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Lecture 1: A survey on the Bernstein Markov Property I

Joint work with Thomas Bloom, Norman Levenberg and Franck Wielon-
sky.

We give an introduction on the Bernstein Markov Property in the complex
plane. Such a property is an asymptotic assumption on the growth rate of
uniform norms of polynomials on a compact set K with respect to their
L2
µ(K) norms as the degree tends to ∞, here µ is any positive �nite Borel

measure.
We provide some examples and a su�cient condition for a measure to

satisfy such a property on its support.
Also, we illustrate the connection of the Bernstein Markov Property with

Logarithmic Potential Theory and its application to Approximation Theory.
[Time permitting:] we will mention some variants of the Bernstein Markov

Property (e.g. for rational functions, weighted polynomials, Muntz polyno-
mials and Riesz potentials).

Lecture 2: A survey on the Bernstein Markov Property II

After a quick recall on some basic notions in Pluripotential Theory, we will
show that the most of the results regarding the Bernstein Markov Property in
C have their Cn counterparts, provided a suitable "translation" is performed.

In particular we will sketch the proof of the best known su�cient condition
for a measure to satisfy the Bernstein Markov Property on its support in Cn.

Finally, we introduce a new result. We consider the case of a measure
whose support is a compact subset of a irreducible algebraic variety of Cn

and give a new mass density su�cient condition for the Bernstein Markov
Property in this setting.
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