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Abstract

We study a semi-discretisation scheme for stochastic optimal control problems

whose dynamics are given by controlled stochastic delay (or functional) di�erential

equations with bounded memory. Performance is measured in terms of expected costs.

By discretising time in two steps, we construct a sequence of approximating �nite-

dimensional Markovian optimal control problems in discrete time. The corresponding

value functions converge to the value function of the original problem, and we derive

an upper bound on the discretisation error or, equivalently, a worst-case estimate for

the rate of convergence.

2000 AMS subject classi�cations: primary 49M25, 93C23, 93E20; secondary

34K50, 49L20, 60H35, 90-08, 90C39, 93C23.
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di�erential equation; delay; time lag; �nite di�erences; time discretisation; approximation;

error bound; convergence rate.

1 Introduction

The object of this study is an approximation scheme for stochastic control systems with

time delay in the dynamics. The control problems we wish to approximate are characterised

as follows: The system dynamics are given by a controlled stochastic delay (or functional)

di�erential equation (SDDE or SFDE), and the performance criterion is a cost functional
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of evolutional type over a �nite deterministic time horizon. A control problem of this

kind is generally in�nite-dimensional in the sense that the corresponding value function

lives on an in�nite-dimensional function space. For simplicity, there will be neither state

constraints nor state-dependent control constraints.

Our approximation scheme is based on a time discretisation of Euler-Maruyama type.

This semi-discretisation procedure yields a sequence of �nite-dimensional optimal control

problems in discrete time. Under quite natural assumptions, we obtain an upper bound on

the discretisation error � or a worst-case estimate for the rate of convergence � in terms of

a di�erence in supremum norm between the value functions corresponding to the original

control problem and the approximating control problems, respectively.

The approximation of the original control problem is carried out in two steps. The �rst

step consists in constructing a sequence of control problems whose coe�cients are piece-

wise constant in both the time and segment variable. The admissible strategies are the

same as those of the original problem. We obtain a rate of convergence for the controlled

state processes, which is uniform in the strategies, thanks to the fact that the modulus of

continuity of Itô di�usions with bounded coe�cients has �nite moments of all orders. This

result can be found in Sªomi«ski (2001), cf. Appendix A.2 below. The convergence rate

for the controlled processes carries over to the approximation of the corresponding value

functions.

The second discretisation step consists in approximating the original strategies by con-

trol processes which are piece-wise constant on a sub-grid of the time grid introduced in

the �rst step. A main ingredient in the derivation of an error bound is the Principle of

Dynamic Programming (PDP) or, as it is also known, Bellman's Principle of Optimality.

The validity of the PDP for the �non-Markovian� dynamics at hand was proved in Larssen

(2002), cf. Appendix A.1 below. A version of the PDP for controlled di�usions with time

delay is also proved in Gihman and Skorohod (1979: Ch. 3); there are di�erences, though,

in the formulation of the control problem.

We apply the PDP to obtain a global error bound from an estimate of the local trun-

cation error. The fact that the value functions of the approximating problems from the

�rst step are Lipschitz continuous under the supremum norm guarantees stability of the

method. This way of error localisation and, in particular, the use of the PDP are adapted

from Falcone and Ferretti (1994) and Falcone and Rosace (1996), who study deterministic

optimal control problems with and without delay. Their proof technique is not con�ned

to such simple approximation schemes as we adopt here; it extends the usual convergence

analysis of �nite di�erence methods for initial-boundary value problems, cf. Section 5.3 in

Atkinson and Han (2001), for example.

To estimate the local truncation error we only need an error bound for the approxima-

tion by piece-wise constant strategies of �nite-dimensional control problems with �constant

coe�cients�; that is, the cost rate and the coe�cients of the state equation are functions

of the control variable only. Such a result is provided by a stochastic mean value theorem
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due to Krylov (2001), which we cite in Appendix A.3. When the space of control actions is

�nite and the di�usion coe�cient is not directly controlled, it is quite elementary to derive

an analogous result with an error bound of higher order, namely of order h1/2 instead of

h1/4, where h is the length of the time step in the discretisation.

In a last step, we put together the two error estimates to obtain a bound on the total

approximation error. The error bound is of order nearly h1/12 with h the length of the time

step, see Theorem 4 in Section 5. To the best of our knowledge, this is the �rst result on

the speed of convergence of a time-discretisation scheme for controlled systems with delay.

We do not expect our estimate to be optimal, and understand the result as a benchmark

on the way towards sharp error bounds. Moreover, the scheme's special structure can be

exploited so that the computational requirements are lower than what might be expected

by looking at the order of the error bound.

About ten years ago, N.V. Krylov was the �rst to obtain rates of convergence for �nite

di�erence schemes approximating �nite-dimensional stochastic control problems with con-

trolled and possibly degenerate di�usion matrix, see Krylov (1999, 2000) and the references

therein. The error bound obtained there in the special case of a time-discretisation scheme

with coe�cients which are Lipschitz continuous in space and 1
2 -Hölder continuous in time

is of order h1/6 with h the length of the time step. Notice that in Krylov (1999) the order

of convergence is given as h1/3, where the time step has length h2. When the space too is

discretised, the ratio between time and space step is like h2 against h or, equivalently, h

vs.
√
h, which explains why the order of convergence is expressed in two di�erent ways.

Using purely analytic techniques from the theory of viscosity solutions, Barles and

Jakobsen (2005, to appear) obtain error bounds for a broad class of �nite di�erence schemes

for the approximation of partial di�erential equations involving operators of Hamilton-

Jacobi-Bellman type. In the case of a simple time-discretisation scheme, the estimate for

the speed of convergence they �nd is of order h1/10 in the length h of the time step.

In the �nite-dimensional setting, our two-step time-discretisation procedure allows to

get from the case of �constant coe�cients� to the case of general coe�cients, even though

it yields a worse rate of convergence in comparison with the results cited above, namely 1
12

instead of 1
6 and 1

10 , respectively. This is the price we pay for separating the approximation

of the dynamics from that of the strategies. On the other hand, it is this separation that

enables us to reduce the problem of strategy approximation to an elementary form. Observe

that certain techniques like molli�cation of the value function employed in the works cited

above are not available, because the space of initial values is not locally compact.

Our procedure also allows to estimate the error incurred when using strategies which are

nearly optimal for the approximating problems with the dynamics of the original problem.

This would be the way to apply the approximation scheme in many practically relevant

situations. However, this method of nearly optimally controlling the original system is

viable only if the available information includes perfect samples of the underlying noise

process. The question is more complicated when information is restricted to samples of
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the state process.

The study of stochastic systems with delay has a long tradition, see Mohammed (1984)

and the references therein. An overview of numerical methods for uncontrolled SDDEs is

given in Buckwar (2000). The simplest approximation procedure is the Euler-Maruyama

scheme. The work by Mao (2003) provides the rate of convergence for this scheme provided

the SDDE has globally Lipschitz continuous coe�cients and generalised distributed delays;

Proposition 3 in Section 3 provides a partial generalisation of Mao's results and uses

arguments similar to those in Calzolari et al. (to appear). The most common �rst order

scheme is due to Milstein; see Hu et al. (2004) for the rate of convergence of this scheme

applied to SDDEs with point delay.

There is a well-established method for approximating �nite-dimensional stochastic con-

trol problems in continuous time, the so-called Markov chain method, which was introduced

by H. J. Kushner about thirty years ago, see Kushner and Dupuis (2001) and the references

therein. The idea is to construct a sequence of approximating control problems the dynam-

ics of which are �locally consistent� with the dynamics of the original problem. If the cost

functionals are reasonable approximations of the original performance criterion, then under

very broad conditions local consistency of a scheme is su�cient to guarantee convergence

of the corresponding value functions. The techniques used in Kushner and Dupuis (2001)

and related work for the proofs of convergence are based on weak convergence of measures;

they can be extended to cover control problems with delay, see Kushner (2005a) and also

Fischer and Reiÿ (2007). In Kushner (2005b) numerical approximation of stochastic con-

trol problems with re�ection, where generalised distributed delays may occur in the state

and the control variable of the drift coe�cient as well as in the re�ection term, is treated

using the Markov chain method. The starting point for the discretisation procedure in

that work is not a controlled SDDE, but a representation of the system dynamics as a

stochastic partial di�erential equation without delay. As the convergence proofs, which

work for many di�erent control problems and approximation schemes, are based on (local)

consistency only, they usually do not yield any bound on the discretisation error.

Stochastic control problems with delay in the system dynamics have been the object of

other recent studies; see Elsanosi et al. (2000) for certain explicitly available solutions and

Øksendal and Sulem (2001) for the derivation of a maximum principle. If the dynamics of

the control problem with delay exhibit a special structure, then the value function actually

lives on a �nite-dimensional space and the original problem can be reduced to a classical

stochastic control problem without delay; see Larssen and Risebro (2003) and Bauer and

Rieder (2005). We have already mentioned Larssen (2002) in connection with the PDP for

delay systems. As in the �nite-dimensional setting, the PDP can be invoked to derive a

Hamilton-Jacobi-Bellman (HJB) equation for the value function. Such an HJB equation is

not guaranteed to admit classical (i. e. Fréchet-di�erentiable) solutions, and the concept of

viscosity solutions has to be introduced. The HJB equation can then be used as a starting

point for constructing �nite di�erence approximation schemes; see Chang et al. (2006) for
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this approach.

The rest of this paper is organised as follows. In Section 2, we introduce in detail the

control problems we wish to approximate. In Section 3, we describe the �rst approximation

step, that is, the time-discretisation of the dynamics. Section 4 is devoted to the second

approximation step, the time-discretisation of the control processes. In Section 5, we derive

the worst-case estimate of the total discretisation error. We also discuss the question of

constructing nearly optimal strategies and address issues related to the numerical solution

of the approximating control problems.

2 The original control problem

The dynamics of the control problems we want to approximate are described by a controlled

d-dimensional stochastic delay (or functional) di�erential equation driven by a Wiener

process. Both the drift and the di�usion coe�cient may depend on the solution's history

a certain amount of time into the past. The delay length gives a bound on the maximal

time the system is allowed to look back into the past; it will be a �nite deterministic

time, say r > 0. For simplicity, we restrict attention to control problems with �nite

and deterministic time horizon. The performance of the admissible control processes or

strategies will be measured in terms of a cost functional of evolutional type.

Typically, the solution process of an SDDE does not enjoy the Markov property, while

the segment process associated with that solution does. For an Rd-valued function X =
X(.) living on the time interval [−r,∞), the segment at time t ∈ [0,∞) is the function

Xt : [−r, 0] → Rd, Xt(s) := X(t+s), s ∈ [−r, 0].

IfX is a continuous function, then the segmentXt at time t is a continuous function de�ned

on [−r, 0]. Accordingly, if (X(t))t≥−r is an Rd-valued stochastic process with continuous

trajectories, then the associated segment process (Xt)t≥0 is a stochastic process taking its

values in C := C([−r, 0],Rd), the space of all Rd-valued continuous functions on the interval

[−r, 0]. The space C comes equipped with the supremum norm, written ‖.‖, induced by

the standard norm on Rd.

Let (Γ, ρ) be a complete and separable metric space, the set of control actions. We

�rst state our control problem in the weak Wiener formulation, cf. Larssen (2002) and

Yong and Zhou (1999: pp. 176-177). This is to justify our use of the Principle of Dynamic

Programming. In subsequent sections we will only need the strong formulation.

De�nition 1. A Wiener basis of dimension d1 is a triple ((Ω,P,F), (Ft),W ) such that

(i) (Ω,F ,P) is a complete probability space carrying a standard d1-dimensional Wiener

process W ,

(ii) (Ft) is the completion by the P-null sets of F of the �ltration induced by W .
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A Wiener control basis is a quadruple ((Ω,P,F), (Ft),W, u) such that ((Ω,P,F), (Ft),W )
is a Wiener basis and u : [0,∞)×Ω → Γ is progressively measurable with respect to (Ft).
The (Ft)-progressively measurable process u is called a control process. Write UW for the

set of all Wiener control bases.

By abuse of notation, we will often hide the stochastic basis involved in the de�nition

of a Wiener control basis; thus, we may write (W,u) ∈ UW meaning that W is the Wiener

process and u the control process of a Wiener control basis.

Let b, σ be Borel measurable functions de�ned on [0,∞)× C × Γ and taking values in

Rd and Rd×d1 , respectively. The functions b, σ are the coe�cients of the controlled SDDE

that describes the dynamics of the control problem. The SDDE is of the form

(1) dX(t) = b
(
t0+t,Xt, u(t)

)
dt + σ

(
t0+t,Xt, u(t)

)
dW (t), t > 0,

where t0 ≥ 0 is a deterministic initial time and ((Ω,P,F), (Ft),W, u) a Wiener control

basis. The assumptions on the coe�cients stated below will allow b, σ to depend on

the segment variable in di�erent ways. Let φ ∈ C be a generic segment function. The

coe�cients b, σ may depend on φ through bounded Lipschitz functions of, for example,

φ(−r1), . . . , φ(−rn), (point delay),∫ 0

−r
v1(s, φ(s))w1(s)ds, . . . ,

∫ 0

−r
vn(s, φ(s))wn(s)ds (distributed delay),∫ 0

−r
ṽ1(s, φ(s))dµ1(s), . . . ,

∫ 0

−r
ṽn(s, φ(s))dµn(s), (generalised distributed delay),

where n ∈ N, r1, . . . , rn ∈ [0, r], w1, . . . , wn are Lebesgue integrable, µ1, . . . , µn are �nite

Borel measures on [0, r], vi, ṽi are Lipschitz continuous in the second variable uniformly in

the �rst, vi(., 0)wi(.) is Lebesgue integrable and ṽi(., 0) is µi-integrable, i ∈ {1, . . . , n}. No-
tice that the generalised distributed delay comprises the point delay as well as the Lebesgue

absolutely continuous distributed delay. Let us call functional delay any type of delay that

cannot be written in integral form. An example of a functional delay, which is also covered

by the regularity assumptions stated below, is the dependence on the segment variable φ

through bounded Lipschitz functions of

sup
s,t∈[−r,0]

v̄1(s, t, φ(s), φ(t)), . . . , sup
s,t∈[−r,0]

v̄n(s, t, φ(s), φ(t)),

where v̄i is a measurable function which is Lipschitz continuous in the last two variables

uniformly in the �rst two variables and v̄i(., ., 0, 0) is bounded, i ∈ {1, . . . , n}.
As initial condition for Equation (1), in addition to the time t0, we have to prescribe

the values of X(t) for all t ∈ [−r, 0], not only for t = 0. Thus, a deterministic initial

condition for Equation (1) is a pair (t0, φ), where t0 ≥ 0 is the initial time and φ ∈ C the

initial segment. We understand Equation (1) in the sense of an Itô equation. An adapted

6



process X with continuous paths de�ned on the stochastic basis (Ω,P,F , (Ft)) of (W,u)
is a solution with initial condition (t0, φ) if it satis�es, P-almost-surely,

(2) X(t) =

φ(0) +
∫ t
0 b
(
t0+s,Xs, u(s)

)
ds +

∫ t
0 σ
(
t0+s,Xs, u(s)

)
dW (s), t > 0,

φ(t), t ∈ [−r, 0].

Observe that the solution process X always starts at time zero; it depends on the initial

time t0 only through the coe�cients b, σ. As far as the control problem is concerned,

this formulation is equivalent to the usual one, where the process X starts at time t0 with

initial condition Xt0 = φ and t0 does not appear in the time argument of the coe�cients.

A solution X to Equation (2) under (W,u) with initial condition (t0, φ) is strongly

unique if it is indistinguishable from any other solution X̃ satisfying Equation (2) under

(W,u) with the same initial condition. A solution X to Equation (2) under (W,u) with

initial condition (t0, φ) is weakly unique if (X,W, u) has the same distribution as (X̃, W̃ , ũ)
whenever (W̃ , ũ) has the same distribution as (W,u) and X̃ is a solution to Equation (2)

under Wiener control basis (W̃ , ũ) with initial condition (t0, φ). Here, the space of Borel
measurable functions [0,∞) → Γ is equipped with the topology of convergence locally in

Lebesgue measure.

De�nition 2. A Wiener control basis (W,u) ∈ UW is called admissible or an admissible

strategy if, for each deterministic initial condition, Equation (2) has a strongly unique

solution under (W,u) which is also weakly unique. Write Uad for the set of admissible

control bases.

Denote by T > 0 the �nite deterministic time horizon. Let f , g be Borel measurable

real-valued functions with f having domain [0,∞)× C × Γ and g having domain C. They
will be referred to as the cost rate and the terminal cost, respectively. We introduce a cost

functional J de�ned on [0, T ]× C × UJad by setting

(3) J(t0, φ, (W,u)) := E
(∫ T−t0

0
f
(
t0+s,Xs, u(s)

)
ds + g(XT−t0)

)
,

where X is the solution to Equation (2) under (W,u) ∈ UJad with initial condition (t0, φ)
and UJad ⊆ Uad is the set of all admissible Wiener control bases such that the expectation

in (3) is well de�ned for all deterministic initial conditions.

The value function corresponding to Equation (2) and cost functional (3) is the function

V : [0, T ]× C → [−∞,∞) given by

(4) V (t0, φ) := inf
{
J(t0, φ, (W,u)) | (W,u) ∈ UJad

}
.

It is this function that we wish to approximate.

Let us specify the hypotheses we make about the regularity of the coe�cients b, σ, the

cost rate f and the terminal cost g.
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(A1) Measurability: the functions b : [0,∞) × C × Γ → Rd, σ : [0,∞) × C × Γ → Rd×d1 ,

f : [0,∞)× C × Γ → R, g : C → R are jointly Borel measurable.

(A2) Boundedness: |b|, |σ|, |f |, |g| are bounded by some constant K > 0.

(A3) Uniform Lipschitz and Hölder condition: there is a constant L > 0 such that for all

φ, φ̃ ∈ C, t, s ≥ 0, all γ ∈ Γ

|b(t, φ, γ)− b(s, φ̃, γ)| ∨ |σ(t, φ, γ)− σ(s, φ̃, γ)| ≤ L
(
‖φ− φ̃‖+

√
|t− s|

)
|f(t, φ, γ)− f(s, φ̃, γ)| ∨ |g(φ)− g(φ̃)| ≤ L

(
‖φ− φ̃‖+

√
|t− s|

)
.

(A4) Continuity in the control: b(t, φ, .), σ(t, φ, .), f(t, φ, .) are continuous functions on Γ
for any t ≥ 0, φ ∈ C.

Here and in the sequel, |.| denotes the Euclidean norm of appropriate dimension and x∨ y
denotes the maximum of x and y. The above measurability, boundedness and Lipschitz

continuity assumptions on the coe�cients b, σ guarantee the existence of a strongly unique

solution X = Xt0,φ,u to Equation (2) for every initial condition (t0, φ) ∈ [0, T ] × C and

(W,u) ∈ UW any Wiener control basis; see, for example, Theorem 2.1 and Remark 1.1(2)

in Chapter 2 of Mohammed (1984). Moreover, weak uniqueness of solutions holds for all

deterministic initial conditions. This is a consequence of a theorem due to Yamada and

Watanabe, see Larssen (2002) for the necessary generalisation to SDDEs.

Consequently, under Assumptions (A1) � (A3), we have Uad = UW . Moreover, since f

and g are assumed to be measurable and bounded, the expectation in (3) is always well

de�ned, whence it holds that UJad = Uad = UW . Assumption (A4) will not be needed before

Section 4.

The fact that weak uniqueness holds allows us to discard the weak formulation and

consider our control problem in the strong Wiener formulation. Thus, we may work with

a �xed Wiener basis. Under Assumptions (A1) � (A3), the admissible strategies will be

precisely the natural strategies, that is, those that are representable as functionals of the

driving Wiener process. From now on, let ((Ω,P,F), (Ft),W ) be a �xed d1-dimensional

Wiener basis. Denote by U the set of control processes de�ned on this stochastic basis.

The dynamics of our control problem are still given by Equation (2). Due to Assump-

tions (A1) � (A3), all control processes are admissible in the sense that Equation (2) has

a (strongly) unique solution under any u ∈ U for every deterministic initial condition. In

the de�nition of the cost functional, the Wiener process and the probability measure do

not vary any more. The corresponding value function

[0, T ]× C 3 (t0, φ) → inf
{
J(t0, φ, u)) | u ∈ U

}
is identical to the function V determined by (4). By abuse of notation, we write J(t0, φ, u)
for J(t0, φ, (W,u)). We next state some important properties of the value function.
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Proposition 1. Assume (A1) � (A3). Then the value function V is bounded and Lipschitz

continuous in the segment variable uniformly in the time variable. More precisely, there is

LV > 0 such that for all t0 ∈ [0, T ], φ, φ̃ ∈ C,

|V (t0, φ)| ≤ K(T+1), |V (t0, φ)− V (t0, φ̃)| ≤ LV ‖φ− φ̃‖.

The constant LV need not be greater than 3L(T +1) exp(3T (T +4d1)L2). Moreover, V

satis�es Bellman's Principle of Dynamic Programming, that is, for all t ∈ [0, T−t0],

V (t0, φ) = inf
u∈U

E
(∫ t

0
f
(
t0+s,Xu

s , u(s)
)
ds + V

(
t0+t,Xu

t

))
,

where Xu is the solution to Equation (2) under control process u with initial condition

(t0, φ).

Proof. For the boundedness and Lipschitz continuity of V see Proposition 7, for the Bell-

man Principle see Theorem 6 in Appendix A.1, where we set r̃ := r, b̃ := b and so on.

Notice that the Hölder continuity in time of the coe�cients b, σ, f as stipulated in As-

sumption (A3) is not needed in the proofs.

The value function V has some regularity in the time variable, too. It is Hölder con-

tinuous in time with parameter α for any α ≤ 1
2 provided the initial segment is at least

α-Hölder continuous. Notice that the coe�cients b, σ, f need not be Hölder continuous in

time. Except for the role of the initial segment, statement and proof of Proposition 2 are

analogous to the non-delay case, see Krylov (1980: p. 167), for example.

Proposition 2. Assume (A1) � (A3). Let φ ∈ C. If φ is α-Hölder continuous with Hölder

constant not greater than LH , then the function V (., φ) is Hölder continuous; that is, there
is a constant L̃V > 0 depending only on LH , K, T and the dimensions such that for all

t0, t1 ∈ [0, T ]

|V (t0, φ)− V (t1, φ)| ≤ L̃V

(
|t1−t0|α ∨

√
|t1−t0|

)
.

Proof. Let φ ∈ C be α-Hölder continuous with Hölder constant not greater than LH .

Without loss of generality, we suppose that t1 = t0 + h for some h > 0. We may also

suppose h ≤ 1
2 , because we can choose L̃V greater than 4K(T +1) so that the asserted

inequality certainly holds for |t0−t1| > 1
2 . By Bellman's Principle as stated in Proposition 1,

we see that

|V (t0, φ)− V (t1, φ)| = |V (t0, φ)− V (t0+h, φ)|

=
∣∣ inf
u∈U

E
(∫ h

0
f
(
t0+s,Xu

s , u(s)
)
ds + V (t0+h,Xu

h )
)
− V (t0+h, φ)

∣∣
≤ sup

u∈U
E
(∫ h

0

∣∣f(t0+s,Xu
s , u(s)

)∣∣ds) + sup
u∈U

E
(∣∣V (t0+h,Xu

h )− V (t0+h, φ)
∣∣)

≤ K h + sup
u∈U

LV E (‖Xu
h − φ‖) ,
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where K is the constant from Assumption (A2) and LV the Lipschitz constant for V in

the segment variable according to Proposition 1. We notice that φ = Xu
0 for all u ∈ U

since Xu is the solution to Equation (2) under control u with initial condition (t0, φ). By
Assumption (A2), Hölder's inequality, Doob's maximal inequality and Itô's isometry, for

arbitrary u ∈ U it holds that

E (‖Xu
h − φ‖)

≤ sup
t∈[−r,−h]

|φ(t+h)− φ(t)| + sup
t∈[−h,0]

|φ(0)− φ(t)| + E
(∫ h

0

∣∣b(t0+s,Xu
s , u(s)

)∣∣ds)

+ E

(
sup
t∈[0,h]

∣∣∣∣∫ t

0
σ
(
t0+s,Xu

s , u(s)
)
dW (s)

∣∣∣∣2
) 1

2

≤ 2LH hα + K h + 4K d1

√
h.

Putting everything together yields the assertion.

From the proof of Proposition 2 we see that the time regularity of the value function

V is independent of the time regularity of the coe�cients b, σ, f ; it is always 1
2 -Hölder

provided the initial segment is at least that regular.

3 First approximation step: piece-wise constant segments

The aim of this section is to de�ne a sequence of approximating control problems where the

coe�cients of the dynamics, the cost rate, and the terminal cost are piece-wise constant

functions of the time and segment variable, while the dependence on the strategies remains

the same as in the original problem. We will obtain a bound for the approximation error

which is uniform over all initial segments of a given Hölder continuity.

LetN ∈ N. In order to construct theN -th approximating control problem, set hN := r
N ,

and de�ne b.cN by btcN := hNb t
hN
c, where b.c is the usual Gauss bracket, that is, btc is

the integer part of the real number t. Set TN := bT cN and IN := {k hN | k ∈ N0}∩ [0, TN ].
As T is the time horizon for the original control problem, TN will be the time horizon for

the N -th approximating problem. The set IN is the time grid of discretisation degree N .

Denote by LinN the operator C → C which maps a function in C to its piece-wise linear

interpolation on the grid {k hN | k ∈ Z} ∩ [−r, 0].
We want to express the dynamics and the cost functional of the approximating prob-

lems in the same form as those of the original problem, so that the Principle of Dynamic

Programming as stated in Appendix A.1 can be readily applied; see Propositions 5 and 6 in

Section 4. To this end, the segment space has to be enlarged according to the discretisation

degree N . Denote by CN the space C([−r−hN , 0],Rd) of Rd-valued continuous functions

living on the interval [−r−hN , 0]. For a continuous function or a continuous process Z

de�ned on the time interval [−r−hN ,∞), let ΠN (Z)(t) denote the segment of Z at time

t ≥ 0 of length r+hN , that is, ΠN (Z)(t) is the function [−r−hN , 0] 3 s 7→ Z(t+s).
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Given t0 ≥ 0, ψ ∈ CN and u ∈ U , we de�ne the Euler-Maruyama approximation

Z = ZN,t0,ψ,u of degree N of the solution X to Equation (2) under control process u with

initial condition (t0, ψ) as the solution to

(5) Z(t) =


ψ(0) +

∫ t
0 bN

(
t0+s,ΠN (Z)(s), u(s)

)
ds

+
∫ t
0 σN

(
t0+s,ΠN (Z)(s), u(s)

)
dW (s), t > 0,

ψ(t), t ∈ [−r−hN , 0],

where the coe�cients bN , σN are given by

bN (t, ψ, γ) := b
(
btcN ,LinN

(
[−r, 0] 3 s 7→ ψ(s+btcN−t)

)
, γ
)
,

σN (t, ψ, γ) := σ
(
btcN ,LinN

(
[−r, 0] 3 s 7→ ψ(s+btcN−t)

)
, γ
)
, t ≥ 0, ψ ∈ CN , γ ∈ Γ.

Thus, bN (t, ψ, γ) and σN (t, ψ, γ) are calculated by evaluating the corresponding coe�cients

b and σ at (btcN , φ̂, γ), where φ̂ is the segment in C which arises from the piece-wise linear

interpolation with mesh size r
N of the restriction of ψ to the interval [btcN−t−r, btcN−t].

Notice that the control action γ remains unchanged.

Assumptions (A1) � (A3) guarantee that, given any control process u ∈ U , Equation (5)
has a unique solution for each initial condition (t0, ψ) ∈ [0,∞) × CN . Thus, the process

Z = ZN,t0,ψ,u of discretisation degree N is well de�ned. Notice that the approximating

coe�cients bN , σN are still Lipschitz continuous in the segment variable uniformly in the

time and control variables, although they are only piece-wise continuous in time.

De�ne the cost functional JN : [0, TN ]× CN × U → R of discretisation degree N by

(6) JN (t0, ψ, u) := E
(∫ TN−t0

0
fN
(
t0+s,ΠN (Z)(s), u(s)

)
ds + gN

(
ΠN (Z)(TN−t0)

))
,

where fN , gN are given by

fN (t, ψ, γ) := f
(
btcN ,LinN

(
[−r, 0] 3 s 7→ ψ(s+btcN−t)

)
, γ
)
,

gN (ψ) := g
(
LinN

(
ψ|[−r,0]

))
, t ≥ 0, ψ ∈ CN , γ ∈ Γ.

As bN , σN above, fN , gN are Lipschitz continuous in the segment variable (uniformly in

time and control) under the supremum norm on CN . The value function VN corresponding

to (5) and (6) is the function [0, TN ]× CN → R determined by

(7) VN (t0, ψ) := inf
{
JN (t0, ψ, u) | u ∈ U

}
.

If t0 ∈ IN , then bt0+scN = t0 + bscN for all s ≥ 0. Thus, the solution Z to Equation (5)

under control process u ∈ U with initial condition (t0, ψ) ∈ IN × CN satis�es

Z(t) = ψ(0) +
∫ t

0
b
(
t0+bscN ,LinN

(
ZbscN

)
, u(s)

)
ds

+
∫ t

0
σ
(
t0+bscN ,LinN

(
ZbscN

)
, u(s)

)
dW (s) for all t ≥ 0.

(8)
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Moreover, (Z(t))t≥0 depends on the initial segment ψ only through the restriction of ψ to

the interval [−r, 0]. In analogy, whenever t0 ∈ IN , the cost functional JN takes on the form

JN (t0, ψ, u) = E
(∫ TN−t0

0
f
(
t0+bscN ,LinN

(
ZbscN

)
, u(s)

)
ds + g

(
LinN

(
ZTN−t0

)))
.(9)

Hence, if t0 ∈ IN , then JN (t0, ψ, u) = JN (t0, ψ|[−r,0], u) for all ψ ∈ CN , u ∈ U ; that
is, JN (t0, ., .) coincides with its projection onto C × U . Consequently, if t0 ∈ IN , then

VN (t0, ψ) = VN (t0, ψ|[−r,0]) for all ψ ∈ CN ; that is, VN (t0, .) can be interpreted as a

function with domain C instead of CN . If t0 ∈ IN , by abuse of notation, we will write

VN (t0, .) also for this function. Notice that, as a consequence of Equations (8) and (9), in

this case we have VN (t0, φ) = VN (t0,LinN (φ)) for all φ ∈ C.
By Proposition 2, we know that the original value function V is Hölder continuous in

time provided the initial segment is Hölder continuous. It is therefore enough to compare

V and VN on the grid IN × C. This is the content of the next two statements. Again,

the order of the error will be uniform only over those initial segments which are α-Hölder

continuous for some α > 0; the constant in the error bound also depends on the Hölder

constant of the initial segment. We start with comparing solutions to Equations (2) and

(5) for initial times in IN .

Proposition 3. Assume (A1) � (A3). Let φ ∈ C be Hölder continuous with parameter

α > 0 and Hölder constant not greater than LH . Then there is a constant C depending

only on α, LH , L, K, T and the dimensions such that for all N ∈ N with N ≥ 2r, all
t0 ∈ IN , u ∈ U it holds that

E

(
sup

t∈[−r,T ]
|X(t)− ZN (t)|

)
≤ C

(
hαN ∨

√
hN ln

(
1
hN

))
,

where X is the solution to Equation (2) under control process u with initial condition

(t0, φ) and ZN is the solution to Equation (5) of discretisation degree N under u with

initial condition (t0, ψ) with ψ ∈ CN being such that ψ|[−r,0] = φ.

Proof. Notice that hN ≤ 1
2 since N ≥ 2r, and observe that Z := ZN as de�ned in the

assertion satis�es Equation (8), as the initial time t0 lies on the grid IN . Moreover, Z

depends on the initial segment ψ only through ψ|[−r,0] = φ. Using Hölder's inequality,

Doob's maximal inequality, Itô's isometry, Assumption (A3), and Fubini's theorem we �nd

that

E

(
sup

t∈[−r,T ]
|X(t)− Z(t)|2

)
= E

(
sup
t∈[0,T ]

|X(t)− Z(t)|2
)

≤ 2T E
(∫ T

0

∣∣b(t0+s,Xs, u(s)
)
− b
(
t0+bscN ,LinN (ZbscN

), u(s)
)∣∣2ds)

+ 8d1 E
(∫ T

0

∣∣σ(t0+s,Xs, u(s)
)
− σ

(
t0+bscN ,LinN (ZbscN

), u(s)
)∣∣2 ds)
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≤ 4T E
(∫ T

0

∣∣b(t0+bscN , Xs, u(s)
)
− b
(
t0+bscN ,LinN (ZbscN

), u(s)
)∣∣2ds)

+ 16d1 E
(∫ T

0

∣∣σ(t0+bscN , Xs, u(s)
)
− σ

(
t0+bscN ,LinN (ZbscN

), u(s)
)∣∣2 ds)

+ 4T (T+ 4d1)L2hN

≤ 4(T+ 4d1)L2

(
T hN +

∫ T

0
E
(
‖Xs − LinN (ZbscN

)‖2
)
ds

)
≤ 4(T+ 4d1)L2

(
T hN + 3

∫ T

0

(
E
(
‖Xs −XbscN

‖2
)

+ E
(
‖ZbscN

− LinN (ZbscN
)‖2
))
ds

)
+ 12(T+ 4d1)L2

∫ T

0
E
(
‖XbscN

− ZbscN
‖2
)
ds

≤ 4T (T+ 4d1)L2
(
hN + 18L2

H h
2α
N + 18C2,T hN ln

(
1
hN

))
+ 12(T+ 4d1)L2

∫ T

0
E

(
sup

t∈[−r,s]
|X(t)− Z(t)|2

)
ds.

Applying Gronwall's lemma, we obtain the assertion. In the last step of the above estimate

Lemma 1 from Appendix A.2 and the Hölder continuity of φ have both been used twice.

Firstly, to get for all s ∈ [0, T ]

E
(
‖Xs −XbscN

‖2
)

≤ 2E

(
sup

t,t̃∈[−r,0],|t−t̃|≤hN

|φ(t)− φ(t̃)|2
)

+ 2E

(
sup

t,t̃∈[0,T ],|t−t̃|≤hN

|X(t)−X(t̃)|2
)

≤ 2L2
H h

2α
N + 2C2,T hN ln

(
1
hN

)
.

Secondly, to obtain

E
(∥∥ZbscN

− LinN
(
ZbscN

)∥∥2
)

= E

(
sup

t∈[bscN−r,bscN ]

∣∣Z(t)− LinN
(
ZbscN

)
(t)
∣∣2)

≤ 2E

(
sup

t∈[−r,0)

∣∣φ(t)− φ
(
btcN

)∣∣2 +
∣∣φ(t)− φ

(
btcN+hN

)∣∣2)

+ 2E

(
sup
t∈[0,s)

∣∣Z(t)− Z
(
btcN

)∣∣2 +
∣∣Z(t)− Z

(
btcN+hN

)∣∣2)

≤ 4L2
H h

2α
N + 4E

(
sup

t,t̃∈[0,s],|t−t̃|≤hN

|Z(t)− Z(t̃)|2
)

≤ 4L2
H h

2α
N + 4C2,T hN ln

(
1
hN

)
for all s ∈ [0, T ].

The order of the approximation error obtained in Proposition 3 for the underlying dy-

namics carries over to the approximation of the corresponding value functions. This works
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thanks to the Lipschitz continuity of the cost rate and terminal cost in the segment variable,

the bound on the moments of the modulus of continuity from Lemma 1 in Appendix A.2,

and the fact that the error bound in Proposition 3 is uniform over all strategies.

Theorem 1. Assume (A1) � (A3). Let φ ∈ C be Hölder continuous with parameter α > 0
and Hölder constant not greater than LH . Then there is a constant C̃ depending only on

α, LH , L, K, T and the dimensions such that for all N ∈ N with N ≥ 2r, all t0 ∈ IN it

holds that∣∣V (t0, φ)− VN (t0, φ)
∣∣ ≤ sup

u∈U
|J(t0, φ, u)− JN (t0, ψ, u)| ≤ C̃

(
hαN ∨

√
hN ln( 1

hN
)
)
,

where ψ ∈ CN is such that ψ|[−r,0] = φ.

Proof. To verify the �rst inequality, we distinguish the cases V (t0, φ) > VN (t0, φ) and

V (t0, φ) < VN (t0, φ). First suppose that V (t0, φ) > VN (t0, φ). Then for each ε ∈ (0, 1] we
�nd a strategy uε ∈ U such that VN (t0, φ) ≥ JN (t0, φ, uε)− ε. Since V (t0, φ) ≤ J(t0, φ, u)
for all u ∈ U by de�nition, it follows that

|V (t0, φ)− VN (t0, φ)| = V (t0, φ)− VN (t0, φ) ≤ J(t0, φ, uε)− JN (t0, φ, uε) + ε

≤ sup
u∈U

|J(t0, φ, u)− JN (t0, ψ, u)| + ε.

Sending ε to zero, we obtain the asserted inequality provided that V (t0, φ) > VN (t0, φ).
If, on the other hand, V (t0, φ) < VN (t0, φ), then we choose a sequence of minimising

strategies uε ∈ U such that V (t0, φ) ≥ J(t0, φ, uε)− ε, notice that |V (t0, φ)− VN (t0, φ)| =
VN (t0, φ)− V (t0, φ) and obtain the asserted inequality as in the �rst case.

Now, let u ∈ U be any control process. Let X be the solution to Equation (2) under

u with initial condition (t0, φ) and Z = ZN be the solution to Equation (5) under u with

initial condition (t0, ψ). Using Assumption (A2) and the hypothesis that t0 ∈ IN , we get

|J(t0, φ, u)− JN (t0, ψ, u)| ≤ K |T−TN | + E
(∣∣g(LinN

(
ZTN−t0

))
− g
(
XT−t0

)∣∣)
+ E

(∫ TN−t0

0

∣∣f(t0+bscN ,LinN
(
ZbscN

)
, u(s)

)
− f

(
t0+s,Xs, u(s)

)∣∣ ds) .
Recall that |T−TN | = T−bT cN ≤ hN . Hence, K |T−TN | ≤ K hN . Now, using Assump-

tion (A3), we see that

E
(∣∣g(LinN

(
ZTN−t0

))
− g
(
XT−t0

)∣∣)
≤ L

(
E
(
‖ZTN−t0−XTN−t0‖

)
+ E

(
‖LinN

(
ZTN−t0

)
−ZTN−t0‖

)
+ E

(
‖XTN−t0−XT−t0‖

))
≤ L

(
C
(
hαN ∨

√
hN ln( 1

hN
)
)

+ 3LH hαN + 3C1,T

√
hN ln( 1

hN
)
)
,

where C is a constant as in Proposition 3 and C1,T is a constant as in Lemma 1 in

Appendix A.2. Notice that (X(t))t≥0 as well as (Z(t))t≥0 are Itô di�usions with coe�cients
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bounded by the constant K from Assumption (A2). In the same way, also using the Hölder

continuity of f in time and recalling that |s−bscN | ≤ hN for all s ≥ 0, we see that

E
(∫ TN−t0

0

∣∣f(t0+bscN ,LinN
(
ZbscN

)
, u(s)

)
− f

(
t0+s,Xs, u(s)

)∣∣ ds)
≤ L (TN−t0)

(√
hN + 3C1,T

√
hN ln( 1

hN
) +

(
C+ 3LH

) (
hαN ∨

√
hN ln( 1

hN
)
))

.

Putting the three estimates together, we obtain the assertion.

In virtue of Theorem 1, we can replace the original control problem of Section 2 with

the sequence of approximating control problems de�ned above. The error between the

problem of degree N and the original problem in terms of the di�erence between the

corresponding value functions V and VN is not greater than a multiple of ( rN )α for α-

Hölder continuous initial segments if α ∈ (0, 1
2), where the proportionality factor is a�ne

in the Hölder constant; it is less than a multiple of

√
ln(N)
N if α ≥ 1

2 .

From the proofs of Proposition 3 and Theorem 1 it is clear that the coe�cients b, σ,

f of the original problem, instead of being 1
2 -Hölder continuous as postulated by Assump-

tion (A3), need only satisfy a bound of the form
√
|t−s| ln( 1

|t−s|), t, s ∈ [0, T ] with |t−s|
small, for the error estimates to hold.

Although we obtain an error bound for the approximation of V by the sequence of value

functions (VN )N∈N only for Hölder continuous initial segments, the proofs of Proposition 3

and Theorem 1 also show that pointwise convergence of the value functions holds true for

all initial segments φ ∈ C. Recall that a function φ : [−r, 0] → Rd is continuous if and only

if supt,s∈[−r,0],|t−s|≤h |φ(t) − φ(s)| tends to zero as h ↘ 0. Let us record the result for the

value functions.

Corollary 1. Assume (A1) � (A3). Then for all (t0, φ) ∈ [0, T ]× C,∣∣V (t0, φ)− VN (bt0cN , φ)
∣∣ N→∞−→ 0.

Similarly to the value function of the original problem, also the function VN (t0, .) is

Lipschitz continuous in the segment variable uniformly in t0 ∈ IN with Lipschitz constant

not depending on the discretisation degree N . Since t0 ∈ IN , we may interpret VN (t0, .)
as a function de�ned on C.

Proposition 4. Assume (A1) � (A3). Let VN be the value function of discretisation degree

N . Then |VN | is bounded by K(T+1). Moreover, if t0 ∈ IN , then VN (t0, .) as a function

of C satis�es the following Lipschitz condition:

|VN (t0, φ)− VN (t0, φ̃)| ≤ 3L(T+1) exp
(
3T (T+4d1)L2

)
‖φ− φ̃‖ for all φ, φ̃ ∈ C.

Proof. The assertion is again a consequence of Proposition 7 in Appendix A.1. To see this,

set r̃ := r + hN , T̃ := TN , b̃ := bN , σ̃ := σN , f̃ := fN , and g̃ := gN . Equation (5) then

describes the same dynamics as Equation (12), J̃ is the same functional as JN , whence

VN = Ṽ . The hypotheses of Appendix A.1 are satis�ed. Finally, recall that TN ≤ T and

that, since t0 ∈ IN , VN (t0, ψ) depends on ψ ∈ CN only through ψ|[−r,0].
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4 Second approximation step: piece-wise constant strategies

In Section 3, we have discretised the time as well as the segment space in time. The resulting

control problem of discretisation degree N ∈ N has dynamics described by Equation (5),

cost functional JN de�ned by (6) and value function VN given by (7). Here, we will also

approximate the control processes u ∈ U , which up to now have been those of the original

problem, by introducing further control problems de�ned over sets of piece-wise constant

strategies. To this end, for n ∈ N, set

(10) Un :=
{
u ∈ U | u(t) is σ(W (k rn), k ∈ N0)-measurable and u(t) = u(btcn), t ≥ 0

}
.

Recall that btcn = r
nb

n
r tc. Hence, Un is the set of all Γ-valued (Ft)-progressively measurable

processes which are right-continuous and piece-wise constant in time relative to the grid

{k rn | k ∈ N0} and, in addition, are σ(W (k rn), k ∈ N0)-measurable. In particular, if u ∈ Un
and t ≥ 0, then the random variable u(t) can be represented as

u(t)(ω) = θ
(
bnr tc,W (0)(ω), . . . ,W (bnr tc)(ω)

)
, ω ∈ Ω,

where θ is some Γ-valued Borel measurable function depending on u and n. For the

purpose of approximating the control problem of degree N we will use strategies in UN ·M
with M ∈ N. Let us write UN,M for UN ·M .

With the same dynamics and the same performance criterion as before, for each N ∈ N,
we introduce a family of value functions VN,M , M ∈ N, de�ned on [0, TN ]× CN by setting

(11) VN,M (t0, ψ) := inf
{
JN (t0, ψ, u) | u ∈ UN,M

}
.

We will refer to VN,M as the value function of degree (N,M). By construction, it holds

that VN (t0, ψ) ≤ VN,M (t0, ψ) for all (t0, ψ) ∈ [0, TN ] × CN . Hence, in estimating the

approximation error, we only need an upper bound for VN,M − VN .

As with VN , if the initial time t0 lies on the grid IN , then VN,M (t0, ψ) depends on ψ
only through its restriction ψ|[−r,0] ∈ C to the interval [−r, 0]. We write VN,M (t0, .) for this
function, too. The dynamics and costs, in this case, can again be represented by Equations

(8) and (9), respectively. And again, if t0 ∈ IN , we have VN,M (t0, φ) = VN,M (t0,LinN (φ))
for all φ ∈ C.

Propositions 5 and 6 state Bellman's Principle of Dynamic Programming for the value

functions VN and VN,M , respectively. The special case when the initial time as well as the

time step lie on the grid IN is given separately, as it is this representation which will be

used in the approximation result; see the proof of Theorem 2.

Proposition 5. Assume (A1) � (A3). Let t0 ∈ [0, TN ], ψ ∈ CN . Then for t ∈ [0, TN−t0],

VN (t0, ψ) = inf
u∈U

E
(∫ t

0
fN
(
t0+s,ΠN (Zu)(s), u(s)

)
ds + VN

(
t0+t,ΠN (Zu)(t)

))
,
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where Zu is the solution to Equation (5) of degree N under control process u and with

initial condition (t0, ψ). If t0 ∈ IN and t ∈ IN ∩ [0, TN−t0], then

VN (t0, φ) = inf
u∈U

E
(∫ t

0
f
(
t0+bscN ,LinN (ZubscN

), u(s)
)
ds + VN

(
t0+t,LinN (Zut )

))
,

where VN (t0, .), VN (t0+t, .) are de�ned as functionals on C, and φ is the restriction of ψ

to the interval [−r, 0].

Proof. Apply Theorem 6 in Appendix A.1. To this end, let Ũ be the set of strategies U
and set r̃ := r + hN , T̃ := TN , b̃ := bN , σ̃ := σN , f̃ := fN , and g̃ := gN . Observe that

Equation (5) describes the same dynamics as Equation (12), that J̃ = JN , whence VN = Ṽ ,

and verify that the hypotheses of Appendix A.1 are satis�ed.

Proposition 6. Assume (A1) � (A3). Let t0 ∈ [0, TN ], ψ ∈ CN . Then for t ∈ IN ·M ∩
[0, TN−t0]

VN,M (t0, ψ) = inf
u∈UN,M

E
(∫ t

0
fN
(
t0+s,ΠN (Zu)(s), u(s)

)
ds + VN,M

(
t0+t,ΠN (Zu)(t)

))
,

where Zu is the solution to Equation (5) of degree N under control process u and with

initial condition (t0, ψ). If t0 ∈ IN and t ∈ IN ∩ [0, TN−t0], then

VN,M (t0, φ) = inf
u∈UN,M

E
(∫ t

0
f
(
t0+bscN ,LinN (ZubscN

), u(s)
)
ds + VN,M

(
t0+t,LinN (Zut )

))
,

where VN,M (t0, .), VN,M (t0+t, .) are de�ned as functionals on C, and φ is the restriction

of ψ to the interval [−r, 0].

Proof. Apply Theorem 6 of Appendix A.1 as in the proof of Proposition 5, except for the

fact that we choose UN,M = UN ·M instead of U as the set of strategies Ũ . Notice that, by
hypothesis, the intermediate time t lies on the grid IN ·M .

The next result gives a bound on the order of the global approximation error between

the value functions of degree N and (N,M) provided that the local approximation error

is of order greater than one in the discretisation step.

Theorem 2. Assume (A1) � (A3). Let N,M ∈ N. Suppose that for some constants

K̂, δ > 0 the following holds: for any t0 ∈ IN , φ ∈ C, u ∈ U there is ū ∈ UN,M such that

E
(∫ hN

0
f
(
t0,LinN (φ), ū(s)

)
ds+ VN (t0+hN , Z̄hN

)
)

≤ E
(∫ hN

0
f
(
t0,LinN (φ), u(s)

)
ds+ VN (t0+hN , ZhN

)
)

+ K̂ h1+δ
N ,

(∗)

where Z is the solution to Equation (5) of degree N under control process u, Z̄ the solution

to Equation (5) of degree N under ū, both with initial condition (t0, ψ) for some ψ ∈ CN
such that ψ|[−r,0] = φ. Then∣∣VN,M (t0, φ)− VN (t0, φ)

∣∣ ≤ T K̂ hδN for all t0 ∈ IN , φ ∈ C.
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Proof. Let N,M ∈ N. Recall that VN,M ≥ VN by construction. It is therefore enough to

prove the upper bound for VN,M − VN . Suppose Condition (∗) is ful�lled for N,M and

some constants K̂, δ > 0. Observe that VN (TN , .) = g(LinN (.)) = VN,M (TN , .).
Let t0 ∈ IN \ {TN}. Let φ ∈ C, and choose any ψ ∈ CN such that ψ|[−r,0] = φ. Given

ε > 0, in virtue of Proposition 5, we �nd a control process u ∈ U such that

VN (t0, φ) ≥ E
(∫ hN

0
f
(
t0,LinN (φ), u(s)

)
ds + VN

(
t0+hN ,LinN (ZhN

)
))

− ε,

where Z is the solution to Equation (5) of degree N under control process u with initial

condition (t0, ψ). For this u, choose ū ∈ UN,M according to (∗), and let Z̄ be the solution

to Equation (5) of degree N under control process ū with the same initial condition as for

Z. Then, using the above inequality and Proposition 6, we see that

VN,M (t0, φ)− VN (t0, φ)

≤ VN,M (t0, φ) − E
(∫ hN

0
f
(
t0,LinN (φ), u(s)

)
ds + VN

(
t0+hN ,LinN (ZhN

)
))

+ ε

≤ E
(∫ hN

0
f
(
t0,LinN (φ), ū(s)

)
ds + VN,M

(
t0+hN ,LinN (Z̄hN

)
))

+ ε

− E
(∫ hN

0
f
(
t0,LinN (φ), u(s)

)
ds + VN

(
t0+hN ,LinN (ZhN

)
))

= E
(∫ hN

0
f
(
t0,LinN (φ), ū(s)

)
ds + VN

(
t0+hN ,LinN (Z̄hN

)
))

− E
(∫ hN

0
f
(
t0,LinN (φ), u(s)

)
ds + VN

(
t0+hN ,LinN (ZhN

)
))

+ E
(
VN,M

(
t0+hN ,LinN (Z̄hN

)
)
− VN

(
t0+hN ,LinN (Z̄hN

)
))

+ ε

≤ K̂ h1+δ
N + sup

φ̃∈C

{
VN,M (t0+hN , φ̃)− VN (t0+hN , φ̃)

}
+ ε,

where in the last line Condition (∗) has been exploited. Since ε > 0 was arbitrary and

neither the �rst nor the last line of the above inequalities depend on u or ū, it follows that

for all t0 ∈ IN \ {TN},

sup
φ∈C

{
VN,M (t0, φ)− VN (t0, φ)

}
≤ K̂ h1+δ

N + sup
φ∈C

{
VN,M (t0+hN , φ)− VN (t0+hN , φ)

}
.

Recalling the equality VN,M (TN , .) = VN (TN , .), we conclude that for all t0 ∈ IN ,

sup
φ∈C

{
VN,M (t0, φ)− VN (t0, φ)

}
≤ 1

hN
(TN−t0) K̂ h1+δ

N ≤ T K̂ hδN ,

which yields the assertion.

Statement and proof of Theorem 2 should be compared to Theorem 7 in Falcone and

Rosace (1996). We note, though, that the deterministic analogue of Condition (∗) in
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Theorem 2 is weaker than the corresponding conditions (37) and (38) in Falcone and

Rosace (1996). In particular, it is not necessary to require that any controlled process Z

can be approximated with local error of order h1+δ by some process Z̄ using only control

processes which are piece-wise constant in time on a grid of width h. In the stochastic

case, such a requirement would in general be too strong to be satis�able.

In order to be able to apply Theorem 2, we must check whether and how Condition (∗)
can be satis�ed. Given a grid of width r

N for the discretisation in time and segment space,

we would expect the condition to be ful�lled provided we choose the sub-grid for the piece-

wise constant controls �ne enough; that is, the time discretisation of the control processes

should be of degree M with M su�ciently big in comparison to N . Indeed, if we choose

M of any order greater than three in N , then Condition (∗) holds. This is the content of
Theorem 3. The theorem, in turn, relies on a kind of mean value theorem, due to Krylov,

which we cite as Theorem 7 in Appendix A.3.

Theorem 3. Assume (A1) � (A4). Let β > 3. Then there is a number K̂ > 0 depending

only on K, r, L, T , the dimensions and β such that Condition (∗) in Theorem 2 is satis�ed

with constants K̂ and δ := β−3
4 for all N,M ∈ N such that N ≥ r and M ≥ Nβ.

Proof. Let N,M ∈ N be such that N ≥ r and M ≥ Nβ . Let t0 ∈ IN , φ ∈ C. De�ne the
following functions:

b̃ : Γ → Rd, b̃(γ) := b
(
t0,LinN (φ), γ

)
,

σ̃ : Γ → Rd×d1 , σ̃(γ) := σ
(
t0,LinN (φ), γ

)
,

f̃ : Γ → R, f̃(γ) := f
(
t0,LinN (φ), γ

)
,

g̃ : Rd → Rd, g̃(x) := VN
(
t0+hN ,LinN (S(φ, x))

)
,

where S(φ, x) is the function in C given by

S(φ, x) : [−r, 0] 3 s 7→

φ(s+hN ) if s ∈ [−r,−hN ],

φ(0) + s+hN
hN

x if s ∈ (−hN , 0].

As a consequence of Assumption (A4), b̃, σ̃, f̃ as just de�ned are continuous functions

on (Γ, ρ). By Assumption (A2), |b̃|, |σ̃|, |f̃ | are all bounded by K. As a consequence of

Proposition 4, the function g̃ is Lipschitz continuous and for the Lipschitz constant we

have

sup
x,y∈Rd,x 6=y

|g̃(x)− g̃(y)|
|x− y|

≤ 3L(T+1) exp
(
3T (T+4d1)L2

)
.

Let u ∈ U , and let Zu be the solution to Equation (5) of degree N under control process

u with initial condition (t0, ψ) for some ψ ∈ CN such that ψ|[−r,0] = φ. As Z also satis�es

Equation (8), we see that

Zu(t)− φ(0) =
∫ t

0
b̃
(
u(s)

)
ds +

∫ t

0
σ̃
(
u(s)

)
dW (s) for all t ∈ [0, hN ].
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By Theorem 7 in Appendix A.3, we �nd ū ∈ UN,M such that

E
(∫ hN

0
f̃
(
ū(s)

)
ds+ g̃

(
X ū(hN )

))
− E

(∫ hN

0
f̃
(
u(s)

)
ds+ g̃

(
Zu(hN )−φ(0)

))
≤ C̄(1+hN )

( r

N ·M

) 1
4

(( r

N ·M

) 1
4 sup
γ∈Γ

|f̃(γ)| + sup
x,y∈Rd,x 6=y

|g̃(x)− g̃(y)|
|x− y|

)
,

where X ū satis�es

X ū(t) =
∫ t

0
b̃
(
ū(s)

)
ds +

∫ t

0
σ̃
(
ū(s)

)
dW (s) for all t ≥ 0.

Notice that the constant C̄ above only depends on K and the dimensions d and d1. Let Z
ū

be the solution to Equation (5) of degree N under control process ū with initial condition

(t0, ψ), where ψ|[−r,0] = φ as above. Then, by construction, Z ū(t) − φ(0) = X ū(t) for all
t ∈ [0, hN ]. Set

K̂ := 2C̄ r−
β
4
(
K + 3L(T+1) exp

(
3T (T+4d1)L2

))
.

Since M ≥ Nβ by hypothesis, 1+β
4 = 1+δ > 1 and hN = r

N , we have

r
1
4 (N ·M)−

1
4 ≤ r

1
4 ·N− 1+β

4 = r−
β
4 · h1+δ

N .

Recalling the de�nition of the coe�cients b̃, σ̃, f̃ , g̃, we have thus found a piece-wise

constant strategy ū ∈ UN,M such that

E
(∫ hN

0
f
(
t0,LinN (φ), ū(s)

)
ds+ VN

(
t0+hN , Z ūhN

))
≤ E

(∫ hN

0
f
(
t0,LinN (φ), u(s)

)
ds+ VN

(
t0+hN , ZuhN

))
+ K̂ h1+δ

N ,

where Zu, Z ū are the solutions corresponding to u and ū, respectively, as above.

We note that the constant K̂ appearing in Theorem 3 and its proof depends on β only

through the factor r−
β
4 . Moreover, K̂ also depends on the delay length r only through

the factor r−
β
4 . Theorem 2 and Theorem 3, together with the above observation, yield

the following bound on the di�erence between the value functions of degree N and degree

(N,M), respectively.

Corollary 2. Assume (A1) � (A4). Then there is a positive constant K̄ depending only on

K, L, T and the dimensions such that for all β > 3, all N ∈ N with N ≥ r, all M ∈ N
with M ≥ Nβ, all t0 ∈ IN , all φ ∈ C it holds that∣∣VN,M (t0, φ)− VN (t0, φ)

∣∣ ≤ K̄ r−
β
4

( r
N

)β−3
4
.

In particular, with M = dNβe, where dxe is the least integer not smaller than x, the upper

bound on the discretisation error can be rewritten as∣∣VN,dNβe(t0, φ)− VN (t0, φ)
∣∣ ≤ K̄ r

− β
1+β

( r

N1+β

) β−3
4(1+β)

.
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From Corollary 2 we see that, in terms of the total number of time steps NdNβe, we
can achieve any rate of convergence smaller than 1

4 by choosing the sub-discretisation order

β su�ciently large.

5 Overall discretisation error

Here, we put together the error bounds from Sections 3 and 4 in order to obtain an overall

estimate for the rate of convergence, that is, a bound on the discretisation error incurred

in passing from the original value function to the value function of degree (N,M). In

addition, we address the question of whether and in which sense nearly optimal strategies

for the discrete problems can be used as nearly optimal strategies for the original system.

Finally, we brie�y discuss the question of how to numerically compute the value functions

of degree (N,M).
Let us return to the overall discretisation error. As in Corollary 2, we express the

error bound in terms of the total number of discretisation steps or, taking into account the

presence of the delay length r, in terms of the length of the time step.

Theorem 4. Assume (A1) � (A4). Let α > 0, LH > 0. Then there is a constant C̄

depending only on α, LH , L, K, T and the dimensions such that for all β > 3, all N ∈ N
with N ≥ 2r, all t0 ∈ IN , all α-Hölder continuous φ ∈ C with Hölder constant not greater

than LH , it holds that, with h = r
N1+β ,

∣∣V (t0, φ)− VN,dNβe(t0, φ)
∣∣ ≤ C̄

(
r

α·β
1+β h

α
1+β ∨ r

β
2(1+β)

√
ln
(

1
h

)
h

1
2(1+β) + r

− β
1+β h

β−3
4(1+β)

)
.

In particular, with β = 5 and h = r
N6 , it holds that

∣∣V (t0, φ)− VN,N5(t0, φ)
∣∣ ≤ C̄

(
r

5α
6 h

2α−1
12 ∨ r

5
12

√
ln
(

1
h

)
+ r−

5
6

)
h

1
12 .

Proof. Clearly, |V −VN,dNβe| ≤ |V −VN |+ |VN −VN,dNβe|. The assertion now follows from

Corollary 2 and Theorem 1, where ln( 1
hN

) = ln(Nr ) is bounded by ln(N
1+β

r ) = ln( 1
h).

The choice β = 5 in Theorem 4 yields the same rate for both summands in the error

estimate provided the initial segment is at least 1
2 -Hölder continuous, because

1
2 = β−3

4

implies β = 5. Thus, the best overall error bound we obtain without additional assumptions

is of order h1/12 up to neglecting the logarithmic term.

The rate 1
12 is a worst-case estimate. Moreover, it is easy to obtain better error bounds

in special situations. Suppose, for instance, that the space of control actions Γ is �nite and

the di�usion coe�cient σ is not directly controlled, that is, σ(t, φ, γ) does not vary with

γ ∈ Γ. In this case, in order to �nd a bound on the local approximation error, it is enough

to have a �mean value theorem�, analogous to Theorem 7 in Appendix A.3, for processes of

the form Xu(t) :=
∫ t
0 b̃
(
u(s)

)
ds+ σ̃ W (t), where u is a strategy from U or Un. The �mean

value� error is seen to be of order ( rn)1/2, instead of ( rn)1/4 as in Theorem 7. Thus, when
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Γ is �nite and σ not directly controlled, we have a bound on the overall error of order h1/6

times a logarithmic factor.

Recall that VN,M ≥ VN for all N,M ∈ N by construction. If, instead of the two-sided

error bound of Theorem 4, we were merely interested in obtaining an upper bound for V ,

we would simply compute VN,M with M = 1. Theorem 1 implies that we would incur an

error of order nearly 1
2 ; that is, we would have

V ≤ VN,1 + constant×
√

ln(N)
N

for all N ∈ N, N ≥ 2r,

where the initial segments are supposed to be at least 1
2 -Hölder continuous. This direction,

however, is the less informative one, since we do not expect the minimal costs for the

discretised system to be lower than the minimal costs for the original system.

Up to this point, we have been concerned with convergence of value functions only. A

natural question to ask is the following: Suppose we have found a strategy ū ∈ UN,M which

is ε-optimal for the control problem of degree (N,M) under initial condition (t0, φ). Will

this same strategy ū also be nearly optimal for the original control problem?

The hypothesis that ū be ε-optimal for the problem of degree (N,M) under initial

condition (t0, φ) means that JN (t0, φ, ū)−VN,M (t0, φ) ≤ ε. Recall that the cost functional

for the problem of degree (N,M) is identical to the one for the problem of degree N ,

namely JN , and that, by construction, JN ≥ VN,M ≥ VN over the set of strategies UN,M .

The strategy ū is nearly optimal for the original control if there is ε̃ which must be small for

ε small and N,M big enough such that J(t0, φ, ū)− V (t0, φ) ≤ ε̃. Recall that UN,M ⊂ U ,
whence J(t0, φ, ū) is well-de�ned. The next theorem states that nearly optimal strategies

for the approximating problems are indeed nearly optimal for the original problem, too.

Theorem 5. Assume (A1) � (A4). Let α > 0, LH > 0. Then there is a constant C̄r

depending only on α, LH , L, K, T , the dimensions and the delay length r such that for

all β > 3, all N,M ∈ N with N ≥ 2r and M ≥ Nβ, all t0 ∈ IN , all α-Hölder continuous

φ ∈ C with Hölder constant not greater than LH the following holds:

If ū ∈ UN,M is such that JN (t0, φ, ū)− VN,M (t0, φ) ≤ ε, then, with h = r
N1+β ,

J(t0, φ, ū)− V (t0, φ) ≤ C̄r

(
h

α
1+β ∨

√
ln
(

1
h

)
h

1
2(1+β) + h

β−3
4(1+β)

)
+ ε.

Proof. Let ū ∈ UN,M be such that JN (t0, φ, ū)− VN,M (t0, φ) ≤ ε. Then

J(t0, φ, ū)− V (t0, φ)

≤ J(t0, φ, ū)− JN (t0, φ, ū) + JN (t0, φ, ū)− VN,M (t0, φ) + VN,M (t0, φ)− V (t0, φ)

≤ sup
u∈U

∣∣J(t0, φ, u)− JN (t0, φ, u)
∣∣ + ε + VN,M (t0, φ)− V (t0, φ).

The assertion is now a consequence of Theorem 1 and Theorem 4.
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Let us suppose we have found a strategy ū for the problem of degree (N,M) with �xed

initial condition (t0, φ) ∈ IN ×C which is ε-optimal or optimal and a feedback control. The

latter means here that ū can be written in the form

ū(t)(ω) = ū0

(
btcN ·M ,ΠN (Zu)(btcN ·M )(ω)

)
for all ω ∈ Ω, t ≥ 0,

where Zu is the solution to Equation (8) under control ū and initial condition (t0, φ)
and ū0 is some measurable Γ-valued function de�ned on [0,∞) × CN or, because of the

discretisation, on {k r
N ·M | k ∈ N0} ×Rd(N ·M+M+1). We would like to use ū0 as a feedback

control for the original system. It is not clear whether this is possible unless one assumes

some regularity like Lipschitz continuity of ū0 in its segment variable. The problem is that

we have to replace solutions to Equation (8) with solutions to Equation (2).

Something can be said, though. Recall the de�nition of UN,M at the beginning of

Section 4. Strategies in UN,M are not only piece-wise constant, they are also adapted to

the �ltration generated by W (k r
N ·M ), k ∈ N0. Thus, if ū ∈ UN,M is a feedback control,

then it can be re-written as

ū(t)(ω) = ū1

(
btcN ·M ,W (btcN ·M−k r

N ·M )(ω), k = 0, . . . , (N+1)M
)
, ω ∈ Ω, t ≥ 0,

where ū1 is some measurable Γ-valued function depending on the initial condition (t0, φ)
and de�ned on {k r

N ·M | k ∈ N0}×RdN,M with dN,M := d(N·M+M+1). The above equality
has to be read keeping in mind the convention that W (t) = 0 if t < 0. The function ū1

can be used as a feedback control for the original problem as it directly depends on the

underlying noise process, which is the same for the control problem of degree (N,M) and
the original problem. By Theorem 5 we know that ū1 induces a nearly optimal strategy

for the original control problem provided ū was nearly optimal for the discretised problem.

We now turn to the question of how to compute the discretised value functions. The

value function of degree (N,M) is the value function of a �nite-dimensional optimal control

problem in discrete time. One time step corresponds to a step of length r
N ·M in contin-

uous time. The noise component of the control problem of degree (N,M) is given by a

�nite sequence of independent Gaussian random variables with mean zero and variance
r

N ·M , because the time horizon is �nite and the strategies in UN,M are not only piece-wise

constant, but also adapted to the �ltration generated by W (k r
N ·M ), k ∈ N0.

By construction of the approximation to the dynamics in Section 3, the segment space

for the problem of degree (N,M) is the subspace of CN consisting of all functions which

are piece-wise linear relative to the grid {k r
N ·M | k ∈ Z} ∩ [−r− r

N , 0]. The segment space

of degree (N,M), therefore, is �nite-dimensional and isomorphic to RdN,M with dN,M =
d(N ·M+M+1). The functions of interest are actually those whose nodes are multiples of
r
N units of time apart, but in each step of the evolution the segment functions (and their

nodes) get shifted in time by r
N ·M units.

Theoretically, the Principle of Dynamic Programming as expressed in Proposition 6

could be applied to compute the value function VN,M . Practically, however, it is not
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possible to use an algorithm based on directly applying one-step Dynamic Programming.

This di�culty arises, because the state space of the controlled discrete-time Markov chains

we are dealing with is RdN,M and the (semi-)discrete value function VN,M is de�ned on

IN ·M × RdN,M or, in the fully discrete case, on a dN,M -dimensional grid. In view of Theo-

rem 4, the dimension dN,M is expected to be very large so that storing the values of VN,M

for all initial conditions � as required by the Dynamic Programming method � becomes

impossible.

The situation, however, is not as desperate as it might seem. Recall that VN,M is an

approximation of the value function VN constructed in Section 3, which in turn approx-

imates V , the value function of the original problem. For any initial time t0 ∈ IN , the

function VN (t0, .) is de�ned on RdN with dN := d(N+1). An approximation to VN can

be computed by backward iteration starting from time TN and proceeding in time steps

of length r
N . To compute VN (t0− r

N , φ) when V (t0, .) is available and t0 ∈ IN , an �inner�

backward iteration can be performed over the grid {t0− r
N + k r

N ·M | k = 0, . . . ,M}. The
computational complexity of one time step of length r

N ·M according to the PDP is not

greater than in the case of dynamics and costs without delay, except for the more costly

evaluation of the value function at the �rst step of the backward iteration.

A di�erent approach is linked to the observation that Monte Carlo simulation of tra-

jectories of the state process as given by Equation (2) or, in the discretised version, by

Equation (8) with piece-wise constant controls is feasible even for extremely �ne time

grids. In this respect, a method recently introduced by Rogers (2006) for computing value

functions of high-dimensional discrete-time Markovian optimal control problems may be

useful. The method is based on path-wise optimisation and Monte Carlo simulation of

trajectories of a reference Markov chain. It uses minimisation over functions which can be

interpreted as candidates for the value function. If those candidates can be chosen from a

computationally �nice� class, then the value function can be computed at any given point

without the need to store its values for the entire state space. Unlike schemes directly em-

ploying the PDP, Rogers's method does not yield an approximation of the value function

over the entire state space, but only its value at a given initial point.

A Appendix

A.1 Bellman's Principle of Optimality

Let ((Ω,F ,P), (Ft),W ) be a Wiener basis of dimension d1. Let U be the associated set

of control processes. For n ∈ N, de�ne the set Un ⊂ U of piece-wise constant strategies

according to (10) at the beginning of Section 4. Let Ũ be either U or Un for some n ∈ N.
Let r̃ > 0 and set C̃ := C([−r̃, 0],Rd). If Y is an Rd-valued process, then the notation Yt

in this subsection denotes the segment of length r̃. We introduce the following hypotheses:

(H1) Measurability: b̃ : [0,∞)×C̃×Γ → Rd, σ̃ : [0,∞)×C̃ → Rd×d1 , f̃ : [0,∞)×C̃×Γ → R,
g̃ : C̃ → R are Borel measurable functions.
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(H2) Boundedness: |b̃|, |σ̃|, |f̃ |, |g̃| are bounded by some positive constant K.

(H3) Uniform Lipschitz condition: there is a constant L > 0 such that for all φ, ψ ∈ C̃, all
t ≥ 0, all γ ∈ Γ

|b̃(t, φ, γ)− b̃(t, ψ, γ)| ∨ |σ̃(t, φ, γ)− σ̃(t, ψ, γ)| ≤ L ‖φ− ψ‖,

|f̃(t, φ, γ)− f̃(t, ψ, γ)| ∨ |g̃(φ)− g̃(ψ)| ≤ L ‖φ− ψ‖.

Let T̃ > 0. De�ne the cost functional J̃ on [0, T̃ ]× C̃ × U by

J̃(t0, ψ, u) := E

(∫ T̃−t0

0
f̃
(
t0+s, Ys, u(s)

)
ds + g̃

(
YT̃−t0

))
,

where Y is the solution to the controlled SDDE

(12) Y (t) =

ψ(0) +
∫ t
0 b̃
(
t0+s, Ys, u(s)

)
ds +

∫ t
0 σ̃
(
t0+s, Ys, u(s)

)
dW (s), t > 0,

ψ(t), t ∈ [−r̃, 0].

De�ne the associated value function Ṽ : [0, T̃ ]× C̃ → R by

Ṽ (t0, ψ) := inf
{
J̃(t0, ψ, u) | u ∈ Ũ

}
.

Observe that Ṽ thus de�ned gives the minimal costs over the set U of all control processes or

just over a set of strategies which are piece-wise constant relative to the grid {k rn | k ∈ N0}
for some n ∈ N, depending on the choice of Ũ . The following property of Ṽ is useful.

Proposition 7. Assume (H1) � (H3). Let Ṽ be the value function de�ned above. Then Ṽ

is bounded and Lipschitz continuous in the segment variable uniformly in the time variable.

More precisely, |Ṽ | is bounded by K(T̃+1) and for all t0 ∈ [0, T̃ ], all φ, ψ ∈ C̃,

|Ṽ (t0, φ)− Ṽ (t0, ψ)| ≤ 2
√

2L(T̃+1) exp
(
3T̃ (T̃+ 4d1)L2

)
‖φ− ψ‖.

Proof. Boundedness of Ṽ is an immediate consequence of its de�nition and Hypothe-

sis (H2). Let t0 ∈ [0, T̃ ], let φ, ψ ∈ C̃. Recall the inclusion Ũ ⊂ U and observe that,

in virtue of the de�nition of Ṽ , we have

|Ṽ (t0, φ)− Ṽ (t0, ψ)| ≤ sup
u∈U

|J̃(t0, φ, u)− J̃(t0, ψ, u)|.

By Hypothesis (H3), for all u ∈ U we get

|J̃(t0, φ, u)− J̃(t0, ψ, u)|

≤ E

(∫ T̃−t0

0

∣∣f̃(t0+s,Xu
s , u(s)

)
− f̃

(
t0+s, Y u

s , u(s)
)∣∣ds +

∣∣g̃(Xu
T̃−t0

)
− g̃
(
Y u
T̃−t0

)∣∣)

≤ L(1 + T̃−t0) E

(
sup

t∈[−r̃,T̃ ]

|Xu(t)− Y u(t)|2
) 1

2

,
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where Xu, Y u are the solutions to Equation (12) under control process u with initial

conditions (t0, φ) and (t0, ψ), respectively. Now, for every T ∈ [0, T̃ ],

E

(
sup

t∈[−r̃,T ]
|Xu(t)− Y u(t)|2

)
≤ 2E

(
sup
t∈[0,T ]

|Xu(t)− Y u(t)|2
)

+ 2‖φ− ψ‖2,

while Hölder's inequality, Doob's maximal inequality, Itô's isometry, Fubini's theorem and

Hypothesis (H3) together yield

E

(
sup
t∈[0,T ]

|Xu(t)− Y u(t)|2
)

≤ 3|φ(0)− ψ(0)|2 + 3T E
(∫ T

0

∣∣∣b̃(t0+s,Xu
s , u(s)

)
− b̃
(
t0+s, Y u

s , u(s)
)∣∣∣2ds)

+ 3d1

d∑
i=1

d1∑
j=1

E

(
sup
t∈[0,T ]

(∫ t

0

(
σ̃ij
(
t0+s,Xu

s , u(s)
)
− σ̃ij

(
t0+s, Y u

s , u(s)
))
dW j(s)

)2
)

≤ 3|φ(0)− ψ(0)|2 + 3T L2

∫ T

0
E
(
|Xu

s − Y u
s |2
)
ds

+ 12d1 E

(∫ T

0

d∑
i=1

d1∑
j=1

(
σ̃ij
(
t0+s,Xu

s , u(s)
)
− σ̃ij

(
t0+s, Y u

s , u(s)
))2

ds

)

≤ 3|φ(0)− ψ(0)|2 + 3(T+ 4d1)L2

∫ T

0
E
(

sup
t∈[−r̃,s]

|Xu(t)− Y u(t)|2
)
ds.

Since |φ(0)−ψ(0)| ≤ ‖φ− ψ‖, Gronwall's lemma gives

E

(
sup

t∈[−r̃,T̃ ]

|Xu(t)− Y u(t)|2
)

≤ 8‖φ− ψ‖2 exp
(
6T̃ (T̃+ 4d1)L2

)
.

Putting the estimates together, we obtain the assertion.

Recall that the the value function Ṽ has been de�ned over the set of strategies Ũ . If

Ũ = U set Ĩ := [0,∞), else if Ũ = Un set Ĩ := {k rn | k ∈ N0}. The following version of

Bellman's Principle of Optimality or Principle of Dynamic Programming holds.

Theorem 6 (PDP). Assume (H1) � (H3). Then for all t0 ∈ [0, T̃ ], all t ∈ Ĩ ∩ [0, T̃−t0],
all ψ ∈ C̃,

Ṽ (t0, ψ) = inf
u∈U

E
(∫ t

0
f̃
(
t0+s, Y u

s , u(s)
)
ds + Ṽ (t0+t, Y u

t )
)
,

where Y u is the solution to Equation (12) under control process u with initial condition

(t0, ψ).

Theorem 6 is proved in the same way as Theorem 4.2 in Larssen (2002), also see

the proof of Theorem 4.3.3 in Yong and Zhou (1999: p. 180). We merely point out the

26



di�erences in the problem formulation and the hypotheses. Here, all coe�cients, those

of the dynamics and those of the cost functional, are bounded, while Larssen (2002) also

allows for sub-linear growth. Since Equation (12) has unique solutions, boundedness of

the coe�cients guarantees that the cost functional J̃ as well as the value function Ṽ are

well de�ned. Notice that we express dependence on the initial time in a di�erent, but

equivalent way in comparison with Larssen (2002). Notice further that in Theorem 6 only

deterministic times appear.

We have stated the control problem and given Bellman's principle in the strong Wiener

formulation, cf. Section 2. Although the weak Wiener formulation is essential for the proof,

the resulting value functions are the same for both versions. This is due to the fact that

weak uniqueness holds for Equation (12). Also the in�mum in the dynamic programming

equation can be taken over all Wiener control bases or just over all control processes

associated with a �xed Wiener basis.

There are two respects in which our hypotheses are more general than those of The-

orem 4.2 in Larssen (2002). The �rst is that we do not require the integrand f̃ of the

cost functional to be uniformly continuous in its three variables. But this assumption is

not needed for the dynamic programming equation, while it is important for versions of

the Hamilton-Jacobi-Bellman partial di�erential equation. The second is that we allow

the optimisation problem to be formulated for certain subclasses of admissible strategies,

namely the subclasses Un of piece-wise constant strategies. The set of allowed intermediate

times must be chosen accordingly.

A.2 Moments of the modulus of continuity of Itô di�usions

A typical trajectory of standard Brownian motion is Hölder continuous of any order less

than one half. If such a trajectory is evaluated at two di�erent time points t1, t2 ∈ [0, T ]
with |t1−t2| ≤ h small, then the di�erence between the values at t1 and t2 is not greater than

a multiple of
√
h ln( 1

h), where the proportionality factor depends on the trajectory and

the time horizon T , but not on the choice of the time points t1, t2. This is a consequence

of Lévy's exact modulus of continuity for Brownian motion. The modulus of continuity

of a stochastic process is a random element. Lemma 1 below shows that the modulus of

continuity of Brownian motion and, more generally, that of any Itô di�usion with bounded

coe�cients have �nite moments of any order. The result can be found in Sªomi«ski (2001),

cf. Lemma A.4 there.

Lemma 1 (Sªomi«ski). Let W be a d1-dimensional Wiener process living on the probability

space (Ω,F ,P). Let Y = (Y (1), . . . , Y (d))
T
be an Itô di�usion of the form

Y (t) = y0 +
∫ t

0
b̃(s)ds +

∫ t

0
σ̃(s)dW (s), t ≥ 0,

where y0 ∈ Rd and b̃, σ̃ are (Ft)-adapted processes with values in Rd and Rd×d1 , respectively.

If |b̃|, |σ̃| are bounded by some positive constant K, then it holds that for every p > 0, every
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T > 0 there is a constant Cp,T depending only on K, the dimensions, p and T such that

E

(
sup

t,s∈[0,T ],|t−s|≤h

∣∣Y (t)− Y (s)
∣∣p) ≤ Cp,T

(
h ln( 1

h)
) p

2 for all h ∈ (0, 1
2 ].

It is enough to prove Lemma 1 for the special case of one-dimensional Brownian motion.

The full statement is then derived by a component-wise estimate and a time-change argu-

ment, cf. Theorem 3.4.6 in Karatzas and Shreve (1991: p. 174), for example. One way of

proving the assertion for Brownian motion is to follow the derivation of Lévy's exact modu-

lus of continuity as suggested in Exercise 2.4.8 of Stroock and Varadhan (1979). The main

ingredient there is an inequality due to Garsia, Rodemich, and Rumsey, see Theorem 2.1.3

in Stroock and Varadhan (1979: p. 47) and Garsia et al. (1970).

A.3 A stochastic mean value theorem due to Krylov

The theorem we cite here is a reduced version, adapted to our notation, of Theorem 2.7 in

Krylov (2001). It provides an estimate of the error in approximating constant-coe�cient

controlled Itô di�usions by di�usions with piece-wise constant strategies. The error is mea-

sured in terms of cost-functional-like expectations with Lipschitz (or Hölder) coe�cients;

see Section 1 in Krylov (2001) for a discussion of various error criteria.

Let ((Ω,F ,P), (Ft),W ) be a Wiener basis of dimension d1 in the sense of De�nition 1.

As above, let (Γ, ρ) be a complete and separable metric space, and denote by U the set

of all (Ft)-progressively measurable processes [0,∞) × Ω → Γ. For n ∈ N, let Un be the

subset of U given by (10). Thus, if ū ∈ Un, then ū is right-continuous and piece-wise

constant in time relative to the grid {k rn | k ∈ N0} and ū(t) is measurable with respect

to the σ-algebra generated by W (k rn), k = 0, . . . , btnr c. We have incorporated the delay

length r in the partition in order to be coherent with the notation of Section 4.

Let b̃ : Γ → Rd, σ̃ : Γ → Rd×d1 be continuous functions with |b̃|, |σ̃| bounded by K. For

u ∈ U denote by Xu the process

Xu(t) :=
∫ t

0
b̃
(
u(s)

)
ds +

∫ t

0
σ̃
(
u(s)

)
dW (s), t ≥ 0.

The next result provides an error estimate for the approximation of a process Xu, where

u ∈ U , by processes Xun , n ∈ N, where un ∈ Un, in terms of suitable cost functionals.

Theorem 7 (Krylov). Let T̄ > 0. There is a constant C̄ > 0 depending only on K and

the dimensions such that the following holds: For any n ∈ N such that n ≥ r, any bounded

continuous function f̃ : Γ → R, any bounded Lipschitz continuous function g̃ : Rd → R, any
u ∈ U there exists un ∈ Un such that

E

(∫ T̄

0
f̃
(
un(s)

)
ds+ g̃

(
Xun(T̄ )

))
− E

(∫ T̄

0
f̃
(
u(s)

)
ds+ g̃

(
Xu(T̄ )

))

≤ C̄(1+T̄ )
( r
n

) 1
4

(( r
n

) 1
4 sup
γ∈Γ

|f̃(γ)| + sup
x,y∈Rd,x 6=y

|g̃(x)− g̃(y)|
|x− y|

)
.
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Note that in Theorem 7 the di�erence between the two expectations may be inverted,

since we can take −f̃ in place of f̃ and −g̃ in place of g̃.
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