2%77(01»%]\70—*‘1).

Set € := min{e 7}, and the proof of (4.8) is finished.

Coo€
? 18n(a,y,Notl

Let € > 0. Choose Ny € N according to (4.12) such that

VNy>NgINENVN>N: 1+¢é > & > NN > 1 _ ¢

c Coo

Making again use of proposition 3.1 we have for Ny > Ny, N > N = N(g, Np)

N-1
> mv(Sn()
i=Np+1
2 N= NA [ aw 1imed2,  anom L4) ax VD mod 2, ayn Li41)
Y ( i )<(1*7N) ((1*O¢N)(1*'YN)) +(1*'YN) (m) )
1=Nop+1
< lev—eny,) = 1-gtfe <4
This establishes (4.9). O

4.3.2 Tightness and uniqueness of the limit point

For M € Nlet mys € /\/liL (Dy) be the probability measure which corresponds to the stationary distribution
7, if we embed Sy into Dy as was done in section 4.2.1.

Proposition 4.3. Suppose the sequences of transition probabilities (cns)nmen, (Yar) men satisfy relation
(3.17) for some transition rates o,y > 0. Then there is a probability measure © on B(Dy) such that (Tar)

converges weakly to © as M tends to infinity.

Proof. We will apply lemma 4.2 several times. The first step is to show that the closure of {7); | M € N}
is compact in the Prohorov topology of M#(DO). According to theorem A.2 it is sufficient to prove
tightness of {7y | M € N}, that is

Ve > 03K C Dy compact : inf{7y (K) | M € N} > 1 —e¢,

where compactness means compactness with respect to the Skorokhod topology of Dy. Recall from section
4.2.1 the definition of 77. For all natural numbers Ng < N < M we have

er(zM(UJIXI)) > wM(ZLVj U U]A\}(Z)), where U} = | UN(2).

1=0ZeSn (i) ZESN
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Let € > 0. According to (4.7) we can find natural numbers Ny < N < M such that for all M > M:

7rM<]LVj U UJ\N4(Z)> > 1l—e

1=0 ZeSn (i)

Fix N, M. Tn analogy to the definition of UY, we set

A= {feDo‘#J(f):#J(Z) A(EXEA: sup |A(s) s < gag A fo)\:fz)}.
ZeSN SE[—T‘,O]
Then #J(f) < N and ¢ > WT-H) for all f € A, and by lemma 4.2 we see that cl(A), the closure of A,

is compact with respect to the Skorokhod topology. By definition we have Uf\\'/[ c Aforall M > M > N.

Define
1

M—
U MSM UC]A)

M=1

Then K is compact in the Skorokhod topology, and with M € N it holds that

) > er(ZM(SM)) =1 if ME{l,...,M—l},
| Am (i (UY)) = 1—€ if M > M.

Hence, inf{7/(K) | M € N} > 1 — ¢ Since € > 0 was arbitrary, we now know that {7y; | M € N} is

relatively compact.

Let (7ar(j))jen be a weakly convergent subsequence of (7a7)pen- Denote by 7 the limit of (7y(;)) in the
Prohorov topology. We have to check that 75, — 7 as M — oco. Because of theorem A.1 it is sufficient
to show that

/ ¢ dityy M / pdi V¢ € Cy(Dy) uniformly continuous.

Dy

Let ¢ be a real-valued bounded and uniformly continuous function on Dy and set K, := sup{ |¢(f)| | f €

Do}. With M € N it holds that
+‘/¢dﬁM(j)/¢dﬁ

‘/qbdm/qsdfr < ‘/cbdﬁM/aﬁder(j)

The convergence ;) — @ implies | [ ¢ dfar;) — [ ¢ d| — 0 as j — co. We therefore have to show
that

for all j € N.

Ve>0VjoeN3Ij>joIMeNVM>M: ‘/gbdﬁM/qﬁdﬁM(j) < e

Let € > 0, jo € N. Choose natural numbers Ny = Ny(e), N = N(e) according to (4.10). Choose
0 = d(e,¢) > 0 such that |p(f) — ¢(g)| < e for all f,g € Dy with ds(f,g) <. Let j € N be big enough
so that j > jo, M(j) > N and W < 4. Set N := M(j).

Recalling the definition of our approximation sets® we see that ds(fz, f;) < d for all Z € Sy (i) and
Z € UN(Z)ifi€{0,...,No} and M > N. By the choice of § this implies that |¢(fz) — ¢(fz)| < € for
all such Z, Z.

3The sets UL, (Z) were defined at the beginning of section 4.3.1.
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Finally, choose a natural number M = M (e, No, N, N) according to (4.10). Then for M > M

‘/(bdﬁ'M_/qbdﬁN‘

No
< ety XX ol m@) - o) (@)
i=0 ZeSn (i) ZeUN,(2)
No
< 2+ 3 Y (D (02— o) mu(2)) + [9(12)| |mas (VN (2)) — 7 (2)|
i=0 ZeSn (i) ZeUd(2)
< 2Ky-€ + € (Z Z WM(UANAZ))) + Ky € (ZN%(#SN(Z’)))
i=0 ZeSy (i) i=0
No
< 2K¢‘6 + G'WM(SM) + 4K¢'6~ (ZNﬁl(N:l))
=0
< 2K4-€ 4+ € + 4Ky -€- (i%) = (2K, +1+4Kye) -
=0

For some special sets we can calculate their probability with respect to 7.

Proposition 4.4. Let 7 be the weak limit of (mar)men according to proposition 4.3. For i € Ny set

Hi:={f € Do |#J(f)=#J(f) =i},  Hi={f € Do| #J(f) = #J(f)+1 =i+1}.

Then for all i € Ny

2 i
e

#(H;) = ylad, 7(H;) = 0.

Coo * 1!

Proof. Observe that H;, I—Ali, 1 € Ny, are disjoint closed subsets of Dy, because convergence with respect
to the Skorokhod topology on Dy preserves the number of inner jumps.* Indeed, H;, ﬁi, 1 € Ny, are the
connected components of Dy, and they are also open sets, because dg(f,g) = 2 for all f,g € Dgy such
that f(0) # g(0) or #J(f) # #J(9)-

The assertion now follows from theorem A.1, proposition 3.1, equations (3.19) and (4.4) of proposition

3.2 and lemma 4.1, respectively, under the scaling condition (3.17). O

4.4 Convergence of the chain distributions on D

Let the notation be that of section 4.2.2, let us write D := D¢_; 1}([0,00)), Dg := Dg([0,00)) and recall
Do = Di_113([-7,0]), D} = Dg([-r,0]), Doc = D;_1,13([~7,00)), Dg° = Dg([—r,00)). All spaces come
with their respective Skorokhod topology, and D C Dg, Dy C Dﬂ% are closed subsets.

We sketch a proof for weak convergence of the sequence (Pjs) in M2 (Do) applying results from

semimartingale theory as developed in Jacod and Shiryaev (1987).

A semimartingale with values in Dy is described in terms of its characteristics, a triplet (B, C,v), where B
is a truncated predictable process (“drift”), C the quadratic variation process of the continuous martingale

4Skorokhod convergence in Doo does not necessarily preserve the number of jumps.
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part and v a random measure, namely the compensator of the jump measure of the semimartingale (Jacod
and Shiryaev, 1987: pp. 75-76).

Any probability measure @ on B(D) gives the distribution of a {—1,1}-valued jump process. The
characteristics (B, C,v) of such a process take on a special form. One may choose a continuous truncation
function with support contained in (—2,2), thereby eliminating the contribution of B. The quadratic
variation process C' of the continuous martingale part disappears, because the only continuous functions
in D are the two constant functions —1 and 1. The important characteristic is therefore the compensator
measure v. If @ corresponds to a {—1,1}-valued process in discrete time, then the compensator can be
calculated explicitly (Jacod and Shiryaev, 1987: pp. 93-94).

Let M € N, Z € S); and let 15]; be the corresponding probability measure on B(D,) as defined in section
4.2.2. Recall that 1524 is the distribution of the {—1,1}-valued cadlag process (Y™ (t));>_, induced by
the sequence Y™ of current states of X™ when time discretisation is taken into account. Denote by
(Y(t))t>—r the canonical process on Do, and by (F;)>_, the canonical filtration in B(D).

Notice that (Y(t))¢>_, under 15? is equivalent to the process (Y™ (t));>_, under P} and that the
jumps of (Y ());>0 under ISJ; are concentrated on {7k | k € N}. We can now calculate the compensator
measure 77 Do, x [0,00) x R — [0, 00] of (Y (t))+>0 under f)? in terms of the increment process of Y.
Observe that 77 is determined by the integral processes (¢ * 7*%);~¢, 1) any bounded Borel function.?
Set s(k) := 17k, k € {=M,—M+1,...}. According to I1.3.11 in Jacod and Shiryaev (1987: p. 94) it holds
for all functions ¢, all t > 0, @ € D, (all probabilities with respect to 1524)

L7M]
@ 70@) = 3 B(e(Y(s(k) = Y (s(k=1) - Iy v | Fooen) ) (@)
k=1
L¥M]
= > B( e [o(Ysk=M=1), . Y (s(h=1) ) @)
k=1
L+M]
= L((s(=M)),....a(s(0))=2 (@) - Z
k=1
P(2)-P(Y(s(k) =1]Y(s(k—M—1)) = —1,Y(s(k—1)) = —1) - Lg(s(httt)=—1,0(s(k-1))=—1(@)
+ 1/1(2) P(Y(s(k) =1|Y(s(k—M-1)) =1,Y(s(k—1)) = =1) - L (s(e-M—1)=1,5 (s (k—1))=—1 (@)
Y(-2) P(Y(S(k =-1 | Y(s(k—M—1)) =1,Y(s(k—-1)) = 1) : 1&.’)(s(kafl):L&z(s(kfl)):l(a))
W(=2) - P(Y(s(k)) = —-1|Y(s(k—M—1)) = =1,Y(s(k—1)) = 1) - L (s(b-M-1)=—1,3(s(b1))=1 (@)
LFM]
= 1.(@)- Z P(2) - (s - Lo (s(oti—t)=—1,6(s (1)) =—1(@) + Y1 * La(s(hmM—1)=1,3(s (k-1))=—1(@))
k=1

+ (=2) - (anr - g (st =1,6(s(k-1))=1 (D) + Va1 * La(s(oht)=—1,5(s(k-1))=1(@)),
where the formula of Bayes has been applied.

Let f € Do with f(0) = f(0—), and write Z(f) = Z(f, M) for the element of Sy; such that fz) = f.

The compensator measure 7*-2() then induces a random measure

M-I Dy x [0,00) x R — [0, o0], VM () == MED(9(w)), where
0f: Dr — Dy° Op(w)(t) := f(t) - Lj—r0)(t) + w(t) - Ljo,00)(t)-

5See Jacod and Shiryaev (1987:p.66) for a definition of the integral process w.r.t. a random measure.
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Assume that scaling relation (3.17) is satisfied for some positive transition rates «, . Then for all
functions ¥: R — R, w € Dg, t > 0 it holds that

A/}zn ¢ * Uy M.J / 1/) Oé 1w(54r)*71 @(s) *71(9f( )) + v 1&)(541“):1,&1(5):71(ef(w)))ds

/ ¢ Oé 1w(s—’r) ,w(s):l(af(w)) + v 1&(s—fr):—17£)(s):1(ef(w)))dsv

which defines a random measure v/ : Dy x [0,00) x R — [0, 00].

Let p1: Dg % [0,00) x R — [0, 00] be the jump measure associated to the D-valued process (Y (¢)):>0, cf.
Jacod and Shiryaev (1987: pp. 68-69). We have for all functions ¢p: R - R, w € Dg, t >0

@ x (@) = D Lo (@) (B(2) - Tu@=twe)=—1(®) + ¥(=2)  Ly@)= 1w0(s-)=1(®))-

0<s<t

Theorem 1X.2.31 in Jacod and Shiryaev (1987:p.495) guarantees the existence of a probability measure
Q' on B(Dg) such that

o Q'({we Dr|w(0) = f(0)}) =1,
e the canonical process is a semimartingale under Q/ with characteristics (0,0, 7).

We notice that Qf(D) = 1. Let us interpret Q' as a probability measure on B(D). According to theorem
11.2.21 in Jacod and Shiryaev (1987: p. 80) the second property implies that

o (% pu—1*vl)>0 is a local martingale under @/ for every function 1: R — R.

Observe that theorem IX.2.31 does not guarantee uniqueness of the probability measure Q7. Here,
however, uniqueness can be established by considering sequences of stopping times 7, 7o, . . . which exhaust
the jump positions. The above local martingale property must be applied to show that any two solution
measures to the semimartingale problem coincide on the sets {7, < t} for all ¢ > 0, n € N. Recall that
every element w € D is determined by its value w(0) and the positions of its discontinuities. By the
uniqueness theorem of measure theory we see that Q7 is uniquely determined.

Let p: Do — D be the natural projection. Then theorem 1X.3.21 in Jacod and Shiryaev (1987:p.505)
=M w . o1 = =

implies that P,y op™" = Q7 in M’ (D). Define a probability measure Pl e ML (D) as pl =

Q' o 9]71. We have §7(f 1) — 67 in ML (Dp). In view of Q7 ({w € Dr | w(0) = f(0)}) = 1 we conclude
=M w 5f

that PZ(f,M) — P

The last step is to show that (f’M) converges weakly, that is in place of a deterministic initial condition

f € Do we have 7y € MY (Do) as initial distribution. Let 7 be the weak limit of (7) according to

proposition 4.3. As a consequence of proposition 4.4 we have 7({f € Dy | f(0) = f(0—)}) = 1. Define
P € M! (Ds) by

P(A) ;:/D P/ (A)d7(f), AeB(Dw).

If fl, ..oy fn € Do with f;(0) = f;(0—), i € {1,...,n}, then any convex combination of the sequences
(PZ(fl’ )) (ISZ(f ) converges weakly to the corresponding convex combination of the measures

Pf1 ,...,P"". An approximation argument analogous to that in the proof of proposition 4.3 leads to

Proposition 4.5. Suppose scaling relation (3.17) holds. Let Pu, M €N, be defined as in section 4.2.2,
and let 7 be the weak limit of (7pr)men according to proposition 4.3. Then there is a probability measure
Pe M}F(DOO) such that Py 5 P.
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4.5 Residence times revisited

In section 3.3 we calculated the residence time distribution for the two state model of discretisation degree
M for each M € N. We then let M tend to infinity in order to obtain the residence time distribution
and its density function in the “continuous time” limit.

At that stage, however, we had not yet established the existence of a corresponding limit process.
This was done in section 4.4, where we saw that (f’M), the sequence of distributions induced by the two
state chains in discrete time, converges weakly to a probability measure P on B(Ds ). We are now in a
position to show that any process with distribution P has the same residence time distribution as the one
obtained in section 3.3.

On the probability space (DOO,B(DOO),IS) a process with distribution P is, of course, given by the
canonical process of coordinate projections p; : Do, — {—1,1}, because p; is Borel measurable for all
t > —r, cf. appendix A.3. We continue to work directly on the canonical space. Define a mapping

(4.13) 7: Doy — [0, 00], 7(f):= inf{t >0 f(t) = —1}.

Then 7 is Borel measurable as we have
7710, = pyH{-1}U ﬂ U poH{1}n... ﬂpét{l} ﬂpgi{—l} for all t > 0,
n=0 k=1 " "

where the cadlag property of the elements of D,, has been exploited. Because of this property the
infimum in (4.13) is really a minimum provided 7 < co. We notice that 7 is a stopping time with respect
to the natural filtration in B(D,) and that 7 is finite P-almost surely.

For each § € (0,1) denote by As the event that in the time interval [—dr, 0] there is exactly one jump,

that jump going from —1 to 1. This means we set
(4.14) As = {f €Dy |36€(0,6): f(t)=—1Vte [-dr,—br) A f(t)=1Vte [-or0]}.

Observe that As € B(Ds) and P(As) > 0 for all § € (0,1). The distribution function of 7 conditional on
the event of exactly one jump from —1 to 1 “just before” time zero can be approximated by functions of
the form

(4.15) Fs(t):= P(r <t|4;), tel0,00),

where § > 0 must be small. Since 7 is P-almost surely finite and Az has positive probability under P,

the function Fs determines indeed a probability distribution on [0, o).

Let f1, be the residence time distribution density in the limit of discretisation degree M tending to infinity
as given by (3.22). Set

(4.16) F(t) = /0 fr(s)ds, te[0,00).

We have to show that Fs(t) tends to F(t) as ¢ goes to zero for each t € [0,00). From the proof of
proposition 4.6 it will become clear that in (4.13) and (4.14), the definitions of 7 and Ay, respectively,
instead of time zero we could have chosen any starting time ¢y, > 0.

Proposition 4.6. Suppose scaling relation (3.17) holds. Let the distribution functions Fs, 6 € (0,1),
and F be defined by (4.15) and (4.16), respectively. Then

%i?ong(t) =F(t) for allt € [0,00).
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Proof. Clearly, F5(0) = 0 = F(0) for all § € (0,1). With M € N let P5; be the probability measure on
B(Ds) as defined in section 4.2.2. Recall that Py is the measure induced by the sequence of current
states of the Markov chain X* under P i.e. in the stationary regime. For § € (0,1), M € N set

TM

FM@t):= Py(r <t|As), tel0,00).

From proposition 4.5 we know that Py, - P as M tends to infinity. Check that for § € (0,1), t € (0, 00)
the events As, As N {7 <t} are P-continuity sets of B(Ds). An application of theorem A.1 yields

M M— o0

(417) Pa(r <t|As) "= P(r<t|As), ie FM(t) " Fs(t) forallde (0,1), ¢t >0.

For allt > 0,4 € (0,1), M € N we have
[Fs(t) = F(t)| < |Es(t) = B ()] + |FY () - F(1)]-

In view of (4.17) it is sufficient to show that for each ¢ > 0 and each £ > 0 there are §p € (0,1), My € N
such that

(4.18) |FM(t) = F(t)| < e foralld € (0,80), M > M.

As in section 3.3, let ( ,fw)ne{_M,_M_,_lw} be the random sequence of current states on (€, F) at dis-
cretisation degree M € N. Let § € (0,1) and let M € N be such that 6 - M > 1. Set

AL = YNy = LYM =1 vM=1 Y =1}, jedo,...,[0M]-1}.
Notice that A§7M is an event in F. The corresponding event in B(Dy) is given by
Al = {f € Do [VI€{j+1,..., [6M]}: f(—Fr) =1 A VI€{0,....j}: f(—4r) =1}
For all § € (0,1) and all M € N such that § - M > 1 it holds that
Pry (4] ,) = Pu(4} ) for all j € {0,..., [6M| — 1},
As = flg’M U...u Agfﬂj\ﬁ_l Ps-almost surely.

In analogy to (3.11), the definition of the residence time distribution Lp(.) of discretisation degree M,
we set

Ll (k) = Prp, (VM =1,... .M, =1,V =-1]4],,), keN
Then, by construction of F, for all § € (0,1) and all M € N such that §- M > 1 we have

LEM] [sM]-1

Z Z Par(A% | As) - LYy (k), t>0.

It is not necessary to calculate the probabilities P M(/le;' v | As). Instead, proceeding in a way very much
as in section 3.3, we will estimate limes inferior and limes superior of M - L5 Mi(lgM]) as M tends to
infinity, where ¢ > 0 and (jp;) C Ny is any sequence such that jy € {0,...,|0M]|—1} for all M € N.
The estimates will be uniform in § € (0, dp] for any small d¢ > 0.

In analogy to (3.12), the definition of the tail constant Kjs, we set for § € (0,1) and M big enough

K3 = Poy (VY] o) =1, SYM o =1vM = 1,...,YJ{}4_L6MJ:1|A§,M).
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Because of the shift invariance of Y™ under P the above definition of Kg u is really analogue to that

TM

of Kj;. Exploiting the stationarity of X™ under P we obtain

M
[6M|—j  M—[6M 5+l
—_——N—
WM((—l,...,—l,l,...,l))
o ({Cry ook, =1, =11, 1))
P e
M—|6M]  |6M]—j panl

J _
K5y =

As a consequence of proposition 3.1, the formula for the stationary distributions s, we see that Kg M
is the same for all j € {0,...,[0M|—1}. Proceeding as in the derivation of (3.14) we find that

: 2
(419)  Ki, = = Ksu.

(1+\/g)(1+\/ﬁ—M)M*L6MJ+(1_\/g)(1_\/ﬁ—M)M7L6MJ

In order to calculate LgM we apply proposition 3.1 again in a way similar to that of section 3.3. Let
5 €(0,1),let M € M be such that |0M| > 1, and j € {0,...,[0M|—1}. Then for k € {1,...,M—|0M |}

L (k) = @ Ko - (\/’y_M (14 /) M BMI=F (1 — )M LOMI=F)
++an (14 /)M OMI=k (1 — \/ﬁ\/ﬂM—LéMJ—k))

While L§7M(k) in (4.20a) does not vary with j as long as k < M—|6M |, for k € {M—|6M |+1,...,M—j}
it holds that

(4.20a)

(4.20Db) LgM(]g) = Ksa oy (1= yp)E=MFoMI=1
and for k > M —j+1 we have
(4.20c) La(k) = Ksar-anr (1—aa) M7 (1= apg) =24

Now, let the discretisation degree M tend to infinity, where we assume that scaling relation (3.17) holds

for some rates «, . From (4.19) we see that

. 2
Koo = N}ILHOCKM,(S 1+ /D)el-VaT + (1= /T)e -0V
(4.21) g

Vacosh((1—68)/a7) +/7sinh((1 - 8)/a7)’

Let ¢ > 0 and let (jps) C Ny be any sequence such that jy € {0,...,|6M]|—1} for all M € N. If
q € (0,1—0], then from (4.20a) we find that

(4220) lim M L3, (laM]) = V7 Koo (ﬁ cosh(yay(1-3—q)) + Va sinh(,/_cw(l—é—q))).
If ¢ € (1-4,1), then a rough estimate of (4.20b) and (4.20c), respectively, yields

li]\r4n sup M - Lg”fw(LqMJ) < max{a,7} - Ks 0o,
(4.22b) o _
liminf M - Lfsf‘]”w(LqMJ) > min{a, 7} - Koo -7 e~ (a+o-Da

M —o0

On the other hand, if ¢ > 1, then by (4.20c) we have

lim sup MLf;j‘fw(Lqu) < a Koo e~(a=De
M—)()O ’

(4.22¢) '
liminf M- L% ([gM]) > o K e e (@tomDe,
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Notice that convergence in (4.21) as well as in (4.22) is uniform in 6 € (0, o] for arbitrary éo € (0,1). If
we let § tend to zero, we recover the residence time distribution density f; of proposition 3.2. Taking
the time discretisation into account, we obtain f as given by (3.22) instead of fy.

Given t > 0, € > 0, uniform convergence of (Lg)M) in 0 and dominated convergence of the correspond-
ing residence time distribution densities over the interval (0,t¢] imply that we can find §; € (0,1) and
My € N such that inequality (4.18) is fulfilled. The assertion then follows. O
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Chapter 5

Connection between the reduced and

the reference model

The aim of this chapter is to provide a heuristic way of establishing the missing link between our original
model, which is given by equation (2.1), and the reduced model developed in chapter 3. What we have
to do is calculate the transition rates «, v of the two state model as functions of the delay parameter
0, the noise parameter o, the delay time r and some quantities related to the shape of the potentials V'
and U. The situation here is quite similar to the one that was studied by Tsimring and Pikovsky (2001),
and we will closely follow their approach in deriving a relation between the transition rates «, v and the
parameters of the original model.

The main ingredient in finding such a relation is the so-called Kramers rate, which gives an asymptotic
approximation of the time a Brownian particle needs in order to escape from a parabolic potential well
in the presence of white noise only as the noise intensity tends to zero. The Kramers rate is described
in section 5.1 and employed in section 5.2, where we calculate escape rates from potentials that should
mirror the “effective dynamics” of solutions to equation (2.1).

In section 5.3 we return to the issue of stochastic resonance. The resonance characteristics defined in
section 3.4 can now be written down explicitly as functions of the noise parameter o, which allows us to
numerically calculate the resonance point and to compare the optimal noise intensity according to the
two state model with the behaviour of the original model.

The last section summarizes what we have found and points out problems we did not resolve. An
important question in the context of the approach to stochastic resonance followed here is whether the
reduced model — at least in the limit of small noise — really captures the effective dynamics of the original
model. This, of course, depends on which feature of the original model is considered as being characteristic
and which measure of resonance one chooses. In our case, it was the distribution of interwell transitions

that served as the basis for quantifying stochastic resonance.

5.1 Escape rate from a potential well

Our source for this section is Herrmann et al. (2003) and the references therein. Let U be a smooth double
well potential with the positions of the two local minima at xj.r; and @,igne, respectively, xieri < Tright,
the position of the saddle point at Zmey € (Tieft, Tright) and such that U(z) — oo as x| — oco. An
example for U is the double well potential V' from sections 1.1 and 2.1. Consider the SDE

(5.1) dX(t) = —U'(X(t))dt + o-dW(t), t>0,

45
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where W(.) is a standard one dimensional Wiener process with respect to a probability measure P and
o > 0 is a noise parameter. Denote by X®? a solution of equation (5.1) starting in X*?(0) =z, z € R.
With y € R let 7,(X*7) be the first time X reaches y, that is we set

Ty(X®7) :=inf{t > 0| X*7 = y}.

Since we are interested in the transition behaviour of the diffusion, we need estimates for the distribution
of 7,(X®?) when « and y belong to different potential wells.

In the limit of small noise the Freidlin-Wentzell theory of large deviations (Freidlin and Wentzell,
1998) allows to determine the exponential order of 7,(X*?) by means of the so-called quasipotential
Q(z,y) associated with the double well potential #/. One may think of Q(z,y) as measuring the work a
Brownian particle has to do in order to get from position x to position y. The following transition law
holds.

Theorem 5.1 (Freidlin-Wentzell). Let Q be the quasipotential associated with U, let © € (—00, Timaz),
Yy S (irmazvx'right]- Set q = Q(xleftaxmax)- Then

(5.20 i o* 1 (En(7,(X°7)) = a.
. q—9 2.0 q+90
(5.2b) Ll?(} P (exp( = ) <1y (X®9) < exp( 2 )) =1 for all 6> 0.

MOTEOUET; Q(xleftaxmam) = Q(M(Z‘max) _u(xleft))- [fx € (mmawaoo)a ye [xlefhxmacv) then a has to be

replaced with ¢, = Q(Tright, Tmaz)-

We notice that in travelling from position x in the left potential well to y € (Zmaz, Tright), a position in
the downhill part of the right well, the transition time in the limit of small noise is determined exclusively
by the way up from position x;cf¢ of the left minimum to position ., of the potential barrier.

A typical path of X%7 if ¢ > 0 is small, will spend most of its time near the positions of the two
minima of the double well potential. Typically, the diffusion will reach the minimum of the potential well
where it started, before it can cross the potential barrier at x,,,, and enter the opposite well.

Theorem 5.1 implies the existence of different time scales for equation (5.1). On the one hand, there
is the time scale induced by the Wiener process, where one unit of time can be chosen as %, that is the
time it takes the quadratic variation process associated with oW (.) to reach 1. On the other hand, there
is the mean escape time given by (5.2a), which is proportional to exp(2%), where L > 0 is the height of
the potential barrier. Clearly, with o > 0 small, the time scale induced by the white noise is negligible in
comparison with the escape time scale.

Moreover, if U(xiept) 7# U(Zright), then there are two different heights L; and L, for the potential
barrier depending on where the diffusion starts. Suppose, for example, that L; < L,.. According to (5.2b),
waiting a time of order exp(QLUl—j‘s) with 0 < § < 2(L, — L;) one would witness transitions from the left

well to the right well, but no transition in the opposite direction. If the waiting time was of an exponential

order less than exp(%), there would be no interwell transitions at all, where “no transitions” means that
the probability of a transition occurring tends to zero as 0 — 0. Thus, by slightly and periodically tilting
a symmetric double well potential quasi-periodic transitions can be enforced provided the tilting period

is of the right exponential order. This is the mechanism underlying stochastic resonance.

Now, let us suppose that 7,(X*7), where & < Ziqe and y € (Timaz, Tright], 18 exponentially distributed
with rate rg > 0 such that

2(U(xmaz) —U(T1es1)) )

(5.3) rK ~ eXp(— 5
o
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Equations (5.2a) and (5.2b) of theorem 5.1 would be fulfilled. In the physics literature it is generally
assumed that 7,(X*7) obeys an exponential distribution with rate rx provided o > 0 is sufficiently
small. This is known as Kramers’s law, and rk is accordingly called the Kramers rate of the respective
potential well. It is, moreover, assumed that the proportionality factor missing in (5.3) can be specified
as a function of the second derivative of U at the positions of the minimum and the potential barrier,
respectively. The Kramers rate thus reads

_ \/lu”(xleft)u”(xmam) ‘

(5.4) rg = rg(o,U) = o exp (

_2|u(33left) —u($maac) |> _

o2

Observe that both the assumption of exponentially distributed interwell transition times and formula
(5.4) for the Kramers rate are empirical approximations, where the noise parameter o is supposed to be
sufficiently small.

Recent results by Bovier et al. (2002a,b) show that in the limit of small noise the distribution of
the interwell transition time indeed approaches an exponential distribution with a noise-dependent rate
that asymptotically satisfies relation (5.3). The order of the approximation error can also be quantified.
For our purposes, however, Kramers’s law and the Kramers rate as given by equation (5.4) will be good

enough.

5.2 An approximation formula for the transition rates

The arguments presented in this section are based on those outlined by Tsimring and Pikovsky (2001).
In chapter 3 we introduced the transition rates «, v as being switching rates in the two state model
conditional on whether or not the current state agrees with the last remembered state.

The idea, now, is to find two “effective” potentials U, U, such that a is proportional to the Kramers
rate describing the escape time distribution from potential U, while = is proportional to the Kramers

rate for potential U, where the Kramers rate is given by formula (5.4). More precisely, we must have
(55) Oé:Oé(O') = T'TK(U,Ua), 7:7(0) = ’/"I‘K(O’,Ury).

Note that the inclusion of the delay time r as a proportionality factor is necessary, because in the
construction of our two state model in chapter 3 we took one unit of time as equivalent to the length of
the interval [—r, 0].

Assume that |3| and o2 are small. Recall from section 2.2.3 that there is a unique stationary probability
measure for equation (2.1). Let (X(¢))¢>, denote a (weak or strong) stationary solution. Then it is
reasonable to expect that the process X spends most of its time near the positions of the two minima, of
the double well potential which arises as a deformation of V' under the influence of the delay force. With
| 3] small these minima are still near the two minima of V, that is we have with high probability X (¢) ~ 1
or X(t) =~ —1 for any t > 0.

In constructing the desired potentials U, U, we may — by symmetry — restrict attention to an escape
from the right-hand side of the double well potential. We therefore have to distinguish two cases, namely
Xt)~1m~ X(t—r)and X(t) =1~ —X(¢t —r), the former case corresponding to the condition under
which interwell transitions occur with rate «, the latter corresponding to interwell transitions with rate
7. Let Uy, U, be C?-functions such that for all z € R

Up(x) = V() +BU'(1),  Ux) = V'(z)+BU(-1),

where the term SU’(+£1) gives strength and direction of the delay force. Because of the symmetry of U
we may choose Uy (z) =V (z)+BU'(1)z and U, () = V(z) - FU’(1) z, « € R. Denote by z,, the position
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of the right-hand minimum of U, and by z., the position of the right-hand minimum of U/, and let 7,
T~ denote the positions of the respective maxima.
Expanding U,, U around 1 and recalling that V'(1) = 0 we obtain a rough, first order approximation

of 2, and z., respectively. An analogous calculation, this time using a Taylor expansion around 0 and

v
recalling that V/(0) = 0, yields first order approximations for Z,, Z.,, and we obtain

A )
(5.6) z, ~ 1- Vi) B, r, o~ 1+ 7 B,
_ LU, U UM, UM
(5-7) La ~ V”(O) ﬁ |V”(0)| ﬁ’ v V”(O) ﬂ ‘V”(O)‘ ﬁ

Notice that U’(1) > 0, V”(1) > 0 and V(0) < 0 as a consequence of (2.2), our assumptions about V and
U, cf. section 2.1. There is an important point to be made here. In the above discussion and in section
3.1, where we introduced the two switching rates o and 7, we assumed that X (¢) =~ 1 or X(¢) =~ —1.
According to (5.6), the error of this approximation is of first order in 3, and its contribution to the delay
force is proportional to 52U (1) + O(3?), i.e. of the second order in 3.

As long as we content ourselves with an approximation of first order in 3, two states corresponding to
the positions of the minima around —1 and 1 should be enough in order to model the effective dynamics
of the reference equation. If we wanted to capture the influence of second order terms in the delay force,
we would have to build up a model of four states corresponding to the positions +z,,, + 2., of the minima
of the distorted potential V. The presence of the second order minima is discernible even in the figures
of section 2.3, which depict numerically simulated solution paths to equation (2.1).!

The problem disappears, of course, if U’ is constant except on a small symmetric interval (=6, 0)
around the origin (see figure 2.1¢c) in section 2.1), for in this case the delay force would not depend on
the particular value of X (¢ — r) provided | X (¢t — r)| > 4.

In order to get explicit approximations for the rates a, v out of Kramers’s formula (5.4), we have to
calculate the expressions [U}, (To) Uy (2,)]; [Ua(Ta) — Ua(z,)|, (U (@) U (2], Uy (7)) — Uy(z,)]- By
construction, U, = V" = U/, and V""(0) = 0 as a consequence of (2.2). Neglecting terms of order higher
than one, from (5.6) and (5.7) we obtain

Ul @) Uizl ~ VIO V)] (1= BV ), a(Ta) — Ualzy)| ~ L—BU'(D),
W @)U (@)~ VOV (14 BYERER) i (7,) — Uy ()] & L+ U,

where L := V(0)—V (1) is the height of the potential barrier of V. Set p := |[V"(0)V"(1)|, n := %,
. U

7) := =3, then substitution in (5.5) yields
1 _ _ ~
(5.82) a=ale) ~ poYLUZNB) S 2EA=00))
2T 0‘2
(5.8b) v=r(0) ~ T —W’(;:"ﬁ) exp <_2L(1; nﬁ)) .

Recall from section 5.1 that the Kramers rate is exact only in the small noise limit. Thus, for the formulae
(5.8) to become the actual rates of escape it is necessary that o tends to zero. If the rates «, 7 as functions
of r and o are to converge to some finite non-zero values, we must have o — 0 and r — oo such that %

and In(r) are of the same order.

LCf. also the numerical results in Curtin et al. (2004).
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There remain errors due to the first order approximations of V, V" and U, which make sense only
if V, U are sufficiently regular and the delay parameter ( is of small absolute value. We do not have
anything precise to say about the goodness of the above approximation for the escape rates «, v, so we
limit ourselves to a numerical comparison between the resonance point as predicted by our two state

model if we choose a, v according to (5.8) and the behaviour of solutions to the reference equation (2.1).

5.3 The resonance point according to the reduced model

In section 3.4 we defined two measures of resonance, namely the jump height vy, of the residence time
distribution density f; and the probabilities &7, ks of transitions within the first and second delay
interval, respectively.?

Recall that M € NU {oo} is the degree of discretisation, where M = oo denotes the limit M — oc.
In view of the discussion of chapter 4 we are justified in restricting attention to the case M = oo, that is

to the two state model in continuous time.
Let K., be as defined by (3.19), that is
K. - 2
* T AR (e

According to (3.25) and (3.28) we have

Voo = Kool —7), Foo = 1= Kooy Koo = Koo (1 —e™ ).

Suppose the transition rates «, v are functions of the reference model parameters as given by (5.8) read
as equalities. In particular, o, v are functions of the delay length » and the noise parameter o. Let
us further suppose that the delay parameter 3 is of small absolute value and the remaining parameters
are sufficiently nice. Approximation formula (5.8) makes sense only for o > 0 small. This is no serious
limitation, though, as we may choose r > 0 big enough so that the critical parameter region for o lies

within the scope of formula (5.8).

As a consequence of the exponential form the Kramers rate possesses, we notice that

vay = r~\2/—f~mexp(—i—%) ~ T-;/—fexp(—i—’;“).

In first order of 3, the geometric mean /a7y of a, 7y coincides with the transition rate arising in case
B =0, that is when there is no delay. Compare this with proposition 3.2, which states that the residence
time density fL is distributed on the first delay interval according to a mixed hyperbolic sine - cosine
distribution with parameter \/a7.

We now turn to definitions 3.1 and 3.2, our two notions of resonance. Clearly, K, «, v are smooth

functions of ¢ > 0, K, is strictly decreasing, while «, v are strictly increasing, and we have

limK. = 1 lim Koo = 0 li =0 limy = 0.
lim Koo : lim Ko ; lim. o : lim.y

For every € > 0, g > 0 the delay length r can be chosen big enough so that K. (o) < e for all ¢ > 0. If
6 >0 then o > v, if § <0 then a <, and a =y if 5 = 0. Notice that

limke = 0 = lim Keo,
al0 oToo

2The jump height measure corresponds to a measure of resonance proposed by Masoller (2003).



50 CHAPTER 5. CONNECTION BETWEEN THE REDUCED AND THE REFERENCE MODEL

while ko (0) > 0 for all o € (0,00), and ks has a unique global maximum for all admissible choices of 3.

The conditions of definitions 3.1 and 3.2 are satisfied. If 8§ > 0, then the reduced model exhibits
stochastic resonance according to both definitions. According to the jump height measure there is no
effect in case 8 = 0 and pseudo-resonance in case 0 < 0, while the time window measure does not

distinguish between g = 0 and 8 < 0, classifying both cases as pseudo-resonance.

Let us specify the potentials V' and U according to the model studied by Tsimring and Pikovsky (2001),

that is V is the standard quartic potential and U a parabola, see figure 2.1 in section 2.1. For the

constants appearing in formula (5.8) we have
3 ~
L:iv P:27 77:5) 77:4-

Set » = 500 as in the numerical simulations from section 2.3. With 8 = 0.1 we obtain the resonance
point o, = 0.32 according to the jump height measure, while the time window measure yields o, =~ 0.29
with probability o (o) & 0.88 for transitions occurring in the second delay interval. Both results seem

compatible with simulation, see figures 2.5, 2.6 and 2.7.

Assume [ is negative. Again, both measures yield an optimal noise level. With § = —0.1 we have
o0, =~ 0.30 as the noise level that maximizes the jump height in fL. According to the time window
measure optimal noise level is at o, &~ 0.34, but ko (0x) =~ 0.02, that is sojourns of duration between r

and 2r are rare.

31 ' a) 3 b) 3 c)
2 2 2
14 4 14
e | : . : .
0 1 2 0 1 2 0 1 2

Figure 5.1: Graphs on [0, 2] of the density fr, of the residence time distribution in normalized time. Parameters
of the original model: r = 500, a) o = 0.30, 8 =0.1, b) 0 = 0.30, 8 = —0.1, ¢) 0 = 0.35, 3 = —0.1.

There seems to be a discrepancy, now, between the predicted optimal noise level and the level of “most
regular” transition behaviour which one would expect from numerical simulation, see figures 2.10 and
2.11. This is true especially with regard to the jump height measure, the pseudo-resonance point o,
being too low.

The problem is that the expected residence time at the level of optimal noise in case § < 0 is long
compared with . In spite of the fact that long residence times are rare, there is a high probability of
finding a solution path remaining in one and the same state for the length of many delay intervals or of
witnessing a quasi-periodic transition behaviour break down.

For example, let ¢ = 0.30, 8 = 0.1. The expected residence time is then about 1.167, while with
o = 0.30 and 8 = —0.1 the expected residence time is around 4.62r. Moreover, with § negative the
exponential part of the residence time distribution has a “heavy tail” in the sense that long sojourns
receive a relatively high probability, cf. figure 5.1.

These properties of the residence time distribution support the distinction made in definitions 3.1 and

3.2 between stochastic resonance and pseudo-resonance.
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5.4 Conclusions and open questions

The main advantage of the two state model which has been our concern for most of this work is that it

provides a tool for the analysis of the phenomenon of noise-induced resonance in systems with delay.
The reference model introduced in chapter 2 is a more elaborate system exhibiting stochastic reso-

nance. Basic features of this model are the extended Markov property and the existence of an invariant

probability measure. Both properties carry over to the two state model.

By first studying the two state model in discrete time we obtained an explicit characterization of its
stationary distribution. It was thus possible to calculate the residence time distribution which in turn
served as starting point for the definition of two simple measures of resonance. In chapter 4 we studied
the passage from discrete to continuous time. The characterization of the stationary distributions in
discrete time together with the passage to the time limit also allows to calculate measures of resonance

different from those considered here, for example the entropy of a distribution.

In the last chapter a heuristic link between the reference and the two state model was outlined. The two
state model seems to reliably mirror those aspects of the reference model that are responsible for the
phenomenon of stochastic resonance. Observe that we did not show whether the dynamics of the original
model in the limit of small noise is reducible to the two state model nor whether the resonance measures
considered here are robust under model reduction.

There are different ways in which to proceed. The reference model could be modified, for example,
by substituting a distributed delay for the point delay. Clearly, the white noise could be replaced with
noise of different type, and higher dimensional equations may be considered.

Lastly, the passage to continuous time as addressed in chapter 4 should be a special case of more

general convergence results for continuous time Markov chains with delay.
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Appendix A

Skorokhod spaces and weak convergence

A.1 Weak convergence in separable metric spaces

The results summarized in this section are taken from Ethier and Kurtz (1986: ch. 3 §§ 1-3) and Billingsley
(1999:§2). Let (S,d) be a separable metric space, and denote by M2 (S) the set of probability measures
on the Borel g-algebra B(S). Define the Prohorov metric p by

p(P,P) :=inf{e > 0| P(G) < P(G) +efor all closed G C S},  P,P e ML(S),

where G¢ := {z € S | infycgd(z,y) < €}. Then p is indeed a metric, and (M (S),p) is a separable
metric space. If, in addition, (S,d) is complete, then (M2 (S),p) is complete, too (Ethier and Kurtz,
1986: p. 101).

Denote by Cy(S) the space of all bounded continuous functions on (S, d), topologized with the supremum
norm. A sequence (Pp)nen of probability measures on B(S) is said to converge weakly to a probability
measure P € M2 (S), in symbols P,, = P, iff

Ve CyS) : /fdPn n—co /fdP.
S

S

The next theorem gives different characterizations of weak convergence and states that weak convergence
is equivalent to convergence in the Prohorov metric (Ethier and Kurtz, 1986:p.108). Recall that we
assume (S, d) to be separable. In an arbitrary metric space convergence under p would still imply weak
convergence and its characterizations, but the converse would not necessarily hold.

Let P € ML (S). A set A C S is called a P-continuity set iff A € B(S) and P(9A) =0, i.e. A is Borel
measurable and its boundary is a P-null set.

Theorem A.1. Let (P,)nen € ML(S), P € ML(S). The following conditions are equivalent:
(i) lim p(Pn,P) =0,
(ii) P, = P,
(iii) [ fdP, "= [ fdP for all uniformly continuous functions f € Cy(S),
3

S
(iv) limsup P, (A) < P(A) for all closed sets A C S,

n—oo

(v) liminf P, (A) > P(A) for all open sets A C S,

53
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(vi) lim P, (A) =P(A) for all P-continuity sets A C S.

Useful in proving convergence in Mi(S) is the Prohorov criterion for compactness, provided the under-
lying metric space is complete (Ethier and Kurtz, 1986: p. 104).

Theorem A.2 (Prohorov). Let I' € MY (S), and suppose that (S,d) is complete. Then the following

conditions are equivalent:
(i) T is tight, i.e. Ve > 03 A C S compact: infpepr P(A) > 1 —¢,
(i) Ve >03ACS compact: infper P(A°) > 1 —¢,

(iii) the closure of T' is compact in the Prohorov topology.

The mapping theorem states that under a measurable map weak convergence carries over to the sequence
of image measures if the set of discontinuities of the mapping is negligible with respect to the original
limit measure (Billingsley, 1999: p. 21).

Theorem A.3. Let (P,,)neny C ML(S), P € ML(S). Let (S',d') be a second metric space and &: S — S’
be a B(S")-B(S)-measurable map. Denote by Je the set of discontinuities of €.
If P,, = P and P(J¢) = 0 then P, 06t 5 Pog~t.

A.2 The space DY

Here, we gather results and definitions from Billingsley (1999: §§ 12-13) on the nature of D3 := Dg([—r,0]),
the Skorokhod space of all real-valued cadlag functions on the finite interval [—r 0], i.e. of functions
f:[-7r,0] = R such that

flt+) = h?tl f(s) = f(t) forallte[—r0), f(t—):= lim f(s) exists for eacht e (—r,0].

st

It is possible to define Skorokhod spaces of functions with values in more general spaces than R. In fact,
the theory can be developed for Dg([—7,0]) essentially in the same way as for DY as long as E is a Polish

space, i.e. a complete and separable metric space.

Let f be any real-valued function on [—r,0]. Define the modulus of cadlag continuity as

w(f,6) :=inf{ max w(f,[ti—1,t;)) } neN, —r=ty<...<t, =0,
(A].) ie{l,...,n}

i ti - ti— 0 ) d s 1)

28, €0

where w(.,.) is the modulus of uniform continuity defined as

(A.2) w(f,I):= sup |f(s) — f(t)|, I C[-r0]an interval.

s,tel
A function f : [-7,0] — R is in D} if and only if lims o w(f,d) = 0, cf. Billingsley (1999: p. 123).

Denote by A := {X : [-r,0] — [—r,0] | X bijective and strictly increasing} the set of “time transforma-
tions” on [—r,0]. For all A € A we have A\(—r) = —r, A(0) = 0, and X is continuous. On A define a

pseudo-norm
Alt) — A(s
W= s (20=20)
s,t€[—r,0], s#t t—s

, ANEA.



A.3. THE SPACE Dg° 95

Let f, g be elements of DY, and define the distances dg, d2 as

(A3) ds(f,g) == inf{e>0 ‘ INeA: sup [At)—t[<e A sup [f(t)—g(\(1t))| <€},
te[—r,0] te[—r,0]
(Ad) dg(f,g) = inf{e>0|3aNe€A: [[Aa<eA s[upo] |f(t) — g(A(t)] < €}
te|—r,

Both functionals, dg and dZ, measure the distance between f and g in terms of the supremum norm
If — g0 A|so. In addition, dg requires that time transformations A differ as little as possible from the

identy on [—r,0], while d% puts an extra restriction on the slope of the transformations.

The most important difference between dg and d% lies in the fact that they give rise to different sets of

Cauchy sequences. Theorem A.4 is a summary of Billingsley (1999: pp. 125-129).

Theorem A.4. Let dg, d2 be defined as above. Then DY is a separable metric space under dg as well
as under d. Both metrics generate the same topology, called the Skorokhod topology.
Equipped with the Skorokhod topology, DS is a Polish space, and dg is a complete metric, while Dy is

not complete under dg.

The example below illustrates why ds does not define a complete metric on DY. The sequence to be
constructed is a Cauchy sequence with respect to dg, the only possible limit point of which lies outside

the space of cadlag functions. The same sequence is not Cauchy under dg.

Ezample. Choose ty € [—r,0). For n € N big enough set f, :=2-1; — 1, where I,, := [to,to + 27 ™).
Then (f,) C DY is a Cauchy sequence of {—1,1}-valued functions with respect to the metric dg, and
fu(t) "= =1 for all t # to, but ds(f,,—1) = 2 forall n € N, and f := 2 - 14,3 — 1 is no cadlag
function. O

The following criterion, which is theorem 12.3 in Billingsley (1999: p.130), is an analogue of the Arzela-

Ascoli theorem for compactness in spaces of continuous functions.

Theorem A.5. Let A C DY. Then the closure of A is compact in the Skorokhod topology if and only if
the following two conditions hold:

(i) sup sup |[f(t)] < oo,
feA te[—-r,0]

i) 1i i(f,0) =0.
(i3) lim fc‘elﬁ“’(f )

A.3 The space Dy’

Denote by Dg° := Dg([—r,0)) the space of all real-valued cadlag functions on the interval [—r, c0).
Observe that a cadlag function on [—r,00) has at most countably many points of discontinuity (Ethier
and Kurtz, 1986:p. 116). It is possible to define Skorokhod metrics on Dg° in a way similar to that of
appendix A.2, cf. Ethier and Kurtz (1986: ch. 3 § 5).

There are two noteworthy differences, though, because the interval the elements of Dg° live on is no
longer bounded to the right. In the definitions which correspond to (A.3) and (A.4) one needs a “fading
function” or a “fading series” to guarantee finiteness of the metrics. More importantly, the special role
which the right boundary plays in (A.2) and in the definition of the set of time transformations A has no

counterpart with Dg°.
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An alternative is provided by Billingsley (1999: § 16), where a connection is established between Dg° and
Skorokhod spaces over finite intervals. Observe that all definitions and properties of D} = Dg([—r,0])
carry over to the space Dg([—r,t]) for any t € (—r,00). Set

0:: D" 3 [~ fi—rpr) € Dr([-r,t-7]), t>—1.

Let m € Ng. Set Df* := Dg([—r,m - r]). Write d,,, d;, for the corresponding Skorokhod metrics, and
define a function h,, and a “continuous restriction” 1, by

1 it te[-r,(m-1r),
hi(t) == {m—1L if te[(m—1)r,m-r),
0 if t>m-r

Ym: D3 f—0n(f hm) € DR

Define a Skorokhod metric d2, on Dg° by

oo

(A.5) d(F.9) = Y 27" (1A (0n () ¥m(9)) ).

m=0

An equivalent (but incomplete) Skorokhod metric do can be defined as in (A.5) by replacing the metrics
dy, with d,, (Billingsley, 1999: p. 168). Now define a metric on the product of the spaces DJ', m € Ny,

that is one sets

Ilp == H Dy, dNZo((fm)meNoa (gm)MGNO) = Z 2*771(1 /\dfn(fm’gm))'

m=0 m=0

We have the following embedding theorem (Billingsley, 1999: p. 170).
Theorem A.6. Define U : D — Ilp by f— (0 (f - hm))men,- Then
1. ¥ is an isometry with respect to d2, and (Zgo,

2. U(Dg) C IIp is closed,

3. (Ilp,d3,) is a Polish space, and so is (Dg°,d3,).

The natural projection p; : Dg° 5 f — f(t) € R is Borel measurable for each t > —r, and p, is continuous
at f € D if and only if f is continuous at ¢. The projections generate B(Dg°) and form a canonical
process (Billingsley, 1999: p. 172). Notice that the restrictions 6;, ¢ > —1, are measurable, too.

The following proposition characterizes convergence in Dg° in terms of convergence of the restricted

sequences (Billingsley, 1999: p. 169).

Proposition A.1. Let f,, n € N, f be elements of Dg°. Then f, "I f w.r.t. dS, if and only if
0:(fn) "= 0,(f) in Dg([—r,t-7]) for every continuity point t - r of f.
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