
LAPLACE BELTRAMI OPERATOR IN THE BARAN METRIC AND

PLURIPOTENTIAL EQUILIBRIUM MEASURE: THE BALL, THE

SIMPLEX AND THE SPHERE

FEDERICO PIAZZON

Abstract. The Baran metric δE is a Finsler metric on the interior of E ⊂ Rn
arising from Pluripotential Theory. We consider the few instances, namely E being
the ball, the simplex, or the sphere, where δE is known to be Riemannian and we
prove that the eigenfunctions of the associated Laplace Beltrami operator (with no
boundary conditions) are the orthogonal polynomials with respect to the pluripo-
tential equilibrium measure µE of E. We conjecture that this may hold in wider
generality.

The considered differential operators have been already introduced in the frame-
work of orthogonal polynomials and studied in connection with certain symmetry
groups. In this work instead we highlight the relationships between orthogonal
polynomials with respect to µE and the Riemannian structure naturally arising
from Pluripotential Theory.
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1. Introduction

1.1. Potential Theory and polynomials. The study of Approximation Theory in the
complex plane and on the real line (by polynomials and rational functions) is deeply

Date: December 27, 2018.
Key words and phrases. Pluripotential Theory and Orthogonal Polynomials and Spherical Harmon-

ics and Harmonic Analysis on Manifolds.
Partially supported by GNCS INdAM..

1



2 FEDERICO PIAZZON

related to Logarithmic Potential Theory (i.e., the study of subharmonic functions and
the Laplace operator). The relations between Logarithmic Potential Theory and Ap-
proximation Theory are manifested in Markov, Bernstein and Nikolski type polynomial
inequalities, the asymptotics of optimal polynomial interpolation arrays and Fekete points,
overconvergence phenomena (i.e. uniformly convergent sequence of polynomials defining
a holomorphic function in a larger open set) and its quantitative version, the Bernstein
Walsh Theorem , and the asymptotics of orthogonal polynomials, random polynomials
and random matrices. Moreover, most of such relations extend to the more general case
of weighted polynomials and Logarithmic Potential Theory in presence of an external field.
We refer to [52, 51, 54, 55, 49] and the references therein for extensive treatments of these
subjects.

More recently a non linear potential theory in multi dimensional complex spaces has
been introduced and many analogies with the linear case have been shown, provided there
is a suitable ”translation” of the quantities that come into the play. Pluripotential Theory
(see for instance [35, 36]) is the study of plurisubharmonic functions (i.e., functions which
are subharmonic along each complex line) and the complex Monge Ampere operator; [9].

Though the lack of linearity makes this new theory much more difficult and requires
working with different tools, many connections with polynomial approximation have been
extended to this multi dimensional framework; see [16, 18, 38]. Indeed, polynomial in-
equalities in Cn are usually obtained by means of Pluripotential Theory, see for instance
[4, 2], the Bernstein Walsh Theorem has been extended by Siciak to Cn [53], to more
general complex spaces by Zeriahi [63], and very recently to different polynomial spaces
by Bos and Levenberg [21]. In his seminal work [56, 57, 58], Zaharjuta extended the
equivalence between (a suitably re-defined version of) the Chebyshev Constant (i.e., the
asymptotics of the uniform norms of monic polynomials) and the Transfinite Diameter
(i.e., the asymptotics of the maximum of the Vandermonde determinant). Very recently,
Berman Boucksom and Nystrom [11, 12] showed that Fekete points converge weak∗ to the
pluripotential equilibrium measure of the considered set in Cn and in much more general
settings. This is a deep extension of the one dimensional case which can be obtained only
by means of the weighted theory. The work of Berman and Boucksom stimulated different
lines of research such as L2 theory and general orthogonal polynomials [15], the study
of multi-variate random polynomials and holomorphic sections [59, 19, 48], the theory of
sampling and interpolation arrays [40, 13, 41] and the study of Bernstein Markov measures
[45, 20]. From the point of view of Approximation Theory, the widely used heuristic that
the equilibrium measure is the ”best” measure for producing uniform polynomial approxi-
mations by L2 projection has been fully motivated and theoretically explained in [12] also
in its multivariate setting.

For a wide class of compact subsets E in Rn ⊂ Cn, there is a natural Finsler metric δE
associated to E called the Baran metric (see (9) below). In particular, for a convex body
E (i.e., E ⊂ Rn is compact, convex and has non-empty interior) this metric, arising from
pluripotential theory, has been well-studied [27, 25, 24, 23, 3, 2]. Baran metric is closely
related to polynomial approximation and interpolation. Indeed the Baran Inequality (see
[1, Th.1.1.4] and [3, 5, 6])

∣∣ d
dt
p(x0 + tv)|t=0

∣∣√
1− p2(x0)

≤ (deg p) δE(x0, v),

∀x0 ∈ intE, v ∈ Sn−1, p ∈P(Cn), ‖p‖E ≤ 1,

(1)

can be understood as a generalization of the classical Bernstein Inequality and has appli-
cations in polynomial sampling. For instance, if E ⊂ Cn is a compact and polynomial
determining set and N ⊂ E is such that, denoting by dE the Finsler distance induced by
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δE (see (10) below), we have

sup
x∈E

min
x0∈N

dE(x, x0) ≤ 1

ck

for some k ∈ N and c > 1, then N is a norming set for E and constant c/(c − 1) for the
space of polynomials of degree not greater than k, i.e.,

‖p‖E ≤
c

c− 1
‖p‖N , ∀p ∈Pk(Cn).

This essentially follows by the Baran Inequality (1). Even more importantly in connection
with the present work, in [24] it is shown that, for E being the simplex or the ball or
the sphere, Fekete points of degree k of E (arrays of points maximizing the modulus of
the Vandermonde determinant and thus near optimal for polynomial interpolation) have
spacing of order 1/k on E. These results may be used to construct good sampling sets for
polynomials, namely admissible meshes, see [28, 37, 26, 39, 44, 46], that have applications
in polynomial approximation and optimization [47].

In what follows we will focus only on the case when the Baran metric turns out to be
Riemannian.

The present work attempts on the one hand to (partially) extend to the Cn case another
connection between polynomials and Potential Theory, and on the other hand, to highlight
how polynomial L2 approximation with respect to the equilibrium measure may be regarded
as Fourier Analysis on a suitable Riemannian manifold. These ideas rest upon the relation
between the Laplace Beltrami operator relative to the Baran metric and the orthogonal
polynomials with respect to the pluripotential equilibrium measure.

We would like to introduce such relations starting by some examples that treat the
instances of the interval [−1, 1] and the unit sphere.

1.2. Two motivational examples.

1.2.1. Chebyshev polynomials. The Chebyshev polynomials Tn(x) := arccos(n cosx) are
the orthogonal polynomials with respect to 1

π
√

1−x2
dx, the equilibrium measure of the

interval [−1, 1] as a subset of C, i.e., the unique minimizer of the logarithmic poten-
tial −

∫
log |z − w|dµ(z)dµ(w) among all Borel probability measures µ on the interval

[−1, 1]. Another classical characterization of Chebyshev polynomials is given by the eigen-
functions of the Sturm-Liouville eigenvalue problem

(2)

{
S [ϕ](x) := (1− x2)ϕ′′(x)− xϕ′(x) = −λϕ(x), x ∈]− 1, 1[

ϕ′(x0) = 0, x0 ∈ {−1, 1}
.

The set of eigenvalues turns out to be {n2 : n ∈ N} and S [Tn] = n2Tn.
Instead, we re-write this eigenvalue problem as

(3)
1
1√

1−x2

d

dx

(
1√

1− x2
(1− x2)ϕ′(x)

)
= −n2ϕ(x), x ∈]− 1, 1[.

This apparently useless manipulation actually illustrates another property of Chebyshev
polynomials. To explain this property, we first recall that the Laplace Beltrami operator
relative to a metric g can be written in local coordinates as

(4) ∆LBf =
1√

det g

n∑
i=1

∂xi

(√
det g

∑
j

gi,j∂xjf

)
,

where gi,j are the components of the inverse of the matrix representing g.
Let us endow ]− 1, 1[ with the Riemannian metric g(x) := 1

1−x2 , we canonically obtain

the Riemannian distance d(x0, x1) =
∫ x1
x0

1√
1−x2

dx. Note that, up to a re-normalization,
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the resulting volume form is precisely the equilibrium measure of [−1, 1]. If we plug g(x) :=
1

1−x2 in the expression (4) for the Laplace Beltrami operator, we obtain precisely the left

hand side of (3). In other words, we observe that:

(†) Chebyshev polynomials are eigenfunctions of the Laplace Beltrami operator with
respect to the density of the equilibrium measure of the interval.

It is relevant to notice that the density of the equilibrium measure on [−1, 1] at x is
obtained as the normal (i.e., purely complex) derivative of the Green function of C\ [−1, 1]
with pole at infinity; see [52, Ch II.1]. This operation has a multidimensional counterpart
(see [2]) that, under some assumptions, leads to the so called Baran metric ([17, 3]), see
equation (9) below.

Remark 1. The observation (†) above can also be understood in a more general frame-
work. To this aim, let us recall that a weighted Riemannian manifold is a triple (M, g, ρ)
where (M, g) is a Riemannian manifold and ρ is a positive smooth function on M. In
such a setting one defines the weighted Laplace Beltrami operator ∆ρ acting on smooth
functions by setting

∆ρu :=
1

ρ
√

det g

n∑
i=1

∂xi

(
ρ
√

det g
∑
j

gi,j∂xju

)
.

It turns out that the classical orthogonal polynomials on the interval [−1, 1], e.g., Legendre
and Gegenbauer orthogonal polynomials, are indeed eigenfunctions of ∆ρ on ([−1, 1], 1

1−x2 , (1−
x2)β) with an appropriate choice of β, this has already been shown in [29].

1.2.2. Spherical harmonics. We mention another relevant example of this relation be-
tween eigenfunctions of the Laplace Beltrami operator with respect to the metric defined
by (pluri-)potential theory and the (pluripotential) equilibrium measure. In contrast to
case of Chebyshev polynomials, now we work in a multi dimensional setting and the flat
euclidean space Cn is replaced by a complex manifold. A more detailed account of this
example requires some preliminary notions in addition to the ones of Subsection 2.1, and
so we decided to give the explicit computations in Appendix A, together with the needed
facts from pluripotential theory on algebraic varieties. At this stage we only sketch the
results to underline the analogy with the case of Chebyshev polynomials.

Let us consider the unit sphere Sn−1 ⊂ Rn endowed with the round metric g induced
by the flat metric on Rn and denote by ∆ the Laplace Beltrami operator on Sn−1. It is
well known that spherical harmonics are a dense orthogonal system of L2(Sn−1) which
consists of polynomials that are eigenfunctions of ∆.

Let us look at Sn−1 as a compact subset of the complexified sphere Sn−1 := {z ∈ Cn :∑
z2i = 1}. By a fundamental result due to Sadullaev [50], since Sn−1 is a irreducible

algebraic variety, one can relate ( see Appendix A) the traces of polynomials on Sn−1 to
pluripotential theory on the complex manifold of Sn−1. On the other hand, due to Lemma
3 below, we can define a smooth Riemannian metric gSn−1 on Sn−1 suitably modifying the
construction (see eq. (9)) of the Baran metric of convex real bodies. In particular such a
definition is given by the generalization of the case of the real interval [−1, 1]. Indeed, it
turns out that gSn−1 = g and its volume form is, up to a constant scaling factor (chosen
to make it a probability measure), the pluripotential equilibrium measure of Sn−1, as a
compact subset of Sn−1. In other words

(‡) the eigenfunctions of the Laplace Beltrami operator of (Sn−1, g) are the orthogonal
polynomials with respect to the pluripotential equilibrium measure of Sn−1, seen
as a compact subset of Sn−1; see Corollary 1.

1.3. Our results and conjecture. The aim of the present paper is to present a conjec-
ture on the extension to the Cn case of the relation between potential theory and certain
Riemannian structure that holds in the examples above. We support it by full proofs of all
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the few known instances, see Theorems 1 and 2 below, fulfilling the required hypothesis,
i.e., their Baran metrics are Riemannian.

Conjecture 1. Let C denote either Cn or any irreducible algebraic sub-variety of it. Let
E ⊂ C be a fat1 real compact set. Assume that the Baran metric δE of E is a Riemannian
metric on intRn∩C E, then the orthonormal polynomials with respect to the pluripotential
equilibrium measure µE,C of E in C are eigenfunctions of the Laplace Beltrami operator
relative to the metric δE .

Remark 2. We stress that the orthogonal bases used in our proofs as well as most of
their properties are already known in the framework of orthogonal polynomials (see [33],
[30], [31] and the references therein). Moreover, our differential operators (i.e., Laplace
Beltrami operators with respect to the metrics arising from Pluripotential Theory) turn
out to be already studied in relation to certain symmetry groups [33, Ch. 8], but they have
not been related to any potential theoretic aspects before. More precisely, the Laplace
Beltrami operator on the ball endowed with its Baran metric turns out to be the operator
Dµ in [33, pg. 142] with the parameter choice µ = 0. Instead, in the simplex case, ∆ is
precisely the operator defined in [33, eq. 5.3.4] (see equation 29 and Theorem 4 below) if
we set (in the authors notation) κ = (0, . . . , 0) ∈ Rn+1.

Our goal is precisely to relate such families of functions and their properties to the
Riemannian structure that comes from Pluripotential Theory.

Remark 3. Note that we will deal with the open sets Sn and Bn but we will refer, by a
slight abuse of notation and nomenclature that aims to an easier notation, to their Baran
metrics δSn and δBn instead of δSn and δBn .

Theorem 1 (Laplace Beltrami on the Baran Ball). Let us denote by ∆ the Laplace
Beltrami operator of the Riemannian manifold (Bn, δBn) acting on

C 2
b (Bn) :=

{
u ∈ C 2(Bn) : max

|α|≤2
sup
x∈Bn

|∂αu(x)| <∞
}
,

where Bn := {x ∈ Rn : |x| < 1} and the Baran Metric δBn(x) of the ball, see (12), is
represented by the matrix

GBn (x) :=



1 +
x21

1−
∑n
i=1 x

2
i

x1x2
1−

∑n
i=1 x

2
i

. . . . . . x1xn
1−

∑n
i=1 x

2
i

x1x2
1−

∑n
i=1 x

2
i

1 +
x22

1−
∑n
i=1 x

2
i

. . . . . . x2xn
1−

∑n
i=1 x

2
i

..

.
...

...
...

...
xnx1

1−
∑n
i=1 x

2
i

xnx2
1−

∑n
i=1 x

2
i

. . . . . . 1 +
x2n

1−
∑n
i=1 x

2
i


.

The operator ∆ is symmetric and unbounded, it has discrete spectrum

σ(∆) = {λs := s(s+ n− 1) : s ∈ N}

and the eigen-space of λs is span{ϕα, |α| = s}, where ϕα (see Proposition 4) are orthonor-
mal polynomials with respect to the pluripotential equilibrium measure

µBn :=
1√

1− |x|2
χBn VolRn = VolδBn .

Moreover, ∆ can be closed to a self-adjoint operator D(∆)→ L2(Bn, δBn) (having the
same spectrum), where

D(∆) :=

u ∈ L2(Bn, δBn) :

∞∑
s=0

λ2
s

∑
|α|=s

|ûα|2 <∞

 ⊂ H1(Bn, δBn)

1This should be intended as the closure in C of the interior in Rn ∩ C of E equals to E itself.
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and ûα is the Fourier coefficient
∫
Bn

u ϕα
‖ϕα‖2

L2(µBn )

dµBn .

The operator ∆1/2 has domain

D(∆1/2) :=

u ∈ L2(Bn, δBn) :

∞∑
s=0

λs
∑
|α|=s

|ûα|2 <∞

 = H1(Bn, δBn).

Here and from now on we denote by α a integer multi-index and by |α| its length. For
a precise definition of the Sobolev space H1(Bn, δBn) see Subsection 2.2.2 below.

Theorem 2 (Laplace Beltrami on the Baran Simplex). Let us denote by ∆ the Laplace
Beltrami operator on the Riemannian manifold (Sn, δSn), acting on

C 2
b (Sn) :=

{
u ∈ C 2(Sn) : max

|α|≤2
sup
x∈Sn

|∂αu(x)| <∞
}
,

where Sn := {x ∈ Rn :
∑n
i=1 xi < 1, xi > 0∀i = 1, 2, . . . , n} and the Baran metric δSn(x)

of the simplex, see Equation (13), is represented by the matrix

GSn(x) :=



x−1
1 0 . . . 0
0 x−1

2 0 0
...

...
...

...
...

...
...

...
0 . . . . . . x−1

n

+
1

1−
∑n
i=1 xi


1 1 . . . . . . 1
1 1 . . . . . . 1
1 1 . . . . . . 1
1 1 . . . . . . 1
1 1 . . . . . . 1

 .

The operator ∆ is symmetric and unbounded, it has discrete spectrum

σ(∆) =

{
λs := s

(
s+

n− 1

2

)
: s ∈ N

}
and the eigen-space of λs is span{ψα, |α| = s}, where ψα (see Proposition 5) are orthonor-
mal polynomials with respect to the pluripotential equilibrium measure of the simplex

µSn :=
1√

(1−
∑n
i=1 xi)

∏n
i=1 xi

χSn(x) VolRn = VolδSn .

Moreover, ∆ can be closed to a self-adjoint operator (still denoted by ∆) D(∆)→ L2(Sn, δSn)
(having the same spectrum) where

D(∆) :=

u ∈ L2(Sn, δSn) :

∞∑
s=0

λ2
s

∑
|α|=s

|ûα|2 <∞

 ⊂ H1(Sn, δSn)

and ûα is the Fourier coefficient
∫
Bn

u ψα
‖ψ2
α|L2(µSn )

dµSn .

The operator ∆1/2 has domain

D(∆1/2) :=

u ∈ L2(Sn, δSn) :

∞∑
s=0

λs
∑
|α|=s

|ûα|2 <∞

 = H1(Sn, δSn).

Remark 4. In view of Remark 1 above one may ask if Theorem 1 and Theorem 2 have
their counterparts if the considered Riemannian manifold is endowed with a weight ρ. It
is possible to prove that this is indeed the case, provided that ρ satisfies ρ = ηdVolRn ,
where η is a positive power of the density of µBn (or µSn) with respect to VolRn (or VolSn ,
respectively).

Remark 5. In order to better understand how the Baran metrics of the ball and the
simplex look like, it is worth recalling their special relation with a certain portion of the
sphere.
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Let us denote by (Hn+, gHn+) the upper unit hemisphere, i.e., the Riemannian manifold

which can be obtained by intersecting the unit sphere Sn (thought as a sub-manifold of
Rn+1 endowed with the euclidean metric) with the positive half space {ξ ∈ Rn+1 : ξn+1 >
0}. The map π : Hn+ → Bn, π(ξ) := (ξ1, . . . , ξn) clearly is a one-to-one C∞ map of
manifolds. Therefore we can define a metric g on Bn by means of the pull-back operator
with respect to F := π−1:

g(v, w) := F ∗gHn+(v, w) = gHn+(dFv, dFw), ∀v, w ∈ TBn.

One can verify by direct computations that indeed g ≡ δBn .
Similarly, we can define the map Sqrt : Sn = {x ∈ Rn+ :

∑n
i=1 xi ≤ 1} → Bn ∩ {x ∈

Rn : xi > 0, ∀i = 1, . . . , n}, Sqrt(x) := (
√
x1,
√
x2, . . . ,

√
xn), and pull back by Sqrt on

Sn the Baran metric of the ball, see (12) and (13) below. Again this new metric indeed
coincides with the Baran metric of the simplex; [23].

Question 1. Since the the property of a compact set of having a Riemannian Baran
metric is stable under taking the pre-image of such a set via certain polynomial maps, we
expect that it is possible to prove the equivalence of Theorem 1 and Theorem 2.

Note that, since the manifolds (Bn, δBn) and (Sn, δSn) are isometric to certain portions
of Sn, the local differential and metric properties of this manifolds are the same as those
of Sn. We recall that a Riemannian manifold (M, g) is termed Einstein when its metric
tensor is a solution of the Einstein vacuum field equation

(5) Ric = kg.

Here

Rici,j :=

n∑
l=1

(∂lΓ
l
j,i − ∂jΓll,i) +

n∑
l,k=1

(Γll,kΓkj,i − Γlj,kΓkl,i)

is the Ricci tensor (written by means of the Christoffel symbols Γij,k) and k > 0. Since
it is a well known fact that (Sn, gSn) is Einstein, we get the following proposition as a
consequence of Remark 5.

Proposition 1. The unit ball and the unit simplex, endowed with their Baran metric
respectively, are Einstein Manifolds.

Since for all cases where the Baran metric is known to be Riemannian it happens that
it solves Equation (5), the following question naturally arises.

Question 2. Assume that E is a Baran body in the sense of Definition 1 below. Is it
necessary for its Baran metric tensor to solve the Einstein vacuum field equation (5)?

Remark 6. Recently, Zelditch [61] studied the spectral theory of the Laplace Beltrami
operator on a real analytic Riemannian manifold M in connection with the Pluripotential
Theory of the so called Bruhat-Whitney complexification MC of M. In particular, working
under the assumption of ergodicity of the geodesic flow, [62, 60] present asymptotic results
on the zero distribution of the eigenfunctions and series of functions with random Fourier
coefficients. These results closely resemble the relation between the behaviour of zeros
of orthogonal polynomials (or random polynomials) and the pluripotential equilibrium
measure.

Even though our study is far from being as general as the context of the above ref-
erences, in the author’s opinion our result may be cast within this framework and offer
concrete examples where explicit computations are performed. Indeed our Appendix A
exactly fits in the framework of [61].

The paper is structured as follows. In Section 2 we furnish all the required definitions
from Pluripotential Theory, Operator Theory and Differential Geometry. In Section 3 we
prove Theorems 1 and 2, giving a precise spectral characterization of the involved Sobolev
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spaces. Finally, in Appendix A it is shown how to define the Baran metric on the sphere
and its equivalence with the standard round metric.

Acknowledgements. The ideas of the present paper surfaced during the open problems
session of the workshop Dolomites Research Week on Approximation (DRWA16), held in
Canazei (TN) Italy in September 2016. However, the content of the present paper has been
deeply influenced by the discussions with Norm Levenberg during his visit at University
of Padova in 2012. Therefore we would like to thank Norm Levenberg and the organizers
of the conference and the Doctoral School of Mathematics of the University of Padova.
Also, we would like to thank Prof. L. Bos, Prof. P.D. Lamberti for his helpfulness, Prof.
P. Ciatti for useful discussions, and Prof. M. Putti and M. Vianello for their support.
The author thanks the referees for their work that was determining for improving his
manuscript.

2. Preliminaries and tools

2.1. The Pluripotential Theory framework. Pluripotential Theory is the study of
plurisubharmonic functions, i.e., any uppersemicontinuous function u : Ω → [−∞,+∞[
being subharmonic along each one complex dimension affine variety in Ω ⊆open Cn. We
use the operators d := ∂ + ∂̄ and dc := i(−∂ + ∂̄), where

∂ :=

n∑
j=1

∂

∂zj
· dzj , ∂̄ :=

n∑
j=1

∂

∂z̄j
· dz̄j .

The operator ddc is sometimes referred as the complex Laplacian and correspond with the
usual Laplacian (up to a scaling factor) when n = 1.

Since ddc is a linear operator, one can consider ddc u for a L1
loc function in the sense

of currents (distributions on the space of differential forms) and it turns out that, for an
uppersemicontinuous function u, ddc u ≥ 0 if and only iff u is plurisubharmonic.

The complex Monge Ampere operator (ddc )n is defined for C 2 functions as

(6) (ddc u)n := ddc u ∧ ddc u ∧ · · · ∧ ddc u = cn det (ddc u)dVolCn .

Clearly trying to define wedge products of factors of the type ddc u for any plurisub-
harmonic function u leads to serious difficulties due to the lack of linearity. Bedford
and Taylor [9] showed that the definition of equation (6) can be extended to any locally
bounded plurisubharmonic function, with (ddc u)n being a positive Borel measure.

One may think to plurisubharmonic functions in Cn as ”the correct counterpart” (see
[35, Preface]) of subharmonic functions on C, while harmonic functions should be replaced
in this multi dimensional setting by maximal plurisubharmonic functions, i.e., functions
u dominating on any subdomain Ω′ any plurisubharmonic function v such that u ≥ v on
∂Ω′. Locally bounded maximal plurisubharmonic functions satisfy (ddc u)n = 0.

The multi dimensional counterpart of the Green function for the unbounded component
of the complement of a compact set E is the pluricomplex Green function (also known as
Siciak-Zaharjuta extremal function) V ∗E . Let E ⊂ Cn be a compact set, then we set

VE(ζ) := sup{u(ζ), u ∈ L(Cn), u|E ≤ 0},
V ∗E(z) := lim sup

ζ→z
VE(ζ).(7)

Here L(Cn) is the Lelong class of plurisubharmonic functions on Cn of logarithmic growth,
i.e., u(z)− log |z| is bounded above at infinity.

It is worth recalling that, as in the one dimensional case, due to [53] (see also [35]) we
can express V ∗E by means of polynomials P(Cn). That is

VE(ζ) = sup

{
1

deg p
log+ |p(ζ)|, p ∈P(Cn), ‖p‖E ≤ 1

}
.

Here log+(x) := max{log x, 0}.
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The function V ∗E is either identically +∞ or a locally bounded plurisubharmonic func-
tion on Cn, maximal on Cn \E (i.e., (ddc V ∗E)n is a positive Borel measure with support in
E) having logarithmic growth at∞; if the latter case occurs we say that E is non pluripo-
lar. In principle V ∗E is only a uppersemicontinuous function. When V ∗E is continuous the
compact set E is said to be regular. It is worth recalling that it turns out that V ∗E is
continuous if and only if V ∗E identically vanishes on E. We will treat only such a case in
what follows.

For any non pluripolar compact set E ⊂ Cn the pluripotential equilibrium measure of
E is defined as

(8) µE := (ddc V ∗E)n,

this is a Borel probability measure supported on E. We stress that, since µE(E) = 1 for
any non pluripolar set [9], the total mass of the measures (and volume forms) that we are
going to deal with is not important. We avoid introducing normalizing constants in the
metrics to keep the notation simple.

Let E be a real convex body, Baran showed that in this case

(9) δE(x, v) := lim sup
t→0+

V ∗E(x+ itv)

t

exists for any x ∈ intE, v ∈ Rn. We refer to δE(x, v) as the Baran metric of E. It is
worth mentioning that in many cases lim supt→0+ can be replaced by limt→0+ in the
above definition, [5, 10]. We refer the reader to [25] for a study on the connections among
this metric, polynomial inequalities and polynomial sampling. The Baran metric defines
in general a Finsler distance on E

(10) dE(x, y) := inf

{∫ 1

0
δE(γ(s), γ′(s))ds, γ ∈ Lip([0, 1], E), γ(0) = x, γ(1) = y

}
,

however it may happen that δE(x, v) is indeed Riemannian, i.e.,

δE(x, v) =
√
vtGE(x)v

for a positive definite matrix GE(x). Note that GE(x) is then well defined by the paral-
lelogram law. More precisely we have

uTGE(x)v =
δ2E(x, u+ v)− δ2E(x, u− v)

4
.

We believe that the following definition is worth being introduced.

Definition 1 (Baran body). Let C denote either Cn or a irreducible algebraic variety of
pure dimension n, and let CR denote the real points of C. Let E ⊂ CR a compact fat2 non
pluripolar set. If the Baran metric of E is a Riemannian metric for the real interior of E,
then we term E a Baran body.

In [25], the Baran metrics of the real ball, real simplex are computed (see Theorem 1
and Theorem 2 above), showing in particular that they are Baran bodies. For the sake
of completeness, we recall how δBn and δSn can be computed. The pluricomplex Green
function of the real unit ball is given by the Lundin Formula (see for instance [35, Th.
5.4.6])

(11) VBn(x) =
1

2
log

[
h

(
n∑
i=1

|xi|2 +

∣∣∣∣∣
n∑
i=1

x2i − 1

∣∣∣∣∣
)]

, ∀x ∈ Cn,

where h : C\[−1, 1]→ C\{z ∈ C : |z| ≤ 1} is the inverse Joukowsky map z 7→ z+
√
z2 − 1.

The function VBn(x) is differentiable at any x /∈ Bn so that one can compute the Baran

2This mean that the closure in CR of the interior of E in CR coincides with E.
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metric taking the limit

δBn(x, v) := lim sup
t→0+

VBn(x+ itv)

t
= lim
t→0+

∂i·vV
∗
Bn(x+ itv).

A direct computation leads to

δBn(x, v) =
√
vtGBn(x)v,

where

(12) GBn (x) :=



1 +
x21

1−
∑n
i=1 x

2
i

x1x2
1−

∑n
i=1 x

2
i

. . . . . . x1xn
1−

∑n
i=1 x

2
i

x1x2
1−

∑n
i=1 x

2
i

1 +
x22

1−
∑n
i=1 x

2
i

. . . . . . x2xn
1−

∑n
i=1 x

2
i

...
...

...
...

...
xnx1

1−
∑n
i=1 x

2
i

xnx2
1−

∑n
i=1 x

2
i

. . . . . . 1 +
x2n

1−
∑n
i=1 x

2
i


.

The square map (x1, x2, . . . , xn) 7→ (x21, x
2
2, . . . , x

2
n) is a polynomial map from the unit

ball to the simplex satisfying the so called Klimek condition, see [35, pg. 196], therefore
applying [35, Thm. 5.3.1] one has

VSn(z1, z2, . . . , zn) = 2VBn(
√
z1,
√
z2, . . . ,

√
zn).

The chain rule leads to

GSn(x) = diag


√
x1√
x2
...√
xn


T

GBn(
√
x1,
√
x2, . . . ,

√
xn) diag


√
x1√
x2
...√
xn



=



x−1
1 0 . . . 0
0 x−1

2 0 0
...

...
...

...
...

...
...

...
0 . . . . . . x−1

n

+
1

1−
∑n
i=1 xi


1 1 . . . . . . 1
1 1 . . . . . . 1
1 1 . . . . . . 1
1 1 . . . . . . 1
1 1 . . . . . . 1

 .(13)

Remark 7. To the best of the author’s knowledge, these are all the examples of Baran
compact sets in Cn known in the literature. Indeed, such a property seems to be very
rare: for instance in [25] some counterexamples are given as the regular hexagon and the
cordinate square [−1, 1]. We offer a further instance of a Baran manifold in Appendix A:
the real sphere as subset of the complexified sphere.

Remark 8. In [7] Barthleme intruduces for the first time a natural Laplace operator on
Finsler manifolds. It is an interesting question to investigate if it is possible to prove a
statement equivalent to Theorem 1 and Theorem 2 at least for particular cases of Baran
manifolds arising from pluripotential theory. A natural starting point for this should be
the case of the standard coordinate square K = [−1, 1]n endowed with its Baran metric,
see [14] and references therein,

δK(x, v) = max
i∈{1,2,...,n}

|vi|√
1− x2i

.

We postpone this study for a future work.

2.2. Differential operators and Sobolev spaces on a Riemannian manifold.
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2.2.1. Differential operators. We recall that a linear connnection on a vector bundle π :
E →M (built on the differentiable manifold M) is a mapping (here E(M) is the space of
smooth sections of the vector bundle E and T (M) is the tangent bundle)

∇ :T (M)× E(M) −→ E(M)

(X,V ) −→ ∇XV

such that it is C∞-linear in X, R-linear in V, and for which holds the Liebnitz Rule
∇X(fV ) = V X(f) + f∇X(V ) holds for any f ∈ C∞(M). In particular we have ∇Xf =
X(f).

Let (M, g) be a (possibly non compact) Riemannian manifold. It is well known that
there exists a unique torsion-free linear connection on T (M) that is compatible with the
metric g; namely the Levi-Civita connection. Since we will deal only with such a connection
we will still denote it by ∇.

Note that, for a given u ∈ C∞(M), ∇u is a (1, 0) tensor field (i.e., point-wise it is a
linear form) having the property that (X,∇u)g = ∇Xu = X(u) and thus it can be written
in local coordinates

∇u =
∑
j

gij
∂u

∂xj
dxj .

Here (·, ·)g is the canonical duality induced by g and gij are the components of the matrix
representing g−1. Hence it is convenient to define the tangent vector

(gradu)i :=

(∑
j

gij
∂u

∂xj

)
i

,

namely the covariant gradient of u, having the property that (X,∇u)g = 〈X, gradu〉g.
The divergence operator acting on X ∈ T (M) is defined by

divX := ∇ ·X =
1√

det g

∑
i

∂i(
√

det gXi).

Finally we can recall the definition of the Laplace Beltrami operator ∆.

(14) ∆u := div(gradu) =
1√

det g

∑
i

∂i(
√

det g(gradu)i).

2.2.2. Sobolev Spaces. Let (M, g) be a Riemannian manifold. Let us introduce on C∞(M)
the norm

‖u‖1,2 :=

(∫
|u|2dVolg

)1/2

+

(∫
| gradu|2dVolg

)1/2

,

where | gradu|2 = 〈gradu, gradu〉g. Let us denote by C∞1,2(M) the space {u ∈ C∞(M), ‖u‖1,2 <
∞}.

The Sobolev space H1(M, g) is defined as the closure of C∞1,2(M) with respect to ‖ · ‖1,2
in the space of square integrable functions, also we introduce the space H1

0 (M, g) defined
as the closure of C∞c (M) in the same norm. Note that in general H1

0 (M, g) ⊆ H1(M, g).
An important fact about Sobolev spaces and manifold is that the above two spaces

may coincide, that is

(15) H1
0 (M, g) ≡ H1(M, g)

Our interest in this phenomena is mainly due to the fact that the Laplace operator does
not need to be complemented with boundary conditions in such a case.

Indeed, H1
0 (M, g) ≡ H1(M, g) for any complete Riemannian manifold M ; see [34, Th.

3.1]. We recall for the reader’s convenience that a Riemannian manifold (M, g) is said to
be complete if the metric space (M,dg) is complete, where

dg(x, y) := inf

{∫ 1

0

√
〈γ′(s), γ′(s)〉g(γ(s))ds, γ ∈ Lip([0, 1],M), γ(0) = x, γ(1) = y

}
.
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The Hopf-Rinow Theorem asserts that the completeness of (M, g) is equivalent to the fact
that any relatively closed bounded subset of M is compact.

We denote by C∞b (M) the set uniformly bounded functions that have uniformly bounded
partial derivatives of any order. Since for a complete manifold C∞c (M) ⊆ C∞b (M) ⊂
H1(M, g), it follows that for any complete manifold (M, g), C∞b (M) is dense in H1(M, g).

Unfortunately, both (intBn, δBn) and (intSn, δSn) fail to be complete: it is very easy
to construct a Cauchy sequence in Bn not converging in Bn. For instance take {xk} :=

cos (2−k)u for any unit vector u ∈ Rn. Since d(xk, xl) ≤ 2−min(k,l), this is a Cauchy
sequence, however xk → u /∈ Bn. Nevertheless, one may wonder whether equation (15)
holds in these instances. This fact indeed depends on finer properties of the manifolds
than completeness. Namely, Masamune [43, 42] showed that equality (15) holds if and
only if the metric completion of M lies in the category of manifolds with almost polar
boundary.

We recall that the Riemannian manifold (M ∪ Γ, g) with boundary Γ is said to have
almost polar boundary if the outer capacity cap(Γ) of Γ vanishes. Here we use the notation
cap(A) for the Sobolev (outer) capacity of the Borel subset A of M ∪ Γ, where for any
open subset O of M ∪ Γ we set

cap(O) := inf{‖u‖1,2, u ∈ C∞c (M ∪ Γ), 0 ≤ u ≤ 1, u|O ≡ 1}

and for for any Borel subset S we set

cap(A) := inf{cap(O), A ⊂ O}.

It is clear that one can replace C∞c (M ∪ Γ) by H1
0 (M ∪ Γ, g) in the definition of cap(O)

obtaining an equivalent definition.
At this stage we can observe that ∂Bn fails the sufficient condition (see [43, Th. 7])

to be polar

(16) lim inf
ε→0+

log Vol ({x ∈ Bn : d(x, ∂Bn) < ε})
log ε

≥ 2.

Here the equality case is considered since ∂Bn itself is a manifold (see [43, Th. 7]).
Let us denote by Nε the set {x ∈ Bn : d(x, ∂Bn) < ε}, we have Nε = Bn \ (cos ε) ·Bn,

moreover

Vol(Nε) = πβ(1/2, n/2, 1− (cos ε)2).

Here β(a, b, z) denotes the Incomplete Beta Function
∫ z
0
ta−1(1− t)b−1dt. Hence

VolNε
ε2

∼ VolNε
1− (cos ε)2

1− (cos ε)2

ε2
∼ 2

VolNε
1− (cos ε)2

, as ε→ 0+.

Note that

lim inf
ε→0+

VolNε
1− (cos ε)2

= lim
z→0+

β(1/2, n/2, z)

z
= lim
z→0+

z−1/2(1− z)n/2−1 = +∞.

Thus we have lim infε→0+
VolNε
ε2

= +∞ that in particular implies log VolNε
log ε

< 2 for any
ε < ε0.

Since the condition (16) is not fulfilled by ∂Bn nor ∂Sn we wonder if the ball and the
simplex, endowed with their Baran metrics, are not manifolds with almost polar boundary.
Indeed this is the case, as stated in the following proposition. We stress that, since these
conclusions are obtained as a consequence of Theorem 1 and Theorem 2 respectively, we
cannot use them in the proof of these theorems.

Proposition 2. The manifolds (Bn, δBn) and (Sn, δSn) are not manifolds with almost
polar boundary and

(17) H1(Bn, δBn) 6= H1
0 (Bn, δBn) , H1(Sn, δSn) 6= H1

0 (Sn, δSn).
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Remark 9. We warn the reader that H1(Bn, δBn) 6= H1
0 (Bn, δBn) does not imply in

general that the eigenvalue problem ∆u = λu is not well posed when we do not impose
any boundary condition. The motivation depends on the following proposition which
allows us to write the weak formulations (25) and (31) of the Laplace Beltrami operator
used in the proofs of Theorem 1 and 2 which is based on C∞b functions (for which the
boundary terms appearing in the integration by parts formulas we use vanish).

Proposition 3. Let (M, g) be (Bn, δBn) or (Sn, gSn). The space C∞b (M) is dense in
C∞1,2(M) with respect to the norm ‖ · ‖1,2. Thus C∞b (M) is dense in H1(M, g).

Before proving Proposition 3 we need the following technical Lemmas whose proofs are
omitted since it is sufficient to check the statements by easy direct computations.

Lemma 1 (The inverse Baran metric of the ball). Let us denote by G−1
Bn the inverse of

the matrix GBn which represents the Baran metric of the n-dimensional ball. Then we
have

(18) G−1
Bn(x) :=


1− x21 −x1x2 . . . . . . −x1xn
−x2x1 1− x22 . . . . . . −x2xn

...
...

...
...

...
−xnx1 . . . . . . −xnxn−1 1− x2n

 .
The matrix G−1

Bn(x) has eigenvalues {1, 1−|x|2}, where the eigen-space of 1 is the tangent
space at x to the sphere of radius |x| and centred at zero, while the eigen-space of 1− |x|2
is the Euclidean normal to this sphere at x.

Lemma 2 (The inverse Baran metric of the simplex). Let us denote by G−1
Sn the inverse

of the matrix GSn which represents the Baran metric of the n-dimensional simplex. Then
we have

(19) G−1
Sn(x) :=


(1− x1)x1 −x1x2 . . . . . . −x1xn
−x2x1 (1− x2)x2 . . . . . . −x2xn

...
...

...
...

...
−xnx1 . . . . . . −xnxn−1 (1− xn)xn

 .
Moreover we have

(20) G−1
Sn(x) = diag


√
x1
...
...√
xn

 G−1
Bndiag


√
x1
...
...√
xn

 .

Proof of Proposition 3. Let us start by considering the case M = Bn ⊂ Rn. We denote by
Sn the n dimensional unit real sphere endowed with the standard round metric gSn and
we introduce the embedding map

E : C∞1,2(M)→ H1
even(Sn, gSn),

where

E[f ]

x1, . . . , xn,±
√√√√1−

n∑
i=1

x2i


:=

1√
2

{
f(x1, . . . , xn) ,

∑n
i=1 x

2
i 6= 1

lim supB3ξ→xf(ξ1, . . . , ξn) ,
∑n
i=1 x

2
i = 1
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and

H1
even(Sn, gSn)

:=
{
g ∈ H1(Sn, gSn), g(x1, . . . , xn+1) = g(x1, . . . ,−xn+1) VolSn −a.e.

}
.

We claim that E is an isometry of Hilbert spaces.
Before proving this claim we stress that this would conclude the proof for the case of

the ball. For, by standard mollifications we can construct a sequence {f̃k} of function in

C∞(Sn) converging to E[f ] in H1(Sn, gSn). To ensure that f̃k ∈ H1
even(Sn, gSn) we replace

f̃k by (f̂k(x1, . . . , xn+1)+f̂k(x1, . . . ,−xn+1))/2. Finally define {fk} := {E−1[f̃k]} and note
that the claim above implies that fk → f in H1(Bn, δBn).

We stress that, while the injectivity of E is trivial, one needs to notice that the global
boundedness of f̃k together with its derivatives ensure that E−1[f̃k] is a well defined
element of C∞1,2(M) which in particular is in C∞b (M).

Let us go back to prove that E is an isometric embedding. For simplicity we work in
the easy case of n = 2, the general case can be proved in a completely equivalent way.
Consider spherical coordinates x1

x2
x3

 =

 cos θ cosϕ
cos θ sinϕ

sin θ

 .

We recall that the round metric represented in these coordinates is

gS2(θ, ϕ) :=

[
1 0
0 cos2 θ

]
and the corresponding volume form can be written dVolS2 = cos θdθdϕ. It follows that,
for any h ∈ H1(S2, gS2) we have

‖h‖2H1(S2) =

∫ 2π

0

∫ π/2

−π/2

(
|h|2 + |∂θh|2 +

|∂ϕh|
cos2 θ

)
cos θdθdϕ.

To compute ‖E[f ]‖H1(S2) we perform the change of variables suggested by the first two
components of the spherical coordinates, i.e.,

(x1, x2) 7→ (cos θ cosϕ, cos θ sinϕ).

Then

‖E[f ]‖2H1(S2)

=

∫ 2π

0

∫ π/2

−π/2

(
|E[f ]|2 + |∂θE[f ]|2 +

|∂ϕE[f ]|
cos2 θ

)
cos θdθdϕ

=2

∫ 2π

0

∫ π/2

0

(
|E[f ]|2 + |∂θE[f ]|2 +

|∂ϕE[f ]|
cos2 θ

)
cos θdθdϕ

=2

∫
B2

(
|f |2

2
+ (1− x21 − x22)

|∂nf |2

2
+
|∂tf |2

2

)
1√

1− x21 − x22
dx1dx2

=

∫
B2

(
|f |2 + | grad f |2g

B2

)
dVolg

B2

=‖f‖2H1(B,g
B2 ).

Let us now consider the case M = Sn. We introduce the embedding map

F : C∞1,2(Sn, δSn)→ V,

where

V := {f ∈ C∞1,2(Bn, δBn),

f(ξ1, . . . , ξj , . . . , ξn) = f(ξ1, . . . ,−ξj , . . . , ξn),∀j ∈ {1, . . . , d}}
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and

F [h] (ξ1, . . . , ξn) :=
1

2
h(ξ21 , . . . , ξ

2
n).

Again if the closure of F to H1(Sn, δSn) is an isometric embedding we are done, since, for
any given target function h ∈ H1(Sn, δSn) we can pull back to C∞b (Sn) any sequence of
C∞b (Bn) approximations to F [h].

To this aim, we introduce the partition Q1, . . . , Q2n of [−1, 1]n given by the coordinate
hyperplanes, we denote by T : Sn → Bn the map (ξ1, . . . , ξn) 7→ (ξ21 , . . . , ξ

2
n) = x and we

notice that, for any f ∈ C∞(Sn), we have∫
Bn∩Qj

f ◦ TdVolBn =
1

2n

∫
Sn
fdVolSn .

Finally we compute

‖F [h]‖H1(Bn,δBn )

=

2n∑
j=1

∫
Bn∩Qj

(
|F [h](ξ)|2 + | gradF [h](ξ)|2δBn

)
dVolBn(ξ)

=
1

4

2n∑
j=1

∫
Bn∩Qj

(
|h ◦ T (ξ)|2 +Dht ◦ TJT tδ−1

BnJTDh ◦ T (ξ)
)
dVolBn(ξ)

=
1

4 · 2n
2n∑
j=1

∫
T−1(Bn∩Qj)

(
|h(x)|2 +Dht(JT tδ−1

BnJT ) ◦ T−1Dh(x)
)
dVolSn(x)

=
1

4 · 2n 2n
∫
Sn

(
|h(x)|2 +Dht(JT tδ−1

BnJT ) ◦ T−1Dh(x)
)
dVolSn(x).

Since, due to equation (20),

(JT tδ−1
BnJT ) ◦ T−1 = 4diag(ξ)δ−1

Bndiag(ξ)
∣∣∣
ξ=
√
x

= 4δSn(x)

we conclude that ‖F [h]‖H1(Bn,δBn ) = ‖h‖H1(Sn,δSn ). In view of the above reasoning this
concludes the proof. �

2.3. Unbounded linear operators on Hilbert spaces, some tools. We need to recall
some concepts from Operator Theory that allow a more precise and compact formulation
of our results. A linear operator on a Banach space B is a couple (DB(T ), T ), where
DB(T ) is a dense linear subspace of B and T is a linear map DB(T )→ B.

Let (DB(T ), T ) be a linear operator. If for any sequence {fn} in DB(T ) such that

• ‖fn → f‖B → 0 for some f ∈ B,
• there exists g ∈ B with ‖Tfn − g‖B → 0

it follows that f ∈ DB(T ) and Tf = g, then the operator T is said to be closed. If B
is not finite dimensional, the notion of spectrum and set of eigenvalues are not the same.
More precisely, we denote by σ(T ) the spectrum of T

σ(T ) := {z ∈ C : T − zI is not invertible}.

Instead, λ is an eigenvalue of T if there exists an element f ∈ B such that Tf = λf.
If an operator T is not closed we may try to find an extension of it, i.e., (T̃ ,DB(T̃ ))

such that DB(T̃ ) ⊃ DB(T ) and T̃ f = Tf for any f ∈ DB(T ). If we can find such an
extension in the category of closed operators, then T is said to be closable and its minimal
closed extension T is termed the closure of T.

Now we replace the Banach space B by an Hilbert space H , clearly the above termi-
nologies are still well defined, since any Hilbert space is in particular Banach.

If for any f, g ∈ DH (T ) we have 〈Tf, g〉H = 〈f, Tg〉H , then the operator T is said
to be symmetric. It is a very useful fact that any symmetric operator is closable to a
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symmetric operator. Again, if H is infinite dimensional, one must pay attention to the
difference between symmetric and self-adjoint operators.

The adjoint T ∗ of the operator T is defined by the relation

〈Tf, g〉H = 〈f, T ∗g〉H ,∀f ∈ DH (T ), g ∈ DH (T ∗),

where

DH (T ∗) := {g ∈H : ∃h ∈H such that 〈Tf, g〉H = 〈f, h〉H ,∀f ∈ DH (T )} .

Clearly, we term T self-adjoint when the two domains indeed coincide.
The proofs of our results, besides the explicit computations, rely on the following

theorem which collects some classical results of Operator Theory; see for instance [32, Ch.
1 and Ch. 4].

Theorem 3. Let T be a linear non negative unbounded operator on the separable Hilbert
space (H , ‖ · ‖) with domain D(T ). Assume that

a) T is symmetric,
b) It has discrete real spectrum σ(T ) = {λj}j∈N diverging to +∞.
Then

i) the closure T̄ of T is a self-adjoint unbounded operator (i.e., T is essentially self-
adjoint),

ii) σ(T̄ ) = σ(T ),
iii) the domain of T̄ is

(21) D(T̄ ) = {u ∈H :

∞∑
j=1

λ2
j |ûj |2 <∞}

iv) the quadratic form

Q(u) := 〈T 1/2u, T 1/2u〉H
has domain

(22) D(Q) = {u ∈H :

∞∑
j=1

λj |ûj |2 <∞}

which is complete in the norm

|‖u‖| :=
√
Q(u) + ‖u‖H .

Here and throughout the paper ûj denotes the j−th Fourier coefficients of the function
u.

3. Proofs

The strategy of the proofs of Theorems 1 and 2 is to show that the conditions a) and b) of
Theorem 3 holds for T being the Laplace Beltrami operator (with respect to the considered
metric), then to conclude applying Theorem 3. This will be done by considering the weak
formulation of the Laplace Beltrami operator and performing explicit computations on a
suitable orthogonal system.

3.1. Orthogonal polynomials in L2
µBn

. The following family of orthogonal functions
on the unit ball has been first introduced in the Approximation Theory framework, indeed
the formula we will use is a special case of orthogonal polynomials for certain radial weight
functions; see [33, Ch. 5].

Proposition 4 ([33]). Let us set for any α ∈ Nn

(23) ϕα := Tαn

 xn√
1−

∑n−1
k=1 x

2
k

 n−1∏
j=1

(1−
j−1∑
k=1

x2k)αj/2C
γj
αj

 xj√
1−

∑j−1
k=1 x

2
k

 ,
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where Tk is the Chebyshev polynomial of degree k, γj := n−j
2

+
∑n
k=j+1 αk and Cst denote

the monic Gegenbauer polynomials of degree t (i.e., Cst := J
s−1/2,s−1/2
t and Jα,βt is the

monic Jacobi polynomial orthogonal on [−1, 1] with respect to the weight (1−x)α(1+x)β).
The set {ϕα : α ∈ Nn} is a dense orthogonal system in L2(Bn, δBn) and

(24) ‖ϕα‖2L2(Bn,δBn ) = ‖Tαn‖
2
−1/2,−1/2

n−1∏
j=1

‖Cγjαj‖
2
αj−1/2,αj−1/2,

where ‖f‖a,b :=
(∫ 1

−1
|f(t)|2(1− t)a(1 + t)bdt

)1/2
.

Note that the density of the linear subspace span{ϕα : α ∈ Nn} in H1(Bn, δBn) follows
from Proposition 3.

3.2. Proof of Theorem 1. We warn the reader that we will denote throughout this
section by Df the Euclidean gradient of f.

Proof of Theorem 1. We start showing that ∆ acting on C 2
b (Bn) is a symmetric operator.

Namely, for any u, v ∈ C 2
b (Bn), we have

(25)

∫
Bn

u∆vdVolBn = −
∫
Bn
〈gradu, grad v〉δBn dVolBn =

∫
Bn

v∆udVolBn .

In order to prove this formula we perform two integrations by parts on Bnr := {x : |x| ≤ r}
letting r → 1−.

−
∫
Bn

v∆udVolBn = −
∫
Bn

div(
√

det δBnG
−1
BnDu)vdx

= lim
r→1
−
∫
Bnr

div(
√

det δBnG
−1
BnDu)vdx

= lim
r→1

(∫
Bnr

DvTG−1
BnDu

√
det δBndx−

∫
∂Bnr

νTG−1
BnDu

√
det δBndσ

)
=

∫
Bn
〈gradu, grad v〉δBn dVolBn − lim

r→1

∫
∂Bnr

νTG−1
BnDu

√
det δBndσ

=−
∫
Bn

div(
√

det δBnG
−1
BnDv)udx+

lim
r→1

∫
∂Bnr

uνTG−1
BnDv

√
det δBndσ − lim

r→1

∫
∂Bnr

vνTG−1
BnDu

√
det δBndσ

=−
∫
Bn

u∆vdVolBn + lim
r→1

∫
∂Bnr

uνTG−1
BnDv

√
det δBndσ

− lim
r→1

∫
∂Bnr

vνTG−1
BnDu

√
det δBndσ

Here ν is the (euclidean) unit outward normal to ∂Bnr := {x ∈ Rn : |x| = r}.
The proof of (25) is concluded if we show that

lim
r→1

∫
∂Bnr

vνTG−1
BnDu

√
det δBndσ = 0

for any u, v ∈ C 2
b (Bn). To see this, simply observe (see Lemma 1) that ν is an eigenvector

of G−1
Bn for the eigenvalue (det g)−1||x|=r = (1− r2), thus we have

lim
r→1

∫
∂Br

vνTG−1
B Du

√
det gdσ = lim

r→1

√
1− r2

∫
∂Br

v∂νudσ

≤ lim
r→1

√
1− r2‖u‖C2

b
(Bn)‖v‖C2

b
(Bn) = 0.

This shows that condition a) of Theorem 3 holds for ∆. To conclude the proof we need to
show that b) holds as well, i.e., there exists a L2(Bn, δBn)-orthogonal system in C 2

b (Bn)
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dense in L2(Bn, δBn) made of eigenfunctions of ∆ such that the corresponding eigenvalues
are a positive diverging sequence. We claim that such an orthogonal system is, indeed
{ϕα, α ∈ Nn}, see Proposition 4.

For the sake of readability we present here the case n = 2, which leads to slightly easier
notation and computations with respect to the general case. However, all the elements of
the proof of the general case are presented in such a simplified exposition. To simplify the
notation we denote B2 by B.

The orthogonal basis of Proposition 4 reads as

ϕs,k(x, y) := (1− x2)k/2Jk,ks−k(x)Tk

(
y√

1− x2

)
, 0 ≤ k ≤ s ∈ N,

where we denoted by Jα,βm the m-th Jacobi orthogonal polynomial with respect to (1 −
x)α(1 + x)β . We need to verify that

〈−∆ϕs,k, ϕm,l〉L2(B,δB) = λs,kδs,mδk,l = s(s+ 1)δs,mδk,l.

Since ϕs,k are elements of C∞b (B) we can use the above weak formulation (25) to get

〈−∆ϕs,k, ϕm,l〉L2(B,δB) =

∫
B

DϕTs,kG
−1
B Dϕm,l

√
det δBdxdy.

Let us introduce a change of variables

(x, z) 7→ Ψ(x, z) := (x, z
√

1− x2) = (x, y).

We denote by Jψ the Jacobian matrix of Ψ so we get∫
B

DfT1 G
−1
B Df2

√
det gdxdy =

=

∫ 1

−1

∫ 1

−1

D(f1 ◦Ψ)TJΨ−TG−1
B JΨ−1D(f2 ◦Ψ)dx

dz√
1− z2

=

∫ 1

−1

∫ 1

−1

D(f1 ◦Ψ)T
[

1− x2 0

0 1−z2
1−x2

]
D(f2 ◦Ψ)dx

dz√
1− z2

.

Note that not only Ψ is a change of variables that diagonalizes G−1
B , it also has the

property of giving to the basis functions ϕs,k a tensor product structure. Indeed we have

ϕs,k ◦Ψ(x, z) = (1− x2)k/2Jk,ks−k(x)Tk(z), thus∫ 1

−1

∫ 1

−1

D(ϕs, k ◦Ψ)T
[

1− x2 0

0 1−z2
1−x2

]
D(ϕm,l ◦Ψ)dx

dz√
1− z2

=

∫ 1

−1

∂x[(1− x2)k/2Jk,ks−k(x)]∂x[(1− x2)l/2J l,lm−l(x)](1− x2)dx ×∫ 1

−1

Tk(z)Tl(z)
dz√

1− z2
+∫ 1

−1

(1− x2)(k+l)/2−1Jk,ks−k(x)J l,lm−l(x)]dx ×∫ 1

−1

∂zTk(z)∂zTl(z)
√

1− z2dz.

It is well known that ∫ 1

−1

Tk(z)Tl(z)
dz√

1− z2
= 2δkπ/2δl,k.

Here we denoted by δk the Kroneker delta at 0, i.e., δk = 1 if k = 0 and vanishes elsewhere.
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Also one has T ′k = kUk−1, where Uk are the orthogonal Chebyshev polynomials of the
second kind, i.e.,

∫ 1

−1

Uk(z)Ul(z)
√

1− z2dz = π/2δl,k.

Using such orthogonality and differentiation relations in the above computation we get

∫ 1

−1

∂x[(1− x2)k/2Jk,ks−k(x)]∂x[(1− x2)l/2J l,lm−l(x)](1− x2)dx ·∫ 1

−1

Tk(z)Tl(z)
dz√

1− z2
+∫ 1

−1

(1− x2)(k+l)/2−1Jk,ks−k(x)J l,lm−l(x)]dx ·∫ 1

−1

∂zTk(z)∂zTl(z)
√

1− z2dz

=
π

2
δl,k
(∫ 1

−1

∂x[(1− x2)k/2Jk,ks−k(x)]∂x[(1− x2)k/2Jk,km−k(x)](1− x2)dx · 2δk

+ k2
∫ 1

−1

(1− x2)k−1Jk,ks−k(x)Jk,km−k(x)dx
)
.(26)

Now, letting k = l, we note that

∫ 1

−1

∂x[(1− x2)k/2Jk,ks−k(x)]∂x[(1− x2)k/2Jk,km−k(x)](1− x2)dx

=

∫ 1

−1

∂x[Jk,ks−k(x)]∂x[Jk,km−k(x)](1− x2)k+1dx

+

∫ 1

−1

−kx∂x[Jk,ks−k(x)Jk,km−k(x)](1− x2)kdx

+ k2
∫ 1

−1

x2Jk,ks−k(x)Jk,km−k(x)(1− x2)k−1dx.

Integration by parts in the second term leads to

∫ 1

−1

∂x[(1− x2)k/2Jk,ks−k(x)]∂x[(1− x2)k/2Jk,km−k(x)](1− x2)dx

=

∫ 1

−1

∂x[Jk,ks−k(x)]∂x[Jk,km−k(x)](1− x2)k+1dx

− 2k2
∫ 1

−1

x2Jk,ks−k(x)Jk,km−k(x)(1− x2)k−1dx

+ k

∫ 1

−1

Jk,ks−k(x)Jk,km−k(x)(1− x2)kdx

+ k2
∫ 1

−1

x2Jk,ks−k(x)Jk,km−k(x)(1− x2)k−1dx.
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We plug this last identity to (26) with k = l to get

〈−∆Bϕs,k, ϕm,l〉L2(B,δBn )

=
π

2
δl,k2δk

(∫ 1

−1

∂x[Jk,ks−k(x)]∂x[Jk,km−k(x)](1− x2)k+1dx

+ k2
∫ 1

−1

(1− x2)Jk,ks−k(x)Jk,km−k(x)(1− x2)k−1

+ k

∫ 1

−1

Jk,ks−k(x)Jk,km−k(x)(1− x2)kdx
)

=
π

2
δl,k2δk

(∫ 1

−1

∂x[Jk,ks−k(x)]∂x[Jk,km−k(x)](1− x2)k+1dx

+ k(k + 1)

∫ 1

−1

Jk,ks−k(x)Jk,km−k(x)(1− x2)kdx
)
.

The last term in the sum vanishes for any m 6= s, this follows from the orthogonality of
the Jacobi polynomials. When instead m = s we have (see for instance [33])

k(k + 1)

∫ 1

−1

(Jk,ks−k(x)(x))2(1− x2)kdx =
k(k + 1)22k+1(s!)2

(2s+ 1)(s+ k)!(s− k)!
.

For the first term, we recall that d
dx
Jk,ks−k = s+k+1

2
Jk+1,k+1
s−k−1 , Hence, using again the

orthogonality, we get ∫ 1

−1

∂x[Jk,ks−k(x)]∂x[Jk,km−k(x)](1− x2)k+1dx

=

(
s+ k + 1

2

)2 ∫ 1

−1

(Jk+1,k+1
s−k−1 )2(1− x2)k+1dx

=(s+ k + 1)
22k+1(s!)2

(2s+ 1)(s+ k)!(s− k − 1)!
.

We finally compute

〈−∆Bϕs,k, ϕm,l〉L2(B,δBn )

=
π

2
δl,k2δkδs,m

22k+1(s!)2

(2s+ 1)(s+ k)!(s− k)!

(
k(k + 1) + (s+ k + 1)(s− k)

)
=s(s+ 1)

π

2
δl,kδs,m2δk

22k+1(s!)2

(2s+ 1)(s+ k)!(s− k)!

=s(s+ 1)‖ϕs,k‖2L2(B,)δl,kδs,m.

Here the last line is due to Proposition 4. �

3.3. Orthogonal polynomials in L2
µSn

.

Proposition 5 ([33]). Let us set for any α ∈ Nn and x ∈ Sn

(27) ψα(x) :=

n∏
j=1

(
1−

j−1∑
k=1

xk

)αj
J
aj ,−1/2
αj

(
2xj

1−
∑j−1
k=1 xk

− 1

)
,

where Ja,bm is the m-th Jacobi polynomial of parameters a, b and

aj := 2

min(n,j+1)∑
k=1

αk +
n− j − 1

2
.

The set {ψα : α ∈ Nn} is a dense orthogonal system in L2(Sn, δSn).

This result (see Th. 8.2.2 in [33]) plays a key role in our proof.
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Figure 1. Some notations used in the proof of Theorem 2.

Theorem 4 ([33]). Let us introduce the differential operator

(28) Df :=

n∑
i=1

xi∂
2
i,if − 2

∑
1≤i<j≤n

xixj∂
2
i,jf +

1

2

n∑
i=1

(1− (n+ 1)xi)∂if.

Then we have

(29) Dψα = |α|
(
|α|+ n+ 1

2

)
ψα.

It will turn out in the proof of Theorem 2 that D agrees on smooth functions with
the aforementioned Laplace Beltrami operator with respect to the Baran metric of the
simplex.

3.4. Proof of Theorem 2.

Proof of Theorem 2. Since GSn blows up at the boundary of the simplex, our strategy is
to carry out integration by parts on certain exhausting subsets of Sn and then we take
the limit approaching the boundary. To this aim it is convenient to introduce, see Figure
1, the following notations for ε > 0

Snε :=

{
x ∈ Sn : xi > ε, (1−

n∑
k=1

xi) > ε

}
,

Tn,0ε :=

{
x ∈ ∂Snε : (1−

n∑
k=1

xi) = ε

}
,

Tn,iε := {x ∈ ∂Snε : xi = ε}, i = 1, . . . , n.

Also let νi be the Euclidean unit normal to Tn,iε (for any ε > 0). We note that ∂Snε =
∪nj=0T

n,i
ε .

Following the first part of the proof of Theorem 1, we show that ∆ is a symmetric
operator on the space C∞b (Sn) which is dense (see Proposition 3) in H1(Sn, δSn).
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To this aim we perform integration by parts twice. Let u, v ∈ C∞b (Sn), then

−
∫
Sn
v∆udVolSn = −

∫
Sn

div(
√

det δSnG
−1
SnDu)vdx

= lim
ε→0+

−
∫
Snε

div(
√

det δSnG
−1
SnDu)vdx

= lim
ε→0+

(∫
Snε

DvTG−1
SnDu

√
det δSndx−

n∑
i=0

∫
T
n,i
ε

vνTi G
−1
SnDu

√
det δSndσ

)

=

∫
Sn
〈gradu, grad v〉δSn dVolSn −

n∑
i=0

lim
ε→0+

∫
T
n,i
ε

νTi G
−1
SnDu

√
det δSndσ

=−
∫
Sn
v∆udVolSn +

lim
ε→0+

∫
T
n,i
ε

(
uνTi G

−1
SnDv − vν

T
i G
−1
SnDu

)√
det δSndσ.

Thus we need to prove that for any u, v ∈ C∞b (Sn) and any i ∈ {0, 1, . . . , n} we have

(30) lim
ε→0+

∫
T
n,i
ε

uνTi G
−1
SnDv

√
det δSndσ = 0.

To see this, it is sufficient to notice (using Lemma 2) that for any x ∈ Tn,0ε

νT0 G
−1
Sn

√
det δSn =

√
ε∏n

k=1 xk
(x1, x2, . . . , xn)T

and for any x ∈ Tn,iε , i = 1, 2, . . . , n

νTi G
−1
Sn

√
det δSn =√

ε

(1− ε−
∑n
k=1,k 6=i xk)

∏n
k=1,k 6=i xk

(x1, x2, . . . , xi−1, 1− ε, xi+1, . . . , xn)T .

Therefore we have∣∣∣∣∫
T
n,0
ε

uνTi G
−1
SnDv

√
det δSndσ

∣∣∣∣ ≤ √εnmax
Sn

(|Dv|∞|u|)

∥∥∥∥∥
n∏
k=1

√
xk

∥∥∥∥∥
L1(T

n,0
ε )

→ 0

and, for any i = 1, 2, . . . , n∣∣∣∣∫
T
n,i
ε

uνTi G
−1
SnDv

√
det δSndσ

∣∣∣∣
≤
√
εnmax

Sn
(|Dv|∞|u|)

∥∥∥∥∥∥∥
(1− ε−

n∑
k=1,k 6=i

xk)

n∏
k=1,k 6=i

xk

−1/2
∥∥∥∥∥∥∥
L1(T

n,i
ε )

→ 0

and thus (30) holds. This shows that ∆ is a symmetric operator on C∞b (Sn), i.e., for any
such u and v

(31)

∫
Sn

u∆vdVolSn = −
∫
Sn
〈gradu, grad v〉δSn dVolSn =

∫
Sn

v∆udVolSn .

Now we want to show that ∆ has discrete spectrum σ(∆S) = {λs := s(s+ n−1
2

) : s ∈ N}
and the eigen-space of λs is span{ψα, |α| = s} (see Proposition 5).

Instead of proving this directly, we rely on the known properties of the basis {ψα},
namely (29), and we simply show that for smooth functions

(32) ∆f = Df,

this allows us to characterize σ(∆) due to Theorem 4. Then we apply Theorem 3 and the
result follows.
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We introduce the notation h(x) := (1−
∑n
k=1 xk)

∏n
k=1 xk. It is worth noting that√

h(x)∂i
xi√
h(x)

=
1−

∑
k 6=i xk

2(1−
∑n
k=1 xk)

=
1

2

(
1 +

xi
1−

∑n
k=1 xk

)
.

For any smooth f we have

∆Snf

=
√
h(x)

n∑
i=1

∂i

(
xi√
h(x)

(∂if −
n∑
j=1

xj∂jf)

)

=

n∑
i=1

{√
h(x)∂i

xi√
h(x)

(∂if −
n∑
j=1

xj∂jf) + xi∂i(∂if −
n∑
j=1

xj∂jf)

}

=

n∑
i=1

{
1

2

(
1 +

xi
1−

∑n
k=1 xk

)
(∂if −

n∑
j=1

xj∂jf) + xi∂i(∂if −
n∑
j=1

xj∂jf)

}

=− 1

2

n∑
j=1

xj∂jf ·
n∑
i=1

(
1 +

xi
1−

∑n
k=1 xk

)
+

1

2

n∑
i=1

∂if +
1

2(1−
∑n
k=1 xk)

n∑
i=1

xi∂if +

n∑
i=1

xi∂2
i f − xi

∑
j 6=i

xj∂
2
i,jf − x2i ∂2

i f − xi∂if



=

n∑
i=1

xi(1− xi)∂2
i f − 2

∑
1≤j<i≤n

xixj∂
2
i,jf +

1

2

n∑
i=1

∂if

+

(
n∑
i=1

xi∂if

)
·

{
−

n∑
i=1

(
1

2
+

xi

2
(
1−

∑n
k=1 xk

))+
1

2
(
1−

∑n
k=1 xk

) − 1

}

=

n∑
i=1

xi(1− xi)∂2
i f − 2

∑
1≤j<i≤n

xixj∂
2
i,jf +

1

2

n∑
i=1

∂if

+

(
n∑
i=1

xi∂if

)
·
{
−n+ 2

2
+
−
∑n
i=1 xi + 1

2(1−
∑n
k=1 xk)

}

=

n∑
i=1

xi(1− xi)∂2
i f − 2

∑
1≤j<i≤n

xixj∂
2
i,jf +

1

2

n∑
i=1

∂if

=

n∑
i=1

xi∂
2
i,if − 2

∑
1≤i<j≤n

xixj∂
2
i,jf +

1

2

n∑
i=1

(1− (n+ 1)xi)∂if

=Df.

�

3.5. Proof of Proposition 2. Let us first recall a result of Masamune [42, Th. 3] which
the proof of Proposition 2 relies. Assume (M, g) to be a compact Riemannian manifold
and let Σ be a submanifold of M, let us define ∆M as the standard Laplace Beltrami
operator acting on C∞c (M \ Σ). Then

(33) ∆M is essentially self-adjoint if and only if dim(M)− dim(Σ) > 3.
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Proof of Proposition 2. Let M := Sn ⊂ Rn+1 and Σ := {x ∈ M : xn+1 = 0}. Also
introduce the notation (x1, x2, . . . , xn, xn+1) = (ξ, xn+1).

Let us assume for a contradiction that C∞c (Bn) is dense in H1(Bn, δBn). In view of
the proof of Proposition 3 we have

H := (C∞c (Bn), ‖ · ‖1,2,δBn )�isometry

(
C∞c,even(M \ Σ), ‖ · ‖1,2,gM

)
=: E1.

(C∞c (Bn), ‖ · ‖1,2,δBn )�isometry

(
C∞c,odd(M \ Σ), ‖ · ‖1,2,gM

)
=: E2.

(34)

Here C∞c,odd(M \ Σ) denotes the subspace

{u ∈ C∞c (M \ Σ), gSn), u(ξ, xn+1) = −u(ξ,−xn+1) ∀(ξ, xn+1) ∈M \ Σ}

and C∞c,even(M \ Σ) is defined similarly. Note that, given u ∈ C∞c (M \ Σ) we can define
ueven := 1/2(u(ξ, xn+1) + u(ξ,−xn+1)) ∈ E1 and uodd := 1/2(u(ξ, xn+1)− u(ξ,−xn+1)) ∈
E2 such that u = ueven + uodd.

The assumption that C∞c (Bn) is dense in H1(Bn, δBn) together with Theorem 1 and
the isometry property of the map E in the proof of Proposition 3 implies that the Laplace
Beltrami operator ∆1 acting on E1 and ∆2 acting on E2 are essentially self-adjoint. More-
over, since ∆Mu = ∆1ueven + ∆2uodd for any u ∈ C∞c (M \Σ), it follows that ∆M itself is
essentially self-adjoint.

On the other hand, dim Σ = n−1 and dimM = n, this is in contrast with Masamune’s
result (33) and thus C∞c (Bn) can not be dense in H1(Bn, δBn) and thus H1(Bn, δBn) 6=
H1

0 (Bn, δBn). Note that, in view of [43, Th. 1], this is equivalent to the fact that Bn is
not a manifold with almost polar boundary.

The proof for the simplex can be done in a equivalent way but using the map F defined
in the proof of Proposition 3 instead of the map E. �

Appendix A. Pluripotential Theory on the complexified sphere and
spherical harmonics

In this section we consider Sn−1 as a compact subset of the complexified sphere Sn−1 :=
{z ∈ Cn :

∑
z2i = 1}. We can consider the space psh(Sn−1) of plurisubharmonic functions

on the complex manifold Sn−1 and form the usual upper envelope

V ∗Sn−1(z,Sn−1) := lim sup
Sn−13ζ→z

sup
{
u(ζ) : u ∈ L(Sn−1), u|Sn−1 ≤ 0

}
,

where L(Sn−1) denotes the space of plurisubharmonic functions u on Sn−1 such that

u− 1
2

log
∑n−1
i=1 |zi|

2 is bounded above as
∑n−1
i=1 |zi| → ∞ along Sn−1, defining the extremal

plurisubharmonic function; compare this definition with equation (7). This is a locally
bounded plurisubharmonic function which is maximal on Sn−1 \ Sn−1; [63, 8].

On the other hand, it is clear that Sn−1 is a irreducible algebraic sub-variety of Cn of
pure dimension n− 1,, hence we can use the result of Sadullaev [50] to get

V ∗Sn−1(z,Sn−1) = lim sup
Sn−13ζ→z

sup

{
1

deg p
log+ |p(ζ)| : p ∈P(Cn), ‖p‖Sn−1 ≤ 1

}
.

Here P denotes the space of algebraic polynomials with complex coefficients. It is worth
stressing that here deg denotes the degree of a polynomial on Cn, not the degree over the
coordinates ring of Sn−1.

In [22, Prop. 4.1] the authors prove the formula

(35) V ∗Sn−1(z,Sn−1) =
1

2
log
(
|z|2 +

√
|z|4 − 1

)
, ∀z ∈ Sn−1,

we note that this function can be used to define the Baran metric on the sphere, due to
the following differentiability property.
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Lemma 3. Let x ∈ Sn−1, the function VSn−1(·,Sn−1) has right tangent directional deriv-
ative at x in any direction i · v, for any v ∈ TxSn−1, that is

∂+
i·vVSn−1(x,Sn−1) :=

d

dt
VSn−1(γ(t),Sn−1)|t=0 ∈ R,

where γ : [0, 1] 7→ Sn−1 is any differentiable arc with γ(0) = x, γ′(0+) = i · v.
Moreover we have ∂i·vVSn−1(x,Sn−1) = |v|.

Proof. The problem is clearly rotation independent. We can thus assume x = (1, 0, . . . , 0) =
e1 and v = |v|(0, 1, 0, . . . , 0) = |v|e2 without loss of generality.

Let us introduce the arc

z(t) :=

√
1 + |v|2 log2(1 + t)e1 + |v| log(1 + t)e2, t ∈ [0,+∞[.

It is easy to verify that z enjoys the properties

z(t) ∈ Sn−1, ∀t ∈ [0,+∞[,

z(0) = x,

d

dt
z(0+) = i · v.

Thus we are left to show that, setting u(t) := V ∗Sn−1(z(t),Sn−1), we have d
dt
u(0+) = |v|.

Let us note first that |z(t)|2 = 1 + 2|v|2 log2(1 + t), then we can compute

u(t) =
1

2
log

[
1 + 2|v|2 log2(1 + t) +

√
4|v|2 log2(1 + t)(1 + |v|2 log2(1 + t))

]
=

1

2
log

[
1 + 2|v|2 log2(1 + t) + 2|v| log(1 + t)

√
1 + |v|2 log2(1 + t)

]
∼1

2
log
[
1 + 2|v|2t2 + 2|v|t

√
1 + |v|2t2

]
∼1

2
log(1 + 2|v|t) ∼ |v|t, as t→ 0+.

Therefore

u′(0+) = lim
t→0+

u(t)− u(0)

t
= lim
t→0+

u(t)

t
= |v|.

�

Due to Lemma 3 we can define the Baran metric on the real unit sphere by setting

δSn−1(x, v) := ∂i·vV
∗
Sn−1(x,Sn−1) = |v|,

note the analogy with the partial derivative taken in the Lemma with the definition of the
Baran metric in the standard ”flat” case.

Using the Parallelogram Identity we can define for any x ∈ Sn−1 and any u, v ∈ TxSn−1

the scalar product related to the Baran metric as

〈u, v〉gSn−1 (x) :=
δ2Sn−1(x, u+ v)− δ2Sn−1(x, u− v)

4

=
|u+ v|2 − |u− v|2

4
= 〈u, v〉Rn ,

that turns out to coincide with the standard (round) metric.
It is very well known that the Laplace Beltrami operator on the real unit sphere (en-

dowed with the round metric) has a discrete diverging set of eigenvalues and its eigen-
functions are polynomials: the spherical harmonics.

These observations lead automatically to the desired conclusion that we state as a
corollary.
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Corollary 1. The eigenfunctions of the Laplace Beltrami operator with respect to the
Baran metric on the real unit sphere are the orthogonal polynomials with respect to the
pluripotential equilibrium measure µSn−1,Sn−1 of the real unit sphere Sn−1 in the complex-

ified sphere Sn−1.
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