Harmonic Admissible Meshes

Federico Piazzon

Dip. Matematica Univ Padova fpiazzon@.math.unipd.it

UNIVERSITÀ DEGLI STUDI DI PADOVA

\mathbf{W}) $\mathbf{A}\mathbf{M}$ $\mathcal{H}-$

We use standard identification $\mathbb{C} \cong \mathbb{R}^2$ and let

$$\mathcal{H}^{n} := \{ p \in \mathscr{P}^{2n}_{\mathbb{C}}(\mathbb{R}^{2}) : \Delta p \equiv 0 \} \cong \left\{ c + \sum_{i=1}^{n} a_{j} z^{j} + \sum_{i=1}^{n} \bar{a}_{j} \bar{z}^{j}, c, a_{j} \in \mathbb{C} \right\}$$
$$\mathcal{H} := \bigcup_{n} \mathcal{H}^{n} \quad \dim \mathcal{H}^{n} = 2n + 1.$$

We introduce **Harmonic (Weakly)** Admissible Meshes in the spirit of [1].

Definition 1 (\mathcal{H} -AM). Let $K \subset \mathbb{C}$ be a \mathcal{H} -determining compact set. Let $\{A_n\}_{\mathbb{N}}$ be a sequence of finite subsets of K such that there exists $C < \infty$ such that (A) Card A_n grows polynomially w.r.t. n and

KEY FEATURES

By mimiking and slightly modifying the case of WAMs we can prove some **theorems**:

- **Existence 1.** If K preserves a Markov Inequality for algebraic poly-(1)nomials of 2 real variables with exponent r (i.e. there exists M such that $\|\nabla p(x,y)\|_K \leq Mn^r \|p(x,y)\|_K$ for any $p \in \mathscr{P}^n(\mathbb{R}^2)$ and ∂K is a compact connected Lipschitz manifold, then there exists an $\mathcal{H}-AM$ for K with $\mathcal{O}(n^r)$ points.
- **Existence 2.** If K is the closure of a bounded domain, ∂K is a com-(ii) pact connected Lipschitz manifold and uniform (or even or $L^1(\partial K)$) interior ball condition holds true, then there exists an \mathcal{H} -AM for K with $\mathcal{O}(n)$ points. Namely **Optimal** \mathcal{H} -AM.

(B) $||p||_K \leq C ||p||_{A_n}$ for any $p \in \mathcal{H}^n$.

Then A_n is said to be an Harmonic Admissible Mesh $(\mathcal{H}-AM)$. If instead (B) is substituted by

(B') $||p||_K \leq C_n ||p||_{A_n}$ for any $p \in \mathcal{H}^n$,

and C_n is growing at most polynomially w.r.t. n, then A_n is said to be an Harmonic Weakly Admissible Mesh $(\mathcal{H}-WAM)$.

BASIC PROPERTIES

- (1) Possibly located on the exterior boundary (Maximum Principle).
- Stable under affine mapping. (2)
- Well behaving under polynomial maps. (3)
- (4) Good \mathcal{H} interpolation sets are \mathcal{H} -WAMs.

FEKETE AND \mathcal{H} -FEKETE POINTS

An array of points of K maximizing the modulus of the **Vandermonde** Determinant

 $VDM(z_0, z_2 \dots z_n) := [z_i^j]_{i,j=0,1,\dots n}$

is said a **Fekete** array of degree n for K. Similarly a \mathcal{H} -**Fekete** set of points is maximizing

- **Holomorphic Mapping.** If A_n is an \mathcal{H} -WAM for $Q \subset \Omega$ of cardi-(iii) nality $c(n), f \in hol(\Omega, \mathbb{C})$ is proper and K := f(Q) enjoys a Markov Inequality, then there exists a sequence $j(n) = \mathcal{O}(\log(n))$ such that $A_n := f(A_{n \cdot j(n)})$ is an \mathcal{H} -WAM for K (of cardinality c(nj(n)))).
- **Uniform Approximation by DLS.** Let K be compact and (iv) \mathcal{H} -determining let A_n be a \mathcal{H} -WAM of cardinality c(n) and constant C_n , let us denote by Λ_{A_n} the discrete least squares projection onto \mathcal{H}^n and set $d_K^h(f, \mathcal{H}^n) := \inf_{p \in \mathcal{H}^n} \|f - p\|_K$. Then for any $f \in \mathscr{C}^0(K)$ we have

$\|f - \Lambda_n f\|_K \le \left(1 + C_n(1 + \sqrt{c(n)})\right) d_K^h(f, \mathcal{H}^n).$

Uniform Approximation of Derivatives. In particular if $\Delta f =$ (\mathbf{V}) 0 in the open set $\Omega \supset K$ and K is convex with respect to \mathcal{H} and \mathcal{H} -regular then $\|f - \Lambda_n f\|_K \to 0$ and $\|\partial_i f - \partial_i \Lambda_n f\|_K \to 0$.

APPLICATIONS: PSEUDO-SPECTRAL METHODS

Laplace
$$\begin{cases} \Delta u = 0 & \text{in int } K \\ u|_{\partial K} = g. \end{cases} \approx \begin{cases} u^{(n)} \in \mathcal{H}^n \\ u^{(n)}|_{\partial K} = \Lambda_n[g]. \end{cases}$$

$$\mathcal{H}\text{-}\operatorname{VDM}(z_0, z_2 \dots z_{2n}) := \det \begin{bmatrix} [z_i^j] & 0 \le i \le 2n \\ 0 \le j \le n \end{bmatrix} \begin{bmatrix} \bar{z}_i^j] & 0 \le i \le 2n \\ 1 \le j \le n \end{bmatrix}$$

The **transfinite diameter** $\delta(K)$ of K is defined by taking any sequence F_n of Fekete sets and setting

$$\delta(K) := \lim_{n} \operatorname{VD}_{n} M(F_{n})^{\frac{1}{\alpha_{n}}}, \text{ where } \alpha_{n} := \binom{n+1}{2}$$

Siciak [4] proved that in general one has the estimate for the harmonic transfinite diameter $0 \le h(K) := \limsup_n \mathcal{H}\text{-}\mathrm{VDM}_n(H_n)^{\frac{1}{2\alpha_n}} \le \delta(K),$ but for \mathcal{H} -regular K (in particular for the closure of any finite union of bounded simply connected domain [2]) equality holds.

LOGARITHMIC ENERGY

If K is a regular compact set of positive capacity (i.e. $\delta(K) < \infty$) the classical minimization problem in the space $\mathcal{M}(K)$ of probability measures supported on K w.r.t log energy functional $I[\mu] := \int \int \log \frac{1}{w-z} d\mu(z) d\mu(w)$ has an unique solution μ_K , the **Equilibrium Measure**.

It is well known that $\mu_K = \frac{1}{2\pi} \Delta V_K$ in a distributional sense, here V_K is the Green function for (Δ, K) with pole at ∞ having logarithmic growth. μ_K is the

 $\int \frac{1}{2} \int \frac{$ • Poisson $\begin{cases} \Delta u = f & \text{in int } K \\ u|_{\partial K} = g. \end{cases} \approx \begin{cases} u^{(n)} := u_0^{(n)} + u_1^{(n)} \\ u_0^{(n)} \in \mathcal{H}^n, \ u_1^{(n)} \in \mathscr{P}^{2n} \\ u^{(n)}|_{\partial K} = \Lambda_n[g], \ \Delta u_1^{(n)} = \Pi_{2n} f. \end{cases}$

where Π_{2n} is the DLS projection onto $\mathscr{I}^n \cong \mathscr{P}^{2n} / \ker \Delta$ w.r.t. $l^2(\tilde{A}_n)$ with $A_n \supset A_n$ any WAM for K.

• Constant coefficient divergence form second order elliptic operators are diagonalized by an affine invertible change of coordinates φ

 $\begin{cases} \operatorname{div}(A\nabla u) = 0 & \text{in int } K \\ u|_{\partial K} = g. \end{cases} \leftrightarrow \begin{cases} \Delta(u \circ \varphi) =: \Delta \tilde{u} = 0 & \text{in } \varphi^{-1}(\operatorname{int} K) \\ \tilde{u}|_{\varphi^{-1}(\partial K)} = g \circ \varphi. \\ J\varphi^{-t}AJ\varphi = \mathbb{I}. \end{cases}$

APPROXIMATE \mathcal{H} -FEKETE POINTS ALGORITHM

Finding true \mathcal{H} -Fekete points is an extremely hard task, however an approximate solution is provided by the (adapted version of the) greedy algorithm AFP [3], namely the $\mathcal{H}-\mathbf{AFP}$ that selects (QR factorization with partial pivoting) the maximum volume square rank 2n + 1 sub-matrix from the matrix \mathcal{H} -VDM $(z_0, z_2 \dots z_{2c_n})$.

Theorem 1. Let $K \subset \mathbb{C}$ be a compact \mathcal{H} -regular and -convex set and let A_n be an $\mathcal{H}-WAM$ of degree n of constant C_n for K let H_n be extracted from A_n by $\mathcal{H}-AFP$, then

asymptotic of Fekete points (see prop below). By standard techniques we can prove that

Proposition 1. if $B_n \subset K$ is a sequence of finite sets having the property $\limsup_n \mathcal{H}-\mathrm{VDM}(B_n)^{\frac{1}{2\alpha_n}} = \delta(K)$, then the uniform probability measures μ_n relative to B_n satisfies $\mu_n \rightharpoonup^* \mu_K$.

In particular any Fekete array do.

(i) H_n are unisolvent and have Lebesgue Constant $\Lambda_{H_n} \leq (2n+1)C_n$. (*ii*) H_n are asymptotically Fekete (*i.e.* $\limsup_n \mathcal{H}$ -VDM_n $(H_n)^{\frac{1}{2\alpha_n}} =$ $\delta(K)$ (iii) Let μ_n be the uniform probability measure canonically identified by H_n , we have $\mu_n \rightharpoonup^* \mu_K$.

References

[1] J.P. CALVI AND N. LEVENBERG. Uniform approximation by discrete least squares polynomials. JAT, 152:82–100, 2008.

[2] J. H. CURTISS. The transfinite diameter and extremal points for harmonic polynomial interpolation. Journal d' Analyse Matematique, 17[66]:75–92, 1966.

11.1

[3] L.Bos, S. DE MARCHI, A.SOMMARIVA, AND M.VIANELLO. Weakly admissible meshes and discrete extremal sets. Numer. Math. Theory Methods Appl., 4(1):1–12, 2011.

[4] J. SICIAK. Asymptotic behavior of harmonic polynomials bounded on a compact set. Annales Polonici Mathematici, 20:267–278, 1968.