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On the convergence problem in Mean Field Games: a two state model without
uniqueness *

Alekos Cecchinf, Paolo Dai Pra*¥, Markus Fischer®, and Guglielmo Pelino¥

Abstract. We consider N-player and mean field games in continuous time over a finite horizon, where the
position of each agent belongs to {—1,1}. If there is uniqueness of mean field game solutions, e.g.
under monotonicity assumptions, then the master equation possesses a smooth solution which can
be used to prove convergence of the value functions and of the feedback Nash equilibria of the N-
player game, as well as a propagation of chaos property for the associated optimal trajectories. We
study here an example with anti-monotonous costs, and show that the mean field game has exactly
three solutions. We prove that the value functions converge to the entropy solution of the master
equation, which in this case can be written as a scalar conservation law in one space dimension,
and that the optimal trajectories admit a limit: they select one mean field game soution, so there is
propagation of chaos. Moreover, viewing the mean field game system as the necessary conditions for
optimality of a deterministic control problem, we show that the N-player game selects the optimizer
of this problem.

Key words. Mean field game, finite state space, jump Markov process, N-person games, Nash equilibrium,
master equation, propagation of chaos, non-uniqueness
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1. Introduction. In this paper, we study a simple yet illustrative example concerning the
convergence problem in finite horizon mean field games. Mean field games, as introduced by
J.-M. Lasry and P.-L. Lions and, independently, by M. Huang, R.P. Malhamé and P.E. Caines
(cf. [25, 22]), are limit models for symmetric non-cooperative many player dynamic games as
the number of players tends to infinity; see, for instance, the lecture notes [5] and the recent
two-volume work [8]. The notion of optimality adopted for the many player games is usually
that of a Nash equilibrium. The limit relation can then be made rigorous in two opposite
directions: either by showing that a solution of the limit model (the mean field game) induces
a sequence of approximate Nash equilibria for the N-player games with approximation error
tending to zero as N — oo, or by identifying the possible limit points of sequences of N-player
Nash equilibria, again in the limit as N — oo, as solutions, in some sense, of the limit model.
This latter direction constitutes the convergence problem in mean field games.

Important for the convergence problem is the choice of admissible strategies and the re-
sulting definition of Nash equilibrium in the many player games. For Nash equilibria defined
in stochastic open-loop strategies, the convergence problem is rather well understood, see
[18] and, especially, [23], both in the context of finite horizon games with general Brownian
dynamics. In [23], limit points of sequences of N-player Nash equilibria are shown to be con-
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2 A. CECCHIN, P. DAI PRA, M. FISCHER, AND G. PELINO

centrated on weak solutions of the corresponding mean field game. This concept of solution
is also used in another, more recent work by Lacker; see below.

Here, we are interested in the convergence problem for Nash equilibria in Markov feedback
strategies with full state information. A first result in this direction was given by Gomes,
Mohr, and Souza [19] in the case of finite state dynamics. There, convergence of Markovian
Nash equilibria to the mean field game limit is proved, but only if the time horizon is small
enough. A breakthrough was achieved by Cardaliaguet, Delarue, Lasry, and Lions in [7]. In
the setting of games with non-degenerate Brownian dynamics, possibly including common
noise, those authors establish convergence to the mean field game limit, in the sense of con-
vergence of value functions as well as propagation of chaos for the optimal state trajectories,
for arbitrary time horizon provided the so-called master equation associated with the mean
field game possesses a unique sufficiently regular solution. The master equation arises as the
formal limit of the Hamilton-Jacobi-Bellman systems determining the Markov feedback Nash
equilibria. It yields, if well-posed, the optimal value in the mean field game as a function of
initial time, state and distribution. It thus also provides the optimal control action, again as
a function of time, state, and measure variable. This allows, in particular, to compare the
prelimit Nash equilibria to the solution of the limit model through coupling arguments.

If the master equation possesses a unique regular solution, which is guaranteed under
the Lasry-Lions monotonicity conditions, then the convergence analysis can be considerably
refined. In this case, for games with finite state dynamics, Cecchin and Pelino [11] and,
independently, Bayraktar and Cohen [3] obtain a central limit theorem and large deviations
principle for the empirical measures associated with Markovian Nash equilibria. In [14, 15],
Delarue, Lacker, and Ramanan carry out the analysis, enriched by a concentration of measure
result, for Brownian dynamics without or with common noise.

Well-posedness of the master equation implies uniqueness of solutions to the mean field
game, given any initial time and initial distribution. Here, we study the convergence problem
in Markov feedback strategies for a simple example exhibiting non-uniqueness of solutions.
The model has dynamics in continuous time with players’ states taking values in {—1,1}.
Running costs only depend on the control actions, while terminal costs are anti-monotonic
with respect to the state and measure variable. Such an example was first considered by
Gomes, Velho, and Wolfram in [20, 21], where numerical evidence on the convergence behavior
was presented; it should also be compared to Lacker’s “illuminating example” (Subsection 3.3
in [23]) and to the example in Subsection 3.3 of [1] by Bardi and Fischer, both in the diffusion
setting. In the infinite time horizon and finite state case, an example of non-uniqueness is
studied in [13], via numerical simulations, where periodic orbits emerge as solutions to the
mean field game.

For the two-state example studied here, the mean field game possesses exactly three
solutions, given any initial distribution, as soon as the time horizon is large enough. Con-
sequently, there is no regular solution to the master equation, while multiple weak solutions
exist. For the N-player game, on the other hand, there is a unique symmetric Nash equilib-
rium in Markov feedback strategies for each N, determined by the Hamilton-Jacobi-Bellman
system. We show that the value functions associated with these Nash equilibria converge, as
N — 00, to a particular solution of the master equation. In our case, the master equation can
be written as a scalar conservation law in one variable (cf. Subsection 3.2). The (weak) solu-
tion that is selected by the N-player Nash equilibria can then be characterized as the unique
entropy solution of the conservation law. The entropy solution presents a discontinuity in the
measure variable (at the distribution that assigns equal mass to both states). Convergence of
the value functions is uniform outside any neighborhood of the discontinuity. We also prove
propagation of chaos for the N-player state processes provided that their averaged initial dis-
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ON THE CONVERGENCE IN MFG: A TWO STATE MODEL WITHOUT UNIQUENESS 3

tributions do not converge to the discontinuity. The proofs of convergence adapt arguments
from [11] based on the fact that the entropy solution is smooth away from its discontinuity,
as well as a qualitative property of the N-player Nash equilibria, which prevents crossing
of the discontinuity. The entropy solution property is actually not used in the proof. In
Subsection 3.6, we give an alternative characterization of the solution selected by the Nash
equilibria in terms of a variational problem based on the potential game structure of our
example. Potential mean field games have been studied in several works in the continuous
state setting, starting from [6] by Cardaliaguet, Graber, Porretta and Tonon.

Let us mention three recent preprints that are related to our paper. In [26], Nutz, San
Martin, and Tan address the convergence problem for a class of mean field games of optimal
stopping. The limit model there possesses multiple solutions, which are grouped into three
classes according to a qualitative criterion characterizing the proportion of players that have
stopped at any given time. Solutions in one of the three classes will always arise as limit
points of N-player Nash equilibria, solutions in the second class may be selected in the limit,
while solutions in the third class cannot be reached through N-player Nash equilibria. In
[24], Lacker attacks the convergence problem in Markov feedback strategies by probabilistic
methods. For a class of games with non-degenerate Brownian dynamics that may exhibit non-
uniqueness, the author shows that all limit points of the N-player feedback Nash equilibria
are concentrated, as in the open-loop case, on weak solutions of the mean field game. These
solutions are more general than randomizations of ordinary (“strong”) solutions of the mean
field game; their flows of measures, in particular, are allowed to be stochastic containing
additional randomness. Still, uniqueness in ordinary solutions implies uniqueness in weak
solutions, which permits to partially recover the results in [7]. The question of which weak
solutions can appear as limits of feedback Nash equilibria in a situation of non-uniqueness
seems to be mainly open. In [16], Delarue and Foguen Tchuendom study a class of linear-
quadratic mean field games with multiple solutions in the diffusion setting. They prove that
by adding a common noise to the limit dynamics uniqueness of solutions is re-established. As
a converse to this regularization by noise result, they identify the mean field game solutions
that are selected when the common noise tends to zero as those induced by the (unique weak)
entropy solution of the master equation of the original problem. The interpretation of the
master equation as a scalar conservation law works in their case thanks to a one-dimensional
parametrization of an a priori infinite dimensional problem. Limit points of N-player Nash
equlibria are also considered in [16], but in stochastic open-loop strategies. Again, the mean
field game solutions that are selected are those induced by the entropy solution of the master
equation. Interestingly, these solutions are not minimal cost solutions; indeed, the solution
which minimizes the cost of the representative player in the mean field game is shown to be
different from the ones selected by the limit of the Nash equilibria. In [16], the N-player
limit and the vanishing common noise limit both select two solutions of the original mean
field game with equal probability. This is due to the fact that in [16] the initial distribution
for the state trajectories is chosen to sit at the discontinuity of the unique entropy solution
of the master equation. In our case, we expect to see the same behavior if we started at the
discontinuity, see Section 4 below.

It is worth mentioning that the opposite situation, with respect to the one treated here,
is considered in the examples presented in [17] and in Section 7.2.5 of [8], Volume I. In these
examples, uniqueness of mean field game solutions holds, but there are multiple feedback
Nash equilibria for the N-player game. This is due to the fact that in both cases the authors
consider a finite action set (while for us it is continuous), so that in particular the Nash
system is not well-posed. They prove that there is a sequence of (feedback) Nash equilibria
which converges to the mean field game limit, but also a sequence that does not converge.
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4 A. CECCHIN, P. DAI PRA, M. FISCHER, AND G. PELINO

The rest of this paper is organized as follows. In Section 2, for a class of mean field and
N-player games with finite state space, we give the definition of N-player Nash equilibrium
and solution of the mean field game, and introduce the corresponding differential equations,
namely the N-player Hamilton-Jacobi-Bellman system, the mean field game system as well
as the associated master equation. Section 3 presents the two-state example, starting from
the limit model, analyzed first in terms of the mean field game system (Subsection 3.1), then
in terms of its master equation (Subsection 3.2). In Subsections 3.4 and 3.5 we show that
the N-player Nash equilibria converge to the unique entropy solution of the master equation;
cf. Theorems 8 and 11 below for convergence of value functions and propagation of chaos,
respectively. The qualitative property of the Nash equilibria used in the proofs of convergence
is in Subsection 3.3. Subsection 3.6 gives the variational characterization of the solution that
is selected by the Nash equilibria. Concluding remarks are in Section 4.

2. Mean field games with finite state space.

2.1. The N-player game. We consider the continuous time evolution of the states X;(t),
i=1,2,..., N, of N players; the state of each player belongs to a given finite set .. Players
are allowed to control, via an arbitrary feedback, their jump rates. For ¢ = 1,2,..., N and
y € X, we denote by a; : [0,T] x 2N — [0, 400) the rate at which player i jumps to the
state y € ¥: it is allowed to depend on the time ¢ € [0, 7], and on the state = = (x;)¥; of all
players. Denoting by A the set of functions [0, 7] x ¥¥ — [0, +-00) which are measurable and
locally integrable in time, we assume a; € A. So we write o € A:= A*, and let a¥ € AN
denote the controls of all players, and will be also called strategy vector. In more rigorous
terms, for a’¥ € AV the state evolution X; := (X;(t))XY, is a Markov process, whose law is
uniquely determined as solution to the martingale problem for the time-dependent generator

N
Lof(@) =YY" al(t,2) [ f([2',y]) - f(@)],

i=1yex

where

i 1 _ ) mj forj#i
[:D’y]]_{y for j = 1.

Now let

P(E)={me0,1]”: Y m, =1}
TEY

be the simplex of probability measures on ¥. To every € %V we associate the element of
P(X)

N
» 1
(21) miv’l = m Z 5xj.
=Lyt

Thus, mj)v(’i(t) = mj)v(: is the empirical measure of all the players except the i-th. Given the
functions

L:Yx[0,400)* 5 R, F:LxP(X) =R, G:XxPX) >R,

the feedback controls a” € AN and the corresponding process X (-), the cost associated to
the i-th player is given by

JN(aN) :=E l/OT [L(X,-(t), ol(t, X))+ F (Xi(t), m%i(t))] dt+ G (Xi(T), m%i(:r))] .
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ON THE CONVERGENCE IN MFG: A TWO STATE MODEL WITHOUT UNIQUENESS 5

For a strategy vector a¥ = (a!,..., o) € AN and 8 € A, denote by [a™~; 8] the perturbed
strategy vector given by

N,—i, o aj, .7 75,5
[O{ aﬂ]]'_{ﬁ’ j:Z

Definition 1. A strateqy vector ¥ is a Nash equilibrium for the N -player game if for each
i=1,...,N

TN (@) = it T (ja 7 )).
The search for a Nash equilibrium is based on the Hamilton-Jacobi equations that we now
briefly illustrate. Define the Hamiltonian H : ¥ x R* — R as the Legendre transform of L:

(2.2) H(z,p):= sup {—(a-p)s— L(x,a)},
a€l0,400)%=

with (a-p)y :== Z aypy. We will assume the supremum in (2.2) is attained at an unique

y7#
maximizer a*(x,p).

Given a function g : ¥ — R, we denote its first finite difference Ag(z) € R* by

Ag(z) = (9(y) — 9(2))yex -

When we have a function g : ¥V — R, we denote with A7g(x) € R* the first finite difference
with respect to the j-th coordinate. The Hamilton-Jacobi-Bellman system associated to the
above differential game is given by:

(2.3) —0 M @) = S 07 (g, ATONI) - AN H (g, AN = F (i, my )
' oN(T,x) = G (wz,mé\”) .

This is a system of N|X|" coupled ODE’s, indexed by i € {1,..., N} and € ©V, whose well-
posedness for all T' > 0 can be proved through standard ODEs techniques under regularity
assumptions which guarantee that a* and H are uniformly Lipschitz in their second variable.
Under these conditions, the N-player game has a unique Nash equilibrium given by the
feedback strategy a¥ € AN defined by

oV (t, @) = a*(z, AVi(t,®))  i=1,...,N.

2.2. The macroscopic limit: the mean field game and the master equation. The limit
as N — +oo of the N-player game admits two alternative descriptions, that we illustrate
here at heuristic level. Assuming the empirical measure of the process corresponding to the
Nash equilibrium obeys a Law of Large Numbers, i.e. it converges to a deterministic flow in
P(X), a representative player in the limit as N — +oo faces the following problem:

(i) the player controls its jump intensities oy, : [0,T] x X — [0, 400), y € X, via feedback

controls depending on time and on his/her own state;

(ii) For a given deterministic flow of probability measures m : [0,7] — P(X), the player

aims at minimizing the cost

(2.4)
J(a,m) :=E UOT [L(X (1), alt, X (1)) + F(X(t),m(t))] dt + G(X(T),m(T))
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6 A. CECCHIN, P. DAI PRA, M. FISCHER, AND G. PELINO

(iii) Denote by a*™ the optimal control for the above problem, and let (X*™(t));c[o01]
be the corresponding optimal process. The above-mentioned Law of Large Number
predicts that the flow (m(t))cjo,r) should be chosen so that the following consistency
relation holds:

m(t) = Law(X™™(t))
foe every t € [0, T].
This is implemented by coupling the HJB equation for the control problem with cost (2.4)
with the forward Kolmogorov equation for the evolution of the Law(X™*™(t)), obtaining the
so-called Mean Field Game System:

_%u(t’ :L‘) + H(:L’, Axu(t, $)) = F($a m(t))a
ma(t) = 5, my(t)ai(y, AVu(t, y)),
uw(T,z) = G(xz,m(T)),

mg (0) = Mg.0,

(MFG)

It is known, and largely exemplified in this paper, that well-posedness of (2.3) does not imply
uniqueness of solution to (MFG).

An alternative description of the macroscopic limit stems from the ansatz that the solution
of the Hamilton-Jacobi-Bellman system (2.3) is of the form

UNJ/ (t7 w) = UN (t? fo, m;]l:Vﬂ/)?

for some UY : [0,7] x £ x P(X) — R. Assuming UY admits a limit U as N — +oo, we
formally obtain that U solves the following equation, that will be referred to as the master
equation:
(MAS)
—%—Itj(t, x,m)+H (x,A"U(t,z,m))— [ D"U(t,z,m,y)-a*(y, AYU(t,y, m))dm(y)=F(x,m)
U(T,z,m) =G(x,m), (z,m)eXxP(X),

where the derivative D™U : [0,T] x ¥ x P(X) x ¥ — R* with respect to m € P(X) is defined
by

(2.5) (D™U(t, 2, m, y)]- = lim U(t,z,m + s(8, — ) — U(t, x,m)
. Y = 510 S .

We conclude this section by recalling that uniqueness in both (MFG) and (MAS) is guaranteed
if the cost function F' and G are monotone in the Lasry-Lions sense, i.e. for every m,m’ €
P(%),

(2.6) Z(F(x, m) — F(x,m'))(m, —m)) >0,

TEY
and the same for G. We are interested here in examples that violate this monotonicity
condition.

3. An example of non uniqueness. We consider now a special example within the class
of models described above. We let ¥ := {—1,1} be the state space. An element m € P(X)
can be identified with its mean m; — m_1; so from now we write m € [—1,1] to denote the
mean, while the element of P(X) will be denoted only in vector form (mji,m_;). We also
write o (t, ) for o’ , (t,x), i.e. the rate at which player i flips its state from z; to —w;.
Moreover we choose

L(z,a) = —, F(z,m) =0, G(z,m) := —mux.
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ON THE CONVERGENCE IN MFG: A TWO STATE MODEL WITHOUT UNIQUENESS 7

The final cost favors alignment with the majority, while the running cost is a simple quadratic
cost. Compared to condition (2.6), note that the final cost is anti-monotonic, as

Z(G(m,m) — G(z,m))(m, —ml) = —(m—m')?<0.
€Y

The associated Hamiltonian is given by

— 2
(3.1) H(x,p) = sup {ap_m — a;} = (P=s) ,
a>0

with a*(x,p) = pZ,, where p~ denotes the negative part of p. From now on, we identify p
with p_; € R and A*u with its non-zero component u(—z) — u(x).

3.1. The mean field game system. The first equation in (MFG), i.e the HJB equation
for the value function u(t, x), reads, using (3.1),

{—;tuozx) + 5 [(A%u(t,2) 7 =0

(38:2) (T,x) = —m(T)x

Now define z(t) := u(t, —1)—u(t, 1). Subtracting the equations (3.2) for z = £+1 and observing
that , ,
[(A%u(t, —1))7]" = [(A%u(t, 1)) 7] = 2|2,

we have that z(t) solves

. zlz
=Ty
(3.3) {AT%:

2m(T).

This equation must be coupled with the forward Kolmogorov equation, i.e. the second equa-
tion in (MFG), that reads rh = —m|z| 4 z. The mean field game system takes therefore the
form:

5 z|22\

m=—m|z|+ z
(3.4 2(T) = 2m(T)

m(0) = myg

Proposition 2. Let T'(mg) be the unique solution in [%, 2} of the equation

(2T — 1)%(T +4)
27T

Then, for every mgy € [—1,1] \ {0}, system (3.4) admits
(i) a unique solution for T < T(myg);
(ii) two distinct solutions for T =T (my);
(iii) three distinct solutions for T > T (my).
If mg =0, then T(0) = 1/2 and (3.4) admits
(i) a unique solution for T' < 1/2;
(ii) three distinct solutions for T > 1/2: the constant zero solution, (z4,m4), and
(z—,m_), where m4(t) = —m_(t) > 0 for every t € (0,T].

(3.5) |mo| =
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8 A. CECCHIN, P. DAI PRA, M. FISCHER, AND G. PELINO

Proof. Note that (3.3) can be solved as a final value problem, giving

2m(T)
3.6 z(t) = .
(36) ®) Im(T)|(T —t)+ 1
This can then be inserted in the forward Kolmogorov equation 1m = —m|z| + z, giving as

unique solution

Im(T|(T —t) +1
|m(T)|T + 1

(3.7 m(t) = (mo — sgu(m(1))) )+ senlm(T))

These are actually solutions of (3.4) if and only if the consistency relation obtained by setting
t =T in (3.7) holds, i.e. if and only if m(7T") = M solves

(3.8) T>M? +T(2 - T)M|M|+ (1 — 2T)M — mq = 0.

Moreover, distinct solutions of (3.8) correspond to distinct solutions of (3.4). We first look
for nonnegative solutions of (3.8). Set

F(M) :=T*M?+T(2—T)M?+ (1 —2T)M — my.

Note that

Fan<o e e (L7

T 3T

If T < 5 then f is strictly increasing in (0, 400), so the equation f(M) = 0 admits a unique
nonnegative solution if mg > 0, otherwise there is no nonnegative solution. If T" > %, then
f restricted to (0,400) has a global minimum at M* = % If mo > 0 then there is still
a unique nonnegative solution, while for mg = 0 there are two nonnegative solution, one of
which is zero. If, instead, mo < 0, so that f(0) > 0, the equation f(M) = 0 has zero, one
or two nonnegative solutions, depending on whether f(M*) > 0, f(M*) =0 or f(M*) <0
respectively. Observing that

(2T — 1)%(T + 4)

f(M*) = —mg — 07T , ]

we see that those three alternatives occur if T' < T'(myg), T = T(mo) and T > T(myg)
respectively. The case M < 0 is treated similarly.

3.2. The Master Equation. Identifying again a probability on ¥ with its mean m, using
the expression for H and its minimizer given in (3.1), the Master Equation (MAS) takes the
form

(4, m) +3 (AU ,m)) ™| = DU 2m, 1) (ATU (1, 1,m)) ™ e
(3.9) —D"U(t,z,m, —1) (A*U(t, —1,m))” 152 = F(z,m),
UT,z,m)=G(z,m), (z,m)e{-1,1}x[-1,1].

In (3.9), the derivative D™U is still intended in the sense introduced in (2.5), but identifying
the resulting vector with its non-zero component (e.g. DU (t,z,m,1) = [D™U(t,z,m,1)| 4
= WU (t,z,m)). Similarly, we identify the vector A*U with its non-zero component.

Setting
Z(t,m) =U(T —t,—1,m)—-U(T —t,1,m),
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ON THE CONVERGENCE IN MFG: A TWO STATE MODEL WITHOUT UNIQUENESS 9

we easily derive a closed equation for Z:

9z | 0 21z] _ 72\ _
S+ g lm= — %) =0,
(310) ot om ( 2 2 )
Z(0,m) = 2m,
where % is denoting the differentiation in the usual sense with respect to m € [—1,1]. In
1 0

articnls . at 90— 1
particular, observe that 5 = 3 B )

Note that this equation has the form of a scalar conservation law

(3.11) {%?(tm) + 22a(m. Z(t,m)) =0

Z(0,m) = f(m).

Scalar conservation laws typically possess unique smooth solutions for small time, but de-
velop singularities in finite time: weak solutions exist but uniqueness may fail. To recover
uniqueness the notion of entropy solution is introduced. A simple sufficient condition can be
given for piecewise smooth functions (see [12]).

Proposition 3. Let Z(t,m) be a piecewise C' function, which is C' outside a C' curve
m = 7(t), and assume the following conditions hold:
(i) Z solves (3.11) in the classical sense outside the curve m = ~y(t).
(ii) The initial condition Z(0,m) = §f(m) holds for every m;
(iii) Denoting
Z4(t) - mli’ym(t) Z(t,m), Z_(t): ml%wm(t)Z(t,m),

we have that, for every t > 0 and every c strictly between Z_(t) and Z4(t),

g(v(1), Z- (1) — (v (1), Z+ (1))

(3.12) () = Z_(t)— Z4(t) ’

g(v(t), ¢) —s(v(t), Z+ (1))

a(y(t),¢) —g(v(t), Z_(t))
c—Z4(t) .

c—Z_(t)

(3.13) <A(t) <

Then, Z is the unique entropy solution of (3.11).
Condition (3.12) is called the Rankine-Hugoniot condition, while (3.13) is called the Lax

condition. When specialized to the case g(m, z) := m# — % and y(t) = 0 we simply obtain

(3.14) Zy(t)y=—Z_(t) > 0.
For equation (3.10), the entropy solution can be explicitly found. Let
(3.15) g(M,t,m) ;= t>M3 + (2 — t)M|M| + (1 — 2t)M —m

and M (t,m) denote the unique solution to g(M,t,m) = 0 with the same sign of m, if m # 0;
M is defined for any time and let M(¢,0) = 0. Define

2M(t, m)

(3.16) Z(t,m) = M m) +1 :

such function has a unique discontinuity in m = 0, for £ > 1/2, and is C' outside. However,
observe that equation (3.10) must be solved in the finite interval ¢ € [0,7], where T is the
final time appearing in (3.9). Thus, for 7' < 1/2 the solution is regular.
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Theorem 4. The function Z defined in (3.16) is the unique entropy admissible weak solu-
tion to (3.10).

Proof. From the properties of g(M,t,m), it follows that

lim M (¢ = —lim M(t >0
lim M(t,m) = —lim M(t,m) > 0,
for any time. These limits correspond to the solutions m4 and m_ of Proposition 2, evaluated
at the terminal time. Therefore (3.14) is satisfied. We remark that the conservation law is
set in the domain [—1,1] without any boundary condition, but this is not a problem as we
have invariance of the domain under the action of the characteristics. |

Remark 5. We observe that to the entropy solution (3.16) of (3.10) there corresponds a
unique solution of (3.9). It can be constructed via the method of characteristic curves, in
terms of a specific solution to the mean field game system for the couple (u,m), the one that
corresponds to the solution to (3.4) employed in the definition of (3.16).

It is known that, if there were a regular solution to the master equation (3.10), thus
Lipschitz in m, then this solution would provide a unique solution to the mean field game
system (3.4), since the KFP equation would be well posed for any initial condition, when
using z(t) = Z(T — t,m(t)) induced by the solution to the master equation:

(3.17) { h=-—m|Z(T —t,m)| + Z(T —t,m)

m(0) = my.

In our example there are no regular solutions to the master equation; however the entropy
solution still induces a unique mean field game solution, if mg # 0.

Proposition 6. Let Z be the entropy solution defined in (3.16). Then (3.17) admits a
unique solution m*, for any T, if mg # 0: it is the unique solution which does not change
sign, for any time.

Proof. Let mg > 0. If t and |m — mg| are small then Z(T — t,m) is regular (Lipschitz-
continuous) and remains positive. So we have a unique solution to (3.17), for small time
t € [0,1p]; moreover it is such that 7 > 0 and hence in particular m(tyg) > mgo. Thus we
can iterate this procedure starting from m(tg) > 0: we end up with the required solution,
which is positive and such that m(t) > mg for any time. This solution is unique (for any
T) since Z(t,m) is Lipschitz for m € [mg,1]. In fact the other two solutions described in
Proposition 2 would require the vector field Z in (3.17) to be negative for any time, and this
is not possible when considering the entropy solution Z. The same argument gives the claim
when mg < 0. [ |

3.3. Properties of the N + 1-player game. We consider now the game played by N + 1
players, labeled by the integers {0, 1,..., N}. By symmetry, we can interpret the player with
label 0 as the representative player. Let

N
1 1 2 N-—-1
N
:u’x NZ:ZI z;=1 { 7N7N7 9 N 9 }
be the fraction of the “other” players having state 1. Comparing with the notations in (2.1),
N+1,0
note that pl = Hm+ In what follows, we use N rather than N 4 1 as apex in all

objects related to the N + 1-player game. By symmetry again, the value function v™¥:(¢, z)
introduced in (2.3) is of the form

UN’O(t,:z:) = VN(t, 0, Miv),
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372 where VIV : [0, T] x {—1,1} x {O, %, %, ce %, 1} — R. Since the model we are considering,
373  besides permutation invariance, is invariant by the sign change of the state vector, it follows
374  that

375 (3.18) VN, ) = VN, —1,1 — ).

376 We can therefore redefine VV (¢, u) := VN (¢, 1, u); from the HJB systems (2.3) we derive the
377 following closed equation for VV:
(3.19)

— VN A HVNEL = )=V () = N[V = ) =VE)| [V (tp= %) = V()]

378 N (=) [V (ot 5) = VY (01 == )| VY (e &) = V)
VN, p) = =(2u - 1),

379 with H(p) = @. It is easy to check that, when imposing a final datum V™ (T, u) € [-1,1],
380 any solution to system (3.19) is such that V¥ (t,u) € [~1,1] for any t < T. The locally
381 Lipschitz property of the vector field is thus enough to conclude the existence and uniqueness
382 of solution for any 7' > 0 for the above system with [V (¢, )| < 1. Such solution allows to
383 obtain the unique Nash equilibrium, given by the feedback strategy

OV (t,z) = { VN1 = ) = V()] forzg =1

384 (3.20) T
VN1 = i) = V()] for mg = —1.

385  We now set
386 ZN@t ) = VN1 — p) = VNt ).

387 The following result, that will be useful later, shows that if the representative player agrees

388 with the majority, i.e. g = 1 and p2 > %, or zgp = —1 and pl < %, then she/he keeps

380 her/his state by applying the control zero.

390 Theorem 7. For any i € Sy = {0, %, ey 1}, we have

1
301 (3.21) ZNt,p) >0 (N, 1,p)=0) ifp> 5

1
102 (3.22) Z8(tp) <0 (@t =1,p) =0) ifpu<s
394
395 Proof. We prove (3.21), the proof of (3.22) is similar. For any N even, observe that
306 ZN(3) =0, so that it is enough to prove the claim for 4 > 3 + 3. Define
1

397 WN ) = V() — VNt p+ N)

398 By (3.19),

(3.23)
SN () =H (-2 (1, )~ H(Z (1, )
399 T Nu{ (ZN(t,u))_WN (t,,u, - ;f) (ZN (t,,u - Jif»_ W (¢1 — u)}

(e 3) W ) w0 )
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and
A )
() ()
(3.24) +N('u+]if> (ZN (tju_p]if))_wN(t,M)

sN0 - (2 (e 1)) W)
el ) e 2) W)

Note that, for g > 3, ZV(T, ) = 4p— 2> 0 and WN(T, ) = % > 0. So, set

1
s::sup{th:ZN(t,u)SOor WN(t,l/)§0forsomey>2}.

We complete the proof by showing that s = —oo. Assume s > —oo. For ¢ € [s,T] we have
ZN(t, 1) > 0 and W (¢, 1) > 0 for all p > %, so, from (3.23), observing that the terms in

(ZN> - disappear,

G2 ) < HO-2¥ () + N1 = )2 (W™ (11— - )
— 2Nt ) %ZN(t,M) N1 = gy (t, = p— ;fﬂ .

Since the control zero is suboptimal, it follows that [V (¢, )| < 1 for all ¢,p, so that
|ZN(t, )| < 2 and |[WN(t, )| < 2. Therefore, for t € [s,T], ZN(t, ) is bounded from
below by the solution of

(3.25) 720 = z(t) [1+2N(1 - p)]
2(T) = 4y — 2

which is strictly positive for all times. In particular Z™ (s, ) > 0. Similarly, for ¢ € [s, T},
from (3.24)
d 1
G ) < N1 w2 (a5 ) W) <20 - WY (1),
which implies that also W (s, ) > 0; by continuity in time, this contradicts the definition
of s. Finally, observe that in the proof we fixed N even. The proof for N odd can be easily

adapted with a bit of care, noting that u = % cannot hold. |

3.4. Convergence of the value functions. We now consider the value function V¥, the
unique solution to equation (3.19), and study its limit as N — +o00. We show that its limit
corresponds to the entropy solution of the Master Equation (3.9). More precisely, let U be
the solution to (3.9) corresponding to the entropy solution Z of (3.10). Define, for p € [0, 1]

Note that, for T' > %, U*(t,-) is discontinuous at u = %, but it is smooth elsewhere. Next
result establishes that V' converges to U* uniformly outside any neighborhood of y = % In

what follows, Sy := {o, L2 1}.
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Theorem 8 (Convergence of value functions). For anye > 0, t € [0,T] and u € SN \
(% —&, % —l—s) we have
C
N’

where C. does not depend on N nor on t, i, but lim._,g Ce = +00.

(3‘26) ’VN(t’ :u) - U*(tv H)‘ <

The proof of Theorem 8 is based on the arguments developed in [11]. We first slightly
extend the above notation, letting, for x € {—1,1}

U(t,x,p) == U(t,z,2u — 1).
Moreover, let
oVt ) = V(g ), W) = U )

for i = 0,..., N, where ,u,]mv’i = % Zéy:07j¢i dfz;=1) is the fraction of the other players in 1.
Let also S5 := Sn \ (3 — &, 2 + ). The following results are the adaptations of Propositions
3 and 4 of [11]. The first provides a bound for AJu™i(¢,x), while the second shows that U*
restricted to S% is "almost" a solution of (3.19).
Proposition 9. For any t € [0,T], € > 0 and any x such that #va,i €Sy, if N > %, we
have
(3.27) ANt x) = —igU(t a0 4+ NIt 2)
* 9y N 6” Y (3] xT Y Y
for any j # i, with ‘TN’i’j(t,w)‘ < % The constant C. is proportional to the Lipschitz
constant of the master equation outside the discontinuity, which behaves like e 5.
Proposition 10. For any t € [0,T], any € > 0 and any p such that either yu € [3 +¢,1] or
1€ (0,3 —¢l, the function U*(t, ) satisfies

(3.28)
~ D )+ HUA(A = ) — U ()

dt
= NulU* (61 = ) = U () |07 (= ) = U ()] + ¥ (t)

1 1\~ 1
N(1-—- ¢, — | =-U"t1l—p— — ¢, — | =U*(t
+ N( u)[U<//~L+N> U<, 1 Nﬂ {U(,MJrN) U(,u)],l
with ’rN(t, u)‘ < %, where C: is as above.
We now use the information provided by Theorem 7. Set

N
N N
V= {mezN—l—l :25%219{ (2—Ns,2+N6+1>}.

1=0

If x € 35, then ,uf,;v’i € Sy for all ©. Denote by Y; the state at time s of the /N 4 1 players
corresponding to the Nash equilibrium. By Theorem 7 it follows that, if Y; € 3% for some
t < T, then Y, € 3% for all s € [t,T]. In particular, by using the invariance property (3.18),
we obtain

(3.29) vVi(s,Y;) < max VN (s, i),
uN €Sy
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(3.30) [N (s, Ys) — ulVi(s,Y5)| < max [VN(s,uN) — U*(s, V)],

N ESE
for every s € [t,T], almost surely, and

3.31 — i = VN (s, 1Y) = U* (s, ™).
(3.31) ;relg}glv (s, ) —uN(s,2)| = glg;gl (s,17) (5,17

Moreover, we note that

’AiUN’i(S,l/;) —AiUN’Z‘(S,}]s”
= VN (s, ~Yi(s), py" (s >> — U(s, = Yi(s), 1y " (5))
= VN(s,Yi(s), uy"(5)) + U(s, Yi(s), py " ()]
(3.32) <2 max |[VN(s, 1) = U(s, 1))

NGSE

Proof of Theorem 8. We choose a deterministic initial condition Y; € X%, at time ¢ €
[0,7). As in the proof of Theorem 3 in [11], we exploit the characterization, introduced in
[10], of the N-player dynamics in terms of SDEs driven by Poisson random measures, and
we apply Ito’s formula to the squared difference between the functions uiv * and viv " both
computed in the optimal trajectories (Ys)sef,7) 1. Using equations (3.28) and (3.19), we
then find

(3.33) E[(uN? — vN)2] + ZE[ /t e (5, Yy) (AT [ul — vgvvi])st]

Jj=0

= —2E[ [ - N){ = Moy (5)) + H(AW) — H(ARY)
t

+ Z I — @) AN+ ot (Al Aivév’i)}dsl,

Jj=0,j#i

where o' is the Nash equilibrium played by player i, @ is the control induced by U and all
the functions are evaluated on the optimal trajectories, e.g. vV := v™Ni(s,Y;). We raise all
the positive sum on the lhs and estimate the rhs using the Lipschitz properties of H, the
bounds on ¥ and AJu? given by Proposition 9, and the bound on o given by the fact that

ZN(t,p) <2, to get, for N > %,
B0 o

c [ . T o
< NEl/ ]uév” — vf’ﬂds] + CE[/ |uév” - véV’ZHAlui,V” - Alvév’ﬂds]
t t

C al T N,i N,i
+x Y E /t N — N AT AT s |

j=0,j#i

'"We remark that in [11], indeed, the controls (transition rates) are assumed to be bounded below away from
zero. Nevertheless, this fact is not used to derive the analogous identity to (3.33). A proof of the convergence
results with no lower bound on the controls can be found in Section 3.1 of [9], if the master equation possesses
a classical solution.
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which can be further estimated via the convexity inequality ab < %a2 + %b2 yielding

/ 5

O T NGy NG Ady N
+N;]E /t AT — Ady!

2
ds| + CE

2d51 .

Here C' denotes any constant which may depend on ¢, and is allowed to change from line to
line. Since all the functions are evaluated on the optimal trajectories, we apply (3.30) and
(3.32) to obtain

E[(u; " — v ")*] < =5 + CE ug " — o

T, . . ) )
/ ‘Alué\[’z _ Al’l)év’l
t

. . C T
WV YE) — oM YD < 4 O [ max (U s, ) = V(s )P
N2 t pESY
for any deterministic initial condition Y; € ¥5,. Therefore (3.31) gives

C
.34 —vN 2<
(3.34) F{g%g;W(tu) VAW =

T
+C [ (U, ) = VY (5,0 s

t BESY
and thus Gronwall’s lemma applied to the quantity max,ess \U(s, 1) — VN (s, 1)|? allows to
conclude that

C

' _uUN 2 o &
(3.35) mex Ut p) =V )P < 553
which immediately implies (3.26), but only if N > % Changing the value of C = C,, the
thesis follows for any N. |

3.5. Propagation of chaos. The next result gives the propagation of chaos property for
the optimal trajectories. Consider the initial datum (int = 0) &€ i.i.d with P(§; = 1) = uo and
E[¢] = mo = 2up — 1, and denote by Y; = (Yy(¢),Y1(t),...,Yn(t)) the optimal trajectories of
the N-+1-player game, i.e. when agents play the Nash equilibrium given by (3.20). Also, denote
by X the i.i.d process in which players choose the local control a(t,£1) := [Z(t,m*(¢))]T,
where Z is the entropy solution to (3.10) and m™* is the unique mean field game solution
induced by Z, if mg # 0 (uo # 3), that is the one which does not change sign (see Proposition
6). The propagation of chaos consists in proving the convergence of Y; to the i.i.d process
Xt.

Theorem 11 (Propagation of chaos). If ug # % then, for any N andi=0,..., N,

S C
3.36 E | sup |Yi(t) — X;(t)|] < —£,
(3.36) tE[O’T]I O =Xl = 75
where C\,, does not depend on N, and limuoﬁ\% Clp = 0.

Denote by X;(t) the dynamics of the i-th player when choosing the control
(3.37) a'(t,@) = [AU(t 24, 1p")]”

induced by the master equation. We use X; as an intermediate process for obtaining the
propagation of chaos result. In fact, X; can be treated as a mean field interacting system
of particles (since the rate in (3.37) depends on N only through the empirical measure), for
which propagation of chaos results are more standard. Next result shows the proximity of
the optimal dynamics to the intermediate process just introduced.
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Theorem 12. If ug # % then, for any N andi=0,..., N,

(3.38) E l sup |Y;(t) — Xi(t)|| < C“O,
t€]0,7] N

where Cy,, does not depend on N, and limﬂo_% Cpy = +00.

Proof. Let ug = % + 2¢ and consider the event A where both X; and Y; belong to 35,
for any time. Exploting the probabilistic representation of the dynamics in terms of Poisson
random measures (see [10]), we have

E l sup |X;(s) — Yl(s)\]

s€[0,¢]

<ol

< CE [ [ [1%i66) = Vo) + 1A%V (s, X) = A, o) ]

a*(Xi,s, AiuN,i(s’ XS))_Q*(}/@',& Aifuj\/v,i(s7 Ys))‘ —+ |Xi,s i 5|] d8:|

t t . . . .
SCEUﬁxmg—m@u%+CEﬂA/\NwW@Jg—AwW@J@u4
0 0

t o . . .
+ CE ]1,4/ |AN (s, X ) —AZuN’z(s,Ys)\ds} + CP(A°).
0

and now we apply (3.26) together with (3.32), the Lipschitz continuity of U in X5, and the
exchangeability of the processes to get, if N > g,

E [ sup |X;(s) =Yi(s)|| < % + C/OtE\Xi(s) —Yi(s)|ds + P(A°)

s€[0,t]

+CE [m /0 t [1U (s, Xi(5), 15 (5)) = Uls, Xi(9), 137 ()]
HU (s, = Xi(s), ¥ (s)) = U(s, = Xi(s), 13" (5))] ds]

C/Ew Yi(s)|ds + P(A°) + CE

njqu S 1X(s j(s)\ds]

J#z

| Q MQ

(339) < +CAEM@) Yi(s)|ds + P(A°).

N
We can bound the probability of A¢ by considering the process in which the transition
rates are equal to 0, for any time, i.e. the constant process equal to the initial condition &.
Thanks to the shape of the Nash equilibrium, which prevents the dynamics from crossing the
discontinuity, and of the control induced by the solution to the Master equation, we have

(3.40) P(A°) = P(3t: either X; or Y; ¢ X5,) < 2P(€ ¢ X%).
For the latter, we have

N
& € D) 5

10]=
7N

P(&%Z%)zP( —Ne,N+N5+1>>

<r(

M\Z

Mz

1
& < +Ns+1>§P<u§’§2+ew),

Il
<)
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N
denoting ey = 27\[]1?1 — 3. Observing that (N + 1)uév ~ Bin(N + 1,3 + 2¢) (recall

o = % + 2¢), we can further estimate, by standard Markov inequality,

1
P(¢ ¢EN)<P<‘£—2—25 % —en)?

(3.41) _ A[1 1 (3+2) (-2) . %;7
e (bre)-wnti) OF
ifNZ%,sothatQa—eNZi.

Putting estimate (3.41) into (3.39), and denoting (t) :=E {SUPse[o,t] |Xi(s) — Yl(s)|], we
obtain

C t
42 t) < — d
(3.42) olt) < 3= +C [ lo)ds
which, by Gronwall’s lemma, gives (3.38), but only if N > % By changing the value of
C = C., the claim follows for any N. |

We are now in the position to prove Theorem 11. Thanks to (3.38), it is enough to show
that
Chuo
VN’
Recall that the X;’s are i.i.d and Law(X;(t)) = m*(t); also, set m = m* and pu = mtl,

Moreover, we know that (N + 1) M% (t) ~ Bin(N + 1, u(t)). The rate of convergence follows
from the estimate

(3.43) E [ sup [X;(t) — Xz‘(tﬂ] <
te[0,T]

(3.44) E |u (1) - ()] < j;v

for any time, by Cauchy-Schwarz inequality.

Proof of Theorem 11. Let pug = % + 2¢ and consider the event A where both X; and :Xtt
belong to £%, for any time. Arguing as in the proof of Theorem 12, we obtain

E l sup | Xi(s) — Xy(s)q < C/tE]Xi(s) — X,(s)|ds + P(A°)
s€[0,t] 0

+0E[1A [ 10765, X), 159)) — U5, i) )

+[U(s, —Xi(S)aug’i(S)) —Uls, —Xi(S)vu(S))ldS]

< C/Otﬂng(s) — X(s)|ds + P(A)

4 CE nA/ S™IX;(s) — Xj(s)lds| +C sup E|u(t) - u(t)
]#'L tE[OT]
+C’/]EX Xi(s)|ds + P(A°).
< | (5)]ds + P(A)

We can bound the probability of A€ as before and thus Gronwall’s Lemma allows to conclude.l
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3.6. Potential mean field game. We give here another characterization of the solutions
to the MFG system (3.4). For a more detailed introduction on potential mean field games
in the finite state space see [9], Section 1.4.1. We show that system (3.4) can be viewed as
the necessary conditions for optimality, given by the Pontryagin maximum principle, of a
deterministic optimal control problem in R?. We show that the N-player game, in the limit
as N — 400 selects exactly the global minimizer of this problem when it is unique, i.e. when

mo 7'5 0.
The notation is slightly different in this section. Consider the controlled dynamics, rep-
resenting the KFP equation,
m1 =Mm_1d_1 — M1
(345) m,1 =mia]; —Mm—_10—q
m(0) = mo.
The state variable is m(t) = (m(t),m—_1(¢)). Note that, in the previous notation, we had

mi = p and m = my — m_;. Here the control is a(t) = (a1 (t), a—1(t)), deterministic and
open-loop, taking values in

A={(a1,a-1) 1 a1,a_1 > 0}.
Clearly, if mg = (mg,1,mo,—1) belongs to the simplex
PH{1,-1}) :={(m1,m_1) :mi +m_1 =1,m1,m_1 > 0},

then, for any choice of the control «, the dynamics remains in P({1, —1}) for any time.
The cost to be minimized is

T )2 (T 2
(3.46) )= [ Qu@aﬁ)+wumf”§)>ﬁ+gmwmx
where G(mi,m_1) := —W is such that
2 Gm) = —(m1 —m-1) = G(1,m)
(9m1 = 1 -1) — ’
9]
amilg(m) =m3 —m_1; =: G(—1,m),
whereas G(x,m) = —xz(m; —m_;), for x = £1, is the terminal cost. This structure is called

potential Mean Field Game, since we have VG(m) = G(-,m).
The Hamiltonian of this problem is

a? a?
H(m,u) = sup {—b(m, a)-u—mp— — m_ll}
acA 2 2
ol —w) P =)

2 2 ’

where b, (m,a) = m_za_, — mgay, for x = £1, is the vector field in (3.45), and the argmax
of the Hamiltonian is

a1(u) = (u—1 —u1)",

a’y(u) = (u1 —u-1)".
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Thus, the HJB equation of the control problem reads

(3.47) { — MU L H(m, V) =0  te[0,T),me P({1,—1})

U(T, m) = g(m)v
and its characteristics curves are given by the MFG system

. M -0

T (e u2 T

(3.48) my =m_1a*{(u) — miai(u)

m_1 = myaj(u) —m_ia*(u)

ur1(T) = G(£1,m(T)), m(0) = my.

Lemma 13. 1. There exists an optimum of the control problem (3.45)-(3.46);
2. The MFG system (3.48) represents the necessary conditions for optimality, given by
the Pontryagin maximum principle.

Proof. The first claim follows from Theorem 5.2.1 p. 94 in [4], which can be applied since
the dynamics is linear in o and the running cost is convex in a.. Conclusion (2) is standard.®

We know that, if T is large enough, there are three solutions to the MFG system. The
control problem (3.45)-(3.46) has a minimum, so we wonder which of these solutions is indeed
a minimizer.

First, we need to investigate some property of the roots of (3.8). Let T' > T(myg) be
fixed. Let Mj(mg) < Ma(mg) < Msz(mg) be the three solutions to (3.8). If mg = 0 denote
M_ = M;(0) < 0, My = M3(0) > 0; we have M2(0) = 0 and My = M_. If my > 0 then,
by Proposition 2, Ms(mg) > 0 and Mj(myg), Ma(mg) < 0; if mg < 0 then M5(mg) < 0 and
Ml(m()), Mg(mo) > 0.

Lemma 14. Let mo > 0 and T > T'(my) be fized. Then
1. The function [0,mg] > m — Ms(m) € [0,1] is increasing, Ma(m) is decreasing and
M;i(m) is increasing. In particular for any m € [0, mg]

(3.49) Ms(m) > My = |[M_| > |My(m)| > |M2(m)| > M3(0) =0
2. We have My(m) < —22=1 < My(m) < 0 and for any m € [0, mq

2T -1
3T

2T -1

(3.50) Ma(m) + =

' > |t (m) +

The case mg < 0 is symmetric.

Proof. Claim (1) derives from the proof of Proposition 2. For claim (2), M;(m) and
Ms(m) are the two negative roots of f(M) = T?M3 — T(2 — T)M? + (1 — 2T )M — m = 0.
The roots of f'(M) are q := —2551 and % Hence M7 < g < My <0, f(q) > 0 and we have,
by Taylor’s formula (which here is actually a change of variable),

fa+e) = 1@+ e+ L0y LD gy S Do o
f(q_g):f(q)_f/(q)g f”2((1)2 f”;}() —f() f”2(Q) _ 7223

for any € > 0. Thus f(q+¢) — f(qg —¢) = 27%% > 0 for any € > 0, which implies (3.50). B
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For i = 1,2, 3, denote by m;, z;, a;, m;, u; the solution to the MFG system corresponding
to Mz

Theorem 15. Let mg > 0 and T > T (myg) be fixred. Then for anym € [0,mg] andi =1,2,3
we have J (o) = p(M;(m)), where ¢ : [-1,1] — [—1,1],
1
(3.51) o(M) = M <T —3- T|M|) .

Moreover, for any m € (0, my],

(3.52) p(My) = p(M-) < ¢(0) =0,
(3.53) p(Ms(m)) < p(M) < @(Mi(m)),
(3.54) p(Mi(m)) < p(Ma(m)) > 0,

meaning that ay and a_ are both optimal if m =0 and a = 0 is not, while as is the unique
minimizer if m > 0, with

(3.55) T(az) < T(a1) < T(aw).

Proof. The first claim and (3.51) follow directly from (3.46) and (3.7).

We continue by proving (3.53). The roots of ¢ are 0 and +q, with ¢ := —273:—;1. The
function ¢ is then increasing if either M < g or 0 < M < —q. Thus (3.53) follows from (3.49)
and the fact that o(M;) = p(M_), as ¢(M) only depends on |M]|.

Next, we show that (M) < 0 = ¢(0). Since M, solves T?M?+T(2—T)M +1—-2T =0,
we obtain, for M = M,

M2

M2
o(M) = - (@r-1- 2T M) = 7(T2M2 —T*M)

_ TMPB
2

(M—-1)<0

because M, < 1.

To prove (3.54), we first note that we have just showed that it holds in m = 0: ¢(M;(0)) =
o(M—=) = (M) <0 =p(0) =p(M2(0)). We also know that p(Mi(m)) > @(M;(0)) and
o(Mz(m)) > ¢(M2(0)), thanks to the monotonicity behavior of ¢ and Lemma 14. Hence
suppose by contradiction that there exists m €]0, mg] such that ¢(M;(m)) = ¢(Ma(m)) =c,
for some ¢ > 0. This implies that both M;(m) and Ms(m) are negative roots of ¢(M) — c.
Thus they are also negative roots of

3

W(M) = Tp(M) —Te— f(M) =2

TM?* - (1 -2T)M +m —Tc=0

and ¢/(q) = 0, where g = —27:;:;1 as above. Since v has degree 2, it follows that |Ma(m)—q| =
|Mi(m) — q|, but this contradicts (3.50). Therefore there is no m for which @(M;(m)) =
@(Msz(m)), and then if (3.54) holds for m = 0 (which is (3.52)) then it is true for any
m € [0, mg). [ |

Note that the results in this section imply that the N-player game selects, in the limit as
N — 400, the global minimizer of the control problem (3.46), when it is unique. Moreover,
the sequence of the N-player value functions VIV converges to the derivative of the value
function of such control problem, as the latter is constructed by using the same characteristic
curves used for constructing the solution (3.16) to the master equation. We remark that the
value function of the control problem (3.46) can also be characterized as the unique viscosity
solution to (3.47).



665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

ON THE CONVERGENCE IN MFG: A TWO STATE MODEL WITHOUT UNIQUENESS 21

4. Conclusions. Let us summarize the main results we have obtained for this two state
model with anti-monotonous terminal cost:

1. the mean field game possesses exactly 3 solutions, if 7" > 2 (Proposition 2);

2. the N-player value functions converge to the entropy solution to the master equation
(Theorem 8);

3. the N-player optimal trajectories converge to one mean field game solution, if mg # 0
(Theorem 11);

4. viewing the mean field game system as the necessary conditions for optimality of a
deterministic control problem, the N-player game selects the global minimizer of this
problem, when it is unique, i.e. my # 0 (Theorem 15).

We remark that in the convergence proof we did not make use of the characterization of
the right solution to the master equation as the entropy admissible one; the key point is to
show that the N-player optimal trajectories do not cross the discontinuity. Neither did we
use the potential structure of the problem: these are properties which might allow to extend
the convergence results to more general models.

Observe that solutions of the MFG system, whether selected by the limit of N-player
Nash equilibria or not, always yield approximate Nash equilibria in decentralized symmetric
feedback strategies; see, for instance, [2] and [10] in the finite state setting.

What is left to prove for this model is a propagation of chaos result when mg = 0. Let
mo, resp. m_, be the mean field game solution always positive, resp. always negative. What
is evident from the simulations is that the N-player optimal trajectories admit a limit which
is not deterministic: it is supported in m4 and m_ with probability 1/2. We also observe
that m4 and m_ are both minimizers of the deterministic optimal control problem related
to the potential structure. An analogous result is rigorously obtained in [16] in the diffusion
setting, where the focus is on starting the dynamics at the discontinuity of the unique entropy
solution to the master equation.
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