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Abstract Neutral models aspire to explain biodiversity patterns in ecosystems where species
difference can be neglected and perfect symmetry is assumed between species. Voter-like models
capture the essential ingredients of the neutral hypothesis and represent a paradigm for other
disciplines like social studies and chemical reactions. In a system where each individual can interact
with all the other members of the community, the typical time to reach an absorbing state with a
single species scales linearly with the community size. Here we show, by using a rigorous approach
based on a large deviation principle and confirming previous approximate and numerical results,
that in a mean-field heterogeneous voter model the typical time to reach an absorbing state scales
exponentially with the system size.
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1 Introduction

Models of interacting degrees of freedom are nowadays widely spread in different scientific disciplines—
from Physics and Mathematics to Biology, Ecology, Finance and Social Sciences—, and more than
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ever in the last few years there has been a growing effort in connecting the phenomenology ob-
served at a macroscopic level with a simplified “microscopic” modeling of very disparate complex
systems. Clearly, this idea is extremely appealing to statistical physicists and can provide a good
benchmark for developing new ideas and methods. A famous and particularly successful example
of this approach, which reconciles interdisciplinarity and pure research in statistical physics, can
be found in the ecological literature in the so-called neutral theory of species diversity, that aims at
giving a first null individual-based modeling of the dynamic competition among individuals of dif-
ferent species in the same trophic level, i.e. at the same position in the food chain of an ecosystem
[1,2,3,5,6]. The most basic ecological assumption of neutral theory is the complete equivalence
of all the individuals in the community –independently of the species they belong to– regarding
the basic feature governing the dynamics of the system, like the rates of birth, death, migration,
diffusion, etc. This is of course a gross simplification of the real dynamics, but proved very effective
in reproducing static and dynamic distributions of real ecosystems [2,3,4].
The neutral hypothesis finds its mathematical equivalent in the voter model (VM) [7] and its gen-
eralizations [8], which, in turn, in the mean-filed version considered in this paper, is equivalent to
the well-known Moran model in genetics [9]. This model has been deeply studied and has gradually
become a paradigmatic example of non-equilibrium lattice models. It is conceptually simple but
nevertheless has a very rich phenomenology with applications in many different scientific areas [10,
11,12,14,15]. Despite the fact that the original formulation of the VM can be exactly solved in any
spatial dimension [7]—fact that contributed greatly to its rise—, any slight modification made in
order to improve the realism of the model complicates drastically its analysis.

Among the possible modifications of the original VM, there has been a recent interest in study-
ing the asymptotic behavior of the VM in the presence of quenched random-field-like disorder,
whose motivations span from ecology [16,17,18] to social modeling [19,20] through models of
chemical reactants [21] and more fundamental research [22]. A particularly interesting problem is
to assess the typical time needed by a finite-size system to reach one of the absorbing states of
the model; depending on the particular interpretation of the model, that would mean the typical
time for the extinction of a species in an ecosystem, or the reaching or not of a consensus on a
particular topic in a society. In all these cases, it is known that heterogeneities, in the habitat
of an ecosystem or in the ideologies of groups of people, play a major role in shaping the global
dynamics of the complex system. The dynamics of an ecological system, are always influenced by
the simultaneous action of neutral and niche processes. The success in invading a new patch of ter-
ritory can be, say, highly resource dependent, creating an effective fitness over the considered area
and locally differentiating otherwise equal species [23,24]. Mathematically this can be emulated
by an external random disorder, that we choose quenched to emphasize the different time scales
involved. By means of numerical simulations, it has been shown in [19] that a quenched (random-
field-like) disorder creating an intrinsic preference of each individual for a particular state/opinion
hinders the formation of consensus, hence favoring coexistence. In the context of neutral ecology
this corresponds to a version of the VM in which at each location there is an intrinsic preference
for one particular species, leading to mixed states lasting for times that grow exponentially with
system size [16,19].

Here, we propose a rigorous mathematical development of a mean-field disordered VM intended
as a general model of neutral competition in a heterogeneous environment. Supporting the previous
findings [16,19] based on computational investigations or approximation arguments, we will show
that a heterogenous environment indeed favors significantly the maintenance of the active state,
and the typical time needed to reach an absorbing phase passes from a power-law dependence
in the system’s size, typical of the neutral theories, to an exponentially long time, signature of
an asymptotic active phase, i.e., spin states 0 and 1 coexist in the stationary state in the limit,
N ! 1.

This will be achieved by setting up a large deviation principle for the considered model and
will thus provide a first attempt of an extreme value theory for systems with multiple symmetric
absorbing states.
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The remainder of the paper is organized as follows. In Section 2 we define the model and study
its macroscopic limit which is given in Theorem 1. Then, in the next section, we are ready to
present our main result as Theorem 2. We prove that in a mean-field VM the presence of quenched
disorder favoring one of the two species at each site, makes the coalescence time pass from linear
to exponential in the system size N . In the last section we consider the normal fluctuations of
the model around its thermodynamic limit. In particular, Theorem 3 shows that in the limiting
dynamics fluctuations are not self-avering in the disorder.

2 Macroscopic limit

The state of the system is described by a vector of spins ⌘ = (⌘1, ⌘2, . . . , ⌘N ) 2 {0, 1}N . The random
environment consists of N independent and identically distributed random variables h1, h2, . . . , hN ,
taking the values 0 and 1 with probability, respectively, 1�q and q 2 (0, 1). Moreover, let ⇢ 2 [0, 1]
be a given parameter. While the random environment remains constant, the state ⌘ evolves in time
according to the following rules:

– each site 1, 2, . . . , N has its own independent random clock. A given site i after a waiting time
with exponential distribution of mean 1 chooses at random, with uniform probability, a site
j 2 {1, 2, . . . , N}.

– If ⌘j = hi, then the site i updates its spin from ⌘i to ⌘j . If ⌘j 6= hi, then the site i updates its
spin from ⌘i to ⌘j with probability ⇢, while it keeps its spin ⌘i with probability 1� ⇢.

Thus, the site i has a preference to agree with sites whose spins equal its local field hi. For ⇢ = 1,
this effect is removed, and we obtain the standard Voter model. Note that, by symmetry, there is
no loss of generality in assuming q � 1/2, as we will from now on.

In more formal terms, for every realization of the random environment, the spins evolve as a
continuous-time Markov chain with generator LN acting on a function f : {0, 1}N ! R according
to

LNf(⌘) :=

NX

i=1

1

N

NX

j=1

Ihi=⌘j

�
f(⌘j!i

)� f(⌘)
�

+ ⇢Ihi 6=⌘j

�
f(⌘j!i

)� f(⌘)
�
, (2.1)

where IA denotes the indicator function of the set A and ⌘j!i is the configuration obtained from
⌘ by replacing the value of the spin at the site i with that of the spin at the site j. This Markov
chain has two absorbing states, corresponding to all spin values equal to zero and all equal to one.
We denote by TN the random time needed to reach one of the two absorbing states.

It is useful to review the main properties of the model in the case ⇢ = 1. In this case, the
dynamics are independent of q and the unique order parameter for the model is given by KN :=PN

i=1 ⌘i, i.e., the number of spins with value 1. It is easy to check, using the generator (2.1), that
KN evolves as a random walk on {0, 1, . . . , N}: if KN = k, then it moves to either k + 1 or k � 1

with the same rate (N�k)k
N . By standard arguments on birth and death processes (see e.g. [25]),

one shows that hTN i ⇠ N ln(2) as N ! +1: the mean absorption time grows linearly in N .
Consider now the general case ⇢  1. Here the system is described in terms of two integer-valued

order parameters, namely
NX

i=1

hi⌘i and
NX

i=1

(1� hi)⌘i, that will be convenient to properly scale as
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follows:

m+
N := m+

N (⌘) :=
1

N

NX

i=1

hi⌘i

m�
N := m�

N (⌘) :=
1

N

NX

i=1

(1� hi)⌘i

Note that the pair (m+
N ,m�

N ) belongs to the subset of the plane {(x, y) 2 [0, 1]2 : x + y  1}.
Note, however, that when the limit as N ! +1 is considered, m+

N  1
N

PN
i=1 hi ! q, where this

last convergence follows from the law of large numbers. Similarly, m�
N  1

N

PN
i=1(1� hi) ! 1� q.

Thus, limit points of the sequence (m+
N ,m�

N ) belong to [0, q] ⇥ [0, 1 � q]. Given an initial, pos-
sibly random, state ⌘(0) for the dynamics of N spins, we denote by m±

N (t) the (random) value
at time t of the order parameters m±

N . In what follows we also denote by µN the distribution of ⌘(0).

Theorem 1 Assume there exists a non-random pair (m̄+, m̄�
) 2 [0, q] ⇥ [0, 1 � q] such that, for

every ✏ > 0,
lim

N!+1
µN

���m±
N (0)� m̄±�� > ✏

�
= 0.

Then the stochastic process (m+
(t),m�

(t))t�0 converges in distribution to the unique solution of
the following system of ODEs:

8
>>>>>>>><

>>>>>>>>:

d

dt
m+

= �⇢m+
(1�m� �m+

)

+(q �m+
)(m+

+m�
)

d

dt
m�

= �m�
(1�m� �m+

)

+⇢(1� q �m�
)(m+

+m�
)

m±
(0) = m̄±

(2.2)

Proof: Denote by G the generator of the semigroup associated to the deterministic evolution (2.2),
i.e.,

Gf(m+,m�
) := V +

(m+,m�
)

@f

@m+
+ V �

(m+,m�
)

@f

@m� ,

with

V +
(m+,m�

) =� ⇢m+
(1�m� �m+

)

+ (q �m+
)(m+

+m�
)

V �
(m+,m�

) =�m�
(1�m� �m+

)

+ ⇢(q �m�
)(m+

+m�
)

Let f : [0, 1]2 ! R. By direct computation one finds that

LN [f(m+
N ,m�

N )](⌘)

depends on ⌘ only through m+
N ,m�

N , which implies that the process (m+
N (t),m�

N (t))t�0 is a Markov
process, whose associated semigroup has a generator GN that can be identified by the identity

LN [f(m+
N ,m�

N )](⌘) = [GNf ](m+
N (⌘),m�

N (⌘)),
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which yields

GNf(x, y)

:= N
⇣
(q � x) (x+ y)

�
f(x+

1
N , y)� f(x, y)

�
)

+ ⇢x (1� (x+ y))
�
f(x� 1

N , y)� f(x, y)
�

+ ⇢ (1� q � y) (x+ y)
�
f(x, y + 1

N )� f(x, y)
�

+ y (1� (x+ y))
�
f(x, y � 1

N )� f(x, y)
�⌘

.

(2.3)

Moreover, if f is smooth with bounded derivatives, one checks that

lim

N!+1
sup

(m+,m�)2[0,1]2

��GNf(m+,m�
)� Gf(m+,m�

)

��
= 0.

The conclusion then follows by a standard result of convergence of Markov processes, cf. [26], Ch.
4, Corollary 8.7. ⇤

This first theorem formalizes and extends a useful result for the infinite size system (hydro-
dynamic scaling), already obtained by means of different techniques in some previous works [19,
17]. It is a dynamic law of large numbers that quantifies the deterministic evolution of the order
parameters as obtained from the limiting dynamics described by LN neglecting fluctuations. The
stability analysis of the fixed points of Eq.(2.2) provides some immediate results on the global dy-
namics of the model in the infinite size limit: For ⇢ = 1, equations (2.2) trivialize: the only relevant
variable is m = m+

+m�, which satisfies d
dtm = 0. This is simply the macroscopic consequence of

the fact that KN = N(m+
N + m�

N ) evolves as a symmetric random walk. The picture changes as
⇢ < 1. When ⇢ < 1, the system (2.2) has three equilibrium points:

1. (m+,m�
) = (q, 1� q), which represents a limiting behavior where all the spins equal 1;

2. (m+,m�
) = (0, 0), which is the case with all spins equal to 0;

3. (m+,m�
) =

⇣
q(1+⇢)�⇢
(1+⇢)(1�⇢) , ⇢

q(1+⇢)�⇢
(1+⇢)(1�⇢)

⌘
.

It is easily checked that equilibrium 3 lies inside [0, q]⇥ [0, 1� q], hence is admissible, if and only
if the condition

⇢ <
1� q

q
(2.4)

holds (remember we are assuming q � 1/2). The stability analysis of the three equilibria is also
easily done: for 1�q

q < ⇢ < 1 equilibrium 1 is stable, and attracts all initial conditions except (0, 0),
which is an unstable equilibrium (see panel (a) in Fig.1), while for ⇢ < 1�q

q both (q, 1 � q) and
(0, 0) are unstable, and the stable equilibrium 3 emerges, attracting all initial conditions except the
unstable equilibria (see panel (b) in Fig.1). Note that, for q = 1/2, only this second regime exists.
Thus, in the case q > 1/2 and 1�q

q < ⇢ < 1, the asymmetric disorder stabilizes the equilibrium
(q, 1 � q) (see panel (c) in Fig.1); lower values of ⇢ increase the effects of the disorder, so that a
new stable equilibrium appears .

3 Large deviations and time to absorption

In order to get information on the behavior of the system when the total number of “individuals” N
is large but finite, we need to go beyond the law of large numbers in Theorem 1. In particular, our
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Fig. 1: The plots represent the streamlines of the system (2.2) for different values of ⇢ and q. In the pictures, red dots are

the equilibria while blue/violet arrows indicate a strong vector field that becomes weaker as arrows turn to red. In (a), with

⇢ = 1 the disorder plays no role and any initial condition is attracted, along m = m+ + m�
, to the fixed-point manifold

m+ = m�
. When the disorder is introduced (i.e. ⇢ < 1) the line m+ = m�

“breaks down” into multiple equilibria. In (b),

for ⇢ < 1�q
q , the equilibria (0, 0) and (q, 1 � q) are unstable and a third stable equilibria arises. This stable equilibrium is

not necessarily admissible, as it may be outside [0, q] ⇥ [0, 1 � q] and disappears when q > 1/2 and

1�q
q < ⇢ < 1 as shown

in panel (c). In this case, (q, 1 � q) becomes stable and attracts all the initial condition but (0, 0).

next aim is to show that, whenever equilibrium 3 is present for the macroscopic dynamics (2.2),
the absorption time for the microscopic system grows exponentially in N . To this end, we use the
Freidlin and Wentzell theory for randomly perturbed dynamical systems (see [27]). This theory,
based on finite time Large Deviations, yields asymptotic estimates characterizing the long-time
behavior of the perturbed system (here the microscopic system described by (m+

N ,m�
N )) as the

noise intensity tends to zero (equivalent here to N ! 1). See also [28,29] for an introduction
to Large deviations. For the system with N finite but large, the escape for the neighborhood of
the stable equilibrium 3, which leads to the absorption, has several analogies with metastability
phenomena. We note that sharp estimates for the time to escape a metastable equilibrium have
been recently obtained via a potential theoretic approach (see [30,31]). This approach, however,
is well understood only in the case of reversible dynamics. For this reason, for our model which is
non-reversible, we follow the more traditional Freidlin and Wentzell theory.
We also mention another line of research which is close in spirit, though much more general, to
what we present in this paper. The absorption is a finite size phenomenon, it does not occur for
the infinite system (2.2) whenever equilibrium 3 is present. The time scale at which absorption
occurs corresponds to the critical time scale in the finite system scheme developed in [32] (see also
[33]).

For simplicity, we assume q = 1/2, so that equilibrium 3 exists for every ⇢ < 1. For x = (x, y) 2
[0, 1/2]2 set

l1(x) = ⇢x(1� x� y)

r1(x) = (1/2� x)(x+ y)

l2(x) = y(1� x� y)

r2(x) = ⇢(1/2� y)(x+ y)

Notice that the vector field b(x) = (b1(x), b2(x)) defined by bi(x) := ri(x) � li(x) appears in
(2.2), the equation of the macroscopic dynamics, which we interpret as the unperturbed dynamical
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system. Define the family of point measures, parametrized by x 2 [0, 1/2]2:

µ
x

:= r1(x)�(1,0) + l1(x)�(�1,0) + r2(x)�(0,1) + l2(x)�(0,�1),

where � indicates Dirac measure. Then the generator GN in (2.3) can be rewritten in a diffusion-like
form as

GN (f)(x) = N

Z

R2\{0}

�
f(x+

1
N �)� f(x)

�
µ
x

(d�)

= hb(x),rf(x)i

+N

Z ✓
f(x+

1
N �)� f(x)� 1

N
h�,rf(x)i

◆
µ
x

(d�),

where h·, ·i denotes the scalar product in R2. Let H : R2 ⇥R2 ! R be the Hamiltonian associated
with the operators GN , N 2 N:

H(x,↵) := hb(x),↵i+
Z

(exp (h�,↵i)� 1� h�,↵i)µ
x

(d�).

It follows that

H(x,↵) =

2X

i=1

⇥
ri(x) (e

↵i � 1) + li(x)
�
e�↵i � 1

�⇤
.

Let L be the Legendre transform of H, given by

L(x,�) := sup

↵2R2

{h�,↵i �H(x,↵)} .

It is easy to show that

L(x,�) = ˜L(l1
�
x), r1(x);�1

�
+

˜L
�
l2(x), r2(x);�2

�
, (3.1)

where ˜L : [0,1)

2 ⇥ R ! [0,1] is given by

˜L(l, r;�) = sup

↵2R

�
� · ↵� r · (e↵ � 1)� l · (e�↵ � 1)

 

= � log

✓
�+

p
�2+4rl
2r

◆
�
p

�2
+ 4rl + l + r,

taking appropriate limits for the boundary cases l = 0 or r = 0. In particular, ˜L(l, r;�) = 1 if and
only if either l = 0 and � < 0 or r = 0 and � > 0. The Lagrangian L in (3.1) allows to define the
action functional: for T > 0, ' : [0, T ] ! R2, set

ST (') :=

Z T

0

L

✓
'(t),

d

dt
'(t)

◆
dt, (3.2)

where ST (') is meant to be equal to +1 if ' is not absolutely continuous. The action functional
controls the quenched Large Deviations of the stochastic process (m+

N (t),m�
N (t))t�0: if B' is a

small neighborhood of a trajectory ' : [0, T ] ! R2, h = (h1, h2, . . . , hN ) is a realization of the
random environment, and Ph is the law of the Markov process generated by (2.1) for h fixed, then
for almost every realization h

1

N
logPh

⇥
(m+

N (t),m�
N (t))t2[0,T ] 2 B'

⇤
' �ST (') (3.3)
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for N large. This fact falls within the range of the Freidlin-Wentzell Large Deviations results
(see [27]), although several modifications of the original proof are needed here, following [34]. For
simplicity, we assume that the initial condition (m+

N (0),m+
N (0)) is deterministic conditional on the

realization of the environment h and that (m+
N (0),m+

N (0)) converges to some x = xh 2 [0, 1/2]2

as N ! 1. The Large Deviations estimate (3.3) then holds provided (m+
N (0),m+

N (0)) ! '(0) as
N ! 1.

As shown in [27], the control of the Large Deviations provides control on the hitting times
of subsets of the state space [0, 1/2]2 of the process (m+

N (t),m�
N (t))t�0, in particular of the time

TN needed to reach the absorbing states. Denote by z the stable equilibrium for the macroscopic
dynamics:

z =

✓
1

2(1 + ⇢)
,

⇢

2(1 + ⇢)

◆
.

For x 2 [0, 1/2]2, define the quasi-potential by

V (x) := inf{ST (') : T > 0,'(0) = z,'(T ) = x}.
Calculating the quasi-potential is equivalent to solving a deterministic optimal control problem
with calculus of variations dynamics and unbounded time horizon. An approximate solution to
this global optimization problem could be obtained using numerical methods based on the prin-
ciple of dynamic programming; see [35] and Chapter 15 in [36]. Let D be a domain in [0, 1/2]2

containing z with smooth boundary @D such that @D ✓ (0, 1/2)2 and the vector field b(x) is di-
rected strictly inside D. Let ⌧N denote the first time the process (m+

N ,m�
N ) hits the complement of

D. By construction, ⌧N  TN . Let us assume that, for almost every realization of the environment
h, (m+

N (0),m+
N (0)) is deterministic and that (m+

N (0),m+
N (0)) ! xh as N ! 1 for some xh 2 D.

Theorem 2 For every x 6= z we have V (x) > 0. Moreover, for almost every realization of the
environment h, every " > 0,

lim

N!+1
Ph

⇣
eN(V@D�")  ⌧N  eN(V@D+")

⌘
= 1

where
V@D := min {V (x) : x 2 @D} > 0.

Proof: In order to show that V (x) > 0 for every x 6= z, it suffices to check that, for every �0 > 0

small enough, inf
x2@B�0 (z)

V (x) > 0.
Set r⇤ := (

⇢
4(1+⇢) ,

⇢
4(1+⇢) ); thus r⇤ = (ri(z), li(z)), i 2 {1, 2}. Let l, r > 0. Then ˜L(l, r;�) as a

function of � 2 R is smooth, non-negative, strictly convex with minimum value zero attained at
� = r � l and of super-linear growth. Second order Taylor expansion around � = r � l yields

˜L(l, r;�) =
1

2(r + l)
(� � (r � l))

2
+O

⇣
(� � (r � l))

3
⌘
.

It follows that for every �⇤ > 0 small enough there are a constant c > 0 and a continuous function
L : B�⇤(r⇤)⇥R ! [0,1) such that ˜L(l, r;�) � L(l, r;�), L(l, r; .) is strictly convex with super-linear
growth and for every (l, r) 2 B�⇤(r⇤),

L(l, r;�) = c (� � (r � l))
2 if � 2 [�4�⇤, 4�⇤].

Choose such �⇤, c, L. By continuity of the functions r1, l1, r2, l2, we can choose �0 > 0 such that
(l1(x), r1(x)), (l2(x), r2(x)) 2 B�⇤(r⇤) for all x 2 B�0(z)). Recall that bi = ri � li. It follows that

inf

x2@B�0 (z)

¯V (x) � inf

2X

i=1

Z T

0

L

✓
li('(t)), ri('(t));

d

dt
'i(t)

◆
dt,
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where the infimum on the right-hand side is over all ' 2 Ca([0,1), B�⇤(r⇤)), T > 0 such that
'(0) = z, '(T ) 2 @B�0(z). Using a time transformation argument analogous to that of Lemma 4.3.1
in [27] and the convexity and super-linear growth of L(l, r,�) in �, one finds that the infimum can

be restricted to ' 2 Ca([0,1), B�⇤(r⇤)) such that
����
d

dt
'i(t)

����  4�⇤ and
����
d

dt
'(t)

���� = |b('(t))| for

almost all t 2 R. Thus

inf

x2@B�0 (z)

¯V (x) � inf

Z T

0

c ·
����b('(t))�

d

dt
'(t)

����
2

dt.

The Jacobian of b at z has two strictly negative eigenvalues. Choosing, if necessary, a smaller �⇤
and corresponding c > 0, L, it follows that

inf

x2@B�0 (z)

¯V (x) � inf

Z T

0

c ·
����Db(z)'(t)� d

dt
'(t)

����
2

dt > 0,

which establishes the strict positivity of V away from z.
The second part of the assertion is established in a way analogous to the proofs of Theorems

4.4.1 and 4.4.2 in [27], see Section 5.4 therein. ⇤

Theorem 2 implies in particular that the time to reach any small neighborhood of the absorbing
states grows exponentially in N for any ⇢ < 1. This is a generalization of the Kramers’s formula
for the noise activated escape from a potential well [37]. This exponential behavior in N suggests
the existence of an active phase where both spin states / species, 0 and 1, coexist in the stationary
state in the infinite size limit, N ! 1. It is a common wisdom supported by the work of Durrett
(see for example [13]), that when the mean-field version of a model has an attracting fixed point,
coexistence is expected in the spatially explicit model.

4 Normal fluctuation

As seen in the previous sections, on a time scale of order 1 the process (m+
N (t),m�

N (t))t�0 remains
close to its thermodynamic limit: i.e., Eq.(2.2). In this section we consider the normal fluctuations
around this limit. Suppose the assumptions of Theorem 1 are satisfied; moreover, for the sake of
simplicity, we assume q = 1/2, and (m+,m�

) = z with z =

⇣
1

2(1+⇢) ,
⇢

2(1+⇢)

⌘
, so that the limiting

dynamics starts in equilibrium. We define the fluctuation processes

xN (t) :=
p
N
�
m+

N (t)�m+
�

yN (t) :=
p
N
�
m�

N (t)�m�� .

Theorem 3 The stochastic process (xN (t), yN (t)) converges in distribution to a Gauss-Markov
process (X,Y ) which solves the stochastic differential equation

8
>>>>>>>><

>>>>>>>>:

dX =

⇣
� 1+⇢2

2(1+⇢)X +

⇢
1+⇢Y +

1
2H

⌘
dt

+

1p
2

q
⇢

1+⇢dB1

dY =

⇣
� 1+⇢2

2(1+⇢)Y +

⇢
1+⇢X � ⇢ 1

2H
⌘
dt

+

1p
2

q
⇢

1+⇢dB2

(4.1)
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Here, Bi, i = 1, 2 are two independent standard Brownian motions and H is a zero average
standard Gaussian random variable, independent of B1, B2.

The proof of Theorem 3 uses the method of convergence of generators as that of Theorem 1,
and is omitted. Unlike in Theorem 1, the environment does not fully self-averages since H is not
identically equal to zero. The quenched random variable H in Theorem 3 is due to the normal
fluctuations of the environment (h1, h2, . . . , hN ).

5 Discussion and conclusions

It is well known that habitat heterogeneity impacts on biodiversity and causes the introduction of
niche-like effects in the system [38,23,24]. At large scale, e.g. at regional or larger level, geomor-
phological changes may induce genetic isolation whereas at smaller scales the complexity induced
by, for example, vegetation, sediment types, moisture and temperature leads to the coexistence of
several species and to the emergence of niches. To our knowledge, however, quantitative estimates
of the relation between the degrees of heterogeneity and biodiversity and the time of coexistence of
species have not been obtained. Here we have rigorously proved that even a small habitat disorder
in a neutral competition-like model dramatically enhances the typical time biodiversity persists;
more specifically, we have shown that the typical time to loss of biodiversity, ⌧N , scales exponen-
tially with the population size N , leading, for large size systems, to an unobservable long time scale
beyond which extinction occurs. This is in contrast to what happens in absence of habitat hetero-
geneity, where the typical time to loss of biodiversity is typically small, growing as the system’s
size, N . We have also obtained the scaling exponent of ⌧N in terms of a suitable quasi-potential
V (x), that encodes the minimum “cost” of a trajectory to reach a given point x of the phase-space.
The consequences of these findings could be particularly relevant, for example, in conservation
ecology: In a given area different species at the same trophic level compete for space and nutrients
in a neutral fashion; for example, think of a tropical forest, where the neutral theory provides a
very good null model [2].
Lastly, we have shown that the fluctuations around the metastable symmetric fixed point obey
a Brownian motion dynamics with drift where the environmental disorder does not show self-
averaging.
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