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1 Introduction

Rare event probabilities and large deviations: basic example and definition
in Section 2. Essential tools for large deviations analysis: weak convergence
of probability measures (Section 3) and relative entropy (Section 4). Weak
convergence especially useful in the Dupuis and Ellis [1997] approach – see
lectures!

Table 1: Notation

X a topological space
B(X ) σ-algebra of Borel sets over X , i.e., smallest σ-algebra

containing all open (closed) subsets of X
P(X ) space of probability measures on B(X ), endowed with

topology of weak convergence of probability measures
Mb(X ) space of all bounded Borel measurable functions X → R
C(X ) space of all continuous functions X → R
Cb(X ) space of all bounded continuous functions X → R
Cc(X ) space of all continuous functions X → R with compact

support
Ck(Rd) space of all continuous functions Rd → R with continuous

partial derivatives up to order k

∗Preparatory lecture notes for a course on “Representations and weak convergence
methods for the analysis and approximation of rare events” given by Prof. Paul Dupuis,
Brown University, at the Doctoral School in Mathematics, University of Padua, May 2013.
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Ck
c (Rd) space of all continuous functions Rd → R with compact

support and continuous partial derivatives up to order k
T a subset of R, usually [0, T ] or [0,∞)

C(T : X ) space of all continuous functions T→ X
D(T : X ) space of all càdlàg functions T → X (i.e., functions con-

tinuous from the right with limits from the left)
∧ minimum (as binary operator)
∨ maximum (as binary operator)

2 Large deviations

A standard textbook on the theory of large deviations is Dembo and Zeitouni
[1998]; also see Ellis [1985], Deuschel and Stroock [1989], Dupuis and Ellis
[1997], den Hollander [2000], and the references therein. A foundational work
in the theory is Varadhan [1966].

2.1 Coin tossing

Consider the following random experiments: Given a number n ∈ N, toss n
coins of the same type and count the number of coins that land heads up.
Denote that (random) number by Sn. Then Sn/n is the empirical mean,
here equal to the empirical probability, of getting heads. What can be said
about Sn/n for n large?

To construct a mathematical model for the coin tossing experiments, let
X1, X2, . . . be {0, 1}-valued independent and identically distributed (i.i.d.)
random variables defined on some probability space (Ω,F ,P). Thus each
Xi has Bernoulli distribution with parameter p .

= P(X1 = 1). Interpret
Xi(ω) = 1 as saying that coin i at realization ω ∈ Ω lands head up. Then
Sn =

∑n
i=1Xi. By the strong /weak law of large numbers (LLN),

Sn
n

n→∞−→ p with probability one / in probability.

In particular, by the weak law of large numbers, for all ε > 0,

P {Sn/n− p ≥ ε}
n→∞−→ 0.

More can be said about the asymptotic behavior of those deviation proba-
bilities. Observe that Sn has binomial distribution with parameters (n, p),
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that is,

P {Sn = k} =
n!

k!(n− k)!
pk (1− p)n−k, k ∈ {0, . . . , n}.

By Stirling’s formula, asymptotically for large n,

P {Sn = k} '
√

2πnnne−n√
2πk kke−k

√
2π(n−k)(n−k)n−ke−(n−k)

pk(1− p)n−k.

Therefore, if k ' n · x for some x ∈ (0, 1), then

logP {Sn = k} ' −1

2
(log(2π) + log(x) + log(1−x) + log(n))

− nx log

(
x

p

)
− n(1−x) log

(
1− x
1− p

)
,

hence

1

n
logP {Sn = k} ' −

(
x log

(
x

p

)
+ (1−x) log

(
1− x
1− p

))
.

The expression x log(xp ) + (1−x) log(1−x
1−p ) gives the relative entropy of the

Bernoulli distribution with parameter x w.r.t. the Bernoulli distribution with
parameter p, which is minimal and zero if and only if x = p. The asymptotic
equivalence

1

n
logP {Sn = k} ' −

(
x log

(
x

p

)
+ (1−x) log

(
1− x
1− p

))
, k ' nx,

shows that the probabilities of the events {Sn/n − p ≥ ε} converge to zero
exponentially fast with rate (up to arbitrary small corrections)

−
(

(p+ε) log

(
p+ ε

p

)
+ (1−p−ε) log

(
1− p− ε

1− p

))
,

which corresponds to x = p+ ε, the rate of slowest convergence.
Events like {Sn/n − p ≥ ε} describe large deviations from the law of

large numbers limit, in contrast to the fluctuations (“normal deviations”)
captured by the central limit theorem, which says here that the distribution
of
√
n · (Sn/n− p) is asymptotically Gaussian with mean zero and variance

p(1− p).
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2.2 The large deviation principle

The theory of large deviations will be developed in this course for random
variables taking values in a Polish space. A Polish space is a separable
topological space that is compatible with a complete metric. Examples of
Polish spaces are

• Rd with the standard topology,

• any closed subset of Rd (or another Polish space) equipped with the
induced topology,

• the space C(T : X ) of continuous functions, T ⊆ (−∞,∞) an interval,
X a complete and separable metric space, equipped with the topology
of uniform convergence on compact subsets of T,

• the space D(T : X ) of càdlàg functions, T ⊆ (−∞,∞) an interval, a
X a complete and separable metric space, equipped with the Skorohod
topology [e.g. Billingsley, 1999, Chapter 3],

• the space P(X ) of probability measures on B(X ), X a Polish space,
equipped with the weak convergence topology (cf. Section 3).

Let (ξn)n∈N be a family of random variables with values in a Polish
space S. Let I : S → [0,∞] be a function with compact sublevel sets, i.e.,
{x ∈ S : I(x) ≤ c} is compact for every c ∈ [0,∞). Such a function is lower
semicontinuous and is called a (good) rate function.

Definition 2.1. The sequence (ξn)n∈N satisfies the large deviation principle
with rate function I iff for all G ∈ B(S),

− inf
x∈G◦

I(x) ≤ lim inf
n→∞

1

n
logP {ξn ∈ G}

≤ lim sup
n→∞

1

n
logP {ξn ∈ G} ≤ − inf

x∈cl(G)
I(x).

The large deviation principle is a distributional property: Writing Pn for
Law(ξn), (ξn) satisfies the large deviation principle with rate function I if
and only if for all G ∈ B(S),

− inf
x∈G◦

I(x) ≤ lim inf
n→∞

1

n
logPn(G) ≤ lim sup

n→∞

1

n
logPn(G) ≤ − inf

x∈cl(G)
I(x).
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The large deviation principle gives a rough description of the asymptotic
behavior of the probabilities of rare events. For simplicity, consider only I-
continuity sets; a setG ∈ B(S) is called an I-continuity set if infx∈cl(G) I(x) =

infx∈G◦ I(x). For such G,

lim
n→∞

1

n
logP {ξn ∈ G} = − inf

x∈G
I(x)

.
= −I(G),

hence

P {ξn ∈ G} = Pn(G) = e−n(I(G)+o(1)).

The probability of G w.r.t. the law of ξn therefore tends to zero exponentially
fast as n→∞ whenever I(G) > 0. Thus, if I(G) > 0, then G is a rare event
(w.r.t. Pn for large n).

Example 1 (Coin tossing). The sequence ξn .
= Sn/n, n ∈ N, satisfies the

large deviation principle in S .
= R (or S .

= [0, 1]) with rate function

I(x) =

x log(xp ) + (1−x) log(1−x
1−p ) if x ∈ [0, 1],

∞ otherwise.

If p ∈ (0, 1), then I is finite and continuous on [0, 1], and convex on R.

A concept closely related to the large deviation principle is what is called
Laplace principle. Let (ξn)n∈N be a family of S-valued random variables,
Pn = Law(ξn).

Definition 2.2. The sequence (ξn) satisfies the Laplace principle with rate
function I iff for all F ∈ Cb(S),

lim
n→∞

− 1

n
logE [exp (−n · F (ξn))] = inf

x∈S
{I(x) + F (x)} .

In Definition 2.2 it is clearly equivalent to require that for all F ∈ Cb(S),

lim
n→∞

1

n
log

∫
S

exp (n · F (x))Pn(dx) = sup
x∈S
{F (x)− I(x)} .

If S = Rd and if we took F (x) = θ ·x (such an F is clearly unbounded), then
on the right-hand side above we would have the Legendre transform of I at
θ ∈ Rd. Also notice the analogy with Laplace’s method for asymptotically
evaluating exponential integrals: limn→∞

1
n log

∫ 1
0 e

nf(x)dx = maxx∈[0,1] f(x)

for all f ∈ C([0, 1]).

Basic results [for instance Dembo and Zeitouni, 1998, Chapter 4]:

5



1. The (good) rate function of a large deviation principle is uniquely de-
termined.

2. If I is the rate function of a large deviation principle, then infx∈S I(x) =

0 and I(x∗) = 0 for some x∗ ∈ S. If I has a unique minimizer, then the
large deviation principle implies a corresponding law of large numbers.

3. The large deviation principle holds if and only if the Laplace principle
holds, and the (good) rate function is the same.

4. Contraction principle: Let Y be a Polish space and ψ : S → Y be a
measurable function. If (ξn) satisfies the large deviation principle with
(good) rate function I and if ψ is continuous on {x ∈ S : I(x) < ∞},
then (ψ(ξn)) satisfies the large deviation principle with (good) rate
function J(y)

.
= infx∈ψ−1(y) I(x).

2.3 Large deviations for empirical means

Let X1, X2, . . . be R-valued i.i.d. random variables with common distribution
µ such that m .

=
∫
xµ(dx) = E[X1] is finite. As in the case of coin flipping,

set Sn
.
=
∑n

i=1Xi and consider the asymptotic behavior of Sn/n, n ∈ N. By
the law of large numbers, Sn/n

n→∞−→ m with probability one.
Let φµ be the moment generating function of µ (or X1, X2, . . .), that is,

φµ(t)
.
=

∫
R
et·xµ(dx) = E

[
et·X1

]
, t ∈ R.

Theorem 2.1 (Cramér). Suppose that µ is such that φµ(t) is finite for
all t ∈ R. Then (Sn/n)n∈N satisfies the large deviation principle with rate
function I given by

I(x)
.
= sup

t∈R
{t · x− log (φµ(t))} .

The rate function I in Theorem 2.1 is the Legendre transform of log φµ,
the logarithmic moment generating function or cumulant generating function
of the common distribution µ. Two particular cases:

1. Bernoulli distribution: µ the Bernoulli distribution on {0, 1} with pa-
rameter p. Then φµ(t) = 1− p+ p · et and

I(x) = x log

(
x

p

)
+ (1− x) log

(
1− x
1− p

)
, x ∈ [0, 1],

I(x) =∞ for x ∈ R \ [0, 1], as in Example 1.
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2. Normal distribution: µ the normal distribution with mean 0 and vari-
ance σ2. Then φµ(t) = eσ

2t2/2 and

I(x) =
x2

2σ2
, x ∈ R.

Some properties of log φµ and the associated rate function I from Theo-
rem 2.1 (hypothesis φµ(t) <∞ for all t ∈ R):

• φµ is in C∞(R : (0,∞)),

• log φµ is strictly convex,

• I(x) =∞ for x /∈ [essinf X1, esssupX1] = Conv(supp(µ)),

• I is non-negative and convex,

• I is strictly convex and infinitly differentiable on (essinf X1, esssupX1),

• I(m) = 0, I ′(m) = 0, and I ′′(m) = 1/ var(µ).

Here we give a sketch of the proof of Theorem 2.1; for a complete proof of
Cramér’s theorem under weaker assumptions on φµ see Section 2.2 in Dembo
and Zeitouni [1998, pp. 26-35].

Proof of Theorem 2.1 (sketch). May assume m = E[X1] = 0. Given x > 0,
consider the probabilities of the events {Sn/n ≥ x}. By Markov’s inequality
and since Sn is the sum of i.i.d. random variables with common distribution
µ, we have for t > 0,

P {Sn ≥ nx} = P
{
et Sn ≥ et n x

}
≤ e−t n xE

[
et Sn

]
= e−t n x(φµ(t))n.

Since this inequality holds for any t > 0 and log is non-decreasing, we obtain

lim sup
n→∞

1

n
logP {Sn/n ≥ x} ≤ − sup

t>0
{t · x− log(φµ(t))} .

By Jensen’s inequality, log φµ(t) ≥ t ·E[X1] = t ·m = 0 . Since log φµ(0) = 0,
we have I(m) = I(0) = 0 and

t · x− log(φµ(t)) ≤ t ·m− log(φµ(t)) ≤ I(m) = 0 for every t ≤ 0.

It follows that

sup
t>0
{t · x− log(φµ(t))} = sup

t∈R
{t · x− log(φµ(t))} = I(x),
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which yields the large deviation upper bound for closed sets of the form
[x,∞), x > 0. A completely analogous argument gives the upper bound
for closed sets of the form (−∞, x], x < 0. Let G ⊂ R be a closed set not
containing zero. Then, thanks to the strict convexity of I and the fact that
I ≥ 0 and I(0) = 0, there are x+ > 0, x− < 0 such that G ⊆ (−∞, x−] ∪
[x+,∞) and infx∈G I(x) = infx∈(−∞,x−]∪[x+,∞) I(x). This establishes the
large deviation upper bound.

To obtain the large deviation lower bound, we first consider open sets
of the form (x − δ, x + δ) for x ∈ (essinf X1, esssupX1), δ > 0. Fix such
x, δ. Since φµ is everywhere finite by hypothesis, thus log φµ continuously
differentiable and strictly convex on R, there exists a unique solution tx ∈ R
to the equation

x = (log φµ)′(tx) =
φ′(tx)

φ(tx)
=

E
[
X1e

txX1
]

E [etxX1 ]
,

and
I(x) = tx · x− log φµ(tx).

Define a probability measure µ̃ ∈ P(R) absolutely continuous with respect
to µ according to

dµ̃

dµ
(y)

.
= exp (tx · y − log φµ(tx)) =

etx·y

φµ(tx)
.

Let Y1, Y2, . . . be i.i.d. random variables with common distribution µ̃, and
set S̃n

.
=
∑n

i=1 Yi, n ∈ N. Then E[Yi] = x and, for ε > 0,

P {Sn/n ∈ (x− ε, x+ ε)}

=

∫
{z∈Rn:

∑n
i=1 zi∈(n(x−ε),n(x+ε))}

⊗nµ(dy)

≥ e−n(tx(x−ε)∨tx(x+ε))

∫
{z∈Rn:

∑n
i=1 zi∈(n(x−ε),n(x+ε))}

etx·
∑n
i=1 yi ⊗n µ(dy)

= en·log φµ(tx) · e−n(tx(x−ε)∨tx(x+ε)) ·P
{
S̃n/n ∈ (x− ε, x+ ε)

}
.

Since Y1, Y2, . . . are i.i.d. with E[Yi] = x, we have S̃n/n → x in probability
as n→∞ by the weak law of large numbers. It follows that

lim inf
n→∞

1

n
logP {Sn/n ∈ (x− ε, x+ ε)} ≥ log φµ(tx)− tx(x− ε) ∨ tx(x+ ε).

Since ε > 0 was arbitrary and log φµ(tx)− tx · x = −I(x), we obtain

lim inf
n→∞

1

n
logP {Sn/n ∈ (x− δ, x+ δ)} ≥ −I(x).
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If G ⊂ R is open such that G∩(essinf X1, esssupX1) 6= ∅, then the preceding
inequality implies that

lim inf
n→∞

1

n
logP {Sn/n ∈ G} ≥ sup

x∈G
−I(x) = − inf

x∈G
I(x).

The parameter tx in the proof of Theorem 2.1 corresponds to an absolutely
continuous change of measure with exponential density. Under the new
measures, the random variable X1 has expected value x instead of zero – the
rare event {Sn/n ≥ x} becomes typical!

3 Weak convergence of probability measures

Here we collect some facts about weak convergence of probability measures.
A standard reference on the topic is Billingsley [1968, 1999]; also see Chap-
ter 3 in Ethier and Kurtz [1986] or Chapter 11 in Dudley [2002]. Let X be
a Polish space. Let B(X ) be the Borel σ-algebra over X . Denote by P(X )

the space of probability measures on B(X ).

Definition 3.1. A sequence (θn)n∈N ⊂ P(X ) is said to converge weakly to
θ ∈ P(X ), in symbols θn

w−→ θ, if∫
X
f(x)θn(dx)

n→∞−→
∫
X
f(x)θn(dx) for all f ∈ Cb(X ).

Remark 3.1. In the terminology of functional analysis, the weak convergence
of Definition 3.1 would be called weak-∗ convergence. Denote byMsgn(X )

the space of finite signed measures on B(X ). Then Msgn(X ) is a Banach
space under the total variation norm (“strong convergence”), and P(X ) is a
closed convex subset of Msgn(X ) with respect to both the strong and the
weak convergence topology. Moreover, Msgn(X ) can be identified with a
subspace of the topological dual Cb(X )∗ of the Banach space Cb(X ) under
the sup norm (if X is compact, thenMsgn(X ) ≡ Cb(X )∗; in general, Cb(X )

is not reflexive, not even for X = [0, 1]). Thus P(X ) ⊂ Cb(X )∗, and the
convergence of Definition 3.1 coincides with the weak-∗ convergence on the
dual space induced by the original space Cb(X ).

Example 2 (Dirac measures). Let (xn)n∈N ⊂ X be a convergent sequence
with limit x ∈ X . Then the sequence of Dirac measures (δxn)n∈N ⊂ P(X )

converges weakly to the Dirac measure δx.
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Example 3 (Normal distributions). Let (mn)n∈N ⊂ R, (σ2
n)n∈N ⊂ [0,∞)

be convergent sequences with limits m and σ2, respectively. Then the se-
quence of normal distributions (N(mn, σ

2
n))n∈N ⊂ P(R) converges weakly to

N(m,σ2).

Example 4 (Product measures). Suppose (θn)n∈N ⊂ P(X ), (µn)n∈N ⊂ P(Y)

are weakly convergent sequences with limits θ and µ, respectively, where Y is
Polish, too. Then the sequence of product measures (θn⊗µn)n∈N ⊂ P(X×Y)

converges weakly to θ ⊗ µ.

Example 5 (Marginals vs. joint distribution). Let X, Y , Z be independent
real-valued random variables defined on some probability space (Ω,F ,P)

such that Law(X) = N(0, 1) = Law(Y ) (i.e., X, Y have standard nor-
mal distribution), and Z has Rademacher distribution, that is, P(Z = 1) =

1/2 = P(Z = −1). Define a sequence (θn)n∈N ⊂ P(R2) by θ2n
.
= Law(X,Y ),

θ2n−1
.
= Law(X,Z ·X), n ∈ N. Observe that the random variable Z ·X has

standard normal distribution N(0, 1). The marginal distributions of (θn)

therefore converge weakly (they are constant and equal to N(0, 1)), while
the sequence (θn) itself does not converge (indeed, the joint distribution of
X and Z ·X is not even Gaussian). To prove weak convergence of probability
measures on a product space it is therefore not enough to check convergence
of the marginal distributions. This suffices only in the case of product mea-
sures; cf. Example 4.

The limit of a weakly convergent sequence in P(X ) is unique. Weak con-
vergence induces a topology on P(X ); under this topology, X being a Polish
space, P(X ) is a Polish space, too. Let d be a complete metric compatible
with the topology of X ; thus (X , d) is a complete and separable metric space.
There are different choices for a complete metric on P(X ) that is compatible
with the topology of weak convergence. Two common choices are the Pro-
horov metric and the bounded Lipschitz metric, respectively. The Prohorov
metric on P(X ) is defined by

ρ(θ, ν)
.
= inf {ε > 0 : θ(G) ≤ ν(Gε) + ε for all closed G ⊂ X} , (3.1)

where Gε .
= {x ∈ X : d(x,G) < ε}. Notice that ρ is indeed a metric. The

bounded Lipschitz metric on P(X ) is defined by

ρ̃(θ, ν)
.
= sup

{∣∣∫ fdθ −
∫
fdν

∣∣ : f ∈ Cb(X ) such that ‖f‖bL ≤ 1

}
, (3.2)
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where ‖f‖bL
.
= supx∈X |f(x)|+ supx,y∈X :x 6=y

|f(x)−f(y)|
d(x,y) .

The following theorem gives a number of equivalent characterizations of
weak convergence.

Theorem 3.1 (“Portemanteau theorem”). Let (θn)n∈N ⊂ P(X ) be a se-
quence of probability measures, and let θ ∈ P(X ). Then the following are
equivalent:

(i) θn
w−→ θ as n→∞;

(ii) ρ(θn, θ)
n→∞−→ 0 (Prohorov metric);

(iii) ρ̃(θn, θ)
n→∞−→ 0 (bounded Lipschitz metric);

(iv)
∫
fdθn

n→∞−→
∫
fdθ for all bounded Lipschitz continuous f : X → R;

(v) lim infn→∞ θn(O) ≥ θ(O) for all open O ⊆ X ;

(vi) lim supn→∞ θn(G) ≤ θ(G) for all closed G ⊆ X ;

(vii) limn→∞ θn(B) = θ(B) for all B ∈ B(X ) such that θ(∂B) = 0, where
∂B

.
= cl(B) ∩ cl(Bc) denotes the boundary of the Borel set B;

(viii)
∫
fdθn

n→∞−→
∫
fdθ for all f ∈ Mb(X ) such that θ(Uf ) = 0 where

Uf
.
= {x ∈ X : f discontinuous at x}.

Proof. For the equivalence of conditions (i), (ii), (iii), and (iv) see Theo-
rem 11.3.3 in Dudley [2002, pp. 395-396].

(i) ⇒ (v). Let O ⊆ X be open. If f ∈ Cb(X ) is such that 0 ≤ f ≤ 1O,
then

lim inf
n→∞

θn(O) ≥
∫
X
f dθ

since θn(O) ≥ f for every n ∈ N and
∫
f dθn →

∫
f dθ as n → ∞ by (i).

Since O is open, we can find (fM )M∈N ∈ Cb(X ) such that 0 ≤ fM ≤ 1O

and fM ↗ 1O pointwise as M → ∞. Then
∫
fM dθ ↗ θ(O) as M → ∞ by

monotone convergence. It follows that lim infn→∞ θn(O) ≥ θ(O).
(v)⇔ (vi). This follows by taking complements (open/closed sets).
(v), (vi)⇒ (vii). Let B ∈ B(X ). Clearly, B◦ ⊆ B ⊆ cl(B) and B◦ open,

cl(B) closed. Therefore by (v), (vi),

θ(B◦) ≤ lim inf
n→∞

θn(B◦) ≤ lim inf
n→∞

θn(B)

≤ lim sup
n→∞

θn(B) ≤ lim sup
n→∞

θn(cl(B)) ≤ θ(cl(B)).
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If θ(∂B) = 0, then θ(B◦) = θ(cl(B)), hence limn→∞ θn(B) = θ(B).
(vii) ⇒ (viii). Let f ∈ Mb(X ) be such that θ(Uf ) = 0, and let A .

=

{y ∈ R : θ(f−1{y}) > 0} be the set of atoms of θ ◦ f−1. Since θ ◦ f−1 is a
finite measure, A is at most countable. Let ε > 0. Then there are N ∈ N,
y0, . . . , yN ∈ R \A such that

y0 ≤ −‖f‖∞ < y1 < . . . < yN−1 < ‖f‖∞ ≤ yN , |yi − yi−1| ≤ ε.

For i ∈ {1, . . . , N} set Bi
.
= f−1{[yi−1, yi)}. Then

θ(∂Bi) ≤ θ(f−1{yi−1}) + θ(f−1{yi}) + θ{Uf} = 0.

Using (vii) we obtain

lim sup
n→∞

∫
f dθn ≤ lim sup

n→∞

N∑
i=1

θn(Bi) · yi =
N∑
i=1

θ(Bi) · yi ≤ ε+

∫
f dθ.

Since ε was arbitrary, it follows that lim supn→∞
∫
f dθn ≤

∫
f dθ. The same

argument applied to −f yields the inequality lim infn→∞
∫
f dθn ≥

∫
f dθ.

The implication (viii)⇒ (i) is immediate.

From Definition 3.1 it is clear that weak convergence is preserved under
continuous mappings. The mapping theorem for weak convergence requires
continuity only with probability one with respect to the limit measure; this
should be compared to characterization (vii) in Theorem 3.1.

Theorem 3.2 (Mapping theorem). Let (θn)n∈N ⊂ P(X ), θ ∈ P(X ). Let Y
be a second Polish space, and let ψ : X → Y be a measurable mapping. If
θn

w−→ θ and θ{x ∈ X : ψ discontinuous at x} = 0, then ψ ◦ θn
w−→ ψ ◦ θ.

Proof. By part (v) of Theorem 3.1, it is enough to show that for every O ⊆ Y
open,

lim inf
n→∞

θn
(
ψ−1(O)

)
≤ θ

(
ψ−1(O)

)
.

Let O ⊆ Y be open. Set C .
= {x ∈ X : ψ continuous at x}. Then ψ−1(O)∩C

is contained in (ψ−1(O))◦, the interior of ψ−1(O). Since (ψ−1(O))◦ is open,
θ(C) = 1 and θn

w−→ θ by hypothesis, it follows from part (v) of Theorem 3.1
that

θ
(
ψ−1(O)

)
= θ

(
(ψ−1(O))◦

)
≤ lim inf θn

(
(ψ−1(O))◦

)
≤ lim inf

n→∞
θn
(
ψ−1(O)

)
.

12



The following generalization of Theorem 3.2 is sometimes useful.

Theorem 3.3 (Extended mapping theorem). Let (θn)n∈N ⊂ P(X ), θ ∈
P(X ). Let Y be a second Polish space, and let ψn, n ∈ N, ψ be a measurable
mappings X → Y. If θn

w−→ θ and

θ {x ∈ X : ∃ (xn) ⊂ X such that xn → x while ψn(xn) 9 ψ(x)} = 0,

then ψn ◦ θn
w−→ ψ ◦ θ.

Proof. See Theorem 5.5 in Billingsley [1968, p. 34] or Theorem 4.27 in Kallen-
berg [2001, p. 76].

In the following version of Fatou’s lemma the probability measures con-
verge weakly, while the integrand is fixed (the latter condition can be weak-
ened).

Lemma 3.1 (Fatou). Let (θn)n∈N ⊂ P(X ), θ ∈ P(X ). Let g : X → (−∞,∞]

be a lower semicontinuous function. If θn
w−→ θ, then

lim inf
n→∞

∫
X
g dθn ≥

∫
X
g dθ.

Proof. See Theorem A.3.12 in Dupuis and Ellis [1997, p. 307].

A sequence (Xn)n∈N of X -valued random variables (possibly defined on
different probability spaces) is said to converge in distribution to some X -
valued random variable X if the respective laws converge weakly.

There is a version of the dominated convergence theorem in connection
with convergence in distribution for real-valued (or Rd-valued) random vari-
ables.

Theorem 3.4 (Dominated convergence). Let (Xn)n∈N be a sequence of R-
valued random variables. Suppose that (Xn) converges in distribution to X
for some random variable X. If (Xn)n∈N is uniformly integrable, then

E [|X|] <∞ and En [Xn]
n→∞−→ E [X] .

Proof. For M ∈ N, the functions x 7→ −M ∨ (x∧M) and x 7→ |x|∧M are in
Cb(R). Since (Xn) converges in distribution to X by hypothesis, this implies

En [|Xn| ∧M ]
n→∞−→ E [|X| ∧M ] , (3.3a)

En [−M ∨ (Xn ∧M)]
n→∞−→ E [−M ∨ (X ∧M)] . (3.3b)

13



By hypothesis, (Xn)n∈N is uniformly integrable, that is,

lim
M→∞

sup
n∈N

En
[
|Xn| · 1{|Xn|≥M}

]
= 0.

This implies, in particular, that supn∈NEn [|Xn|] <∞. By (3.3a), forM ∈ N
we can choose nM ∈ N such that |EnM [|XnM | ∧M ]− E [|X| ∧M ] | ≤ 1. It
follows that

sup
M∈N

E [|X| ∧M ]

≤ sup
M∈N

{
|EnM [|XnM | ∧M ]−E [|X| ∧M ]|+ sup

n∈N
En [|Xn| ∧M ]

}
≤ 1 + sup

n∈N
En [|Xn|] <∞.

This shows E[|X|] <∞, that is, X is integrable, since E [|X| ∧M ]↗ E[|X|]
as M →∞ by monotone convergence. Now for any n ∈ N, any M ∈ N,

|E [X]−En [Xn]| ≤ |E [−M ∨ (X ∧M)]−En [−M ∨ (Xn ∧M)]|

+ E
[
|X| · 1{|X|≥M}

]
+ En

[
|Xn| · 1{|Xn|≥M}

]
Let ε > 0. By the integrability of X and the uniform integrability of (Xn)

one finds Mε ∈ N such that

E
[
|X| · 1{|X|≥M}

]
+ sup

k∈N
Ek
[
|Xk| · 1{|Xk|≥M}

]
≤ ε

2
.

By (3.3a), we can choose nε = n(Mε) such that

|E [−Mε ∨ (X ∧Mε)]−Enε [−Mε ∨ (Xnε ∧Mε)]| ≤
ε

2
.

It follows that |E [X]−Enε [Xnε ]| ≤ ε, which establishes the desired conver-
gence since ε was arbitrary.

Suppose we have a sequence (Xn)n∈N of random variables that converges
in distribution to some random variable X; thus Law(Xn)

w−→ Law(X).
If the relation (in particular, joint distribution) between the X1, X2, . . . is
irrelevant, one may work with random variables that converge almost surely.

Theorem 3.5 (Skorohod representation). Let (θn)n∈N ⊂ P(X ). If θn
w−→ θ

for some θ ∈ P(X ), then there exists a probability space (Ω,F ,P) carrying
X -valued random variables Xn, n ∈ N, and X such that P ◦X−1

n = θn for
every n ∈ N, P ◦X−1 = θ, and Xn → X as n→∞ P-almost surely.

14



Proof (for X finite). Assume that X ≡ {1, . . . , N} for some N ∈ N. Set
Ω
.
= [0, 1], F .

= B([0, 1]), and let P be Lebesgue measure on B([0, 1]). Set

X(ω)
.
=

N∑
k=1

k · 1(θ{i<k},θ{i≤k}](ω),

Xn(ω)
.
=

N∑
k=1

k · 1(θn{i<k},θn{i≤k}](ω).

The random variables thus defined have the desired properties since, for ev-
ery k ∈ {1, . . . , N}, θn{i < k} → θ{i < k}, θn{i ≤ k} → θ{i ≤ k} as
n → ∞. For a general Polish space X (actually, completeness not needed)
use countable partitions and approximation argument; cf. the proof of The-
orem 4.30 in Kallenberg [2001, p. 79] or of Theorem 11.7.2 in Dudley [2002,
pp. 415-417].

A standard method for proving that a sequence (an)n∈N of elements of a
complete metric space S converges to a unique limit a ∈ S is to proceed as
follows. First show that (an)n∈N is relatively compact (i.e., cl({an : n ∈ N})
is compact in S). Then, taking any convergent subsequence (an(j))j∈N with
limit ã, show that ã = a. This establishes an → a as n ∈ N. Relative
compactness in P(X ) with the topology of weak convergence when X is
Polish is equivalent to uniform exhaustibility by compact sets or “tightness.”

Definition 3.2. Let I be a non-empty set. A family (θi)i∈I ⊂ P(X ) is called
tight (or uniformly tight) if for any ε > 0 there is a compact set Kε ⊂ X
such that

inf
i∈I

θi(Kε) ≥ 1− ε.

Theorem 3.6 (Prohorov). Let I be a non-empty set, and let (θi)i∈I ⊂ P(X ),
where X is Polish. Then (θi)i∈I ⊂ P(X ) is tight if and only if (θi)i∈I is
relatively compact in P(X ) with respect to the topology of weak convergence.

Proof. See, for instance, Section 1.5 in Billingsley [1999, pp. 57-65].

Depending on the structure of the underlying space X , conditions for
tightness or relative compactness can be derived. Let us consider here
the case X = C([0,∞),Rd) with the topology of uniform convergence on
compact time intervals. With this choice, X is the canonical path space
for (Rd-valued) continuous processes. Let X be the canonical process on
C([0,∞),Rd), that is, X(t, ω)

.
= ω(t) for t ≥ 0, ω ∈ C([0,∞),Rd).
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Theorem 3.7. Let I be a non-empty set, and let (θi)i∈I ⊂ P(C([0,∞),Rd)).
Then (θi)i∈I is relatively compact if and only if the following two conditions
hold:

(i) (θi ◦ (X(0))−1 is tight in P(Rd), and

(ii) for every ε > 0, every T ∈ N there is δ > 0 such that

sup
i∈I

θi

({
ω ∈ C([0,∞),Rd) : wT (ω, δ) > ε

})
≤ ε,

where wT (ω, δ)
.
= sups,t∈[0,T ]:|t−s|≤δ |ω(t) − ω(s)| is the modulus of

continuity of ω with size δ over the time interval [0, T ].

Proof. See, for instance, Theorem 2.7.3 in Billingsley [1999, pp. 82-83]; the
extension from a compact time interval to [0,∞) is straightforward.1

Theorem 3.7 should be compared to the Arzelà-Ascoli criterion for rel-
ative compactness in C([0,∞),Rd). The next theorem gives a sufficient
condition for relative compactness (or tightness) in P(C([0,∞),Rd)); the
result should be compared to the Kolmogorov-Chentsov continuity theorem.

Theorem 3.8 (Kolmogorov’s sufficient condition). Let I be a non-empty
set, and let (θi)i∈I ⊂ P(C([0,∞),Rd)). Suppose that

(i) (θi ◦ (X(0))−1 is tight in P(Rd), and

(ii) there are strictly positive numbers C, α, β such that for all t, s ∈ [0,∞),
all i ∈ I,

Eθi [|X(s)−X(t)|α] ≤ C|t− s|1+β.

Then (θi)i∈I is relatively compact in P(C([0,∞),Rd)).

Proof. See, for instance, Corollary 16.5 in Kallenberg [2001, p. 313].

Tightness of a family (θi)i∈I ⊂ P(S) can often be established by showing
that supi∈I G(θi) < ∞ for an appropriate function G. This works if G is a
tightness function in the sense of the definition below.

1The issue is more delicate when passing from the Skorohod space D([0, T ],X ) to the
Skorohod space D([0,∞),X ); cf. Chapter 3 in Billingsley [1999].
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Definition 3.3. A measurable function g : S → [0,∞] is called a tightness
function on S if g has relatively compact sublevel sets, that is, for every
M ∈ R, cl{x ∈ S : g(x) ≤M} is compact in S.

A way of constructing tightness functions on P(S) is provided by the
following result.

Theorem 3.9. Suppose g is a tightness function on S. Define a function G
on P(S) by

G(θ)
.
=

∫
S
g(x)θ(dx).

Then G is a tightness function on S.

Proof. The function G is well-defined with values in [0,∞]. Let M ∈ [0,∞),
and set A .

= {θ ∈ P(S) : G(θ) ≤M}. By Prohorov’s theorem it is enough to
show that A = A(M) is tight. Let ε > 0. Set Kε

.
= cl{x ∈ S : g(x) ≤M/ε}.

Then Kε is compact since g is a tightness function and for θ ∈ A,

M ≥ G(θ) =

∫
S
g dθ ≥

∫
S\Kε

g dθ ≥ M

ε
· θ(S \Kε).

It follows that infθ∈A θ(S \Kε) ≤ ε, hence supθ∈A θ(Kε) ≥ 1− ε.

4 Relative entropy

Here we collect properties of relative entropy for probability measures on
Polish spaces. We will mostly refer to Dupuis and Ellis [1997]; also see the
classical works by Kullback and Leibler [1951] and Kullback [1959], where
relative entropy is introduced as an information measure and called directed
divergence. Let S, X , Y be Polish spaces.

Definition 4.1. Let µ, ν ∈ P(S). The relative entropy of µ with respect to
ν is given by

R(µ‖ν) =


∫
S log

(
dµ
dν (x)

)
µ(dx) if µ� ν,

∞ else.

Relative entropy is well-defined as a function P(S) × P(S) → [0,∞].
Indeed, if µ � ν, then a density f

.
= dµ

dν exists by the Radon-Nikodym
theorem with f uniquely determined ν-almost surely. In this case,

R(µ‖ν) =

∫
S
f(x) log (f(x)) ν(dx).
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Clearly, limx→0+ x log(x) = 0. Since
∫
fdν = 1 and x log(x) ≥ x − 1 for all

x ≥ 0 with equality if and only if x = 1, it follows that R(µ‖ν) ≥ 0 with
R(µ‖ν) = 0 if and only if µ = ν. Relative entropy can actually be defined
for σ-finite measures on an arbitrary measurable space.

Lemma 4.1 (Basic properties). Properties of relative entropy R(. ‖. ) for
probability measures on a Polish space S.

(a) Relative entropy is a non-negative, convex, lower semicontinuous func-
tion P(S)× P(S) → [0,∞].

(b) For ν ∈ P(S), R(. ‖ν) is strictly convex on {µ ∈ P(S : R(µ‖ν) <∞}.

(c) For ν ∈ P(S), R(. ‖ν) has compact sublevel sets.

(d) Let ΠS denote the set of finite measurable partitions of S. Then for all
µ, ν ∈ P(S),

R(µ‖ν) = sup
π∈ΠS

∑
A∈π

µ(A) log

(
µ(A)

ν(A)

)
,

where x log(x/y) = 0 if x = 0, x log(x/y) =∞ if x > 0 and y = 0.

(e) For every A ∈ B(S), any µ, ν ∈ P(S),

R(µ‖ν) ≥ µ(A) log

(
µ(A)

ν(A)

)
− 1.

Proof. See Lemma 1.4.3, parts (b), (c), (g), in Dupuis and Ellis [1997, pp. 29-
30].

Lemma 4.2 (Contraction property). Let ψ : Y → X be a Borel measurable
mapping. Let η ∈ P(X ), γ0 ∈ P(Y). Then

R
(
η‖γ0 ◦ ψ−1

)
= inf

γ∈P(Y):γ◦ψ−1=η
R
(
γ‖γ0

)
, (4.1)

where inf ∅ =∞ by convention.

Proof (sketch). Inequality “≤” analogous to proof of Lemma E.2.1 in Dupuis
and Ellis [1997, p. 366]. For the opposite inequality, check that the probabil-
ity measure γ defined by γ(dy)

.
= dη

dγ0◦ψ−1 (ψ(y))γ0(dy) attains the infimum
whenever that infimum is finite.2

2For more details and an application see, for instance, M. Fischer, On the form of the
large deviation rate function for the empirical measures of weakly interacting systems,
arXiv:1208.0472 [math.PR].
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Lemma 4.2 yields the invariance property of relative entropy established
in Lemma E.2.1 [Dupuis and Ellis, 1997, p. 366] in the case when ψ is a bi-
jective bi-measurable mapping; also cf. Theorem 4.1 in Kullback and Leibler
[1951], where the inequality that is implied by Lemma 4.2 is derived.

Lemma 4.3 (Chain rule). Let X , Y be Polish spaces. Let α, β ∈ P(X ×Y)

and denote their marginal distributions on X by α1 and β1, respectively. Let
α(.|.), β(.|.) be stochastic kernels on Y given X such that for all A ∈ B(X ),
B ∈ B(Y),

α(A×B) =

∫
A
α(B|x)α1(dx), β(A×B) =

∫
A
β(B|x)β1(dx).

Then the mapping x 7→ R (α(.|x)‖β(.|x)) is measurable and

R(α‖β) = R (α1‖β1) +

∫
X
R (α(.|x)‖β(.|x))α1(dx).

In particular, if α, β are product measures, then

R(α1 ⊗ α2‖β1 ⊗ β2) = R (α1‖β1) +R (α2‖β2) .

Proof. Appendix C.3 in Dupuis and Ellis [1997, pp. 332-334]

The variational representation for Laplace functionals given in Lemma 4.4
below is the starting point for the weak convergence approach to large devi-
ations; its statement should be compared to Definition 2.2, the definition of
the Laplace principle.

Lemma 4.4 (Laplace functionals). Let ν ∈ P(S). Then for all g ∈Mb(S),

− log

∫
S

exp (−g(x)) ν(dx) = inf
µ∈P(S)

{
R(µ‖ν) +

∫
S
g(x)µ(dx)

}
,

Infimum in variational formula above is attained at µ∗ ∈ P(S) given by

dµ∗

dν
(x)

.
=

exp (−g(x))∫
S exp (−g(y)) ν(dy)

, x ∈ S.

Proof. Let g ∈Mb(S), and define µ∗ through its density with respect to ν as
above. Notice that µ∗, ν are mutually absolutely continuous. Let µ ∈ P(S)

be such that R(µ‖ν) <∞. Then µ is absolutely continuous with respect to
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ν with density dµ
dν , but also absolutely continuous with respect to µ∗ with

density dµ
dµ∗ = dµ

dν ·
dν
dµ∗ , where

dν
dµ∗ = eg∫

egdµ∗
. It follows that

R(µ‖ν) +

∫
S
g dµ =

∫
S

log

(
dµ

dν

)
dµ+

∫
S
g dµ

=

∫
S

log

(
dµ

dµ∗

)
dµ+

∫
S

log

(
dµ∗

dν

)
dµ+

∫
S
g dµ

= R(µ‖µ∗)− log

∫
S
e−g dν.

This yields the assertion since R(µ‖µ∗) ≥ 0 with R(µ‖µ∗) = 0 if and only if
µ = µ∗.

Lemma 4.4 also allows to derive the Donsker-Varadhan variational for-
mula for relative entropy itself.

Lemma 4.5 (Donsker-Varadhan). Let µ, ν ∈ P(S). Then

R(µ‖ν) = sup
g∈Mb(S)

{∫
S
g(x)µ(dx)− log

∫
S

exp (g(x)) ν(dx)

}
.

Proof. Let µ, ν ∈ P(S). By Lemma 4.4, for every g ∈Mb(S)

R(µ‖ν) ≥ −
∫
S
g dµ− log

∫
S
e−g dν,

hence

R(µ‖ν) ≥ sup
g∈Mb(S)

{
−
∫
S
g dµ− log

∫
S
e−g dν

}
= sup

g∈Mb(S)

{∫
S
g dµ− log

∫
S
eg dν

}
.

For g ∈Mb(S) set J(g)
.
=
∫
S g dµ−log

∫
S e

gdν. ThusR(µ‖ν) ≥ supg∈Mb
J(g).

To obtain equality, it is enough to find a sequence (gM )M∈N ⊂Mb(S) such
that lim supM→∞ J(gM ) = R(µ‖ν). We distinguish two cases.

First case: µ is not absolutely continuous with respect to ν. Then
R(µ‖ν) =∞ and there exists A ∈ B(S) such that µ(A) > 0 while ν(A) = 0.
Choose such a set A and set gM

.
= M · 1A. Then, for every M ∈ N, gM = 0

ν-almost surely, thus
∫
egMdν =

∫
e0dν = 1, hence log

∫
egMdν = 0. It

follows that

lim sup
M→∞

J(gM ) = lim sup
M→∞

∫
S
gM dµ = lim sup

M→∞
M · µ(A) =∞.
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Second case: µ is absolutely continuous with respect to ν. Then we can
choose a measurable function f : S → [0,∞) such that f is a density for µ
with respect to ν (f a version of the Radon-Nikodym derivative dµ/dν), and
R(µ‖ν) =

∫
f · log(f)dν, where the value of the integral is in [0,∞]. Set

gM (x)
.
= log(f(x)) · 1[1/M,M ](f(x))−M · 1{0}(f(x)), x ∈ S.

Then

lim
M→∞

∫
S
gM dµ

= lim
M→∞

∫
S
f · log(f) · 1[1/M,M ](f) dν

= lim
M→∞

(∫
S

(
f · log(f) + 1(0,∞)(f)

)
· 1[1/M,M ](f) dν −

∫
S
1[1/M,M ](f) dν

)
=

∫
S
f · log(f) dν + ν{f > 0} − ν{f > 0}

= R(µ‖ν)

by dominated convergence and monotone convergence since t · log(t) ≥ −1

for every t ≥ 0 and t · log(t) = 0 if t = 0, hence, for every x ∈ S, (f(x) ·
log(f(x)) + 1(0,∞)(f(x))) · 1[1/M,M ](f(x))↗ f(x) · log(f(x)) + 1(0,∞)(f(x))

as M → ∞. On the other hand, again using dominated and monotone
convergence, respectively,

lim
M→∞

log

∫
S
egM dν

= log

(
lim
M→∞

∫
S

(
f · 1[1/M,M ](f) + 1(0,1/M)∪(M,∞)(f) + e−M · 1{0}(f)

)
dν

)
= log

∫
S
f dν = log(1) = 0.

It follows that lim supM→∞ J(gM ) = limM→∞
∫
S gM dµ = R(µ‖ν).

Remark 4.1. If the state space S is Polish as we assume, then the supremum
in the Donsker-Varadhan formula of Lemma 4.5 can be restricted to bounded
and continuous functions, that is,

sup
g∈Mb(S)

{∫
S
g(x)µ(dx)− log

∫
S

exp (g(x)) ν(dx)

}
= sup

g∈Cb(S)

{∫
S
g(x)µ(dx)− log

∫
S

exp (g(x)) ν(dx)

}
;

see the proof of formula (C.1) in Dupuis and Ellis [1997, pp. 329-330].
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Remark 4.2. Lemmata 4.4 and 4.5 imply a relationship of convex duality
between Laplace functionals and relative entropy. Let ν ∈ P(S). Then

R(µ‖ν) = sup
g∈Mb(X )

{∫
S
g dµ− log

∫
S
eg dν

}
, µ ∈ P(S),

log

∫
S
eg dν = sup

µ∈P(S)

{∫
S
g dµ−R(µ‖ν)

}
, g ∈Mb(S),

that is, the functions µ 7→ R(µ‖ν) and g 7→ log
∫
egdν are convex conjugates.
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