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Abstract

The object of the present work is the analysis of the convergence behaviour of a learning

algorithm for grammars belonging to a special version � the maximum entropy version

� of stochastic Optimality Theory. Stochastic Optimality Theory is like its deterministic

predecessor, namely Optimality Theory as introduced by Prince and Smolensky, in that

both are theories of universal grammar in the sense of generative linguistics.

We give formal de�nitions of basic notions of stochastic Optimality Theory and in-

troduce the learning problem as it appears in this context. A by now popular version of

stochastic Optimality Theory is the one introduced by Boersma, which we brie�y discuss.

The maximum entropy version of stochastic Optimality Theory is derived in great gen-

erality from fundamental principles of information theory. The main part of this work is

dedicated to the analysis of a learning algorithm proposed by Jäger (2003) for maximum

entropy grammars. We show in which sense and under what conditions the algorithm

converges. Connections with well known procedures and classical results are made ex-

plicit.

The present work is a slightly modi�ed version of my Master's thesis, which was submitted to the

Department of German Language and Linguistics at Humboldt University Berlin in June 2005.

The thesis was supervised by Prof. Manfred Krifka and Prof. Gerhard Jäger.
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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Analyse des Konvergenzverhaltens eines

Lernalgorithmus für Grammatiken, die einer speziellen Version, derMaximum-Entropie-

Version, stochastischer Optimalitätstheorie angehören. Stochastische Optimalitätstheorie

ist wie ihr deterministisches Vorbild, die von Prince und Smolensky eingeführte Optima-

litätstheorie, eine Theorie der Universalgrammatik im Sinne der generativen Linguistik.

Grundbegriffe der stochastischen Optimalitätstheorie werden formal gefasst, und das

Lernproblem, wie es in diesem Zusammenhang auftritt, wird dargestellt. Eine mittler-

weile verbreitete Version stochastischer Optimalitätstheorie ist die von Boersma einge-

führte, auf die wir kurz eingehen. Die Maximum-Entropie-Version stochastischer Opti-

malitätstheorie leiten wir in größerer Allgemeinheit als üblich aus informationstheore-

tischen Grundprinzipien her. Den Hauptteil der Arbeit nimmt die Untersuchung eines

von Jäger (2003) vorgeschlagenen Lernalgorithmus ein. Wir zeigen, in welchem Sinne

und unter welchen Bedingungen der Algorithmus konvergiert. Beziehungen zu allge-

mein bekannten Verfahren und klassischen Resultaten werden dabei erläutert.
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Notation and abbreviations

1A indicator function of the set A, that is 1A takes values in

{0, 1} and 1A(x) = 1 iff x is an element of A

ẋ(t) derivative of the differentiable function x : [0,∞) → RN at

�time� t

‖v‖ norm of vector v, usually the Euclidean norm in RN

el l-th canonical basis vector in RN

Bρ(x) open ball of radius ρ centered at x

Bρ(x) closed ball of radius ρ centered at x

B(S) Borel σ-algebra of the topological space S, i. e. the σ-algebra

generated by the open sets of S; if S is countable, then

B(S) = ℘(S)

cov(X,Y ) covariance of the random variables X and Y

E(X) expectation of the random variable X w. r. t. a given proba-

bility measure

EQ(X) expectation of the random variableX w. r. t. the probability

measure Q

GLA Gradual Learning Algorithm

iff if and only if

i. i. d. independently identically distributed (of a family of ran-

dom variables)

`1(A) vector space of all real-valued absolutely convergent se-

quences indexed by elements of the countable set A

M1
+(S) set of all probability measures on the Borel σ-algebra B(S)

of the topological space S

min minimum

max maximum

N set of all positive natural numbers

vii
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N0 set of all natural numbers including zero

NN set of the �rst N natural numbers starting with one

OT Optimality Theory

Q set of all rational numbers

R set of all real numbers

supp support (of a function or a probability measure)

T transpose of a matrix (or vector)

℘(S) powerset, i. e. the set of all subsets of S

w. r. t. with respect to



Introduction

The aim of this work is to analyse the convergence behaviour of a learning algorithm

for a special version of stochastic Optimality Theory. Deterministic Optimality Theory

as introduced by Prince and Smolensky (2004)1 is a theory of Universal Grammar in the

sense of generative linguistics and was originally developed in the context of phonology.

A grammar according to deterministic OT de�nes a relation between two sets of lin-

guistic representations, the set of inputs and the set of outputs. Outputs represent lin-

guistic surface forms (e. g. an utterance, the sound pattern of a word), inputs represent

underlying forms (e. g. the meaning of an utterance, a sequence of consonants and vow-

els). Both sets are assumed to be universal, i. e. independent of any particular natural

language. A language speci�c deterministic OT grammar assigns to each input a unique

output, the grammatical form for expressing the given input, by searching for the best or

optimal among a set of candidate outputs. The candidate sets are determined by the gen-

erator. This is a language independent subset of the product space of inputs and outputs.

The generator de�nes the set of all admissible input output pairs and thus gives those

relations between underlying forms and surface forms which must hold in all natural

languages.

A further ingredient in building up a universal OT grammar is the set of constraints.

Constraints are de�ned on the generator, i. e. on pairings of inputs with outputs. A con-

straint measures � along its speci�c grammatical dimension � the well-formedness of

a particular output given an underlying input. Usually, the number of constraint vio-

lations caused by an input output pair is taken as measure of partial well-formedness.

Constraints are violable and they may be in con�ict with each other. Thus it may happen

that for a given input there is no output among the candidates satisfying all constraints

and that obeying one constraint means violating another.

A way of resolving con�icts among constraints is to rank them, that is to introduce

an order of relative importance among them. It is then possible to �nd for each input

an optimal output, where the optimality of an output depends on the current ranking of

constraints. The component of grammar which assigns optimal outputs to underlying

inputs according to a given constraint ranking is called evaluation component.2 Genera-

1The book by Prince and Smolensky (2004) is a revised version of their original work published as tech-

nical report in 1993.
2For details on the evaluation component in deterministic OT see Prince and Smolensky (2004); also cf.

example 2 in section 1.1.1 below.

1
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tor, set of constraints and evaluation component constitute a universal deterministic OT

grammar.3 Any language speci�c grammar is determined by its particular ranking of

constraints (Prince and Smolensky, 2004: p. 4):

Universal Grammar provides a set of highly general constraints. These of-

ten con�icting constraints are all operative in individual languages. Lan-

guages differ primarily in the way they resolve the con�icts: in how they rank

these universal constraints in strict domination hierarchies that determine the

circumstances under which constraints are violated. A language-particular

grammar is a means of resolving the con�icts among universal constraints.4

Stochastic OT differs from deterministic OT in that the evaluation component of a uni-

versal stochastic OT grammar yields for each input and a given ranking of constraints a

probability distribution over the set of candidate outputs rather than a unique optimal

output.

The learning problem for a universal stochastic OT grammar consists in �nding a

constraint ranking that best re�ects a given empirical distribution on the set of admissible

input output pairs. What counts as a good constraint ranking depends on the evaluation

component of the OT grammar, that is on which version of stochastic OT is adopted.

A reasonable choice for how to determine the probability distributions over candi-

date sets is the following: Among all distributions which yield the same expected values

of constraint violations select the one that maximizes entropy conditional on a given dis-

tribution of inputs. This is an application of Jayne's principle, also known as maximum

entropy principle. Stemming from statistical physics, it has already been used in the

�eld of linguistics (e.g. Berger et al. (1996) in the context of natural language processing,

Goldwater and Johnson (2003) in the context of probabilistic OT).

The learning problem now amounts to searching for a constraint ranking that max-

imizes entropy conditional on the empirical distribution of inputs and yields the same

average number of constraint violations as the empirical distribution. There are stan-

dard algorithms that converge to the unique solution of this optimization problem. The

problemwith these algorithms is that they require an a priori knowledge of the empirical

distribution (�off-line� learning), which is implausible in case of human learners. For a

different choice of the evaluation component, a gradual (�on-line�) learning algorithm

has been proposed (Boersma and Hayes, 2001). Unfortunately, convergence cannot be

guaranteed for this algorithm due to the choice of the evaluation component.

In an attempt to overcome these dif�culties, Jäger (2003) proposed an on-line ver-

sion of one of the standard algorithms that can be applied to maximum entropy models,

namely a stochastic gradient descent algorithm. The deterministic version of this algo-

rithm converges provided an optimal constraint ranking exists. We will see under which

conditions and in which sense Jäger's algorithm converges.

3If OT is empirically right and the right choices are made for generator, constraint set and evaluation

component, then the resulting universal OT grammar is Universal Grammar.
4Emphasis as in the original.
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The rest of this work is organized as follows. Chapter 1 explains the framework of

stochastic Optimality Theory, in particular its maximum entropy version, and introduces

Jäger's learning algorithm. Chapter 2 is dedicated to the convergence analysis of Jäger's

algorithm, and chapter 3 summarizes and interprets the convergence results. Some ma-

terial on convexity and optimization has been gathered in appendices A and B.

In section 1.1 we de�ne the relevant concepts of stochastic OT alluded to above. The

learning problem is introduced. We will see examples of different versions of stochastic

OT. Boersma's version of stochastic OT is presented in greater detail in section 1.2, as

it comes with a learning algorithm of its own (the GLA). Problems connected with the

GLA are outlined. The purpose of section 1.3 is to derive the maximum entropy ver-

sion of stochastic OT from fundamental principles of information theory, summarized

in section 1.3.1. The derivation of the Gibbs family of probability distributions as max-

imum entropy model under linear constraints in section 1.3.2 is somewhat complicated

by the fact that we consider distributions on denumerable, but possibly in�nite sets. The

dual problem associated with entropy maximization is stated in section 1.3.3. Jäger's al-

gorithm, �nally introduced in section 1.4, is designed for solving the dual optimization

problem.

Chapter 2 opens with a summary of notions of stochastic convergence, compiled in

section 2.1. The minima of the dual function are related to properties of the given con-

straints in section 2.2. A standing assumption on the underlying generator will be that

candidate sets are �nite, although the generator itself may be in�nite. In section 2.3 con-

vergence of Jäger's algorithm to stochastic equilibrium is proved for constant step size.

Section 2.4 characterizes convergence as the step size, though still constant, is chosen

smaller and smaller. Varying Jäger's algorithm by allowing the step size to decrease to

zero in the course of learning, in section 2.5 we �nd ourselves in the situation studied by

Robbins and Monro (1951).

Section 3.1 provides a summary of the results obtained in chapter 2. In section 3.2

we discuss why it was reasonable to work with in�nitely many inputs and outputs. We

sketch how Jäger's algorithm has to be modi�ed if we want to allow for in�nite candi-

date sets. Following Jäger and Rosenbach (2005), we present an application of maximum

entropy OT to a syntactic phenomenon in section 3.3. Section 3.4 concludes our analysis.
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Chapter 1

Stochastic Optimality Theory,

maximum entropy and learning

Before presenting Jäger's algorithm in detail, we have to review the underlying theoreti-

cal framework. In section 1.1, we describe basic concepts of stochastic Optimality Theory

together with the notation we shall adopt in the rest of this work. In particular, we de�ne

what is meant by an evaluation kernel and what a grammar in the sense of stochastic OT

is. The learning problem arising in this context is introduced.

Section 1.2 presents Boersma's version of stochastic OT, which amounts to a special

choice of the evaluation kernel. We brie�y discuss a learning algorithm proposed by

Boersma (1997) � the so-called Gradual Learning Algorithm (GLA) � with regard to its

convergence behaviour.

A different version of stochastic OT can be derived by appeal to Jaynes's principle,

also known as maximum entropy principle. Section 1.3.1 serves to recall this principle as

well as Shannon's concept of entropy. The idea of entropy maximization under suitable

constraints, developed in sections 1.3.2 and 1.3.3, leads to a family of distributions which

can readily be interpreted as an evaluation kernel. The resulting OT version coincides

with the one introduced by Goldwater and Johnson (2003).

Finally, in section 1.4, we present Jäger's learning algorithm for themaximum entropy

version of stochastic OT and point out its connection with the gradient descent method.

1.1 Stochastic Optimality Theory and the learning problem

The main difference between deterministic and stochastic OT lies in the way the eval-

uation component works. Given an input and a ranking of constraints, the evaluation

component of a stochastic OT grammar yields a probability distribution on the set of

candidate outputs, while the deterministic variant determines a unique �best� output for

each input.

In section 1.1.1 we give formal de�nitions of the ingredients of stochastic OT. Sec-

tion 1.1.2 is concerned with the learning problem, which amounts to a procedure for se-

5



6 CHAPTER 1. STOCHASTIC OT, MAXIMUM ENTROPY AND LEARNING

lecting a ranking of constraints in response to observations of input output pairs drawn

from an empirical distribution.

1.1.1 Basic concepts of stochastic Optimality Theory

Let I , O be countable non-empty sets and G ⊂ I × O be a subset. By I , O we denote the

set of inputs and outputs, respectively, and G is the set of admissible input output pairs,

called the generator.

For each input i the generator determines a set of admissible outputs, the output can-

didates. Denote the set of output candidates for an input i by Oi, that is we let

(1.1) Oi := {o ∈ O | (i, o) ∈ G}, i ∈ I.

We require G to be such that Oi is non-empty for all i ∈ I . Let N ∈ N be a �xed nat-

ural number and c1, . . . , cN be functions G → N0. Then N is the number of constraints

c1, . . . , cN . According to the above assumption, for each input i there is at least one ad-

missible output. Write c for the compound function G → NN
0 having as its components

the functions c1, . . . , cN . Let us refer to c as feature function.

A stochastic OT grammar works in the following way. Given an input i ∈ I and

a ranking of constraints, which may be represented as a vector r ∈ RN , the grammar

assigns to each output o ∈ O a probability based on the vector c(i, o) of constraint viola-
tions and the vector r of corresponding constraint ranks, where positive probability may

be ascribed only to outputs in Oi. Let us make this more precise.

De�nition 1.1. An evaluation kernel for generator G ⊆ I ×O and feature function c : G→
NN

0 is a mapping p : R× I ×O → [0, 1], written (r, i, o) 7→ pr(o|i), satisfying the following

conditions:

R ⊆ RN is open and such that r + r̃ ∈ R for all r ∈ R, r̃ ∈ [0,∞)N ,(i)

for all r ∈ R, i ∈ I,
∑
o∈Oi

pr(o|i) =
∑
o∈O

pr(o|i) = 1,(ii)

for all r ∈ R, i ∈ I, the mapping O 3 o 7→ pr(o|i) is measurable

w. r. t. the σ-algebra generated by c(i, .),
(iii)

for all r ∈ R, (i, o) ∈ G, l ∈ NN , δ > 0,

cl(i, o) = min{cl(i, õ) | õ ∈ Oi} implies pr+δel
(o|i) ≥ pr(o|i).

(iv)

If, in addition, the mappingR 3 r 7→ pr(o|i) is continuous (differentiable) for each (i, o) ∈
G, then p is called a continuous (differentiable) evaluation kernel.

Recall that the sets I , O are assumed to be discrete. Therefore, requiring property (ii) is

equivalent to saying that (pr(.|.))r∈R must be a family of Markov kernels from I to O

with support in G, that is a transition from i to o can receive positive probability only if
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(i, o) ∈ G. More generally, we may regard any Markov kernel from I to O as a language

over I × O in the sense of stochastic OT. A language is compatible with a generator

G ⊆ I ×O whenever its support is contained in G.

In case p is continuous the dependence of the conditional probabilities on the ranking

vector r ∈ R is regular in the sense that small changes in the ranking lead to small

changes in the probabilities. Observe, however, that those changes need not be uniform

over the set of inputs.

Condition (iii) in the above de�nition establishes a link between the constraint func-

tion and the assignment of probabilities. It amounts to saying that distinct outputs for

a given input may receive different probabilities only if they differ in the number of vi-

olations of at least one constraint. In conjunction with property (ii) this implies that if

all constraints are constant for a given input i ∈ I then Oi must be �nite and pr(.|i) the
uniform distribution on Oi.

While requirements (ii) and (iii) are clearly necessary for capturing our intuition of

how the evaluation part of an OT grammar should work, property (iv) is somewhat ar-

bitrary. The idea is that those outputs which fare best with respect to a certain constraint

must not become less probable when the constraint itself gets ranked higher.1 According

to property (i), promotion of constraints is always possible.

De�nition 1.2. Let I × O be a set of input output pairs as above. A universal stochastic

OT grammar over I × O is a triple (G, c, p) such that G ⊆ I × O is a generator, c a feature

function on G and p an evaluation kernel for G and c. A speci�c stochastic OT grammar is

a universal stochastic OT grammar (G, c, p) together with a vector r ∈ R, where R is the

ranking domain of p from de�nition 1.1.

Two speci�c OT grammars may differ not only as to the value of the ranking vector r, but

also with respect to the underlying universal OT grammar. Nevertheless, they can give

rise to the same language, i. e. to the same family of output probabilities conditional on

the inputs.

Let us consider two simple versions of stochastic OT. Here, by a version of stochastic OT

we mean a class of universal stochastic OT grammars. In giving a version of stochastic

OT we will usually not specify the generator nor the constraints, but rather provide a

prescription of how to build an evaluation kernel given a generator G ⊆ I × O and a

feature function c : G→ NN
0 .

Example 1. Global linear models. Let the ranking domain R be (0,∞)N . For r ∈ R and

any input i ∈ I denote by Ôi(r) the set of outputs that produce a minimal amount of

constraint violations in the direction of r, that is we set

Ôi(r) :=
{
o ∈ Oi | 〈r, c(i, o)〉 = min

õ∈Oi

〈r, c(i, õ)〉
}
.

1Note that high numbers correspond to high rankings, here; the opposite ordering is also found in the

literature.
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We notice that Ôi(r) is well de�ned as the components of r and c are non negative. As-

sume generator G and feature function c are such that Ôi(r) is �nite for all i ∈ I , r ∈ R.
De�ne p : R× I ×O → [0, 1] by

pr(o|i) :=


1

#Ôi(r)
if o ∈ Ôi(r),

0 else,
r ∈ R, i ∈ I, o ∈ O.

Clearly, p is an evaluation kernel for G and c, and (G, c, p) is a universal stochastic OT

grammar. The evaluation kernel assigns equal probability to all outputs which minimize

〈r, c(i, .)〉 and discards any other alternative. ♦

A salient feature of deterministic Optimality Theory in the sense of Prince and Smolensky

(2004) is that ranking of constraints means (total) ordering and that a higher ranked con-

straint overrules all constraints which are ranked lower. These properties can be captured

in the present framework.2

Example 2. Deterministic OT. Let the ranking domain R be a non-empty subset of RN .

Denote by νj(r), r ∈ R, j ∈ NN , the number of components rl of r such that rl ≥ rj , that

is we set

νj(r) := #{l ∈ NN | rl ≥ rj}.

De�ne the map ν : R→ {1, . . . , N}N by

ν(r) :=
(
ν1(r), . . . , νN (r)

)
, r ∈ R.

GivenW ∈ {1, . . . , N}N , l ∈ NN and i ∈ I , de�ne a cost functionKl(W, i, .) on Oi by

Kl(W, i, o) :=
∑

j∈NN : Wj=l

cj(i, o), o ∈ Oi.

Next, given i ∈ I , r ∈ R, introduce a preference relation �i,r on Oi by setting

o �i,r õ :⇔ d := min
{
l ∈ NN | Kl(ν(r), i, o) 6= Kl(ν(r), i, õ)

}
is �nite and

Kd(ν(r), i, o) < Kd(ν(r), i, õ).

Observe that the set {l ∈ NN | Kl(ν(r), i, o) 6= Kl(ν(r), i, õ)} might be empty in which

case we would have d = ∞ by convention. Denote by Ǒi(r) those elements of Oi which

are maximal with respect to �i,r, that is we set

Ǒi(r) := {o ∈ Oi | @ õ ∈ Oi : õ �i,r o}.

If Ǒi(r) is �nite for all i ∈ I , r ∈ R, then we obtain an evaluation kernel p for G and c by

requiring that pr(.|i) be the uniform distribution on Ǒi(r).
Now assume that Ǒi(r) is a singleton for all i ∈ I and those r ∈ R with pairwise

distinct components. Then (G, c, p) corresponds to a �universal� deterministic OT gram-

mar. ♦

2See, for example, the lecture notes by M. Collins, MIT course 6.891, Fall 2003.
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1.1.2 The learning problem

Suppose we are given a universal stochastic OT grammar and an empirical distribution

of input output pairs. The learning problem then consists in �nding a ranking vector such

that the corresponding conditional distributions match as well as possible the empirical

distribution.

To be more speci�c, let (G, c, p) be a universal stochastic OT grammar and pemp a

probability distribution on I × O with support in G. Throughout the rest of this work

we will assume that the support of any empirical distribution pemp contains at least one

input output pair for each given input, that is for each input i ∈ I there is an output

o ∈ Oi such that pemp(i, o) > 0.
Denote by pemp(.|i) the conditional distribution which pemp induces on Oi given an

input i ∈ I . Then we are looking for a ranking vector r ∈ R such that the distributions

pr(.|i) and pemp(.|i), i ∈ I , �t in a way that is optimal according to some criterion of

goodness.

The empirical distribution pemp, however, is not directly observable. Accessible to

observation, rather, is a sequence of input output pairs distributed according to pemp.

Call this sequence (Xn)n∈N, write Xn = (Xin
n , X

out
n ), n ∈ N, and let (Ω,F ,P) denote the

common probability space those random variables live on. We assume that observations

are mutually independent, i. e. (Xn) is an i. i. d. sequence with Xn
d∼ pemp. By de�nition,

for all n ∈ N we have

P(Xin
n = i,Xout

n = o) = pemp(i, o), (i, o) ∈ G,(1.3a)

p̃emp(i) := P(Xin
n = i) =

∑
o∈Oi

pemp(i, o), i ∈ I.(1.3b)

The situation now is essentially the same as in statistical point estimation theory.3 In

particular, one could introduce a loss or error function and choose the ranking vector

r ∈ R so as to minimize the error between pr(.|i) and pemp(.|i).
In section 1.3 we will follow a different approach and employ the idea of maximizing

entropy subject to the requirement that the average number of constraint violations be

preserved not only as a criterion for choosing the ranking vector, but as a starting point

for constructing an evaluation kernel.

1.2 Boersma's version of stochastic Optimality Theory and the

Gradual Learning Algorithm

A by now popular version of stochastic Optimality Theory is the one introduced in

Boersma (1997, 1998) and further developed in Boersma andHayes (2001). As for stochas-

tic OT in general, motivation for the introduction of randomness comes from a twofold

3See, for example, the �rst chapter in Lehmann (1983).
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desire: to be able to account for free variation among output candidates for the same in-

put, and to render learning robust against errors or �noise� in the observations used for

determining a ranking of constraints.

Recall example 2, which translates the original version of Optimality into our frame-

work. Although we allow for constraint ranks taking values on a continuous scale, what

is really needed in deterministic OT is just an ordering of the constraints. Accordingly,

during evaluation no distinction is drawn between different ranking vectors as long as

the ordering of their component values remains the same. The function ν as given in

example 2 determines the corresponding equivalence relation among ranking vectors.

Boersma's idea in the de�nition of a class of universal stochastic OT grammars is to

incorporate randomness by adding a perturbation to the current ranking of constraints

each time a set of possible outputs is evaluated. At the level of probability distributions

on the set of outputs, the random perturbations correspond to a randomization of the

preference relation �i,r as de�ned in example 2. While the output candidates are evalu-

ated with respect to a perturbed ranking of constraints, the ranking vector itself remains

unchanged.

In making things more precise, let us assume that the set Oi of output candidates is

�nite for each input i ∈ I . Given an N -dimensional feature function c on a generator G,

de�ne the ordering map ν and the cost functionsKl, l ∈ NN , as for deterministic OT.

Example 3. Boersma's stochastic OT. Let the set of admissible ranking vectors R be RN .

Let Y be an N -dimensional random variable with standard normal distribution on some

probability space (Ω,F ,P).4 De�ne a randomized preference relation �i,r,. on Oi by set-

ting for ω ∈ Ω

o �i,r,ω õ :⇔ d := min
{
l ∈ NN | Kl

(
ν
(
r + Y (ω)

)
, i, o

)
6= Kl

(
ν
(
r + Y (ω)

)
, i, õ

)}
is �nite and Kd(ν(r), i, o) < Kd(ν(r), i, õ).

Denote by Ǒi(r, .) the random set of those elements ofOi which are maximal with respect

to �i,r,., that is we set

Ǒi(r, ω) := {o ∈ Oi | @ õ ∈ Oi : õ �i,r,ω o}, ω ∈ Ω.

Observe that #Ǒi(r, ω) = 1 with probability one, because the event {Y = v} has proba-
bility zero for each v ∈ RN . The evaluation kernel for c and G is now de�ned by

pr(o|i) := P
(
{ω ∈ Ω | o ∈ Ǒi(r, ω)}

)
, o ∈ Oi, i ∈ I, r ∈ RN .

Notice that the de�nition of pr(o|i) does not depend on the actual choice of the random

variable Y , but only on its distribution.

Consider the case, where for each l ∈ NN and each given i ∈ I there is exactly one

o ∈ Oi minimizing cl(i, .) over Oi, that is the deterministic set Ǒi(el) is a singleton for

4That is to say Y = (Y1, . . . , YN )T, where Y1, . . . , YN are i. i. d. with distribution N(0, 1).
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each l ∈ NN . Then we can express pr(.|i) directly in terms of c and r, namely

pr(o|i) =
N∑

l=1

1{o∈Ǒi(el)} P
(
{ω ∈ Ω | rl + Yl(ω) > rj + Yj(ω) ∀ l 6= j}

)
, o ∈ Oi.

The probabilities appearing on the right-hand side of the above equation can be calcu-

lated using the density function of the standard normal distribution. ♦

Boersma's version of stochastic OT comes with a learning algorithm, the so-called Grad-

ual Learning Algorithm (GLA). The situation is as in section 1.1.2. We observe an i. i. d.

random sequence (Xn)n∈N on (Ω,F ,P) of input output pairs drawn from a probability

distribution pemp on the generator G. In order to compute a ranking vector re�ecting the

empirical distribution pemp, we start with an arbitrary initial ranking.

The GLA then enters a recursive procedure: Take the input of the current observation,

i. e. the input i of the pair (i, o) = (Xin
n , X

out
n ) if we are currently at step n, and evaluate

the output candidates for this input according to the current ranking of constraints. This

yields a second output õ. If the new output equals the one that has been observed, i. e.

if õ = o, then leave the ranking vector as it is. Else compare the constraint violations

incurred by the two outputs (the associated input i being the same for both). Increase

the rank of all those constraints favouring the observed output o over õ by a �xed small

amount, and decrease the rank of all those constraints which favour the computed output

õ over o by the same amount.

A constraint favours output o1 over output o2, both outputs being candidates for the

same input, iff the number of violations of that constraint incurred by o1 is smaller than

the number of violations incurred by o2. The amount of increase (resp. decrease) of a rank

is referred to as plasticity value.

In order to write down formally the GLA, let (H̃n)n∈N0 be a sequence of measurable

mappings Ω × I × RN → O such that (H̃n(., i, r))n∈N0 is an i. i. d. random sequence with

distribution pr(.|i) under P for all i ∈ I , r ∈ RN , where (pr)r∈RN is the evaluation kernel

of example 3. The random variables H̃n(., i, r) thus mimic the action of the evaluation

component of Boersma's version of stochastic OT.

To start, choose a plasticity value η > 0 and an initial constraint ranking, that is an F-
measurable random variable Rη

0 with values in RN which is assumed to be independent

of the other random variables. Compute a sequence (Rη
n)n∈N0 of constraint rankings

according to the recursion formula

(1.4) Rη
n+1 := Rη

n + η · sgn
(
c(Xin

n , H̃n(Xin
n , R

η
n))− c(Xin

n , X
out
n )

)
, n ∈ N0,

where sgn is to be understood as the componentwise application of the sign function.

There are some dif�culties connected with Boersma's version of stochastic OT, see Keller

and Asudeh (2002). The most important problem in the context of learning is caused by

harmonic bounding. Consider the following situation.
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Example 4. Problem with Boersma's version of stochastic OT. Let the set of inputs I := {i} be
a singleton, let the set of outputs O := {o1, o2, o3} consist of exactly three elements, and

let the generator G be I × O. Hence O = Oi, that is the three outputs are candidates

for i. Assume there are two constraints c1, c2, and let the evaluation kernel be as in

example 3. De�ne the feature function c = (c1, c2)
T according to the table below, where

the number of constraint violations incurred by an input output pair is given by the

number of asterisks in the respective cell.

c1 c2

(i, o1) ∗∗∗∗

(i, o2) ∗∗ ∗

(i, o3) ∗ ∗∗

With this feature function, the pair (i, o2)will have probability zero whatever the ranking

of c1, c2 is. If c1 outranks c2 (in evaluation mode, after addition of a random perturbation

to the current ranking), then o3 will be optimal. Else if c2 is ranked higher than c1, then o1
will be the best candidate. Therefore, o2 will never be optimal and will not be produced

by the evaluation component. Yet output o2 is neither the candidate incurring the highest

total number of constraint violations nor is it theworst choice under any single constraint.

♦

We can describe how Boersma's GLA works in the situation of example 4 by looking at

recursion formula (1.4), the update rule of the GLA. Imagine we are given an empirical

distribution which ascribes non-zero probability pk to the pair (i, ok), k ∈ {1, 2, 3}, such
that p1 ≤ p2 ≤ p3. Fix a gain parameter η > 0, and denote by rs ∈ R2 the deterministic

initial ranking.

Now suppose we are at the n-th learning step. With probability p1 the learner ob-

serves pair (i, o1). Since o2 cannot be produced by the learner, the output generated

according to the current ranking is either o1 or o3. In the former case, the current rank-

ing of constraints remains unchanged, in the latter case the vector of constraint ranks is

shifted by η(−1, 1)T. Similarly, if pair (i, o3) is observed, then any non-zero update must

be a shift by η(1,−1)T. Lastly, if the learner observes pair (i, o2), then the current ranking
will be updated either by η(−1, 1)T or η(1,−1)T. If c1 currently outranks c2, then update

η(−1, 1)T will be more probable, else update η(1,−1)T will be more likely to occur.

The GLA therefore shifts the current ranking of constraints along the straight line{
rs + λ(1,−1)T | λ ∈ R

}
. This is not a problem in itself. Notice that in Boersma's version

of stochastic OT it is the difference between the ranks of constraints that counts, not their

absolute value. Moreover, we have〈
(1, 1)T, c(i, o2)−c(i, o3)

〉
= 0,
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that is in direction (1, 1)T the constraints for (i, o2) and (i, o3) cancel out. We will come

back to this point in section 2.2 below in the context of maximum entropy stochastic OT.

Besides the fact that no speci�c grammar learned by the GLA can produce a distribution

such that (i, o2) has non-zero probability, the dif�culty in example 4 is this: The proba-

bility ratio between p1 and p3 causes the GLA to adjust the ratio between the ranks of c1
and c2 in such a way that if p1 < p3 then c1 outranks c2. The occurrence of pair (i, o2), on
the other hand, pushes the constraint ranking back to a point, where the ranks of c1 and

c2 are equal.

1.3 Maximum entropy approach to stochastic Optimality Theory

From section 1.1.2 we know that learning a ranking of constraints amounts to choosing a

family of distributions {p(.|i) | i ∈ I}, where p(.|i) is a probability distribution on the set

of possible outputsO with support contained inOi. Any such family induces � by means

of the marginal ∂Ipemp = p̃emp on I of the empirical distribution pemp � a probability

distribution p on I ×O, namely

p(i, o) := p̃emp(i) · p(o|i), (i, o) ∈ I ×O.

It is now reasonable to demand that the family of conditional distributions be such that

the induced distribution p yields the same average number of constraint violations as

does the empirical distribution pemp, i. e. we require

(∗)
∑

(i,o)∈G

c(i, o) ·
(
p(i, o)− pemp(i, o)

)
= 0.

Thus, instead of letting some evaluation kernel generate distributions over candidate out-

puts given a certain ranking of constraints, we can try directly to determine a probability

distribution p on I ×O such that supp(p) ⊆ G, ∂Ip = p̃emp, and (∗) holds.
There is, in general, more than one distribution compatible with the above require-

ments, so that we need a criterion for preferring one compatible distribution to any other.

Such a criterion is provided by Jaynes's principle which generalizes and mathematically

justi�es Laplace's �principle of insuf�cient reason� and the ancient rule that two alterna-

tives which are mutually exclusive should be regarded as being equally likely if nothing

else is known about them.5

In order to get in a position to state Jaynes's principle we have to recall the concept of

entropy as introduced in Shannon (1948), which provides a measure of uncertainty. This

is done in section 1.3.1. In subsections 1.3.2 and 1.3.3, Jaynes's principle, also known as

maximum entropy principle, is applied to the problem at hand. A resulting dual or con-

jugate problem conduces us back to the original task of learning a ranking of constraints.

An exposition of the maximum entropy approach in the �eld of computational lin-

guistics can be found in Berger et al. (1996). Note, however, that the setting here is more

general in that we allow for distributions over countably in�nite sets.

5See Jaynes (1957a,b).
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1.3.1 Shannon entropy and Jaynes's principle

Let A be a countable set. In information theory, A plays the rôle of the alphabet. With

Shannon (1948) de�ne the entropy H of a probability distribution p on A as6

(1.5) H(p) := −
∑
i∈A

p(i) · ln p(i),

where 0 · ln(0) = 0, i. e. x 7→ x · ln(x) is interpreted as a continuous function on [0, 1].
Notice that H(.) is well de�ned as a function over probability distributions on A and

takes its values in [0,∞].
Imagine we were confronted with a random experiment with outcomes labelled by

elements of A and that we had to bet on the result of the experiment. Suppose the prob-

abilities p(i) of outcome with label i were known to us for all i ∈ A. Then we should

regard H(p) as indicating the degree of uncertainty inherent in the random experiment

governed by the law p.

Assume, for the moment, that A is �nite. The most extreme cases are, on the one

hand, point distributions, i. e. p(i) = 1 for some i ∈ A, and on the other hand the uniform

distribution, i. e. p(i) = 1
n for all i ∈ A, where n = #A is the number of elements of

A. In the former case we have H(p) = 0, in the latter case H(p) = ln(n). Observe that
0 ≤ H(p) ≤ ln(#A) for any distribution p on A.

Consequently, H(.) is minimal whenever one outcome is almost certain, and maximal

when all outcomes are equally likely. Of course, in case p(i) = 1 for some i ∈ A, knowing

p eliminates uncertainty about the result of the experiment since the outcomemust be the

one labelled i. In case p is uniformly distributed there is no bias in the distribution that

would help us in placing our bet (or prediction), while in all other cases, we could exploit

such a bias.

If the alphabet A is countably in�nite, then it still holds that entropy is minimal (and

zero) for point distributions. The maximum value of H(.), however, now goes to in�nity

as there is no uniform distribution on an in�nite set.7

The above de�nition of entropy might seem arbitrary at �rst glance. Yet the form

of H(.) as given by (1.5) is determined � up to a constant positive factor � by three basic

axioms, see theorem 2 in Shannon (1948) or appendix A in Jaynes (1957a). Themultiplica-

tive constant corresponds to a choice of the base for the logarithm appearing in (1.5). For

our purposes, the natural logarithm is more convenient, while in computer science one

usually works with the binary logarithm.8

Important for us are the concavity / convexity properties of the Shannon entropy. Let

p, q be probability distributions onA, and λ ∈ [0, 1]. Then λp+(1−λ)q also is a probability

6In Shannon (1948), entropy is de�ned over probability distributions on �nite sets. See, for example,

Harremoës and Topsøe (2001) for properties of the extension to distributions on countable sets.
7Probability distributions with in�nite entropy fall in the class of hyperbolic distributions, although there

are hyperbolic distributions with �nite entropy, cf. Harremoës and Topsøe (2001).
8Entropy H(p) then gives the minimal average code length in binary digitswhich is needed for the noise-

less transmission of messages generated by a random source with output distribution p.
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distribution on A, and it holds that

H
(
λp+ (1−λ)q

)
= −

∑
i∈A

λp(i) · ln
(
λp(i) + (1−λ)q(i)

)
−
∑
i∈A

(1−λ)q(i) · ln
(
λp(i) + (1−λ)q(i)

)
= λ

∑
i∈A

p(i) ·
(
ln
(

1
p(i)

)
+ ln

( p(i)
λp(i)+(1−λ)q(i)

))
+ (1−λ)

∑
i∈A

q(i) ·
(
ln
(

1
q(i)

)
+ ln

( q(i)
λp(i)+(1−λ)q(i)

))
= λH(p) + (1−λ)H(q) + λD

(
p ‖ λp+ (1−λ)q

)
+ (1−λ)D

(
q ‖ λp+ (1−λ)q

)
.

Here, D(.‖.) denotes the Kullback-Leibler divergence, also known as relative entropy, which

is de�ned for probability distributions p, q on A by

(1.6) D(p ‖ q) :=
∑
i∈A

p(i) · ln
(p(i)

q(i)

)
.

Kullback-Leibler divergence is well de�ned as a function on M1
+(A) ×M1

+(A) and takes

its values in [0,∞]. This can be seen by applying the logarithm inequality

x · ln
(

x
y

)
≥ x− y for all x, y ∈ [0, 1].

Moreover, D(p‖q) = 0 if and only if p(i) = q(i) for all i ∈ A. The Kullback-Leibler

divergence may be regarded as a quantity indicating how different two probability dis-

tributions are. Notice, though, that D(p‖q) is not symmetric in p, q. We see that entropy

H(.) is strictly concave, that is

(1.7) H
(
λp+ (1−λ)q

)
≥ λH(p) + (1−λ)H(q) for all λ ∈ [0, 1],

where equality holds if and only if p(i) = q(i) for all i ∈ A or λ ∈ {0, 1}. On the other

hand, we can obtain an upper bound for H(λp+ (1−λ)q), for it holds that

D
(
p ‖ λp+ (1−λ)q

)
=

∑
i∈A

p(i) · ln
( p(i)

λp+(1−λ)q

)
≤

∑
i∈A

p(i) · ln
(p(i)

λp

)
= ln

(p(i)
λp

)∑
i∈A

p(i) = ln
(

1
λ

)
.

Similarly, it holds that

D
(
q ‖ λp+ (1−λ)q

)
≤ ln

(
1

1−λ

)
.

Since λ ∈ [0, 1], we have λ ln( 1
λ) ≤ 1

e , wherefore

λ ln
(

1
λ

)
+ (1−λ) ln

(
1

1−λ

)
≤ 2

e .

Putting everything together, one obtains

(1.8) H
(
λp+ (1−λ)q

)
≤ λH(p) + (1−λ)H(q) +

2
e

for all λ ∈ [0, 1].
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Consider now the case that the alphabet A is a subset of the product of two countable

sets. More speci�cally, let A = G, where G ⊆ I × O and I , O satisfy the assumptions of

section 1.1. De�ne the conditional entropy of a probability distribution p on Gwith respect

to a distribution p̃ on I as

H(p | p̃) := −
∑

(i,o)∈G

p̃(i) · p(o|i) · ln p(o|i), where p(o|i) :=
p(i, o)∑

õ∈Oi
p(i, õ)

.

Thus, H(p|p̃) may be interpreted as the uncertainty about the outcome of a chance ex-

periment with law p remaining when the result of that part of the experiment which is

governed by the law p̃ has been revealed.

We �nally turn to Jaynes's principle of statistical inference. The situation can be described

as follows (Jaynes, 1957a: p. 622):

�Just as in applied statistics the crux of the problem is often the devising of

some method of sampling that avoids bias, our problem is that of �nding

a probability assignment which avoids bias, while agreeing with whatever

information is given.�

The means for choosing among probability assignments that are compatible with the

given information is Shannon's measure of entropy (Jaynes, 1957a: p. 623):

�It is now evident how to solve our problem; in making inferences on the

basis of partial information we must use that probability distribution which

has maximum entropy subject to whatever is known. This is the only unbi-

ased assignment we can make; to use any other would amount to arbitrary

assumption of information which by hypothesis we do not have.�

We can represent the information at our disposal as a set of probability distributions

P0 ⊆ M1
+(A). According to Jaynes's principle, we must choose p∗ ∈ P0 such that H(p∗) =

max{H(p) | p ∈ P0}. The probability distribution p∗ then is the best description of the

phenomenon at hand given the information we have.

In this generality, it may happen that for a givenmodelP0 there is more than onemax-

imum entropy distribution or that, on the contrary, there is no probability distribution at

all which would maximize entropy over P0.

1.3.2 Maximum entropy under linear constraints

Let pemp be an empirical distribution, that is pemp ∈ M1
+(I ×O) with support in G. Let us

assume that pemp has �nite entropy and that, for each constraint, the average number of

violations under pemp is �nite. Accordingly, we suppose that

supp(pemp) ⊆ G,(1.9a)

H(pemp) < ∞,(1.9b)

Eemp(cj) =
∑

(i,o)∈G

cj(i, o) · pemp(i, o) < ∞ for all j ∈ NN .(1.9c)
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Denote by p̃emp the marginal distribution of pemp on the set of inputs I , i. e. p̃emp :=
∂Ipemp. De�ne two sets of probability distributions on G ⊆ I ×O by

P :=
{
p ∈ M1

+(G)
∣∣ ∂Ip = p̃emp ∧ H(p) <∞ ∧ Ep(cj) <∞ ∀ j ∈ NN

}
,(1.10a)

P0 :=
{
p ∈ P

∣∣ Ep(c) = Eemp(c)
}
.(1.10b)

Clearly, P0 ⊆ P , and pemp is in P0. Moreover, both P0 and P are convex subsets of the

vector space `1(G) as well as `1c(G), where

(1.11) `1c(G) :=
{
φ : G→ R

∣∣∣ ∑
(i,o)∈G

cj(i, o) · φ(i, o) <∞ ∀ j ∈ NN

}
.

We are now looking for a distribution p∗ ∈ P0 such that H(p∗) is maximal over P0. Then

p∗ would be a maximal entropy distribution under the linear condition (∗). As usual, in
order to �nd p∗ we apply Lagrange's method. To this end, de�ne a real-valued function

f on P by

f(p) := −H(p), p ∈ P.

Since entropy is non-negative and �nite on P , the function f takes its values in (−∞, 0].
As H(.) is strictly concave, f is strictly convex. Our aim is to minimize f over P0, that is

to �nd a distribution p∗ ∈ P0 such that p∗ = min{f(p) | p ∈ P0}.
By convexity of P0 and strict convexity of f , it follows that there can be at most one

minimizing distribution p∗ in P0. Next, de�ne an RN -valued function g on P by

g(p) := Ep(c)− Eemp(c), p ∈ P.

Note that P0 = {p ∈ P | g(p) = 0}, and for each j ∈ NN

gj(p) =
∑

(i,o)∈G

cj(i, o) ·
(
p(i, o)− pemp(i, o)

)
, p ∈ P,

is a real-valued af�ne-linear function. Instead of minimizing f over P0, following La-

grange's method, one minimizes a Lagrangian function L : P × RN → R over P , where

L is de�ned as

L(p, λ) := f(p) + 〈λ, g(p)〉, p ∈ P, λ ∈ RN .

Notice that, for each λ ∈ RN , L(., λ) is a convex real-valued function on the convex set

P . If L(., λ) attains its global minimum over P at p and if, in addition, g(p) = 0, then by

Lagrange's lemma, see proposition B.1 in the appendix, p is also a minimum position of

f on P0, that is f restricted to P0 attains its global minimum at p = p∗.

Clearly, the expectation operator g can be extended to an af�ne linear function on the

entire vector space `1c(G). To this end, set

(1.12) Γ(φ) :=
∑

(i,o)∈G

φ(i, o) · c(i, o), φ ∈ `1c(G).

Then Γ−Eemp(c) is the af�ne linear extension of g to `1c(G). If Eemp(c) is a �regular value�
of Γ in an algebraic sense and if there is a distribution p∗ ∈ P0 such that f restricted to P0
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attains its minimum at p∗, then a version of Lagrange's theorem guarantees the existence

of a Lagrange multiplier λ such that L(., λ) attains its minimum over P at p∗.

Proposition B.2 is a suitable special case of Lagrange's theorem. The regularity con-

dition requires that Eemp(c) be a relative interior point of Γ(P), cf. de�nition A.2 in ap-

pendix A. Under that regularity assumption we have equivalence between theminimiza-

tion of f over P0 and the parametrized minimization of L(., λ) over P .
According to the fundamental theorem of convex optimization, see theorem B.1 in the

appendix, a necessary and suf�cient condition for L(., λ) to attain its minimum at p ∈ P is

that

(1.13) L′+(p, q−p;λ) ≥ 0 for all q ∈ P,

where L′+(p, q−p;λ) is the right-hand Gâteaux derivative of L(., λ) at p in direction q−p,
see appendix B. Let us compute L′+(p, q − p;λ) for p, q ∈ P , λ ∈ RN . We have

L′+(p, q−p;λ) = lim
t↓0

1
t

(
H(p)−H

(
p+t(q−p)

)
+
〈
λ,Ep+t(q−p)(c)−Ep(c)

〉)
(1.14)

= −H′
+(p, q−p) +

∑
(i,o)∈G

(q − p)(i, o) ·
〈
λ, c(i, o)

〉
,

where the integrability of c under p and q, respectively, has been exploited. As to the

Gâteaux derivative of entropy, it holds that

H′
+(p, q−p) = lim

t↓0

1
t

(
H
(
p+ t(q − p)

)
− H(p)

)

= lim
t↓0

1
t

( ∑
q(i,o)>0

t · q(i, o) · ln
(

1
(1−t)p(i,o)+tq(i,o)

)

+
∑

p(i,o)>0

(1−t)p(i, o) · ln
(

1
(1−t)p(i,o)+tq(i,o)

)
−

∑
p(i,o)>0

p(i, o) · ln
(

1
p(i,o)

))
∣∣ rearrangement o. k. because of inequality (1.8)

= lim
t↓0

( ∑
q(i,o)>0

q(i, o) · ln
(

1
(1−t)p(i,o)+tq(i,o)

)
−

∑
p(i,o)>0

p(i, o) · ln
(

1
(1−t)p(i,o)+tq(i,o)

)

−
∑

p(i,o)>0

p(i, o)
t

· ln
(
1 + t q(i,o)−p(i,o)

p(i,o)

))
∣∣ apply monotone convergence to �rst sum, dominated conv. to last two sums

=
∑

q(i,o)>0

q(i, o) · ln
(

1
p(i,o)

)
−

∑
p(i,o)>0

p(i, o) · ln
(

1
p(i,o)

)
− 0.

Observe that H′
+(p, q−p) exists as an element of (−∞,∞]. If we had H′

+(p, q−p) = ∞ for

some q ∈ P , then equation (1.14) would imply that there could be no λ ∈ RN satisfying
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condition (1.13). Thus, in order for H′
+(p, q−p) to be �nite for all q ∈ P , it is necessary

(though not suf�cient) that p has full support. Accordingly, we assume that supp(p) = G.

Then

(1.15) H′
+(p, q−p) = −

∑
(i,o)∈G

(q − p)(i, o) · ln
(
q(i, o)

)
,

where the sum still has to be understood as a limit in R ∪ {∞}. Plunging (1.15) into

equation (1.14) yields

L′+(p, q−p;λ) = −H′
+(p, q−p) +

∑
(i,o)∈G

(q − p)(i, o) ·
〈
λ, c(i, o)

〉
=

∑
(i,o)∈G

(q − p)(i, o) ·
(
ln
(
p(i, o)

)
+
〈
λ, c(i, o)

〉)

=
∑
i∈I

p̃emp(i)
∑
o∈Oi

(
q(o|i)− p(o|i)

)
·
(
ln
(
p(o|i)

)
+
〈
λ, c(i, o)

〉
+ ln

(
p̃emp(i)

))
.

By de�nition of P , it holds that

(1.16)
∑
o∈Oi

p(o|i) = p̃emp(i) =
∑
o∈Oi

q(o|i) for all i ∈ I.

Therefore

(1.17) L′+(p, q−p;λ) =
∑
i∈I

p̃emp(i)
∑
o∈Oi

(
q(o|i)− p(o|i)

)
·
(
ln
(
p(o|i)

)
+
〈
λ, c(i, o)

〉)
.

Relation (1.16) leads to the following reformulation of condition (1.13). Suppose we had

(1.18) ln
(
p(o1|i)

)
+
〈
λ, c(i, o1)

〉
= ln

(
p(o2|i)

)
+
〈
λ, c(i, o2)

〉
for all o1, o2 ∈ Oi, i ∈ I.

Then equation (1.16) would imply L′+(p, q−p;λ) = 0 for all q ∈ P . If, on the other hand,

there were distinct elements o1, o2 in Oi for some i ∈ I such that

ln
(
p(o1|i)

)
+
〈
λ, c(i, o1)

〉
6= ln

(
p(o2|i)

)
+
〈
λ, c(i, o2)

〉
,

then we could �nd q ∈ P which would render L′+(p, q−p;λ) negative.9 Therefore, condi-
tions (1.18) and (1.13) are really equivalent.

De�ne constants in (0,∞] by

(1.19) Zr(i) :=
∑
õ∈Oi

exp
(
−〈r, c(i, õ)〉

)
, r ∈ RN , i ∈ I.

LetR denote the set of all parameters r such that Zr(i) is �nite for all i ∈ I , that is

(1.20) R :=
{
r ∈ RN

∣∣ Zr(i) <∞ ∀ i ∈ I
}
.

9Such a distribution q could be taken equal to p on G \ {(i, o1), (i, o2)}. By choosing q(i, o1) either smaller

or bigger than p(i, o1) and setting q(i, o2) := p(i, o1)+p(i, o2)−q(i, o1) one would achieveL′+(p, q−p; λ) < 0.
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We notice that if r ∈ R and r̃ ∈ [0,∞)N then also r + r̃ ∈ R. For r ∈ R we de�ne

a probability distribution on each of the sets Oi, i ∈ I , and a compound distribution

conditional on p̃emp on G by

pr(o|i) :=
1

Zr(i)
exp
(
−〈r, c(i, o)〉

)
, o ∈ Oi,(1.21a)

pr(i, o) := pr(o|i) · p̃emp(i), (i, o) ∈ G.(1.21b)

We see that Zr(i) is a normalizing constant for the Gibbs distribution pr(.|i) on Oi. If the

Lagrange multiplier λ is in R, then the compound Gibbs distribution pλ is in P and

condition (1.18) is ful�lled with p = pλ.

Conversely, if a probability distribution p ∈ P satis�es condition (1.18), where λ ∈ R,
then pmust be of the form (1.21b); more precisely, p = pλ must hold.

Lastly, if λ /∈ R, then condition (1.18) will not be satis�ed for any p ∈ P . We have thus

established the following result.

Theorem 1.1. Suppose the sets I ,O of inputs and outputs, respectively, the generatorG ⊆ I×O
and the feature function c : G → RN meet the requirements of section 1.1.1. Let the set P of

probability distributions on G of �nite entropy and �nite expectation for c be given by (1.10a),

and de�ne `1c(G) according to (1.11).
Let pemp ∈ P be given. De�ne the probability modelP0 according to (1.10b). Let Γ: `1c → RN

be as given by (1.12); in particular, P0 = {p ∈ P | Γ(p) = Eemp(c)}. Let R be the set of

parameters determined by (1.20), and for r ∈ R let pr denote the Gibbs distribution conditional

on pemp as given by (1.19) and (1.21).

If there is r ∈ R such that pr ∈ P0, then pr is the maximum entropy distribution of P0. To

obtain the converse statement, suppose that Eemp(c) is a relative interior point of Γ(P). Under

this assumption, if the model P0 possesses a maximum entropy distribution p∗, then p∗ = pr for

some r ∈ R.

We conclude this subsection by making two observations regarding the regularity condi-

tion on Eemp(c) in theorem 1.1.

First, suppose Eemp(c) is a relative interior point of Γ(P) and the model P0 has a

maximum entropy distribution p∗. From a convexity argument we already know that p∗
is uniquely determined. According to theorem 1.1, we have p∗ = pr for some r ∈ R. The
Gibbs parameter r, however, is not necessarily unique; it may happen that p∗ = pr = pr̂

for two distinct elements r, r̂ of R. Whether this is possible depends on the feature

function c.10

As to the second observation, suppose the regularity condition on Eemp(c) is not met.

Then P0 might still possess a maximum entropy distribution p∗, only that we have no

guarantee for p∗ to be of the Gibbs form (1.21). Yet we may hope to be able to obtain p∗
as a limit of Gibbs distributions prn for some parameter sequence (rn)n∈N ⊂ R.11

10The constraints must be such that c is �separating�, cf. section 2.2.
11Cf. footnote 2 in Berger et al. (1996); attention there is restricted to probability distributions with �nite

support.
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As a simple example for the second point consider the case of a one-dimensional

constraint function c, just one input i and exactly two possible outputs o1, o2. Suppose

c(i, o1) = 0, c(i, o2) = 1, and assume that the empirical distribution pemp is concentrated

on (i, o1). Let (rn)n∈N be a sequence of real numbers such that rn → ∞ as n tends to

in�nity. Then prn converges to pemp as n tends to in�nity, but there is no maximum

entropy distribution of Gibbs form for pemp, because Eemp(c) = 0, while Epr(c) > 0 for all
ranking parameters r ∈ R. We notice that pemp has entropy zero.

1.3.3 The dual optimization problem

In section 1.3.2 we have seen that the entropy maximization problem under linear con-

straints leads to the choice of a probability distribution from a family of Gibbs distribu-

tions (pr)r∈R, where pr is given by (1.21) and R by (1.20). The set of parametersR ⊂ RN

can readily be interpreted as a set of constraint rankings in the sense of section 1.1.

At this point, we have to �nd a way of how to determine a maximum entropy param-

eter r ∈ R, that is a parameter r such that pr is the maximum entropy distribution for the

model P0 as given by (1.10b). To this purpose, de�ne the function fpot : RN → R ∪ {∞}
by

(1.22) fpot(r) :=

−Eemp(ln pr), if r ∈ R,

∞, else.

In particular, for all r ∈ Rwe have

fpot(r) =
〈
r,Eemp(c)

〉
+
∑
i∈I

p̃emp(i) · lnZr(i)

=
∑

(i,o)∈G

pemp(i, o) ·
(
〈r, c(i, o)〉+ lnZr(i)

)
.

(1.23)

Denote by int(R) the interior ofR. The next proposition lists some properties of fpot.

Proposition 1.1. De�ne the function fpot on RN according to (1.22). Then it holds that

(i) fpot takes its values in [0,∞], and

fpot(r) = D(pemp‖pr) + H(pemp) for all r ∈ R,

where D(.‖.) is the Kullback-Leibler divergence,

(ii) fpot is convex,

(iii) fpot is twice continuously differentiable on int(R).

The �rst and second order partial derivatives of fpot at r ∈ int(R) are

∂

∂rj
fpot(r) = Eemp(cj) − Epr(cj), j ∈ {1, . . . , N},(1.24a)

∂2

∂rj∂rk
fpot(r) = Ep̃emp

(
covpr(.|i)

(
cj(i, .), ck(i, .)

))
, j, k ∈ {1, . . . , N}.(1.24b)
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Proof. Recall from section 1.3.1 how the Kullback-Leibler divergence D(.‖.) was de�ned.

The identity for fpot is established by rewriting equation (1.23). Kullback-Leibler diver-

gence as well as entropy are non-negative. Convexity is a consequence of Hölder's in-

equality and the monotonicity of the logarithm.
Termwise differentiation in equation (1.23) leads to the right-hand sides in (1.24). No-

tice that the right-hand side of (1.24b) written out reads

∑
i∈I

p̃emp(i)

((∑
o∈Oi

cj(i, o) · ck(i, o) · pr(o|i)
)
−
(∑

o∈Oi

cj(i, o) · pr(o|i)
)
·
(∑

o∈Oi

ck(i, o) · pr(o|i)
))

.

The sums appearing in (1.23) and (1.24), respectively, correspond to limits of sequences

that are non-decreasing; Dini's theorem establishes uniform convergence of the partial

sums, which in turn guarantees differentiability of the original function.

Theorem 1.1 and (1.24a) together imply that if fpot possesses a minimum at r̂ ∈ R then P0

possesses a maximum entropy distribution p∗ and p∗ = pr̂. Minimizing the function fpot

over R thus constitutes the dual to the problem of maximizing entropy over the proba-

bility model P0. This fact has been exploited in the design of Jäger's learning algorithm

and will be essential for the proofs of convergence in chapter 2.

From proposition 1.1 we see that minimizing the dual function fpot amounts to min-

imizing the Kullback-Leibler distance or relative entropy between pemp and the set of

Gibbs distributions {pr | r ∈ R}. The value fpot(r) is the cross entropy between pemp and

pr. Minimization of cross entropy or, equivalently, relative entropy is a standard proce-

dure in computational linguistics (cf. Manning and Schütze, 1999: pp. 73-77).

Let us also mention that the maximum entropy distribution � provided there is any �

is at the same time a maximum likelihood estimate of the empirical distribution.12

To conclude this section, we list the names used in physics for the quantities introduced

above. We may assume there is exactly one input i associated with only a �nite number

of possible outputs, that isOi is �nite and coincides with the set of outputsO. The case of

more than one input can be regarded as a mixture of systems, each system corresponding

to one input and its output candidates.

Gibbs distribution (1.21a) gives the probability distribution of a system allowing for

#Oi microstates in thermal equilibrium at temperature T , where state (i, o) � or just o �

has energy k T 〈r, c(i, o)〉. Here, k is Boltzmann's constant. The normalizing constant Zr(i)
is called partition function or Zustandssumme.

Relative entropy D(q‖p) measures the difference in free energy between an arbitrary

probability distribution q and the equilibrium distribution p. This seems to �t well our

needs: setting q := pemp and p := pr, where pr is of Gibbs form, hence an equilibrium

distribution, we �nd that fpot corresponds (up to an additive constant) to the difference

in free energy between pemp and pr. Note, however, that we have to minimize fpot(r)
over r ∈ RN . This cannot be interpreted as merely adjusting temperature. A different

12For details see Berger et al. (1996), for example.
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interpretation of fpot can be found in Jaynes (1957a: p. 624), where an ensemble made up

of particles of N different types is considered.

1.4 Jäger's algorithm for maximum entropy learning

Assume we are given a generatorG ⊆ I ×O together with a feature function c : G→ RN .

We choose an evaluation kernel according to the maximum entropy version of stochastic

OT. To this end, let R be the set of Gibbs parameters as de�ned in (1.20). In the conver-

gence analysis of chapter 2 we will assume c and G are such that R = RN . In chapter 3,

especially in section 3.2, we will discuss implications of this assumption and what should

be done in case we haveR = (0,∞)N .

The family (pr(.|i))i∈I,r∈R of probability distributions de�ned according to (1.19) and

(1.21a) gives an evaluation kernel for G and c, and (G, c, p) is a universal stochastic OT
grammar. Given observations of an empirical distribution pemp on G, we need a proce-

dure for selecting a speci�c stochastic OT grammar that best re�ects pemp.

Jäeger's idea for such a procedure (Jäger, 2003) is similar to what is behind Boersma's

GLA. Start with an arbitrary constraint ranking. Each time an input output pair is ob-

served, draw an output for the observed input according to the current ranking of con-

straints. If the computed output is different from the one observed, compare the number

of constraint violations incurred by the two outputs. Increase the rank of those con-

straints favouring the observed output over the generated one, decrease the rank of those

constraints having the opposite effect (cf. section 1.2). The amount of rank promotion and

demotion, respectively, is proportional to the difference in the number of constraint vio-

lations. It also depends on a gain parameter regulating the step size of the algorithm.13

As in section 1.1.2, let (Xn) be an i. i. d. sequence of input output pairs on the probabil-
ity space (Ω,F ,P) such thatXn = (Xin

n , X
out
n ) has distribution pemp underP. The random

sequence (Xn) thus represents the observations of the empirical distribution available to

the learner. Let (Hn)n∈N0 be a sequence of measurable mappings Ω × I × RN → O such

that (Hn(., i, r))n∈N0 is an i. i. d. random sequence with distribution pr(.|i) under P for

all i ∈ I , r ∈ RN . The random variables Hn(., i, r) mimic the action of the evaluation

component, which generates outputs o ∈ Oi given an input i and a ranking vector r.

Jäger's algorithm for learning constraint rankings can now be expressed as follows.

Choose a gain parameter η > 0 and an initial constraint ranking, that is an F-measurable

random variable Rη
0 with values in RN which is assumed to be independent of the other

random variables. Of course, Rη
0 might be constant, corresponding to a deterministic

initial ranking. Compute a sequence (Rη
n)n∈N0 of constraint rankings according to the

recursion formula

(1.25) Rη
n+1 := Rη

n + η ·
(
c(Xin

n ,Hn(Xin
n , R

η
n))− c(Xin

n , X
out
n )

)
, n ∈ N0.

13In section 1.2 the gain parameter was referred to as plasticity value. For rank promotion or demotion

the GLA takes into account only the sign of the difference in the number of violations of a certain constraint,

not the value of that difference.
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If the initial ranking is deterministic, i. e.Rη
0 = r for some r ∈ R, then (Rη

n)n∈N0 as de�ned

by (1.25) is a sequence of random variables on (Ω,F ,P) taking values in the countable

space r+ηZN . The sequence of constraint rankings thus de�nes a randomwalk on anN -

dimensional Euclidean grid. In order to obtain an implementable algorithm, we would

have to specify a halting condition, e. g. to stop computation after a certain �xed number

of iterations.

A glance at recursion formula (1.25) shows that Jäger's algorithm and Boersma's GLA

are quite similar. Indeed, if all constraints are {0, 1}-valued, recursion formula (1.25) is

equivalent to formula (1.4). Nevertheless, the two learning procedures are essentially

different due to the fact that they work with two different methods for output evaluation

or, more generally, with two different versions of stochastic OT .

Constraint rankings are learned if the sequence (Rη
n) converges in some sense. Learning

is successful if the limit of the sequence of constraint rankings is close to the minimum

position of fpot provided η is small. In chapter 2, we will �nd an appropriate notion of

convergence and give a precise meaning to what �close to� should be.

In the convergence proofs of chapter 2 the following observation will play a funda-

mental rôle. Recall from section 1.3.3 that entropy maximization is linked to the dual

optimization problem of minimizing the function fpot as given by (1.22). The sequence

(Rη
n)n∈N0 de�ned above can be regarded as a process in discrete time. The function fpot

is a potential for this process in the sense that for all n ∈ N0 we have14

(1.26) E
(
Rη

n+1 −Rη
n | Rη

n

)
= −η · ∇fpot(Rη

n),

where η > 0 is the gain parameter inducing a certain time scale. In view of (1.26), if no

random elements were involved, then Jäger's algorithm would reduce to an application

of the gradient descent method for �nding the minimum of the function fpot. As we are

confronted with a stochastic algorithm, we have to show that the �mean dynamics� de-

scribed by equation (1.26) are predominant at least for small values of the gain parameter.

14Cf. Jäger (2003) for a less formal way of stating (1.26).



Chapter 2

Convergence of Jäger's algorithm

The central theme of this chapter are proofs of convergence for Jäger's algorithm under

varying assumptions. As we are dealing with a stochastic algorithm, we have to distin-

guish between different notions of convergence. De�nitions of convergence which come

into question in the present context are summarized in section 2.1. The notion of weak

convergence turns out to be the one that is most appropriate to the problem at hand.

Since Jäger's learning algorithm is, in effect, a procedure for �nding the minimum

positions of the function fpot associated with the empirical distribution pemp and the fea-

ture function c, we have to study the interrelation between the minima of fpot on the one

hand and the distribution pemp and feature function c on the other. This is the purpose of

section 2.2.

In section 2.3 we prove convergence of the sequence of constraint rankings to a proba-

bilistic counterpart of an equilibrium or steady state, namely convergence to a stationary

distribution. We will make use of the discrete nature of the constraint rankings arising

from the hypothesis that the feature function takes as its values only non-negative inte-

gers. Section 2.3.1 is a selection of results from the theory of discrete Markov chains. It

also helps in providing insight into some of the ideas of stability theory. The theory is

put into application in section 2.3.2.

In the remaining sections we will rely on more general results concerning iterative

stochastic algorithms and approximation, which will be stated only brie�y. A compre-

hensive exposition can be found in Kushner and Yin (2003).

Section 2.4 deals with convergence of the stationary distributions as the gain param-

eter η, which up to that point shall be considered a constant, approaches zero. In sec-

tion 2.4.1 we present a general approximation result which relates Markov chains to de-

terministic and stochastic differential equations. So equipped, we will return to Jäger's

algorithm in section 2.4.2.

In section 2.5 we will not wait for the algorithm to settle in the stationary regime;

instead we let η change with each iteration according to some suitable annealing scheme.

The situation there is similar to the one studied in the classical work of Robbins and

Monro (1951), although we will not rely on that result.

25
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The main idea for the proofs of convergence in section 2.3, and also in section 2.5, is that

fpot is not only the function we have to minimize; it also serves as a Lyapunov function.

Consider a path or trajectory of rankings as produced by Jäger's algorithm, i. e. a real-

ization of the random sequence of constraint rankings. The function fpot is a Lyapunov

function in that it decreases along trajectories which have gone too far away from the

position of the global minimum.1 We will see that the problem is indeed reducible to

the case when fpot has exactly one (local and global) minimum at a unique position. The

fact that fpot decreases along deviating trajectories implies that � at least on average �

trajectories cannot �run away� from the position of the minimum.

Throughout this chapter we assume that the parameter set R as given by (1.20) in

section 1.3.2 coincides with RN . An immediate consequence of this hypothesis is that

there can be only �nitely many outputs for a given input.2 In the notation of section 1.1

this means that Oi is �nite for all i ∈ I . The set O of all outputs may nevertheless be

in�nite, because we still allow for a (countably) in�nite set of inputs. Notice that the

number of elements of Oi is not required to be uniformly bounded in i ∈ I .

2.1 Notions of stochastic convergence

Here, we collect a number of de�nitions that describe the convergence behaviour of a se-

quence of random variables.3 For each n ∈ N letXn be an RN -valued random variable on

the probability space (Ω,F ,P). We are interested in conditions under which the sequence

(Xn) can reasonably be taken to converge to an RN -valued random variable X de�ned

on the same probability space.

The �rst notion is that of almost sure convergence. In that case, we have convergence

in RN for �almost all� scenarios ω, that is for all ω ∈ Ω not in a set of probability zero.

De�nition 2.1. The sequence (Xn)n∈N is said to converge P-almost surely to a random

variable X iff there is set N ∈ F such that

(i) P(N) = 0,

(ii) Xn(ω) n→∞−→ X(ω) for all ω ∈ Ω \N .

A set with probability zero is also called a null set or, more precisely, a P-null set, where P
is the underlying probability measure. The requirement of �scenariowise� convergence

can be weakened in the following way.

De�nition 2.2. The sequence (Xn)n∈N is said to converge in probability to a random vari-

able X iff it holds that

P
(
{ω ∈ Ω | ‖Xn(ω)−X(ω)‖ ≥ ε}

) n→∞−→ 0 for each ε > 0.

1More precisely, fpot need not decrease along all trajectories which have left some neighbourhood of the

minimum position, but it will do so on average.
2See section 3.2 for a discussion of the case of in�nitely many output alternatives for a given input.
3The de�nitions we cite are standard; see Bauer (1991), for example.



2.1. NOTIONS OF STOCHASTIC CONVERGENCE 27

Almost sure convergence implies convergence in probability, while the converse is not

true in general. However, a sequence that converges in probability has the property that

any of its subsequences contains in turn a subsequence which is almost surely conver-

gent. De�nitions 2.1 and 2.2 can both be generalized to work for random variables taking

values in arbitrary metric or topological spaces.

If the random variables involved have �nite pth moments, then convergence with

respect to those averages can be de�ned.

De�nition 2.3. Let ∞ > p ≥ 1. Suppose that E(‖X‖p) < ∞ and E(‖Xn‖p) < ∞ for all

n ∈ N. The sequence (Xn)n∈N is said to converge in Lp to a random variable X iff it holds

that

E
(
‖Xn −X‖p

) n→∞−→ 0.

If p = 2 one also speaks of mean square convergence. Convergence in Lp implies conver-

gence in probability. Observe that Lp-convergence requires integrability of the random

variables ‖Xn‖p and ‖X‖p.

There is an even weaker notion of convergence than that of convergence in probability.

It only depends on the distributions of the random variables. Assume Xn, n ∈ N, X
take values in the measurable space (S,B(S)), where S is a topological space and B(S)
its Borel σ-algebra, i. e. the system of measurable sets generated by the open subsets of S.

De�nition 2.4. The sequence (Xn)n∈N is said to converge in distribution to a random vari-

able X iff it holds that

E
(
φ(Xn)

) n→∞−→ E
(
φ(X)

)
for all bounded and continuous functions φ : S → R.

In case of convergence, let us write Xn
w→ X as n→∞.

Convergence in distribution makes sense even if the random variables are de�ned on

different probability spaces. To see that de�nition 2.4 is really a notion of convergence for

the accompanying distributions, let Y be an S-valued random variable on (Ω,F , P ) and
notice that

E
(
φ(Y )

)
=
∫

S
φ(y) dPY (y),

where φ is any appropriate function on S (e. g. bounded and measurable) and PY is the

distribution of Y under P. Thus, PY is a probability measure on B(S). Accordingly, one
de�nes convergence of probability measures or distributions on the state space S.

De�nition 2.5. The sequence (Pn)n∈N of probability measures on B(S) is said to converge

weakly to a probability measure P on B(S) iff it holds that∫
S
φ(y) dPn(y) n→∞−→

∫
S
φ(y) dP(y) for all bounded continuous functions φ : S → R.

In case of convergence, let us write Pn
w→ P.
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Now consider the case that S is discrete. If we endow S with the discrete topology, then

any function on S is continuous, and weak convergence is equivalent to the � in general

stronger � notion of convergence in total variation.

De�nition 2.6. Let νn, n ∈ N, and µ be distributions on the countable set S. The sequence
(νn) converges in total variation to µ iff

lim
n→∞

∑
i∈S

|νn(i)− µ(i)| = 0.

All we really need is the notion of weak convergence. The reason is that we are interested

in distributions of constraint rankings, not in the evolution of the sequence of constraint

rankings given a particular sequence of input output pairs.

From de�nition 2.5 it is evident that weak convergence is preserved under continuous

transformations. If (Xn) converges weakly to X and ψ is a continuous mapping S → S̃,

where S̃ is a second topological space, then the transformed sequence (ψ(Xn)) converges
weakly to ψ(X), the transformation of X . As a consequence, we have the following

continuity property of maximum entropy OT grammars.

Proposition 2.1. Given an empirical distribution pemp and a feature function c on G, let the

parameter set R be as de�ned by (1.20). Assume that R = RN . In particular, Oi is supposed to

be �nite for each i ∈ I . Let the family of Gibbs distributions pr, r ∈ RN , be as de�ned by (1.21).

Let Rn, n ∈ N, R be RN -valued random variables. Then Rn
w→ R implies pRn

w→ pR as n tends

to in�nity.

Proof. For n ∈ N let P̃n denote the probability measure induced by Rn, and let P̃ denote

the probability measure induced by R. Let ψ : M1
+(G) → R be a bounded and continuous

function, where we choose as topology for M1
+(G) the topology of weak convergence.4

We have to show that ∫
RN

ψ(pr) dP̃n(r) n→∞−→
∫

RN

ψ(pr) dP̃(r).

By hypothesis, we know that∫
RN

φ(r) dP̃n(r) n→∞−→
∫

RN

φ(r) dP̃(r)

for all bounded and continuous functions φ : RN → R. Since ψ is bounded, the function

RN 3 r 7→ ψ(pr) is bounded, too. Hence, it is suf�cient to show that r 7→ ψ(pr) is

continuous. Let (rn) ⊂ RN be a sequence of real vectors such that rn → r as n tends to

in�nity. Convergence of the sequence (rn) to r must imply weak convergence prn

w→ pr

of the corresponding Gibbs distributions. Since G is countable, we will check that

(2.1)
∑

(i,o)∈G

∣∣prn(i, o)− pr(i, o)
∣∣ n→∞−→ 0.

4Since G is countable, the topology of weak convergence coincides with that of convergence in total

variation.
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We have∑
(i,o)∈G

∣∣prn(i, o)− pr(i, o)
∣∣ =

∑
i∈I

p̃emp(i)
∑
o∈Oi

∣∣prn(o|i)− pr(o|i)
∣∣

=
∑
i∈I

p̃emp(i)
∑
o∈Oi

exp
(
−
〈
r, c(i, o)

〉)
·
∣∣∣∣ 1
Zrn(i)

exp
(
−
〈
r − rn, c(i, o)

〉)
− 1
Zr(i)

∣∣∣∣ .
Clearly,

exp
(
−
〈
r − rn, c(i, o)

〉) n→∞−→ 1 for all (i, o) ∈ G.

Now Oi is supposed to be �nite, whence for all i ∈ I

Zrn(i) =
∑
õ∈Oi

exp
(
−
〈
rn, c(i, õ)

〉) n→∞−→
∑
õ∈Oi

exp
(
−
〈
r, c(i, õ)

〉)
= Zr(i).

The limit in equation (2.1) follows by dominated convergence.

2.2 Minima of the dual function

Recall from section 1.3.3 the de�nition of the dual function fpot. We already know that

fpot is a non-negative convex function; given an empirical distribution pemp and a feature

function c we want to check whether fpot has a global minimum. Let pr, r ∈ RN , denote

the family of Gibbs distributions associated with c and pemp.

We notice the linear dependence between the ranking vector r and the feature func-

tion c in the exponent appearing in (1.21a), the de�nition of the Gibbs distribution pr(.|i)
on Oi conditional on the input i ∈ I . For this reason, the families pr(.|i), r ∈ RN , are also

referred to as log-linear probability models.

Observe that Jäger's algorithm as introduced in section 1.4 is driven by the difference

in the number of constraint violations between two outputs for the same input. De�ne

two sets Vc,Wc of ranking vectors by

Vc :=
{
r ∈ RN

∣∣ ∀ (i, o1) ∈ supp(pemp), (i, o2) ∈ G :
〈
r, c(i, o1)− c(i, o2)

〉
= 0
}
,(2.2a)

Wc :=
{
r ∈ RN

∣∣ ∀ (i, o1) ∈ supp(pemp), (i, o2) ∈ G :
〈
r, c(i, o1)− c(i, o2)

〉
≤ 0
}
.(2.2b)

First, notice that Vc is a linear subspace of RN , whileWc, in general, is a convex subset of

RN containing Vc. It is, of course, possible that Vc = Wc. Indeed, this is certainly the case

when supp(pemp) = G, that is whenever the empirical distribution has full support.

Recalling de�nitions (1.19) and (1.21) we �nd that the distributions pr are invariant

under translation along Vc, that is5

(2.3) pr(i, o) = pr+v(i, o) for all r ∈ RN , v ∈ Vc, (i, o) ∈ G.
5Remember our assumption concerning the support of pemp, namely that for each input i ∈ I there is at

least one output o ∈ Oi such that (i, o) ∈ supp(pemp), cf. section 1.1.
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As an immediate consequence we see that fpot is constant along the af�ne-linear subspace

r + Vc for each r ∈ RN , that is

(2.4) fpot(r) = fpot(r + v) for all r ∈ RN , v ∈ Vc.

Denote by V ⊥
c the orthogonal complement of Vc. Let (Rη

n) be a sequence of constraint

rankings according to (1.25). It is clear that

(2.5) Rη
n+1 −Rη

n ∈ V ⊥
c P-a. s. for all n ∈ N0.

If the initial ranking is deterministic, i. e.Rη
0 = r for some r ∈ RN , then the sequence (Rη

n)
of constraint rankings is contained in the af�ne-linear subspace r + V ⊥

c .

Let v be an element of Vc. If the sequence of constraint rankings with initial ranking

r converges in distribution to a random variable R(r), then the ranking sequence with

initial constraint ranking r + v converges in distribution to v + R(r). Moreover, because

of (2.3), the distribution-valued random variables pR(r) and pv+R(r) are equal.

Next, let v ∈ RN \Wc, where we assume that Wc 6= RN . We �nd (i, o1) ∈ supp(pemp),
(i, o2) ∈ G such that 〈v, c(i, o1)− c(i, o2)〉 > 0, and for all t > 0 it holds that

fpot(t · v) ≥ pemp(i, o1) · t ·
〈
v, c(i, o1)

〉
+ pemp(i, o1) · ln

(∑
o∈Oi

exp
(
−t
〈
v, c(i, o)

〉))
> pemp(i, o1) · t ·

(〈
v, c(i, o1)− c(i, o2)

〉)
as a consequence of equation (1.23) and the strict monotonicity of the logarithm. By

construction, pemp(i, o1) > 0 as well as 〈v, c(i, o1)− c(i, o2)〉 > 0. Hence, we have

(2.6) fpot(t · v) → ∞ as t→∞ for all v ∈ RN \Wc.

Now, suppose that Vc = Wc. By (2.6), we see that fpot(t · v) → ∞ as t → ∞ for all

v ∈ V ⊥
c \ {0}. By lemma A.1, fpot restricted to V ⊥

c possesses a unique global minimum.6

Because of (2.4), the same holds true for the restrictions of fpot to r+V ⊥
c with r ∈ RN . The

function fpot itself attains its global minimum value on the entire af�ne-linear subspace

r̂ + Vc, where r̂ ∈ V ⊥
c is the position of the global minimum of fpot restricted to V ⊥

c .

Lastly, suppose Vc 6= Wc. Then we would �nd ourselves in the situation that the regular-

ity condition of theorem 1.1 on Eemp(c) is violated.7 To check this, recalling the notation

of section 1.3, we have to indicate r ∈ RN such that Eemp(c) + t · r is in the af�ne hull of

Γ(P) for all t ∈ R, while Eemp(c)− t · r /∈ Γ(P) for t > 0.
Since pemp is in P and Γ(p) for p ∈ P is just the expectation of the feature function c

under p, we see that hullaff Γ(P) = Eemp(c) + V ⊥
c . As a consequence of our hypothesis

that Vc 6= Wc, the intersection of Wc and V ⊥
c \ {0} is non-empty. Thus, we are able to

choose r ∈Wc ∩ V ⊥
c \ {0}. If there is v ∈ RN such that for any t > 0 and all p ∈ P〈

Eemp(c)− Ep(c), v
〉
6= t · 〈r, v〉,

6To check strict convexity of fpot on V ⊥
c recall the condition for equality in Hölder's inequality.

7See end of section 1.3.2.
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then we will have established Eemp(c)− t · r /∈ Γ(P) for t > 0; since r ∈ V ⊥
c \ {0}, the non-

regularity ofEemp(c)would follow. As test vector v take r itself. Then t·〈r, v〉 = t·〈r, r〉 > 0
for all t > 0, while〈

Eemp(c)− Ep(c), r
〉

=
∑
i∈I

p̃emp(i)

 ∑
(i,o)∈supp(pemp)

pemp(o|i) ·
〈
r, c(i, o)

〉
−

∑
(i,o)∈G

p(o|i) ·
〈
r, c(i, o)

〉
=

∑
i∈I

p̃emp(i)

(
κ(i) −

∑
(i,o)∈G

p(o|i) ·
〈
r, c(i, o)

〉)
≤ 0,

where κ(i) := 〈r, c(i, o)〉 for some (i, o) ∈ supp(pemp), which is well de�ned, because

r ∈Wc. By construction, κ(i) ≤ 〈r, c(i, o)〉 for all (i, o) ∈ G.

In case Vc 6= Wc we cannot expect the sequence (Rη
n) of constraint rankings to converge.

Instead, we would have to study the sequence of induced Gibbs distributions.

In the sequel, however, we will generally assume that the expectation vector Eemp(c)
is regular in the sense of being a relative interior point of Eemp(c) + V ⊥

c .

2.3 Constant step size and convergence on a grid

Recall that Jäger's algorithm is driven by the difference in the number of constraint viola-

tions incurred by two alternative outputs for the same input. As a consequence, if the ini-

tial constraint ranking Rη
0 is deterministic, then the random sequence (Rη

n) of constraint
rankings de�ned in section 1.4 is an instance of a random walk on an N -dimensional

grid. The evolution of this random walk is governed by a convex potential, given in our

case by the function fpot.

Notice that the mesh size of the N -dimensional grid is determined by the gain pa-

rameter η. In this section we take η to be a constant. Before proving convergence of the

ranking sequence in section 2.3.2, we review a bit of theory.

2.3.1 Invariant distributions and Foster's drift criterion

Here, we collect a number of results concerning homogeneous Markov chains. Our main

reference is Brémaud (1999), where proofs can be found.

Let (Xn)n∈N0 be a random sequence on the measurable space (Ω,F) with values in a

countable set S. Let P = (pij)i,j∈S be a transition matrix on S. For every distribution ν

on S let Pν be a probability measure on F such that (Xn)n∈N0 is a homogeneous Markov

chain under Pν with transition matrixP and initial distribution ν, where the latter means

that Pν(X0 = i) = ν(i) for all i ∈ S.
If ν is a point distribution concentrated at some i ∈ S, write Pi for the corresponding

probability measure on F ; we then have Pi(X0 = i) = 1. When it does not matter which

initial distribution ν one chooses, we just write P instead of Pν .
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An entry pij of the transition matrix P gives the probability for the homogeneous

chain (Xn) to get from state i to state j, that is

pij = P
(
Xn+1 = j | Xn = i

)
for all n ∈ N0.

If the Markov chain reaches every state in S from any other state with positive proba-

bility in a �nite number of steps, then the chain is called irreducible. We are interested

in the long-term behaviour of irreducible Markov chains. As a �rst step, one studies the

recurrence properties of the chain.

De�nition 2.7. For i ∈ S denote by τi the random time of return to state i, that is we set

τi(ω) := min{n ∈ N | X0(ω) = i ∧ Xn(ω) = i}, ω ∈ Ω,

where τi(ω) := ∞ if X0(ω) = i, but Xn(ω) 6= i for all n ∈ N. In this notation, the chain

(Xn) is recurrent iff Pi(τi <∞) = 1 for all i ∈ S, while it is positive recurrent iff Ei(τi) <∞
for all i ∈ S.

Positive recurrence thus means that for any state the expected time of return to this state

is �nite, whereas recurrence only guarantees that return is almost certain.

The following suf�cient condition for positive recurrence of an irreducible homoge-

neous Markov chain will be useful, cf. Brémaud (1999: pp. 167-169).

Theorem 2.1 (Foster). Suppose (Xn)n∈N0 is irreducible. If there exist ε > 0, a function h : S →
R and a �nite set B ⊂ S such that

(i) inf{h(j) | j ∈ S} > −∞, that is h is bounded from below,

(ii)
∑
j∈S

pijh(j) < ∞ for all i ∈ B,

(iii)
∑
j∈S

pijh(j) ≤ h(i)− ε for all i ∈ S \B,

then (Xn) is positive recurrent.

In case the requirements of Foster's theorem are met, the function h is called a Lyapunov

function, the �nite set B is called the refuge. Note that for all i ∈ S, n ∈ N0 we have∑
j∈S

pijh(j) = E
(
h(Xn+1) | Xn = i

)
on the event {ω ∈ Ω | Xn(ω) = i}.

A distribution π is a stationary distribution for (Xn) or P iff πT = πTP. In this case, (Xn)
is a stationary process under Pπ, that is the distribution of (Xn) is invariant under time

shifts.

As far as irreducible Markov chains are concerned, positive recurrence is equivalent

to the existence of a stationary distribution (Brémaud, 1999: p. 104).
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Theorem 2.2 (Stationary distribution criterion). Suppose (Xn)n∈N0 is irreducible. Then (Xn)
is positive recurrent if and only if there exists a stationary distribution for (Xn). A stationary

distribution π for (Xn), whenever it exists, is unique, and π(i) > 0 for all i ∈ S.

The stationary distribution of an irreducible and positive recurrent time homogeneous

Markov chain can be represented in terms of the expected times of return (Brémaud,

1999: pp. 104-105).

Theorem 2.3 (Mean return time and stationary distribution). Suppose (Xn)n∈N0 is irre-

ducible and positive recurrent. Denote by τi the time of return to state i and by π the stationary

distribution of (Xn). Then it holds for all i ∈ S that

Ei(τi) < ∞ and π(i) =
1

Ei(τi)
.

Once we have established that a chain possesses a stationary distribution, we also know

its long-term behaviour. The only additional property we have to check regards the peri-

odicity of the chain. Recall that a Markov chain in S is called aperiodic iff

di := gcd{n ∈ N | pii(n) > 0} = 1 for all i ∈ S,

where pii(n) is the probability to return to state i after exactly n steps. The (possibly

in�nite) number di is called the period of state i. The states of an irreducible chain all have

the same period.

An irreducible, positive recurrent and aperiodic homogeneousMarkov chain is called

ergodic. Such a chain is mixing in the sense that it converges to its stationary distribution

regardless of its initial state (Brémaud, 1999: p. 130).

Theorem 2.4 (Convergence to stochastic equilibrium). Suppose the chain (Xn)n∈N0 is er-

godic, and denote by π its stationary distribution. Then the distributions of (Xn) converge in

total variation to π for any choice of the initial distribution, that is

lim
n→∞

∑
i∈S

|Pν(Xn = i)− π(i)| = 0 for all distributions ν on S.

In case the irreducible, positive recurrent chain (Xn) had period d > 1, we would look for

convergence in total variation with respect to the d-step transitionmatrixPd, cf. Brémaud

(1999: p. 131).

2.3.2 Convergence to stochastic equilibrium

We now apply the results presented in section 2.3.1 in order to show that the sequence

of constraint rankings produced by Jäger's learning algorithm converges � under mild

assumptions � to a stationary distribution which depends on the gain parameter η, but is

the same for different choices of the initial ranking.
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With η > 0, let Rη
0 be a deterministic initial ranking of constraints, i. e. Rη

0 = rs for

some rs ∈ RN , and let (Rη
n) be the corresponding random sequence of constraint rankings

on a probability space (Ω,F ,P) as de�ned recursively by formula (1.25). The random

variables Rη
n, n ∈ N0, take values in the countable state space Sη := rs + ηZN . Thus, Sη is

the evenly spaced orthogonal grid of mesh size η containing rs.

Once the state space has been �xed, we can allow for a random initial ranking, that

is Rη
0 is a random variable with values in Sη. The sequence (Rη

n) satis�es a recursion

equation of the form

(2.7) Rη
n+1(ω) = Rη

n(ω) + η · Ln

(
ω,Rη

n(ω)
)

for all n ∈ N0, ω ∈ Ω,

where (Ln)n∈N0 is a sequence of measurable mappings Ω× RN → ZN such that

(i) Ln(., r) has distribution µr with respect to P for all r ∈ RN and all n ∈ N0, where

(µr)r∈RN is a family of probability distributions on ZN ,

(ii) (Ln(., r))n∈N0,r∈RN is an independent family.

Conversely, we may prescribe a family (µr)r∈RN of probability distributions on the grid

ZN , choose η > 0, �x the state space Sη and use (2.7) in order to de�ne a sequence

(Rη
n)n∈N0 of Sη-valued random variables.

To this end, take an independent family (Ln(., r))n∈N0,r∈RN on a suitable probability

space (Ω,F ,P) such that Ln(., r) has distribution µr under P for all r ∈ RN and all n ∈
N0.8 For each η > 0 choose an initial distribution νη on Sη and, if necessary, augment the

probability space (Ω,F ,P) so as to make it carry a second independent family (Rη
0)η>0,

where Rη
0 has distribution νη under P.

With (Rη
0) and (Ln) as above, de�ne for each η > 0 a random sequence (Rη

n)n∈N0

according to recursion formula (2.7). We notice that (Rη
n)n∈N0 is a homogeneous Markov

chain on (Ω,F ,P) with state space Sη and transition probabilities

(2.8) P(r → r + ηz) = P
(
Rη

n+1 = r + ηz | Rη
n = r

)
= µr(z), z ∈ ZN ,

where r ∈ Sη and n ∈ N0 is arbitrary. The next proposition states that if the Markov chain

of constraint rankings (Rη
n)n∈N0 induced by (µr) is irreducible and follows a potential

which has a global minimum and grows in an appropriate way, then the chain possesses

a stationary distribution provided the gain parameter η is suf�ciently small.

Proposition 2.2. Let (µr)r∈RN be a family of probability distributions on ZN and de�ne the

corresponding random family (Ln) on some suitable probability space (Ω,F ,P) as above. For

η > 0 and an initial rankingRη
0 with values in Sη de�ne (Rη

n) according to (2.7). Let f : RN → R
be a twice continuously differentiable function. Suppose that

8Kolmogorov's consistency theorem guarantees existence of a family (Ln) with the desired properties,

see for example Bauer (1991: pp. 303-310).
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(H1) (Rη
n)n∈N0 is irreducible for all η > 0,

(H2) f has a global minimum at r̂ ∈ RN ,

(H3) for all r ∈ RN

Ln(., r) is integrable and
∑

z∈ZN

µr(z) · z = −∇f(r),

(H4) there are positive constants η̂, κ1, κ2 and a bounded set B ⊂ RN such that for all r ∈
RN \B

‖∇f(r)‖2 ≥ κ1 and
∑

z∈ZN

µr(z) · ‖z‖2 · sup
v∈[r,r+η̂z]

‖Hf (v)‖ ≤ κ2‖∇f(r)‖2,

where Hf is the Hessian of f .

Set η0 := min{η̂, 2
κ2
}. If η ∈ (0, η0), then the Markov chain (Rη

n)n∈N0 possesses a stationary

distribution.

Proof. First observe that by construction of (Ln) we have for all r ∈ RN and all n ∈ N0

∑
z∈ZN

µr(z) · z = E
(
Ln(., r)

)
,

∑
z∈ZN

µr(z) · ‖z‖2 = E
(
‖Ln(., r)‖2

)
.

Let η > 0. By construction and hypothesis, (Rη
n)n∈N0 is an irreducible homogeneous

Markov chain with countable state space Sη and transition probabilities given by (2.8).

According to theorem 2.2, the stationary distribution criterion, we have to show that

(Rη
n) is positive recurrent. We will apply Foster's drift condition, which is theorem 2.1,

here. More precisely, we show that there exist a positive constant ε dependent on η and a

function h : RN → R bounded from below such that

(2.9) E
(
h
(
r + ηLn(., r)

))
≤ h(r)− ε for all r ∈ RN \B, n ∈ N0.

The above expectation is really independent of n ∈ N0 as (Ln(., r))n∈N0 is an i. i. d. se-

quence. For Lyapunov function hwe simply take the function f itself, which is bounded

from below by its minimum value f(r̂).

Let η̂, κ1, κ2 be positive constants andB ⊂ RN a bounded set such that the inequalities

in hypothesis (H4) are satis�ed. Assume that η ∈ (0, η̂). Let r ∈ RN \ B. Appealing to
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Taylor's formula, we �nd an F-measurable function φr : Ω → [0, 1] such that

E
(
f
(
r + ηLn(., r)

))
= E

(
f(r) + η

〈
∇f(r), Ln(., r)

〉
+ η2

2

〈
Ln(., r),Hf

(
r + ηφr(.)Ln(., r)

)
Ln(., r)

〉)
∣∣ Taylor's formula

= f(r) − η
〈
∇f(r),∇f(r)

)〉
+ η2

2 E
(〈
Ln(., r),Hf

(
r + ηφr(.)Ln(., r)

)
Ln(., r)

〉)
∣∣ by hypothesis (H3)

≤ f(r) − η
∥∥∇f(r)

∥∥2 + η2

2 E
(∥∥Hf

(
r + ηφr(.)Ln(., r)

)∥∥∥∥Ln(., r)
∥∥2
)

∣∣ Cauchy-Schwarz inequality

≤ f(r) −
∥∥∇f(r)

∥∥2 ·
(
η − η2

2 κ2

) ∣∣ by hypothesis (H4)

≤ f(r) − κ1

(
η − η2

2 κ2

)
=: f(r) − ε.

If η < 2
κ2
, then ε = ε(η) > 0. Before applying theorem 2.1 we observe that B ∩ Sη is a

�nite set and that for all r ∈ Sη, n ∈ N0 we have

E
(
h(Rη

n+1) | R
η
n = r

)
= E

(
h
(
r + ηLn(., r)

))
on the event {ω ∈ Ω | Rη

n(ω) = r}.

If the hypotheses of proposition 2.2 are satis�ed and, in addition, (Rη
n)n∈N0 is aperiodic,

then for η > 0 small enough (Rη
n)n∈N0 converges in total variation to its stationary distri-

bution as a consequence of theorem 2.4.

It is clear that the dual function fpot will take over the rôle of the function f in proposition

2.2. By proposition 1.1, we know that fpot is convex and twice differentiable with partial

derivatives given by (1.24). In the notation of section 2.2, if Eemp(c) is regular and Vc =
{0}, then fpot has a unique global minimum. In case Vc 6= {0}, we consider the projection

of the constraint rankings onto V ⊥
c .

In order to be able to apply proposition 2.2 to the problem of �nding the maximum

entropy constraint ranking, we have to specify the family (µr)r∈RN of probability distri-

butions on ZN . In the notation of section 1.4, for r ∈ RN set

(2.10)

µr(z) := P
({
ω ∈ Ω

∣∣ c(Xin
n (ω),Hn(Xin

n (ω), r)
)
− c(Xin

n

(
ω), Xout

n (ω)
)

= z
})
, z ∈ ZN ,

the de�nition being independent of n ∈ N. Taking into account the distributions of

(Xin
n , X

out
n ) and Hn(Xin

n , r), respectively, and their mutual independence conditional on

Xin
n , we �nd that

(2.11) µr(z) =
∑
i∈I

p̃emp(i)
∑

o1,o2∈Oi

pemp(o1|i) · pr(o2|i) · 1{z}
(
c(i, o2)−c(i, o1)

)
, z ∈ ZN .
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Let us assume for the moment that the second partial derivatives of fpot are bounded or,

equivalently, that the Hessian of fpot has globally boundedmatrix norm. Then hypothesis

(H4) of proposition 2.2 imposes a bound on
∑
µr(z)‖z‖2, and by (2.11) we have

(2.12)
∑

z∈ZN

µr(z) · ‖z‖2 =
∑
i∈I

p̃emp(i)
∑

o1,o2∈Oi

pemp(o1|i) · pr(o2|i) ·
∥∥c(i, o2)−c(i, o1)∥∥2

.

Notice that hypothesis (H3) is satis�ed by the choice of fpot in place of f . The �rst part

of hypothesis (H4) is ful�lled by virtue of fpot being convex and growing to in�nity �

provided Eemp(c) is regular and Vc = {0}, see lemma A.2.

We conclude this section by a summary of conditions that guarantee convergence

of Jäger's algorithm to stochastic equilibrium. The summability conditions could be re-

laxed, as becomes clear by comparison of propositions 2.2 and 2.3. But observe that the

case of greatest applicability is probably the one where the feature function c is bounded,

which certainly holds true when the generator G is �nite.

Proposition 2.3. Let c : G→ NN
0 be a feature function and pemp an empirical distribution with

support in G ⊆ I × O as in section 1.1. Let Vc be the subspace of RN determined by (2.2a).

Assume that Oi is �nite for all i ∈ I and thatR = RN . For each r ∈ RN let µr be the probability

distribution on ZN satisfying (2.11). For η > 0 let Sη be an η-spaced orthogonal grid in RN

and let Rη
0 be an initial ranking with values in Sη. De�ne the sequence (Rη

n)n∈N0 of constraint

rankings according to (1.25). Suppose that Vc = {0} and that

(H1) Eemp(c) is regular in the sense of theorem 1.1,

(H2) (µr)r∈RN is such that (Rη
n)n∈N0 is irreducible and aperiodic for all η > 0,

(H3) there is a positive constant κ such that for all r ∈ RN , j, k ∈ {1, . . . , N}

Ep̃emp

∣∣covpr(.|i)
(
cj(i, .), ck(i, .)

)∣∣ ≤ κ,

(H4) there is a positive constant κ2 and a bounded set B ⊂ RN such that for all r ∈ RN \B∑
z∈ZN

µr(z) · ‖z‖2 ≤ κ2

κ
· ‖Eemp(c)− Epr(c)‖2,

where κ is the constant from hypothesis (H3).

If η ∈ (0, 2
κ2

), then (Rη
n) possesses a stationary distribution πη and Rη

n converges in total varia-

tion to πη as n tends to in�nity.

In case Vc 6= {0} analogous assertions obtain for the projection of (Rη
n) to any of the af�ne-

linear subspaces r + V ⊥
c with r ∈ RN . The induced Gibbs distributions pRη

n
, n ∈ N0, are

convergent in any case.

If c is bounded, then the covariances in hypothesis (H3) of proposition 2.3 become ar-

bitrarily small for all ranking parameters of suf�ciently large norm, cf. lemma A.2. It

follows that a stationary distribution exists for all choices of the gain parameter η > 0,
and convergence to stochastic equilibrium is guaranteed.
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2.4 The limit of small constant step size

We have seen that the sequence of constraint rankings converges to the stationary regime,

when the gain parameter η is held constant. What we have not obtained, yet, are state-

ments concerning the form of the stationary distribution. Recalling that Jäger's algorithm

is essentially a procedure for �nding the minimum positions of the dual function fpot, we

should expect that the stationary distributions are concentrated about the positions of

those minima provided η is small enough and the expectation of the feature function

under the empirical distribution is regular.

In section 2.3, the discrete nature of the feature function c allowed us to consider

any sequence (Rη
n) of constraint rankings as a Markov chain with discrete state space

Sη. It was thus possible to get along with a modest amount of theory. There are several

drawbacks to this approach, though.

Firstly, we were forced to assume that the initial ranking Rη
0 is a random variable

taking values in anN -dimensional grid, rather than in the entire space RN . Secondly, the

state space depends on the gain parameter η, so each ranking sequence (Rη
n) has its own

state space, which makes it dif�cult to compare ranking sequences for different values of

the gain parameter. Thirdly, the approach would not do if the single constraints cj were

allowed to take values in an interval I ⊆ [0,∞), instead of only non-negative integer

values.

Therefore, let us drop all limitations on the state space and work directly with RN -

valued constraint rankings. The results of this section are easily adapted to the case when

c is a function G→ [0,∞)N , though we will stick to the hypotheses of section 1.1. Before

we further analyze Jäger's algorithm in section 2.4.2, we recall a general convergence

result from the literature.

2.4.1 Mean ODE approximation

LetRη
0 , η > 0, be a family ofRN -valued random variables on a probability space (Ω,F ,P).

For each η, de�ne (Rη
n) according to (1.25). In order to be able to compare the distributions

of ranking sequences for different values of η, a common time scale is needed. The natural

choice is the time scale induced by the gain parameter itself. Accordingly, we set

(2.13) Rη(t) :=
∞∑

n=0

Rη
n · 1[nη,(n+1)η)(t) = Rη

b t
η
c, t ≥ 0,

where b.c denotes the Gauß bracket, that is bxc is the biggest integer not greater than x.
Thus, (2.13) de�nes a stochastic process on (Ω,F ,P) with piecewise continuous paths.

As path space one usually takes DN
∞ := DRN ([0,∞)), the space of all RN -valued càdlàg-

functions on [0,∞) endowed with the Skorokhod topology.9

9A càdlàg-function is a right-continuous function with �nite left-hand limits. For de�nition and proper-

ties of the Skorokhod space DN
∞ see Ethier and Kurtz (1986: §3.5).
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We already know that the sequences of constraint rankings follow on average a po-

tential given by the function fpot. The same holds true for the time-interpolated processes

Rη(.). As the gain parameter η tends to zero, the impact of the potential should become

predominant.

In fact, we will see that if the initial rankings Rη
0 converge in distribution to some

RN -valued random variable R0 as η goes to zero, then the processes Rη(.) will converge

in distribution to a process R(.), where R(., ω) is determined as the unique solution to

(2.14) ẋ(t) = −∇fpot

(
x(t)

)
, t ≥ 0, x(0) = R0(ω).

The ordinary differential equation in (2.14) is referred to as the mean ODE of the underly-

ing algorithm.

To prove convergence, we could invoke theorems 8.2.1 and 8.5.1, respectively, fromKush-

ner and Yin (2003: §§ 8.1, 8.5).10 Recall recursion formula (2.7), which we may rewrite as

(2.15) Rη
n+1 = Rη

n − η · ∇fpot

(
Rη

n)
)

+ ∂Mn+1, n ∈ N0,

where ∂Mn+1 is a martingale difference noise term de�ned as

∂Mn+1 := Ln(., Rη
n) − E

(
Ln(., Rη

n)
∣∣ Rη

l , Ll−1(., r), l ∈ {0, . . . , n}, r ∈ RN
)
.

Instead of further pursuing this approach, wewill rely on the following extremely simpli-

�ed version of a general result concerning the approximation of Itô diffusions by discrete

Markov chains; for details see Ethier and Kurtz (1986: §7.4) or Stroock and Varadhan

(1979: §11.2).

Theorem 2.5 (Mean ODE approximation). Let b : RN → RN be a locally Lipschitz continuous

function. For each η > 0 let (Y η
n ) be a homogeneous Markov chain with state space RN and

transition function µη : RN × B(RN ) → [0, 1]. De�ne the truncated coef�cient functions aη, bη

and the time-interpolated processes Xη(.) by

aη(x) :=
1
η

∫
‖y−x‖≤1

(y − x)(y − x)T µη(x, dy), x ∈ RN ,

bη(x) :=
1
η

∫
‖y−x‖≤1

(y − x)µη(x, dy), x ∈ RN ,

Xη(t) := Y η

b t
η
c, t ≥ 0.

Suppose that for each ρ > 0 and each ε > 0

sup
‖x‖≤ρ

∥∥aη(x)
∥∥ η→0→ 0, sup

‖x‖≤ρ

∥∥bη(x)− b(x)
∥∥ η→0→ 0,

1
η
· sup
‖x‖≤ρ

µη
(
x,RN \ Bε(x)

) η→0→ 0.

If the family (Y η
0 ) converges in distribution to some RN -valued random variable Y0 as η tends

to zero, then the processes Xη(.) converge in distribution to the process X(.), where X(., ω) is
determined as the unique solution to the deterministic initial value problem

ẋ(t) = b
(
x(t)

)
, t ≥ 0, x(0) = Y0(ω).

10The most important hypothesis to check would be the tightness of the family {Rη(.) | η > 0}.
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In a more general version of theorem 2.5 the functions aη could converge to a continuous

matrix-valued function a. The limit process X(.) would then be given as solution to a

stochastic differential equation (SDE) determined by the coef�cient functions a and b. The

function b, called drift vector, would still represent the deterministic part of the dynamics,

while awould be the diffusion matrix, corresponding to the noise part of the SDE.11

The original result, which is theorem 11.2.3 in Stroock and Varadhan (1979), makes

use of the so-called martingale problem.12 Well-posedness of the martingale problem in

the situation of theorem 2.5 reduces to well-posedness of the deterministic initial value

problem for the function b.

2.4.2 Convergence in distribution and sojourn probabilities

In order to apply theorem 2.5, we have to compute the transition function associated with

(Rη
n) for each η > 0. For r ∈ RN let µr be as given by (2.10) and (2.11). In case the range

of c were continuous we would de�ne µr : B(RN ) → [0, 1], r ∈ RN , in analogy to (2.10)

and �nd that

(2.16)

µr(Γ) =
∑
i∈I

p̃emp(i)
∑

o1,o2∈Oi

pemp(o1|i) · pr(o2|i) · 1{Γ}
(
c(i, o2)−c(i, o1)

)
, Γ ∈ B(RN ).

The transition function associated with the Markov chain (Rη
n) thus reads

(2.17) µη(r,Γ) =


∑

z∈ZN

µr(z) · 1Γ(r + η ·z), if range(c) ⊆ ZN ,∫
z∈RN

1Γ(r + η ·z)µr(dz), in general,
r ∈ RN , Γ ∈ B(RN ).

Restricting attention to integer-valued constraints, we compute the associated truncated

coef�cient functions aη, bη. For x ∈ RN it holds that

aη(x) =
1
η

∫
‖y−x‖≤1

(y − x)(y − x)T µη(x, dy)

=
1
η

∑
z∈ZN: ‖z‖≤ 1

η

µx(z) · (x+ η ·z − x)(x+ η ·z − x)T

= η ·
∑

z∈ZN: ‖z‖≤ 1
η

µx(z) · zzT.

(2.18)

11The functions b and a should be compared with two fundamental characteristics of a random variable,

namely the expectation or mean, on the one hand, and the variance, usually denoted by σ2, on the other.
12The martingale problem is the problem of �nding a probability measure on the path space which makes

a family of processes induced by an abstract operator into martingales, where a martingale is a process

preserving conditional expectations. For an SDE a differential operator can be associated with its coef�cient

functions, and the martingale problem establishes a link between that differential operator, Itô diffusions

and the in�nitesimal generator of a Markov process.
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Notice that zzT is a symmetric N ×N -matrix for each z ∈ ZN . As to bη, we have for

x ∈ RN

bη(x) =
1
η

∫
‖y−x‖≤1

(y − x)µη(x, dy)

=
1
η

∑
z∈ZN: ‖z‖≤ 1

η

µx(z) · (x+ η ·z − x) =
∑

z∈ZN: ‖z‖≤ 1
η

µx(z) · z.
(2.19)

Recalling the discussion of section 2.3.2 or, more directly, by considering (2.11) together

with equation (1.26), we see that

lim
η→0

bη(x) =
∑

z∈ZN

µx(z) · z = −∇fpot(x)

for all those x ∈ RN such that the sum exists. This is clearly true for all x ∈ RN whenever

the feature function c is bounded. In this case uniform convergence of bη(.) is easily

checked and one also �nds that aη(x) → 0 uniformly in x ∈ RN as η tends to zero.

If we do not have boundedness of c, then we just assume summability conditions on

µr(.) suf�cient so as to satisfy the hypotheses of theorem 2.5. The following proposition

summarizes our �ndings.

Proposition 2.4. Let c : G→ NN
0 be a feature function and pemp an empirical distribution with

support in G ⊆ I × O as in section 1.1. Let Vc be the subspace of RN determined by (2.2a).

Assume that Oi is �nite for all i ∈ I and thatR = RN . For each r ∈ RN let µr be the probability

distribution on ZN satisfying (2.11). For each η > 0 let Rη
0 be an arbitrary initial ranking, i. e.

an RN -valued random variable on the common probability space (Ω,F ,P). De�ne the sequence

(Rη
n)n∈N0 of constraint rankings according to (1.25), and let the corresponding time-interpolated

process be given by (2.13). Suppose that

(H1) for each ρ > 0
η · sup

‖r‖≤ρ

∑
z∈ZN: ‖z‖≤ 1

η

µr(z) · ‖z‖2 η→0−→ 0,

(H2) for each ρ > 0
sup
‖r‖≤ρ

∑
z∈ZN: ‖z‖≥ 1

η

µr(z) · ‖z‖
η→0−→ 0.

If the family (Rη
0) converges in distribution to some RN -valued random variable R0 as η tends

to zero, then the processes Rη(.) converge in distribution to the process R(.), where R(., ω) is

determined as the unique solution to the deterministic initial value problem (2.14).

Assume, in addition, that Eemp(c) is regular in the sense of theorem 1.1 and that Vc = {0}. Let
r̂ ∈ RN be the position of the global minimum of fpot. Then for ε > 0 and δ > 0 one �nds η0 > 0,
t0 > 0 and a family (T η)η∈(0,η0] ⊂ (0,∞) such that

T η →∞ as η ↘ 0,

P
(
sup
{
‖Rη

n − r̂‖
∣∣ t0

η ≤ n ≤ t0+T η

η

}
≤ ε
)

> 1− δ for all η ∈ (0, η0].
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If Vc 6= {0}, then an analogous assertion holds for the sequence of constraint rankings projected

to V ⊥
c .

Proof. The convergence assertion is, of course, a consequence of theorem 2.5. Notice that

‖zzT‖ = ‖z‖2 if we choose the matrix norm induced by the Euclidean distance. The

requirement regarding µη(x,RN \ Bε(x)) is implied by hypothesis (H2), because

µη
(
x,RN \ Bε(x)

)
=

∑
z∈ZN: ‖z‖≥ ε

η

µr(z) for all ε > 0, η > 0, r ∈ RN .

If Eemp(c) is regular and Vc = {0}, then fpot possesses a unique global minimum. By

(2.14), we have R(t, ω) → r̂ as t → ∞ for all ω ∈ Ω. Given ε > 0, δ > 0, we can choose

a compact set B ⊂ RN such that P(R0 ∈ B) > 1 − δ
2 . Then there is t0 > 0 such that

P(‖R(t)− r̂‖ ≤ ε
2) > 1− δ

2 for all t ≥ t0.

For t ≥ 0 let πt be the canonical coordinate projection DN
∞ → RN , that is we set

πt(φ) := φ(t), φ ∈ DN
∞.

Although πt is not continuous on DN
∞ (w. r. t. the Skorokhod topology), πt is PR-almost

surely continuous, because R(.) has continuous sample paths. For T > 0 de�ne

ξT : DN
∞ → [0,∞] by ξT (φ) := sup

{
‖φ(t)− r̂‖

∣∣ t ∈ [t0, t0 + T ]
}
.

Notice that ξT is continuous and �nite on C([0,∞),RN ), while it is only PR-almost surely

continuous and �nite on DN
∞. Let gε be a continuous real-valued function on RN such

that 0 ≤ gε ≤ 1, gε(x) = 1 whenever ‖x‖ ≤ ε
2 , gε(x) = 0 whenever ‖x‖ > ε. For T > 0,

n ∈ [ t0
η ,

t0+T
η ] ∩ N, η > 0 we have

P
(
sup
{
‖Rη

n − r̂‖
∣∣ t0

η ≤ n ≤ t0+T
η

}
≤ ε
)

≥
∫

Ω
1{‖Rη(t,ω)−r̂‖≤ε | t∈[t0,t0+T ]} dP(ω)

=
∫

DN
∞

1{‖πt(φ)−r̂‖≤ε | t∈[t0,t0+T ]} dPRη(φ)

≥
∫

DN
∞

gε

(
ξT (φ)

)
dPRη(φ)

η↓0−→
∫

DN
∞

gε

(
ξT (φ)

)
dPR(φ)

≥ P
(
sup
{
‖R(t)− r̂‖

∣∣ t ∈ [t0, t0 + T ]
}}

≤ ε

2

)
> 1− δ

2
.

Therefore, given T > 0, we can choose η(T ) > 0 such that

P
(
sup
{
‖Rη

n − r̂‖
∣∣ t0

η ≤ n ≤ t0+T
η

}
≤ ε
)

> 1− δ for all η ∈ (0, η(T )].
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Clearly, η(T ) can be chosen decreasing in T > 0. Now, let (Tn)n∈N0 ⊂ (0,∞) be any

increasing sequence such that Tn → ∞ as n tends to in�nity. Set ηn := η(Tn), n ∈ N0. In

particular, we have found η0 > 0. We obtain the required sequence (T η)η∈(0,η0] by setting

T η := Tn iff η ∈ (ηn+1, ηn], η ∈ (0, η0].

By construction, we have T η → ∞ as η ↘ 0 as well as the asserted probability estimate.

Observe that proposition 2.4 does not guarantee existence of n0 ∈ N such that

P
(
‖Rη

n − r̂‖ ≤ ε
)
> 1− δ for all n ≥ n0.

In fact, it is not true in general that Rη
n remains in an ε-neighbourhood of r̂ for all n big

enough (η arbitrarily small). Waiting long enough one will usually witness excursions

away from r̂ with probability greater than δ. There is, so to speak, a residual risk that the

algorithm will some time or other depart from a small neighbourhood of the minimum

position of fpot.

2.5 Variable step size tending to zero

We now turn to the case that the gain parameter η in Jäger's algorithm is variable. In the

notation of section 2.3.2, the sequence of constraint rankings then satis�es � instead of

(2.7) � the recursion equation

(2.20) Rn+1(ω) = Rn(ω) + ηn · Ln

(
ω,Rn(ω)

)
for all n ∈ N0, ω ∈ Ω,

where (Ln)n∈N0 is again a sequence of measurable mappings from Ω×RN to ZN � or RN

if c has continuous range � such that

(i) Ln(., r) has distribution µr with respect to P for all r ∈ RN and all n ∈ N0, where µr

for r ∈ RN is given by (2.11), respectively (2.16) for non-discrete range of c,

(ii) (Ln(., r))n∈N0,r∈RN is an independent family.

Note that we write (Rn) instead of (Rη
n), because here the n+1-th iterate of the constraint

sequence depends not on a �xed value η, but on the values of the parameter sequence

up to ηn. We refrain from making this dependency explicit in the formulae and simply

take the sequence (ηn) as speci�ed in advance. Similarly, we must be given an initial

constraint ranking R0, i. e. an RN -valued random variable.

If the parameter sequence (ηn) goes slowly enough to zero and if the dual function

fpot has a unique global minimum, then we may hope for convergence of (Rn) to the

position of that minimum.

The ideas presented in section 2.3.1 can be extended considerably. The next result, which

is theorem 4.5.3 in Kushner and Yin (2003: §4.5), should be compared with Foster's drift
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condition, cited here as theorem 2.1, and our proposition 2.2, which establishes existence

of a stationary distribution. Since the gain parameter is no longer constant, we are aiming

at almost sure convergence to a point, rather than weak convergence to the stationary

regime.

Theorem 2.6 (Stochastic Stability). Let (Xn)n∈N0 be a sequence ofRN -valued random variables

on a probability space (Ω,P,F). Denote by (Fn) the �ltration generated by (Xn). Let h, k be

non-negative real-valued functions on RN such that

(H1) h is continuous and h(0) = 0,

(H2) for each ε > 0 there is δ > 0 such that k(x) ≥ δ whenever ‖x‖ ≥ ε,

(H3) for each ε > 0 there is δ(ε) > 0 such that h(x) ≥ δ(ε) whenever ‖x‖ ≥ ε, and δ(ε) can be

chosen non-decreasing in ε,

(H4) E(h(X0)) <∞ and integrability of h(Xn) implies integrability of k(Xn) for all n ∈ N0.

Suppose there are positive constants α, κ, κ2, an (Fn)-adapted sequence (εn) of positive random
variables and a sequence (Yn) of RN -valued random variables such that

(H5) P-a. s.,
εn

n→∞−→ 0 and
∑

n≥0
εn = ∞,

(H6)

E
(∑

n≥0
ε2n · ‖Yn‖2 · 1‖Xn‖≤α

)
< ∞,

(H7) for all n ∈ N0, on the event {‖Xn‖ ≥ α},

E
(
‖Yn‖2 | Fn

)
≤ κ2 · k(Xn),

(H8) for all n ∈ N0, P-a. s.,

E
(
h(Xn+1) | Fn

)
− h(Xn) ≤ −εn · k(Xn) + κ · ε2n · E

(
‖Yn‖2 | Fn

)
.

Then Xn → 0 as n→∞ with probability one.

Suppose the dual function fpot has a unique global minimum at r̂ ∈ RN . Assume further

that the � possibly random � sequence of gain parameters (ηn) satis�es hypothesis (H5)

above. Under conditions analogous to those of proposition 2.3 we can apply theorem 2.6

to the sequenceXn = Rn−r̂ by choosing h(x) := fpot(x+r̂)−fpot(r̂), k(x) := ‖∇fpot(x+r̂‖2

and letting Yn := Ln(., Rn), thereby obtaining P-almost sure convergence of Rn → r̂ as n

tends to in�nity.

The most important hypothesis of theorem 2.6 to check is hypothesis (H8). This can

be done using Taylor's formula in the same way as in the proof of proposition 2.2.



Chapter 3

Interpretation of the convergence

results

Section 3.1 serves to summarize the convergence properties of Jäger's algorithm. In sec-

tion 3.2 we discuss the question of whether there is any need for allowing the generator

of a stochastic OT grammar to be in�nite. As above, a distinction is drawn between gen-

erators, where the set of inputs is in�nite, but the set of output candidates is �nite for

each input, and generators allowing for an in�nite number of inputs, each of themwith a

possibly in�nite set of output candidates. Results by Jäger and Rosenbach (2005) are pre-

sented as an application of the maximum entropy version of stochastic OT to a syntactic

phenomenon in section 3.3. Indicating some open questions and possible extensions, we

conclude our analysis with section 3.4.

3.1 A robust and �exible algorithm

Jäger's algorithm converges under mild integrability conditions on the feature function

andmild regularity assumptions on the empirical distribution as was shown in chapter 2.

The regularity assumption concerning the empirical distribution pemp translates into re-

quiring that pemp provide positive and negative evidence for all constraints or grammat-

ical dimensions. A standing hypothesis about the underlying generator was that there

were only �nitely many output candidates associated with any given input; as we will

see in section 3.2.2, this hypothesis can be relaxed if the algorithm is modi�ed by adding

an appropriate re�ection term.

We distinguished between two variants of Jäger's algorithm: one, where the gain

parameter η regulating the size of the learning steps is kept constant, the other, where the

gain parameter itself is variable and tends to zero as learning proceeds.

In the former case the sequence of constraint rankings delivered by the algorithm

weakly converges to the unique stationary distribution provided η is suf�ciently small.

If the underlying generator is �nite or the feature function is globally bounded, conver-

gence holds for all η > 0, i. e. for all choices of the gain parameter. Under more general

45
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conditions, proposition 2.3 in section 2.3.2 provides a threshold so that convergence is

guaranteed for all η smaller than that threshold, which is expressed in terms of the dual

function fpot and is thus connected to the feature function c as well as the empirical dis-

tribution pemp.

In the latter case, convergence of the sequence of constraint rankings is to the max-

imum entropy ranking corresponding to the given empirical distribution provided the

sequence of gain parameters tends to zero slowly enough. We have much freedom in

the choice of the gain parameter sequence, as it only has to satisfy hypothesis (H5) of

theorem 2.6 in section 2.5.

In both cases Jäger's algorithm converges independently of the initial ranking of con-

straints, which may be deterministic or random. By initializing the algorithm with a ran-

domly distributed constraint ranking one can model the learning behaviour of a whole

population of learners, where each learner starts with his or her own choice of a spe-

ci�c OT grammar. Convergence then means that after a suf�ciently long time a uniquely

determined distribution of speci�c OT grammars is reached. In case the gain parame-

ter decreases to zero as learning proceeds, all individual grammars will converge to the

same speci�c OT grammar, namely the maximum entropy grammar corresponding to

the given empirical distribution.

One reason for introducing randomness into Optimality Theory is the robustness of

stochastic learning algorithms. Here, robustness is understood primarily in the sense

of stability against small variations in the learning data. Even if the language that has to

be learned were produced by a (speci�c) deterministic grammar, the data available to the

learner would in a realistic setting deviate from what the grammar yields. Hence, learn-

ing data should be modeled as a sequence of random samples drawn from a �xed prob-

ability distribution, namely the empirical distribution, on interpreted linguistic forms,

where not all of the data has to belong to the target language.

Similarly, while any language produced by a grammar of the maximum entropy ver-

sion of OT has compound Gibbs form (cf. section 1.3.2), the empirical distribution need

not be of that form in order for the learning process to be successful. The deviation of

the empirical distribution from the type of distributions generated by a certain version

of stochastic OT can be taken to mirror the effect of errors in linguistic production, trans-

mission and comprehension. More speci�cally, the empirical distribution can account

for mistakes the learner makes in pairing outputs with underlying inputs. This partially

justi�es our assumption that the learner is able to observe input output pairs, not only

outputs, because what is observed is the result of the learner's own interpretation. Note,

however, that pairing errors of this kind are necessarily independent of the current state

of grammar, i. e. independent of the current ranking of constraints.

Robustness can also be understood in a more technical way, meaning that the algo-

rithm is insensitive to small errors due to rounding or approximation in the update step.

Although this is not what we want robustness to mean, Jäger's algorithm is robust in that

sense, too. To show this, we could insert an additional error term in recursion formula
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(1.25). The convergence theory as developed in Kushner and Yin (2003) allows to handle

such algorithms, too.

An important point which we have been ignoring up to now is the question of how

fast Jäger's algorithm converges. Generally speaking, it is the geometry of the dual func-

tion fpot that determines rate and speed of convergence. We just brie�y sketch one ap-

proach to analyzing the rate of convergence; for details and, in particular, the case of

variable gain parameter tending to zero see Kushner and Yin (2003: ch. 10).

Let (Rη
n) be a sequence of constraint rankings computed according to recursion for-

mula (1.25) with constant gain parameter η. If η > 0 is small, then Rη
n will be concen-

trated about the maximum entropy ranking r̂ for all n ≥ nη provided nη is big enough.

Asymptotically, the distribution of Rη
n, n ≥ nη, where η has to be small and nη big, can be

characterized as solution to a linear SDE. The drift matrix A of that SDE is the negative

of the Hessian of fpot at r̂, that is A = −Hfpot(r̂). This becomes clear if we think of a one-

dimensional function having a global minimum. In a neighbourhood of the minimum

position the geometry of the function is determined by its second derivative at that posi-

tion. Likewise, the geometry of fpot in a neighbourhood of r̂ is determined by its Hessian

at r̂. Recall that the Hessian is positive semi-de�nite. The bigger its smallest eigenvalue,

the more concentrated will be the distribution ofRη
n about r̂ or, changing perspective, the

faster convergence of Rη
n to r̂ will be in the gain parameter.

3.2 Generator with in�nitely many input output pairs

In deriving the maximum entropy version of stochastic OT in chapter 1 we had to em-

ploy more mathematical machinery than is usually found in the literature1, because we

allowed the generator of our stochastic grammar to consist of an in�nite number of input

output pairs. Here and in the sequel, if nothing else is said, in�nite shall be understood

as countably in�nite.

In chapter 2 convergence of Jäger's algorithm was studied under the hypothesis that

for a given input there were only �nitely many output candidates. We �rst discuss why

it is desirable to allow for an in�nite number of different inputs. Later on in section 3.2.1

we consider the case, where not only the set of inputs, but also sets of output candidates

may be in�nite. A way of adapting Jäger's algorithm to the more general situation is

described in section 3.2.2.

3.2.1 In�nitely many inputs and in�nite candidate sets

To get a linguistic interpretation of the generator, think of the inputs as meanings in some

semantic (truth-conditional) or pragmatic sense and of the outputs as corresponding lin-

guistic expressions or forms. It is easy to create an in�nitude of different meanings by

1Cf. Berger et al. (1996), textbooks like Aarts and Korst (1989) or the original papers by Shannon and

Jaynes. See Harremoës and Topsøe (2001) for a different general approach.
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repetition and recombination of a small number of basic elements. Take a binary predi-

cate like MOTHER and two proper names, say MARIA and JULIA. We can form sentences

like:

(E1) a. Julia is Maria's mother.

b. Julia is Maria's mother's mother.

c. Julia is Maria's mother's mother's mother.

Clearly, the list in (E1) can be continued ad in�nitum by inserting ever more generations

of mothers and daughters between Julia andMaria. It is therefore reasonable to allow the

set of inputs to be in�nite.

A way out would be to choose a symbolic system for representing meanings and to

prescribe an upper bound on the length of representations in that system. The set of all

meanings having a representation not longer than the given upper bound would clearly

be �nite. This approach has the disadvantage of being arbitrary in two related respects.

Neither is there a canonical symbolic system for meaning representation, nor does a nat-

ural upper bound on the lengths of such representations exist, while both choices have an

impact on what meanings are available to the grammar. What is more, Optimality The-

ory is not a theory of representations. Consequently, we should not incorporate anything

pertaining to the level of representations into the set-up of our OT grammars.

A further advantage of working with in�nite sets of inputs and outputs is that, in

doing so, we allow for unseen material coming up after any �nite number of learning or

production steps. This is especially true for the maximum entropy version of stochastic

OT. Recall that a probability distribution of Gibbs type on a set of output candidates

necessarily has full support. Thus some probability mass is always reserved for hitherto

unseen input output pairs.

When the generator is in�nite, one might wonder how to compute in practice the

number of constraint violations. Of course, it is not possible to store the values cj(i, o)
of the j-th constraint for all input output pairs (i, o). But we may assume that the fea-

ture function c is de�ned by recursive application of certain rules so that cj(i, o) can be

calculated in a �nite number of steps for any given input output pair (i, o) and each

of the �nitely many constraints c1, . . . , cN . As expressions like (E1a) through (E1c) are

generated recursively, so the corresponding numbers of constraint violations should be

computed recursively.

Let us now turn our attention to the output side of the generator, retaining the interpre-

tation of inputs as meanings and outputs as associated expressions or linguistic forms.

Clearly, a given meaning may have different linguistic realizations. Instead of (E1a), for

example, one could say (E2a). Similarly, one obtains (E2b) instead of (E1b) and (E2c) as

a reformulation of (E1c). Combining the two possessive constructions, we get sentences

like (E2d) or (E2e).

(E2) a. Julia is the mother of Maria.
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b. Julia is the mother of the mother of Maria.

c. Julia is the mother of the mother of the mother of Maria.

d. Julia is the mother of Maria's mother.

e. Julia is the mother of Maria's mother's mother.

We have been vague about what the inputs to expressions like those in (E1) and (E2)

should be. If we take meanings in the sense of traditional truth-conditional meanings

and, in addition, assume that part of the semantics of the predicate MOTHER is a one-to-

many relation between mothers and children, then the sentences in (E2) are really equiv-

alent formulations of sentences in (E1). If we wanted the inputs to carry more structure,

e. g. information structure like focus, we would have to specify additional features of the

output candidates, e. g. the stress or the intonation pattern.

At this point it seems that candidate sets containing more than one output arise from

combination of different grammatical constructions available in the natural language un-

der consideration. In this waywewould get a �nite number of outputs. But the generator

of an OT grammar is supposed to be much less restrictive. It should be universal in the

sense of not being language-speci�c except for lexical items. Hence the generator should

propose as output candidates all combinations of the given elements which can possibly

occur in any natural language. So, for example, all expressions in (E3) are output candi-

dates for the input corresponding to sentence (E1a), where we take the input to consist of

the predicate MOTHER, the individual constants JULIA and MARIA, the argument struc-

ture corresponding to (E1a), and some information regarding tense, mood and aspect.

(E3) a. Julia is mother Maria.

b. Maria's mother is Julia.

c. Julia is Maria's mother.

d. of Maria mother Julia is.

e. to Maria Julia mother.

f. Maria Julia is mother of.

g. Julia mother.

h. she Maria mother.

i. Maria's mother Julia.

j. Maria Julia is be mother.

k. Julia is mother of Maria.

l. is.

The empty utterance can also be a candidate for expressing the meaning of (E1a). Ac-

cording to an even more radical idea of the generator, every word appearing in (E3) can

be replaced by any lexical item. The generator produces templates which have to be

�lled in with (language-speci�c) lexical material. By inserting new material or repeating

elements, an in�nite list of possible outputs can be created by the generator component

of an OT grammar. Omitting material required for expressing relations, names or other

information present in the input or adding material which has no equivalent in the in-

put leads to violation of faithfulness constraints. In this way, generally only a few output

candidates have probability not close to zero.
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3.2.2 A constrained algorithm for in�nite candidate sets

We turn to the question of how Jäger's algorithm has to be modi�ed if it is to handle pos-

sibly in�nite sets of output candidates. Let (G, c, p) be a universal stochastic OT grammar,

where the evaluation kernel p = (pr)r∈R is of maximum entropy type, the feature func-

tion c isN -dimensional and the generatorG ⊆ I ×O is such that for some input i ∈ I the
candidate set Oi is in�nite.

In chapter 2 we worked under the hypothesis that the set of admissible ranking pa-

rameters R was maximal in the sense that R = RN . For the maximum entropy version

of stochastic OT, however, the set R is given by � or must at least be a subset of � the set

of Gibbs parameters de�ned by (1.20). The problem is whether the normalizing constant

Zr(i) converges if Oi is in�nite. Since c is non-negative, for such input iwe have

Zr(i) =
∑
õ∈Oi

exp
(
−〈r, c(i, õ)〉

)
≥
∑
õ∈Oi

1 = ∞ for all r ∈ (−∞, 0]N .

For parameters r ∈ RN \ (−∞, 0]N convergence of Zr(i) depends on the feature function

c. We will be more restrictive than necessary in limiting attention to elements of (0,∞)N

as possible ranking vectors. Set

(3.1) R+ :=
{
r ∈ (0,∞)N

∣∣ Zr(i) <∞ ∀ i ∈ I
}
.

From a conceptual point of view, restriction of the set of admissible constraint rankings

to R+ may even be an advantage. Take two output candidates which differ only in the

number of violations of a single constraint. Then the output which incurs less violations

should be more probable. But if the decisive constraint has negative rank, it will be

the other way round: the output incurring more constraint violations will also be more

probable.

Recall from section 1.4 that Jäger's algorithm produces a random sequence (Rη
n)n∈N0

of constraint rankings by iteratively applying formula (1.25). The update rule is

Rη
n+1 := Rη

n + η ·
(
c(Xin

n ,Hn(Xin
n , R

η
n))− c(Xin

n , X
out
n )

)
,

where η is the gain parameter and (Xin
n , X

out
n ) provides the n-th input output pair drawn

at random from a given empirical distribution. For an input i and a ranking of constraints

r the random variable Hn(i, r) yields the corresponding output drawn at the n-th step

according to the Gibbs distribution pr(.|i) on the candidate set Oi.

We have already made use of the fact that the sequence of constraint rankings pro-

duced by the algorithm moves on an N -dimensional Euclidean grid with mesh size η.

When working with R+ instead of R = RN there is a new dif�culty: Updating the cur-

rent constraint ranking according to (1.25) might lead out of the set R+. In this case the

Gibbs distributions on the candidate sets would not be guaranteed to be well de�ned any

more. To prevent such a situation from occurring, we add a re�ection term to the update

rule. This term neutralizes any update which would take the constraint ranking outside
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the set R+ of admissible rankings. To be more precise, de�ne a family of RN -valued

random variables Y η
n (i, o, r) by

(3.2)

Y η
n (i, o, r) :=

η ·
(
c(i, o)− c(i,Hn(i, r))

)
if r + η

(
c(i,Hn(i, r))−c(i, o)

)
/∈ R+,

0 else,

where n ∈ N0, (i, o, r) ∈ I ×O ×R+. Then recursion formula (1.25) gets replaced by

(3.3) Rη
n+1 := Rη

n + η ·
(
c(Xin

n ,Hn(Xin
n , R

η
n))− c(Xin

n , X
out
n )

)
+ Y η

n (Xin
n , X

out
n , Rη

n).

We refrain from carrying out a convergence analysis of the modi�ed algorithm along the

lines of chapter 2. Such an analysis is essentially not more dif�cult than what we have

already done. In Kushner and Yin (2003) all important results are stated for unbounded

as well as constrained algorithms. Although notation is more cumbersome, inclusion of

a re�ection term may make life easier. The results of section 2.3, in particular, are easily

transferred to the new situation. If the random variables Y η
n were rede�ned so as to force

the sequence of constraint rankings to stay in a compact subset of RN , existence of a

stationary distribution would be an almost trivial consequence.2

Of course, some assumptions on the feature function c and the empirical distribution

are needed. In particular, c must be such that the set of admissible rankings R+ is non-

empty. As in theorem 1.1, the empirical distribution should have �nite entropy. Since

R+ is now allowed to be a proper subset of R, there may exist a maximum entropy

distribution which, however, cannot be learned by the algorithm as de�ned in (3.3).

There is also another problem connected with the normalizing constants Zr(i) in case
Oi is in�nite, because then Zr(i) is an in�nite sum. As such it can only be approximated.

The normalizing constant Zr(i) is needed in order to compute the Gibbs distribution

pr(.|i) on Oi. Computation of those Gibbs distributions in turn is essential for the eval-

uation component of any maximum entropy OT grammar.3 It seems we are borne back

to where we started, namely to the hypothesis that any set of output candidates must be

�nite. But still there is an advantage in allowing candidate sets to be in�nite, as the qual-

ity of approximation, e. g. the number of iteration steps in calculating Zr(i), may then be

made dependent not only on the input i, but also on the current ranking r. When the

norm of r is small, we may allow more output candidates to be considered than when

‖r‖ is big.
What is more, even if Oi is �nite, the constant Zr(i) can in general only be approx-

imated, for example by Monte Carlo simulation. The same method allows to directly

simulate a Gibbs distribution on Oi without any need for computing Zi(r) (cf. Brémaud,

1999: ch. 7). A random experiment giving outputs according to a Gibbs distribution pr(.|i)
on a �nite set Oi can also be realized as an arti�cial neural net (cf. Aarts and Korst, 1989).

2One only needs irreducibility of the Markov chain corresponding to the sequence of constraint rankings.
3In recursion formulae (1.25) and (3.3) the family of random variables Hn takes over the rôle of the eval-

uation kernel.
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3.3 An application to syntax

Following Jäger and Rosenbach (2005), we present an application of the maximum en-

tropy version of stochastic OT to the phenomenon of English genitive variation. The

study also illustrates an important property of stochastic OT grammars, namely that they

may exhibit cumulativity effects. Before going into details, we make two remarks concern-

ing the application of OT type grammars to linguistic phenomena.

Firstly, in most applications of Optimality Theory only small part of what would be a

universal OT grammar is considered. The generator is a �small� set of input output pairs,

and only few constraints are taken into account. Apart from technical considerations and

convenience, this course of action is justi�ed by the way the evaluation component and

learning work � at least for the versions of stochastic OT we have been considering here.

A constraint which is constant on the entire set of output candidates for a given input

has no impact on the distribution of outputs. Similarly, learning can change the rank of

a constraint only if an input output pair is encountered such that not all the other output

candidates satisfy the constraint in question equally well.4 It is therefore reasonable to

restrict attention to a subset of admissible input output pairs and few constraints.

The second remark concerns the structure of grammar. If universal grammar consists

of a chain of independent submodules, then it is possible to represent each submodule

by a universal stochastic OT grammar of its own. At the very least one would have a syn-

tactic and a phonological module, the outputs of the �rst serving as inputs to the second.

Notice that Optimality Theory was originally developed in the context of phonology. In-

puts are, for example, sequences of consonants and vowels, outputs syllabi�ed consonant

vowel sequences (cf. Prince and Smolensky, 2004).

In English, there are two genitive constructions for expressing a possessive relation: the

s-genitive and the prepositional of -genitive. In many situations both constructions are ac-

ceptable, although variation is not entirely free. The study by Jäger and Rosenbach (2005)

compares determiner s-genitive and of -genitives, where the possessor is a complement.5

Consider the following pairs of alternative expressions (table 2 in Jäger and Rosenbach,

2005):

(E4) a. the boy's eyes / the eyes of the boy

b. the mother's future / the future of the mother

c. a girl's face / the face of a girl

d. a woman's shadow / the shadow of a woman

e. the chair's frame / the frame of the chair

f. the bag's contents / the contents of the bag

4This is true of Jäger's algorithm as well as Boersma's GLA.
5Genitive constructions expressing an attributive relation like a man of honour are not comparable to gen-

itives expressing possession, as the corresponding inputs are necessarily different.
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g. a lorry's wheels / the wheels of a lorry

h. a car's fumes / the fumes of a car

The alternatives in (E4) can be classi�ed according to three factors, each corresponding

to a binary feature:

• [±a]: animacy of the possessor (entity with a soul),

• [±t]: topicality of the possessor (reference is unique),

• [±p]: prototypicality of the relation between possessor and possessum (part-of-

relation is prototypical).

Combination of these features yields eight types of possessive relations, each represented

by one of the construction pairs in (E4). Pair (E4c), for example, is an instance of feature

combination [+a][−t][+p].
In an empirical study native speakers were presented with short text passages con-

taining a possessive relation the informants had to express by choosing between the s-

and the of -genitive.6 As a result it was found that the relative frequency with which

s-genitive constructions were preferred over of -genitives decreases from possessive rela-

tions of type [+a][+t][+p] to type [−a][−t][−p] if the ordering

animacy � topicality � prototypicality

is assumed. The relative frequencies were recorded for each construction pair in (E4).

For the input underlying (E4a) the s-genitive was opted for in 89.3% of all occurrences,

while the preferred way of saying (E4h) was in 88.1% of all cases the of -genitive. Note

that there are 16 input output pairs: two output candidates for each of the eight different

inputs. Incorporating a distribution over inputs, one obtains an empirical distribution

over the input output pairs.

In order to reproduce the results by means of a stochastic OT grammar, take con-

straints of the form

(3.4) ∗


±a
±t
±p

 /[±prenom],

where the asterisk means �avoid�, a, t, p stand for the three features with values + or −,
/[+prenom] means �in combination with prenominal possessor� and /[−prenom] means

�in combination with postnominal possessor�. The constraint ∗[+p]/[+prenom], for ex-
ample, is violated iff a prototypical possessive relation is realized as s-genitive construc-

tion. Notice that the value of all features referred to in (3.4) must be derivable from any

given input output pair.

6See references in Jäger and Rosenbach (2005).
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Jäger's algorithm run over samples drawn from a simulated corpus mirroring the

empirical distribution obtained in the experiments produces the following ranking of

constraints (see Jäger and Rosenbach, 2005):

∗[+a]/[+prenom] 9.476 ∗[−a]/[+prenom] 10.644

∗[+a]/[−prenom] 10.524 ∗[−a]/[−prenom] 9.356

∗[+t]/[+prenom] 9.746 ∗[−t]/[+prenom] 10.374

∗[+t]/[−prenom] 10.254 ∗[−t]/[−prenom] 9.626

∗[+p]/[+prenom] 9.895 ∗[−p]/[+prenom] 10.225

∗[+p]/[−prenom] 10.105 ∗[−p]/[−prenom] 9.775

Observe that in each competition only six of the twelve constraints are active7 � depend-

ing on the feature values of the underlying input. The acquired ranking induces a distri-

bution on input output pairs which gives a good approximation to the empirical distribu-

tion: Kullback-Leibler distance (with logarithmic base 2) is about 0.00472 bit. Moreover,

animacy is learned as the strongest factor, followed by topicality and prototypicality.

The variation between s-genitive and of -genitive illustrates the effect of ganging-up

cumulativity if we abstract away from speci�c outputs and regard only the genitive con-

struction. Going from an input of type [+a][+t][−p] to one of type [+a][−t][−p] the prob-
ability assigned to the of -construction increases, because the two [+t]-constraints, which

together favour the s-genitive, become inactive, while the two [−t]-constraints, which

together favour the of -construction, are �switched on�. Note that ∗[+a]/[−prenom] is
higher ranked than all other active constraints. Ganging-up cumulativity in general

means that lower ranked constraints matter and can conspire to overrule a high ranked

constraint.

Further experiments were carried out with the aim of establishing which impact the

weight of the possessor phrase had on the choice of the genitive construction. In a corpus

analysis, weight was measured as the number of prenominal modi�ers in the possessor

phrase.8 Of the three features animacy, topicality, prototypicality only animacy of the

possessor was retained. Examples of genitive constructions with animate possessors of

different weight are

(E5) a. Pauline's birthday / the birthday of Pauline

b. the doctor's daughter / the daughter of the doctor

c. the other person's nose / the nose of the other person

d. right honourable gentleman's policy / the policy of the right honourable gent-

leman
7A constraint is active in a competition if it is not constant on the set of candidate outputs.
8The possessum was kept at constant length. The impact of the relative weight between possessor and

possessum was also tested.
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Although with animate possessor the s-genitive is usually preferred over the of -con-

struction, this preference changes as the possessor gets longer. Thus, s-genitives were

found in 84.2% of all instances of (E5a), while in cases like (E5d) the portion of s-genitives

fell to 35.7%. With inanimate possossors there is a strong tendency towards the of -

genitive, but if the possessor is short, the s-genitive has about 12% probability.

The resulting empirical distribution can be faithfully reproduced by a maximum en-

tropy OT grammar using Jäger's learning algorithm, if there are four constraints of the

form ∗[±a]/[±prenom] plus one constraint, say ∗[premod][+prenom], which counts the

number of (prenominal) modi�ers of a prenominal possessor. That constraint is not vio-

lated if the output is an of -genitive, since then the possessor follows the possessum.

After learning, constraint ∗[premod][+prenom] is ranked considerably lower than the

other constraints. Multiple violations of ∗[premod][+prenom], however, strengthen its

effect so that it becomes predominant. This is referred to as counting cumulativity.

The work by Jäger and Rosenbach (2005) provides abstract de�nitions of both cu-

mulativity effects. We should mention that Boersma's version of stochastic OT allows

for ganging-up cumulativity, but not for counting cumulativity, while the maximum en-

tropy version allows for both. The fact that maximum entropy OT grammars exhibit

ganging-up as well as counting cumulativity is clear by the log-linear nature of the Gibbs

distributions.

3.4 Possible extensions and conclusions

Up to now our perspective on OT has been that of production. An input � corresponding

to a meaning � was given and the grammar had to provide appropriate linguistic expres-

sions as outputs. This is the speaker or expressive perspective. Changing point of view by

taking an output o and looking for all inputs i such that (i, o) is in the generator G, we

would be confronted with the problem of computing a probability distribution over the

possibly in�nite set

Io := {i ∈ I | (i, o) ∈ G}.

A probability distribution on Io can be calculated according to the maximum entropy

version, Boersma's version of stochastic OT or deterministic OT provided Io is �nite. If

Io is in�nite, there may again be a problemwith convergence of the normalizing constant

in case the maximum entropy version is used. If Boersma's version or deterministic OT is

applied, then one must make sure that with probability one there are only �nitely many

optimal outputs for each input.

Starting on the output side of the generator means adopting the interpretative or hearer

perspective. This is reminiscent of what is called �lexicon optimization� in Prince and

Smolensky (2004: §9.3), and it is an essential ingredient in bidirectional Optimality Theory,

where speaker and hearer perspective are combined, see Blutner (2004). In the context of

learning, by taking into account the hearer perspective, one can model how the learner

associates observed outputs with underlying inputs. In particular, pairing errors in the
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sense of section 3.1 can then vary according to the current state of the learner's grammar

and need not be speci�ed a priori by incorporating them into the empirical distribution.

Little has been said about convergence speed and rate of convergence of Jäger's algorithm

(cf. section 3.1), implementational issues and connections of stochastic OT with arti�cial

neural networks (cf. section 3.2.1). We brie�y sketched how Jäger's algorithm has to

be adapted in order to deal with the general situation, where a single input may have

in�nitely many output candidates (cf. section 3.2.2).

We gave a uni�ed de�nition of stochastic Optimality Theory as a conception of uni-

versal grammar, which enabled us to derive various versions of probabilistic Optimality

Theory as special cases. We described and stated the learning problem as it arises for

stochastic OT grammars, namely the problem of learning the �right� ranking of con-

straints given an empirical distribution of learning data. The maximum entropy version

of stochastic OT, which has been our main concern, was derived in great generality from

the principle of entropy maximization. Jäger's algorithm, a stochastic learning procedure

for maximum entropy OT, was introduced, and its connections with classical iterative al-

gorithms such as gradient descent and stochastic descent were explained.

Two variants of Jäger's algorithm can be distinguished, one, where the gain param-

eter corresponding to the size of learning steps is constant, the other, where the gain

parameter tends to zero as learning proceeds. Convergence in an appropriate sense was

proved for both variants undermild assumptions on learning data and constraints, which

are determined by the underlying universal OT grammar. Assumptions were spelled out

in detail. In deriving the maximum entropy version of stochastic OT and in the proofs

of convergence of Jäger's algorithm, a considerable amount of mathematical machinery

was needed due to the fact that we allowed the generator of our OT grammar to consist

of in�nitely many input output pairs.

Jäger's algorithm was shown to be a robust and �exible procedure for solving the

learning problem associated with the maximum entropy version of stochastic OT, which

in turn directly derives from fundamental principles of information theory.



Appendix A

Convex sets and convex functions

Here, we collect de�nitions and results related to the concept of convexity. Let V be a real

vector space of possibly in�nite dimension. In case V is a normed space, denote by Bρ(x)
the open ball and by Bρ(x) the closed ball centered at x ∈ V with radius ρ.

De�nition A.1. A subset S ⊆ V is called convex iff x, v ∈ S implies λx+ (1− λ)v ∈ S for

all λ ∈ [0, 1].

De�nition A.2. Let S be a convex subset of RN . Let hullaff(S) denote the smallest af�ne-

linear manifold containing S. An element x ∈ S is called a relative interior point of S iff

there is ρ > 0 such that

Bρ(x) ∩ hullaff(S) ⊆ S.

De�nition A.3. Let S be a convex subset of V . A function f : S → R ∪ {∞} is said to be

convex iff for all x, v ∈ S and all λ ∈ [0, 1]

(A.1) f (λx+ (1−λ)v) ≤ λf(x) + (1− λ)f(v).

A function f : S → R is called strictly convex iff f is convex and the inequality in (A.1) is

strict for all x, v ∈ S, x 6= v, and all λ ∈ (0, 1).

Any R-valued convex function de�ned on a convex open subset or an af�ne-linear sub-

manifold of RN is continuous. This continuity property is not guaranteed if instead of

RN we have a vector space of in�nite dimension.

If a convex function f : S → R de�ned on an af�ne-linear submanifold S of RN grows to

in�nity along all rays starting at some point in the domain of de�nition, then f possesses

a global minimum.

Lemma A.1. Let V ⊆ RN be a linear subspace and r ∈ RN . Set S := r + V , and let f : S → R
be a convex function such that f(r+ t · v) →∞ as t→∞ for all v ∈ V \ {0}. Then f possesses

a global minimum. If, in addition, f is strictly convex, then it has exactly one extremum, namely

an isolated global minimum.
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Proof. Let S1(0) be the unit sphere in RN . SetK := V ∩S1(0). For ρ > 0 de�ne a mapping

tρ : K → [0,∞) by tρ(v) := inf{t ≥ 0 | f(r + t · v) > ρ}. Notice that tρ(v) is �nite since
f(r + t · v) → ∞ as t → ∞. Choose ρ > f(r) and let v ∈ K. Then tρ(v) > 0, and
f(r+ tρ(v) · v) = ρ since [0,∞) 3 t 7→ f(r+ t · v) is continuous. With t ≥ tρ(v), convexity
of f implies

f
(
r + tρ(v) · v

)
= f

((
1− tρ(v)

t

)
r + tρ(v)

t (r + t · v)
)

≤ tρ(v)
t f(r + t · v) +

(
1− tρ(v)

t

)
f(r)

⇒ f(r + t · v) ≥ f
(
r + tρ(v) · v

)
+ t−tρ(v)

tρ(v) ·
(
f
(
r + tρ(v) · v

)
− f(r)

)
.

In particular, we have f(r + t · v) ≥ ρ for all t ≥ tρ(v). From the above inequality and the

continuity of f one deduces that tρ is a continuous positive function on K provided that

ρ > f(r).1

Clearly, K is compact. Hence tρ attains its maximum and τ := max{tρ(v) | v ∈ K} is
�nite. Set B := V ∩ Bτ (r). Then f(x) ≥ ρ for all x ∈ S \ B. On the other hand, B also is

compact, whence f attains its minimum y := min{f(x) | x ∈ B} on B. Since r ∈ B we

have y ≤ f(r), but f(r) < ρ. Therefore, y is really the global minimum value of f .

For the rest of the proof let us assume that f is strictly convex. Suppose f had a local

maximum at position x ∈ S. Then we could choose x, x̃ ∈ S, x 6= x̃, and λ ∈ (0, 1) such
that both x ≤ f(x) and x̃ ≤ f(x) and x = λx+ (1−λ)x̃. The strict version of (A.1) would

imply f(x) < f(x) � a contradiction.

We already know that f has a global minimum. Set y := min{f(x) |x ∈ S}, and let

x̂, x̃ be elements of S such that f(x̂) = y = f(x̃). Then f(λx̂+(1−λ)x̃) ≥ y for all λ ∈ (0, 1),
and strict convexity implies x̃ = x̂. Therefore f(x̂) < f(x) for all x ∈ S.

Finally, notice that f cannot have a local minimum at x̃ 6= x̂. Else we could choose

x ∈ S \{x̃, x̂} and λ ∈ (0, 1) such that f(x) ≥ f(x̃) and x = λx̃+(1−λ)x̂. But f(x̂) ≤ f(x̃),
so the strict version of inequality (A.1) would again lead to a contradiction.

Lemma A.2. Let f : RN → R be a convex and continuously differentiable function, and suppose

that f has a global minimum at x̂ ∈ RN . For ρ ≥ 0 set ερ := min{f(x)− f(x̂) | ‖x− x̂‖ = ρ}.
Then ερ as a function of ρ ∈ [0,∞) is non negative, non decreasing, and εtρ ≥ t · ερ for all t ≥ 1,
ρ ≥ 0. In particular, either ερ = 0 for all ρ ≥ 0, or ερ tends to in�nity as ρ→∞.

Moreover, for all ρ > 0 and all x ∈ RN such that ‖x− x̂‖ ≥ ρ it holds that

(?)
∥∥∇f(x)

∥∥ ≥
〈
∇f(x),

x− x̂

‖x− x̂‖

〉
≥ f(x)− f(x̂)

‖x− x̂‖
≥ ερ

ρ
.

1Observe that tρ need not be continuous if f satis�es only the growth condition of lemma A.1 and is

continuous, but not convex. Consider, for example, a smooth function having �bumps� of height greater

than ρ.
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Proof. Notice that the minimum in the de�nition of ερ is justi�ed in that the in�mum of a

continuous function over a compact set, here the sphere of radius ρ centered at x̂, is really

a minimum, and that ερ ≥ 0, because f attains a global minimum at x̂. Let ρ > 0 and

v ∈ RN such that ‖v − x̂‖ = ρ. By convexity of f we have for all t ≥ 0, λ ∈ [0, 1]

f
(
λ(t(v − x̂) + v) + (1−λ)x̂

)
≤ λf(t(v − x̂) + v) + (1−λ)f(x̂).

Choosing λ := 1
t+1 we obtain for all v ∈ RN with ‖v − x̂‖ = ρ and all t ≥ 0

f(t(v − x̂) + v) − f(x̂) ≥ (t+1)
(
f(v)− f(x̂)

)
≥ (t+1)ερ.

The �rst inequality in (?) is clear, since 〈v, v〉 ≥ 〈v, w〉 for all v, w ∈ RN such that ‖w‖ =
‖v‖. As a consequence of inequality (A.1) we have with h ∈ (0, 1)

f
(
x+ h(x̂− x)

)
= f

(
(1−h)x+ hx̂

)
≤ (1−h)f(x) + hf(x̂)

⇒ 1
h

(
f
(
x+ h(x̂− x)

)
− f(x)

)
≤ f(x̂) − f(x).

Observing that 〈∇f(x), x−x̂〉 is the directional derivative along x−x̂we obtain the middle

part of (?). A further application of inequality (A.1) yields

f
(
x̂+ ρ

‖x−x̂‖(x− x̂)
)

≤
(
1− ρ

‖x−x̂‖
)
f(x̂) + ρ

‖x−x̂‖ · f(x)

⇒ f(x) − f(x̂) ≥ 1
ρ ·
(
f
(
x̂+ ρ

‖x−x̂‖(x− x̂)
)
− f(x̂)

)
· ‖x− x̂‖.

Clearly, ‖ ρ
‖x−x̂‖(x−x̂)‖ = ρ, and the last part of (?) follows.

We observe that the function ρ 7→ ερ as de�ned in lemma A.2 is increasing if f has an

isolated global minimum at x.
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Appendix B

Optimization and Lagrange's method

The following ancient and simple observation is of great importance for solving problems

of constrained optimization.

Proposition B.1 (Lagrange's lemma). Let S be a non-empty set and f : S → R, g : S → RN

be arbitrary functions. Set S0 := {x ∈ S | g(x) = 0}. If there are λ ∈ RN and x0 ∈ S0 such that

the Lagrange function L : S → R de�ned by

S 3 x 7→ f(x) +
〈
λ, g(x)

〉
is minimal at x0, then the restriction of f to S0 has a minimum at x0.

Proof. With λ, x0 as hypothesized and x ∈ S0 it holds that

f(x0) = f(x0) +
〈
λ, g(x0)

〉
≤ f(x) +

〈
λ, g(x)

〉
= f(x).

The parameter λ appearing in proposition B.1 is called a Lagrange multiplier. When the

sets S, S0 have additional structure, a version of Lagrange's theorem might be found

which guarantees the existence of a Lagrange multiplier provided a minimum solution

to the restricted problem exists and certain regularity conditions are met. The next propo-

sition covers the special case of af�ne-linear constraints.

Proposition B.2. Let V be a real vector space, S ⊆ V be a convex subset and f : S → R be

a convex function. Let Γ : V → RN be a linear mapping and y ∈ RN such that S0 := {x ∈
S | Γ(x) = y} is non-empty. Suppose inf{f(x) | x ∈ S} is �nite and y is a relative interior point
of Γ(S). Then a Lagrange multiplier λ ∈ RN exists such that

inf{f(x) | x ∈ S0} = inf{f(x) + 〈λ,Γ(x)− y〉 | x ∈ S}.

If, in addition, an element x∗ ∈ S0 exists such that f restricted to S0 attains its minimum at x∗,

i. e. f(x∗) = inf{f(x) | x ∈ S0}, then it also holds that

f(x∗) + 〈λ,G(x∗)− y〉 = inf{f(x) + 〈λ,G(x)− y〉 | x ∈ S}.
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We state without proof the fundamental theorem of convex optimization, which provides

an optimality criterion in terms of the right-sided Gâteaux derivative.

Theorem B.1 (Convex optimization). Let V be a real vector space, S ⊆ V be a convex subset

and f : S → R be a convex function. Let x∗ be any element of S. Then f attains a minimum at

x∗ if and only if it holds that

(B.1) f ′+(x∗, x− x∗) ≥ 0 for all x ∈ S.
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