Probabilità e Statistica 2017/18Registro delle lezioni

$31~\mathrm{maggio}~2018$

Riferimenti al libro di F. Caravenna e P. Dai Pra: Probabilità. Un'introduzione attraverso modelli e applicazioni, Springer-Verlag, Milano, 2013.

Data lezione	Descrizione	Riferimento
26/02/2018	Calcolo combinatorio: principio fondamentale; dis-	1.2.1-1.2.5;
	posizioni con e senza ripetizione, combinazioni	A.3
06/03/2018	Probabilità come disciplina matematica: descrizione	1.1.1 - 1.1.2;
	di esperimenti aleatorii attraverso modelli matem-	1.2.6
	atici in termini di spazi di probabilità (tre compo-	
	nenti). Esempio delle estrazioni di palline da un'urna	
	con o senza reimmissione.	
07/03/2018	Definizione generale di spazio di probabilità:	1.1.3 – 1.1.4,
	$\sigma\text{-algebra},$ misura di probabilità. Esempio: misura	5.1
	di Dirac. Proprietà fondamentali delle probabilità.	
12/03/2018	Proprietà fondamentali (dimostrazione); formula	
	dell'inclusione / esclusione, disuguaglianza di Bonfer-	
	roni. Spazi di probabilità discreti: definizione, den-	
	sità discreta. Esempi: distribuzione uniforme, di	
	Poisson, di Gibbs.	
13/03/2018	Probabilità condizionale: motivazione (vignetta),	1.3.1, 1.3.5
	definizione, proprietà. Primi esempi (tra cui "Monty	
	Hall").	
19/03/2018	Formula di Bayes. Esempio del test clinico. Indipen-	1.3.2, (1.3.3)
	denza di due eventi.	
20/03/2018	Indipendenza di più di due eventi ed indipendenza	1.3.3
	a due a due (esempi, contro-esempi) Esercizi del	
	Foglio I.	
26/03/2018	Indipendenza di famiglie di eventi; caratterizzazione	1.3.3
	equivalente in termini di eventi complementari. Ap-	
	plicazione: prodotto di Eulero (dimostrazione prob-	
	abilistica).	

27/03/2018	Prove ripetute ed indipendenti: definizione, probabilità di interesse collegate (nessuno, almeno uno, esattamente k successi; istante del primo successo); legame con la distribuzione binomiale.	1.3.4
04/04/2018	Esercizi del Foglio II. Modello di Hardy-Weinberg in genetica.	2.5
09/04/2018	Variabili aleatorie discrete: definizione, σ -algebra degli eventi generati. Legge e densità discreta di una v.a. discreta. Primi esempi: v.a. costanti, indicatrici; rivisitazione delle prove ripetute ed indipendenti.	3.1
10/04/2018	Esempio: strategia del raddoppio nella roulette. Nozioni di uguaglianza per v.a. discrete: certa (come funzioni), P -quasi certa, in legge (o distribuzione). Implicazioni e contro-esempi.	3.1
11/04/2018	Permutazioni con punti fissi: probabilità di avere almeno un punto fisso (oppure esattamente k punti fissi) secondo distribuzione uniforme su S_n . Esercizi da compitino.	2.1
16/04/2018	Distribuzione congiunta di due o più variabili aleatorie discrete. Distribuzione congiunta e distribuzioni marginali: legami e contro-esempi. Indipendenza di v.a. discrete.	3.2
17/04/2018 18/04/2018	Variabili aleatorie indipendenti: caratterizzazioni, esempi. Indipendenza a blocchi e per trasformazioni. Primo compitino	3.2
23/04/2018	Valor medio di variabili aleatorie reali discrete: definizione e proprietà. Formula di trasformazione. Esempi.	3.3.1-3.3.2
24/04/2018	Spazi $L^p(\Omega, \mathbf{P})$: definizione e proprietà. Covarianza, varianza e deviazione standard: definizioni. Proprietà della covarianza di variabili aleatorie discrete.	3.3.3
07/05/2018	Proprietà della varianza di variabili aleatorie discrete. Valor medio e v.a. indipendenti; indipendenza e covarianza.	3.3.3-3.3.4
$\frac{09/05/2018}{14/05/2018}$	Esercizi (compitino) Disuguaglianze fondamentali: di Markov- Chebyshev, di Jensen, di Cauchy-Schwartz. Applicazione: coefficiente di correlazione.	3.3.5-3.3.6
15/05/2018	Somma di v.a. discrete indipendenti: calcolo della densità. Funzione di ripartizione: definizione e proprietà. Applicazione: distribuzione del min/max di v.a. indipendenti.	3.4.1-3.4.3

21/05/2018	Funzione generatrice dei momenti: definizione e proprietà (senza dim.). Applicazione: somma di v.a. indipendenti. Distribuzioni discrete: Bernoulli, binomiale, Poisson, geometrica (densità discreta, valor medio, varianza, funzione generatrice dei momenti). Somme di binomiali o poissoniane indipendenti. Legame tra la distribuzione binomiale e quella di Poisson: legge dei piccoli numeri. Assenza di	3.4.4, 3.5
22/05/2018	memoria della geometrica. Spazi di probabilità generali: richiamo e motivazioni. Generatore di una σ -algebra; σ -algebra dei boreliani. Definizione di variabile aleatoria su spazio di probabilità generale a valori in uno spazio misurabile. Legge (distribuzione) e definizione di indipendenza per v.a. generali. Funzione di ripartizione per v.a. reali generali.	5.1–5.2, 5.4
23/05/2018	Valor medio per v.a. reali generali: definizione e proprietà; disuguaglianze fondamentali. Variabili aleatorie reali assolutamente continue: definizione; legame tra densità (non discreta!) e funzione di ripartizione. Esempio della uniforme continua e della distribuzione esponenziale.	5.3, 6.2.1, 6.3.1, 6.3.3
28/05/2018	Variabili aleatorie assolutamente continue: trasformazione della densità sotto trasformazioni monotone e C^1 della v.a.; calcolo del valor medio per trasformazioni della v.a.; somma di v.a. assolutamente continue. Legge debole dei grandi numeri: definizione, enunciato e dimostrazione nel caso di v.a. in L^2 scor-	6.2.2–6.2.4, 7.1
30/05/2018	relate. Distribuzione normale (gaussiana): definizione e proprietà. Teorema del limite centrale (senza dimostrazione). Metodo dell'approssimazione normale.	6.3.4, 7.2

 $Contatto: \ Markus \ Fischer \ (fischer@math.unipd.it)$