Optimal Polynomial Admissible Meshes on the Closure of  $\mathscr{C}^{1,1}$ Bounded Domains

> Constructive Theory of Functions Sozopol, June 9 - 15, 2013

F. Piazzon, joint work with M. Vianello

Department of Mathematics. Doctoral School in Mathematical Sciences, Applied Mathematics Area



Università degli Studi di Padova



#### 1 Introducing Polynomial Admissible Meshes

- Defining (Weakly) Admissible Meshes, Optimal Admissible Meshes.
- Main properties and motivations.
- Building Admissible Meshes, the state of the art.
- **2** A new result for  $\mathcal{C}^{1,1}$  bounded domains
  - Main Result.
  - Tools: Bernstein Inequality and regularity property of oriented distance function
  - Sketch of the proof.



In 2008 J.P. Calvi and N.Levenberg proposed these well promising definitions .

#### Admissible Meshes, AM

Let  $K \subset \mathbb{R}^d$  (or  $\mathbb{C}^d$ ) be a compact polynomial determining set. The sequence  $\{A_n\}_{\mathbb{N}}$  of finite subsets of *K* is said to be an **Admissible Mesh** for *K* if there exist *C*, *s* > 0 such that

Card 
$$A_n = O(n^s)$$
  
 $\|p\|_K \leq C \|p\|_{A_n} \, \forall p \in \mathscr{P}^n(K).$ 

#### Weakly Admissible Meshes, WAM

If instead  $C = C_n = O(n^q)$ , then we say that  $A_n$  is a **Weakly** Admissible Mesh.



By the definitions both AMs and WAMs are determining for  $\mathscr{P}^n(K)$ , thus we have

Card 
$$A_n \ge \dim \mathscr{P}^n(K) = \binom{n+d}{n} = O(n^d)$$

For this reason A. Kroó introduced

**Optimal Admissible Mesh** 

The AM  $A_n$  w.r.t.  $K \subset \mathbb{R}^d$  is said to be **optimal** if

Card  $A_n = O(n^d)$ .

CTF - 2013 - 4 of 39



#### DLS Approximation on a WAM - Calvi Levenberg (2008)

Let  $K \subset \mathbb{R}^d$  be compact and polynomial determining,  $A_n$  a WAM on it and  $f \in \mathscr{C}^0(K)$ , then one has

$$\|f - \Lambda_{A_n} f\|_{\mathcal{K}} \leq \left(1 + C_n \left(\|f\|_{\mathcal{K}} (1 + \sqrt{\operatorname{Card}(A_n)})\right)\right) d_n(f, \mathcal{K})$$

Where  $\Lambda_{A_n}$  is the discrete least squares (DLS) operator performed sampling *f* on  $A_n$  and  $d_n(f, K)$  is the error of best polynomial approximation to *f* on *K*.

Mild regularity of f and  $K \Longrightarrow$  convergence of DLS operator.



WAMs work nicely under some fundamental operations.

- Stability under affine mapping, union and tensor product.
- "Weak" stability under polynomial mapping.
- Supersets of WAM are WAMs.
- Good interpolation sets are WAMs.



## **Discrete Extremal Sets** - Bos, De Marchi, Sommariva and Vianello

Starting from a WAM one can extract by standard Numerical Linear Algebra

- AFP Approximate Fekete Points
- ALS Approximate Leja Sequences

such that

#### Unisolvent sets.

- Slowly increasing Lebesgue constants.
- Same asymptotic (in measure theoretic sense).



Two questions naturally arise..

#### Question 1

How to build AMs or even WAMs for a given K?

#### Question 2

How to build Optimal AMs for a given K?

CTF - 2013 - 8 of 39



#### One should choose/combine different results requiring K to have

#### particular shape and/or smoothness

- Elich-Zeller: Double degree Chebyshev points for the interval are AM of constant 2.
- **shape:** Use symmetries of *K*, polar coordinates, tensors, quadratic maps..
- **Calvi-Levenberg** used Multivariate Markov Inequality.
- **Kroó:** Star shaped bounded domains with smooth Minkowski functional + Bernstein Inequality .
- Piazzon-Vianello Mapping and Perturbing WAMs and AMs.
- W. Plesniak improve for sub-analytic sets.
- **Kroó** result on Analytic Graph domains.
- Bloom Bos Calvi and Levenberg existence for L-regular sets.

## Building AM by Markov Inequality



#### Markov Inequality (MI)

The set K is preserving a Markov Inequality of constant  $M_K$  and exponent r if

$$\||\nabla p|\|_{\mathcal{K}} \le M_{\mathcal{K}} n^{r} \|p\|_{\mathcal{K}}. \quad \forall p \in \mathscr{P}^{n}(\mathbb{R}^{d})$$

MI holds under mild assumptions on K, typically r = 2.

**Idea:** take any equally spaced grid having step size  $O(n^{-r})$ .

#### Calvi Levenberg (2008)

If  $K \subset \mathbb{R}^d$  preserves a Markov Inequality of exponent *r*, then it has a AM with  $O(n^{rd})$  points.

CTF - 2013 - 10 of 39





Using the classical Bernstein Inequality on segments and star-shaped property it has been proved

#### Kroó (2011)

Let  $K \subset \mathbb{R}^d$  be compact and star-shaped with  $\mathscr{C}^{1+\alpha}$  smooth Minkowski functional. Then *K* has an AM with  $O(n^{\frac{2d+\alpha-1}{\alpha+1}})$  points.



#### Perturbation Result Piazzon Vianello

Let  $K \subset \mathbb{C}^d$  be a polynomially convex and Markov compact set. If that there exists a sequence of compact sets  $\{K_j\}_{\mathbb{N}}$  such that

• there exists  $A_{n,j}$  (W)AM for  $K_j$  having constant  $C_{n,j}$  and

■ 
$$d_{\mathcal{H}}(K, K_j) \le \epsilon_j$$
 where  $\limsup_{i} \epsilon_j C_{n,j} = 0 \forall n$ .

Then K has a (W)AM.

#### Mapping Result Piazzon Vianello

(W)AMs are "weakly" stable under smooth mapping: for any holomorphic map  $\varphi : Q \to K$  there exists  $j_{\varphi}(n) = O(\log n)$  such that  $B_n := \varphi(A_{n:j_{\varphi}(n)})$  is a WAM for *K*.



AM having Card  $A_n = O((n \log n)^d)$  as the ones above are termed **nearly optimal.** 

- W. Plesniak showed that Piazzon-Vianello results in particular apply to any *compact sub-analytic set* that hence has a nearly optimal AM.
- A. Kroó proved that analytic graph domains have a nearly optimal AM
- Bloom,Bos,Calvi and Levenberg showed (non constructively) that any *L-regular* compact set has.



#### Question 2

How to build Optimal AMs for a given K?

- Polytopes, Balls have Optimal AMs by 1dim techniques, symmetry or thanks to the particular shape and finite unions.
- The Kroó result applies to **star-shaped**  $\mathscr{C}^2$  smooth sets.
- The Kroó result has been refined: if d = 2, then C<sup>2</sup> smoothness can be replaced by uniform interior ball condition.

#### What about sets with a more general shape?



#### Idea: Smoothness may completely replace Particular Shape.

#### ſ

#### Piazzon 2013

Let  $\Omega$  be a bounded  $\mathscr{C}^{1,1}$  domain in  $\mathbb{R}^d$ , then there exists an optimal admissible mesh for  $K := \overline{\Omega}$ .

CTF - 2013 - 15 of 39

## Tools I



#### **Bernstein Inequality**

Let  $p \in \mathscr{P}^n(\mathbb{R})$ , then for any  $a < b \in \mathbb{R}$  we have

$$\left|\frac{dp}{dx}(x)\right| \le \frac{n}{\sqrt{(x-a)(b-x)}} ||p||_{[a,b]}.$$
 (BI)

and thus 
$$\left|\frac{dp}{dx}\left(\frac{a+b}{2}\right)\right| \leq \frac{2\mathbf{n}}{(b-a)} ||p||_{[a,b]}.$$

#### Markov Tangential Inequality

Let  $p \in \mathscr{P}^n(\mathbb{R}^d)$ , then for any  $x_0 \in \mathbb{R}^d$ , r > 0 and  $v \in \mathbb{S}^{d-1} \cap \mathcal{T}_x \partial B(x_0, r)$  we have

$$\left|\frac{dp}{dv}(x)\right| \le \frac{n}{r} ||p||_{B(x_0,r]}.$$
 (MTI)

CTF - 2013 - 16 of 39



#### $\mathscr{C}^{1,1}$ domains

 $\Omega \subset \mathbb{R}^d$  domain whose boundary is locally the graph of a  $\mathscr{C}^{1,1}$  function of controlled norm. If  $\Omega$  is bounded, then all the parameters involved in this definition can be chosen uniformly.



CTF - 2013 - 17 of 39



#### Geometric Characterization

Bounded  $\mathscr{C}^{1,1}$  domains are characterized by the **uniform double sided ball condition**.



CTF - 2013 - 18 of 39

## Tools IV



#### **Oriented Distance Function**

$$b_{\Omega}(x) := \inf_{y \in \overline{\Omega}} |x - y| - \inf_{z \in \mathbb{C}\Omega} |x - z|$$





#### Regularity Properties of $b_{\Omega}(\cdot)$

If  $\Omega$  is a bounded  $\mathscr{C}^{1,1}$  domain, then there exists  $\overline{\delta}$  such that for any  $0 < \delta < \overline{\delta}$  we have

The metric projection on the boundary  $x \mapsto \pi_{\partial\Omega}(x)$  is single valued on  $U_{\delta}$  where  $U_{\delta}$  is a  $\delta$ -tubular neighborhood of  $\partial\Omega$ .

$$\bullet b_{\Omega} \in \mathscr{C}^{1,1}(U_{\delta}).$$

• 
$$\nabla b_{\Omega}(x) = rac{x - \pi_{\partial\Omega}(x)}{b_{\Omega}(x)} \neq 0$$
 in  $U_{\delta}$ .

- $\nabla b_{\Omega}(x)$  defines the outer normal unit vector field w.r.t.  $\Omega$ .
- Differentiability across the boundary.
- We can take  $\overline{\delta}$  as the radius of the ball.
- Level sets of  $b_{\Omega}$  are  $\mathscr{C}^{1,1}$  manifolds.



Bound normal derivatives of polynomials by a **modified Bernstein Inequality** along segments of metric projection. Thanks to boundary regularity.

#### ↓

Find a **norming set** for  $\overline{\Omega}$ : by union of  $m_n = O(\underline{n})$  hypersurfaces which are **level sets** of  $b_{\Omega}$  and  $K_{\delta} := \{x \in \overline{\Omega} : |b_{\Omega}(x)| \ge \delta\}$ 

$$\|p\|_{K} \leq 2 \max\left\{\|p\|_{K_{\delta}}, \|p\|_{\bigcup_{i=0}^{m_{n}}\Gamma^{i}}\right\}. \quad \forall p \in \mathscr{P}^{n}(\mathbb{R}^{d})$$

CTF - 2013 - 21 of 39

## construction





CTF - 2013 - 22 of 39



Bound any directional derivative of polynomials by a **modified Bernstein Inequality** holding in  $K_{\delta}$ .

Find a **weak norming set** for  $K_{\delta}$  : w.r.t.  $\overline{\Omega}$  by a grid mesh  $Z_n$ , of stepsize  $O(n^{-1})$  i.e.

$$\|p\|_{K_{\delta}} \leq \|p\|_{Z_{n}} + rac{1}{\lambda} \|p\|_{\overline{\Omega}} \ \lambda > 2. \ \forall p \in \mathscr{P}^{n}(\mathbb{R}^{d})$$

Card 
$$Z_n = O(n^d)$$

CTF - 2013 - 23 of 39



Bound tangential derivatives of polynomials on  $\Gamma^i s$  by the combination of

- **Regularity of**  $\Gamma^i s \Rightarrow$  Ball property.
- Markov Tangential Inequality

### ↓

Find **weak norming sets** for  $\bigcup_{i=0}^{m} \Gamma^{i}$  w.r.t.  $\overline{\Omega}$  by the union of geodesic meshes  $Y_{n}^{i} \subset \Gamma^{i}$  having *geodesic fill distance*  $O(n^{-1})$ 

$$\|p\|_{\cup_{i=0}^{m_n}\Gamma^i} \leq \|p\|_{Y_n^i} + \frac{1}{\lambda} \|p\|_{\overline{\Omega}} \ \lambda > 2. \ \forall p \in \mathscr{P}^n(\mathbb{R}^d)$$

Card 
$$\cup_{i=0}^{m_n} \Gamma^i = m_n O(\mathbf{n}^{d-1}) = O(\mathbf{n}^d).$$

CTF - 2013 - 24 of 39



Finally we set

$$A_n := Z_n \cup \left( \cup_{i=0}^{m_n} \Gamma^i \right)$$

and the inequalities above read as

$$\begin{split} \|p\|_{\overline{\Omega}} &\leq 2\|p\|_{A_n} + \frac{2}{\lambda}\|p\|_{\overline{\Omega}} \quad \forall p \in \mathscr{P}^n(\mathbb{R}^d) \\ & \downarrow \\ \|p\|_{\overline{\Omega}} &\leq \frac{2\lambda}{\lambda - 2}\|p\|_{A_n} \quad \forall p \in \mathscr{P}^n(\mathbb{R}^d) \\ Card(A_n) &= O(n^d). \end{split}$$

CTF - 2013 - 25 of 39



We conclude by recalling the open problem

#### Conjecture Bloom Bos Calvi and Levenberg

If  $K \subset \mathbb{C}^d$  is compact and L-regular then there exists c := c(K) such that any array of degree c(K)n Fekete points forms an Admissible mesh for K, that hence is Optimal.



## References





#### J.P. CALVI AND N. LEVENBERG.

Uniform approximation by discrete least squares polynomials. *JAT*, **152**:82–100, 2008.



#### A. KROÓ.

On optimal polinomial meshes. JAT, **163**:1107–1124, 2011.



#### L.Bos, S. DE MARCHI, A.SOMMARIVA, AND M.VIANELLO.

Weakly admissible meshes and discrete extremal sets. *Numer. Math. Theory Methods Appl.*, **4(1)**:1–12, 2011.



#### F. PIAZZON.

Optimal polynomial admissible meshes on compact subsets of  $\mathbb{R}^d$  with mild boundary regularity. preprint submitted to JAT, arXiv:1302.4718, 2013.



#### F. PIAZZON AND M. VIANELLO.

Analytic transformation of admissible meshes. *East J. on Approx*, **16**:389–398, 2010(4).



#### F. PIAZZON AND M. VIANELLO.

Computing optimal polynomial meshes on planar starlike domains. draft,http://www.math.unipd.it/ marcov/pdf/star.pdf, 2012.



#### F. PIAZZON AND M. VIANELLO.

Small perturbations of admissible meshes. *Appl. Anal.*, **pubblished online 18 jan.**, 2012.



# Thank You!

CTF - 2013 - 28 of 39

## more details....



CTF - 2013 - 29 of 39



Step 1 we build a norming set.

We pick  $\delta < r$  and work out a modification of **(BI)** of the form

 $|D_{S}p(x)| \leq n\varphi_{\delta}(b_{\Omega}(x))||p||_{\Omega}$ 

Where *S* is a segment of metric projection,  $\varphi_{\delta}$  arises as follows..

CTF - 2013 - 30 of 39

Proof (2)







CTF - 2013 - 31 of 39

Proof (3)



Then we define a function by integration along segments of metric projection

$$x\mapsto F_{n,\delta}(x):=n\int_0^{-b_\Omega(x)}\varphi_\delta(\xi)d\xi$$



CTF - 2013 - 32 of 39





and consider equally spaced level sets

$$\Gamma^{i}_{n,\delta} := F_{n,\delta}(a^{i}) \ i = 0, 1, \dots m_{n} = O(n),$$

where

$$a^i = 0, \dots, \max_{\Omega} F_{n,\delta}$$
  
 $1/2 \geq a^{i+1} - a^i.$ 

Therefore we have

$$\begin{split} \|p\|_{\overline{\Omega}} &\leq & \|p\|_{\cup_i \Gamma_{n,\delta}^i} + 1/2 \|p\|_{\overline{\Omega}} \Rightarrow \\ &\leq & 2 \|p\|_{\cup_i \Gamma_{n,\delta}^i}. \end{split}$$

CTF - 2013 - 33 of 39





For some technical reasons we switch

$$\cup_{i=0}^{m_n} \Gamma_{n,\delta}^i = \bigcup_{i=0}^{\tilde{m}_n} \Gamma_{n,\delta}^i \uplus \bigcup_{i=\tilde{m}_n+1}^{m_n} \Gamma_{n,\delta}^i$$

where the second set is a subset of

$$K_{\delta} := \{x \in \overline{\Omega} : |b_{\Omega}(x)| \ge \delta\}$$

and then we can replace it by  $K_{\delta}$  itself.

$$||p||_{\overline{\Omega}} \leq 2 \max\{||p||_{\cup_{i}^{\tilde{m}_{n}} \Gamma_{n,\delta}^{i}}, ||p||_{\mathcal{K}_{\delta}}\}.$$

CTF - 2013 - 34 of 39





**Step 2:** finding a norming mesh  $Z_n$  for  $K_{\delta}$ .

we use (BI) jointly with  $B(x, \delta) \subset \overline{\Omega} \ \forall x \in K_{\delta}$  to get

$$|\nabla p(x)| \leq \frac{n}{\delta} ||p||_{\overline{\Omega}}.$$

Thus we can build a suitable  $Z_n$  by a grid of step size  $\frac{\delta}{4n} = O(n^{-1})$ and hence cardinality

Card 
$$Z_n = O(n^d)$$

obtaining

$$||p||_{\mathcal{K}_{\delta}} \leq ||p||_{Z_n} + \frac{1}{4}||p||_{\overline{\Omega}}$$

CTF - 2013 - 35 of 39





**Step 3:** finding a norming mesh  $Y_n$  for  $\bigcup_{i=0}^{\tilde{m}_n} \Gamma_{n,\delta}^i$ 

• Any  $\Gamma_{n,\delta}^i$  is a  $\mathscr{C}^{1,1}$  manifold.

• we can pick a tangent ball of radius  $\delta/2$  lying in  $\Omega$ .



thus..



We can bound any tangential derivative by **MTI** applied to the ball to get

$$\left|\frac{dp}{dv}(x)\right| \leq \frac{n}{\delta/2} ||p||_{\overline{\Omega}} \, \forall v \in \mathbb{S}^{d-1} \cap \mathcal{T}_x \Gamma^i_{n,\delta}$$

Therefore if we pick a mesh  $Y_n^i$  on each  $\Gamma_{n,\delta}^i$  having controlled **geodesic fill distance**  $h^i = O(n^{-1})$  we get

$$\|p\|_{\cup_{i}^{\widetilde{m}_{n}}\Gamma_{n,\delta}^{i}}\leq \|p\|_{\cup_{i}Y_{n}^{i}}+\frac{1}{4}\|p\|_{\overline{\Omega}}.$$

CTF - 2013 - 37 of 39



The regularity of  $\Gamma_{n,\delta}^i$ 's ensures that we can produce suitable  $Y_{n,\delta}^i$  using  $O(n^{d-1})$  points, since we have  $m_n = O(n)$  level set  $\Gamma_{n,\delta}^i$  we have

Card 
$$Y_{n,\delta} := \text{Card} \cup_i Y_{n,\delta}^i = O(n^d)$$

CTF - 2013 - 38 of 39



#### Step 4: joining all the inequalities.

Finally putting all together we get  $||p||_{\overline{\Omega}} \le 2(||p||_{Y_{n,\delta}\cup Z_n} + \frac{1}{4}||p||_{\overline{\Omega}})$ and thus

$$\begin{aligned} \|p\|_{\overline{\Omega}} &\leq 4\left(\|p\|_{Y_{n,\delta}\cup Z_n}\right) \text{ where } \end{aligned} \tag{2} \\ \operatorname{Card}(Y_{n,\delta}\cup Z_n) &= O(n^d) \end{aligned}$$

That is optimal.

CTF - 2013 - 39 of 39

cit



# [1] [2] [3] [4] [5] [7]

CTF - 2013 - 40 of 39