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Introducing Polynomial Admissible Meshes
m Defining (Weakly) Admissible Meshes, Optimal Admissible
Meshes.
m Main properties and motivations.
m Building Admissible Meshes, the state of the art.

A new result for #'-' bounded domains

m Main Result.

m Tools: Bernstein Inequality and regularity property of
oriented distance function

m Sketch of the proof.
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First definitions (1) 5 s

In 2008 J.P. Calvi and N.Levenberg proposed these well promising
definitions .

Admissible Meshes, AM

Let K c R? (or C%) be a compact polynomial determining set. The
sequence {Ap}v of finite subsets of K is said to be an Admissible
Mesh for K if there exist C, s > 0 such that

CardA, = 0O(n)
lpllik < Cllplla, Vp € 2°(K).

Weakly Admissible Meshes, WAM

If instead C = C, = O(n9), then we say that A, is a Weakly
Admissible Mesh.
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First definitions (2)

By the definitions both AMs and WAMSs are determining for
P"(K), thus we have

n+d

Card A, > dim 2"(K) = ( ;

) = 0(n%)

For this reason A. Kro6 introduced
Optimal Admissible Mesh
The AM A, w.r.t. K c R is said to be optimal if

Card A, = O(n%).
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Motivations

DLS Approximation on a WAM - Calvi Levenberg (2008)

Let K c RY be compact and polynomial determining, A, a WAM on
it and f € ¥°(K), then one has

1F = A fl < (14 Ca (11 + y/Card(An)))) e, K)

Where Ay, is the discrete least squares (DLS) operator performed
sampling f on A, and dx(f, K) is the error of best polynomial
approximation to f on K.

U

’ Mild regularity of f and K = convergence of DLS operator. ‘
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Properties (1)

WAMSs work nicely under some fundamental operations.

m Stability under affine mapping, union and tensor product.
m “Weak” stability under polynomial mapping.

m Supersets of WAM are WAMs.

m Good interpolation sets are WAMs.
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Properties (2)

Discrete Extremal Sets - Bos, De Marchi, Sommariva and
Vianello

Starting from a WAM one can extract by standard Numerical
Linear Algebra

m AFP Approximate Fekete Points

m ALS Approximate Leja Sequences

such that

m Unisolvent sets.
m Slowly increasing Lebesgue constants.

m Same asymptotic (in measure theoretic sense).
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Problems

Two questions naturally arise..

How to build AMs or even WAMs for a given K?

How to build Optimal AMs for a given K?
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One should choose/combine different results requiring K to have

’particular shape and/or smoothness

m Elich-Zeller: Double degree Chebyshev points for the interval are AM of
constant 2.

m shape: Use symmetries of K, polar coordinates, tensors, quadratic maps..
m Calvi-Levenberg used Multivariate Markov Inequality.

m Kroo: Star shaped bounded domains with smooth Minkowski functional +
Bernstein Inequality .

Piazzon-Vianello Mapping and Perturbing WAMs and AMs.
W. Plesniak improve for sub-analytic sets.

Krod result on Analytic Graph domains.

Bloom Bos Calvi and Levenberg existence for L-regular sets.
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Building AM by Markov Inequality

Markov Inequality (MI)

The set K is preserving a Markov Inequality of constant Mk and
exponent r if

I1Vplllk < Mkn'llpllk. Vp € 2"(RY)

MI holds under mild assumptions on K, typically r = 2.

‘ Idea: take any equally spaced grid having step size O(n™"). ‘

Calvi Levenberg (2008)

If K c RY preserves a Markov Inequality of exponent r, then it has
a AM with O(n™) points.
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Building AM by

Bernstein Inequality and Star Shape

Using the classical Bernstein Inequality on segments and
star-shaped property it has been proved

Kro6 (2011)

Let K c RY be compact and star-shaped with €'+ smooth
2d+a-1
Minkowski functional. Then K has an AM with O(n o ) points.
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Mapping and Perturbing

Perturbation Result Piazzon Vianello

Let K c C9 be a polynomially convex and Markov compact set. If
that there exists a sequence of compact sets {K;}y such that

m there exists A, (W)AM for K; having constant Cp,j and
m d» (K, K;) < ¢ where limsup; Cp; = 0 Vn.
Then K has a (W)AM.

Mapping Result Piazzon Vianello

(W)AMs are “weakly“ stable under smooth mapping: for any
holomorphic map ¢ : Q — K there exists j,(n) = O(log n) such
that By := ¢(Anj,(n)) is @ WAM for K.
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Nearly Optimal AM

AM having Card A, = O((nlog n)9) as the ones above are termed
nearly optimal.

m W. Plesniak showed that Piazzon-Vianello results in particular
apply to any compact sub-analytic set that hence has a nearly
optimal AM.

m A. Kro6 proved that analytic graph domains have a nearly
optimal AM

m Bloom,Bos,Calvi and Levenberg showed (non constructively)
that any L-regular compact set has.
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Solving (Q2)

How to build Optimal AMs for a given K?

m Polytopes, Balls have Optimal AMs by 1dim techniques,
symmetry or thanks to the particular shape and finite unions.

m The Kro6 result applies to star-shaped %2 smooth sets.

m The Kroo result has been refined: if d = 2, then 2
smoothness can be replaced by uniform interior ball condition.

]What about sets with a more general shape? ‘
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Main Result 15 oo

Idea: Smoothness may completely replace Particular Shape.

l
Piazzon 2013

Let Q be a bounded ¢! domain in R%, then there exists an
optimal admissible mesh for K := Q.
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Bernstein Inequality

Let p € Z"(R), then for any a < b € R we have

lIPll[a.b)- (BI)

dp n
J(X)’ N CEDICED

and thus

%(#ﬂ < e lIPlia)-

Markov Tangential Inequality

Let p € 22"(RY), then for any xo € R?, r > 0 and
v € 891 N T7,0B(xo, r) we have

q n
09| = 2Pl (MT)
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TOOIS I I DI PADOVA

€' domains

Q c RY domain whose boundary is locally the graph of a €'
function of controlled norm. If Q is bounded, then all the
parameters involved in this definition can be chosen uniformly.

101 1
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Geometric Characterization

Bounded ¢! domains are characterized by the uniform double
sided ball condition.
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Regularity Properties of bq(+)

If Q is a bounded €*' domain, then there exists 6 such that for any
0 <6 < 6 we have

m The metric projection on the boundary x — msq(x) is single
valued on Us where Uy is a é-tubular neighborhood of 9f2.
bq € 651’1(U5).
Vba(x) = 2228 £ 0 in U.
Vbq(x) defines the outer normal unit vector field w.r.t. Q.

m Differentiability across the boundary.
m We can take ¢ as the radius of the ball.
m Level sets of bg are €' manifolds.

CTF - 2013 - 20 of 39



Sketch of the Proof 1

Bound normal derivatives of polynomials by a modified Bern-
stein Inequality along segments of metric projection. Thanks
to boundary regularity.

U

Find a norming set for Q : by union of m, = O(n) hypersur-

faces which are level sets of bg and K5 := {x € Q : |bq(x)| >
o}

Ik < 2max {lplic Ipllm} - VP € 27(R)
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Sketch of the Proof 2

Bound any directional derivative of polynomials by a modified
Bernstein Inequality holding in K;.

U

Find a weak norming set for K; : w.r.t. Q by a grid mesh Z,, of
stepsize O(n™1) i.e.

1
IPllk; = lipllz, + ~llplig 4> 2. ¥p e Z"(RY)

Card Z, = O(nY)
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Sketch of the Proof 3

Bound tangential derivatives of polynomials on I''s by the com-
bination of

m Regularity of s = Ball property.

m Markov Tangential Inequality

U

Find weak norming sets for u,.”;o,,r" w.rt. Q by the union of
geodesic meshes Y/, c ' having geodesic fill distance O(n™")

1
lpllyge i < lIplly, + Sllpllg 4> 2. Vp e 27(R)

Card U™ I = m,0(n®") = O(n°%).
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Sketch of the Proof 4

Finally we set

An = Zy U (U )

and the inequalities above read as

IA

2 _
lIplig 2lplla, + ~lIplig ¥p € Z"(RY)

N <

24 nrmd
/1_2||P||An Vp e Z"(RY)
o(n%).

lIpllg
Card(An)
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further investigations...

We conclude by recalling the open problem

Conjecture Bloom Bos Calvi and Levenberg

If K c C9is compact and L-regular then there exists ¢ := ¢(K)
such that any array of degree c(K)n Fekete points forms an
Admissible mesh for K, that hence is Optimal.
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m | Step 1 we build a norming set. |

We pick ¢ < r and work out a modification of (BI) of the form

|Dsp(x)| < ngs(ba(x))llplla

Where S is a segment of metric projection,
@s arises as follows..
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Proof (3)

Then we define a function by integration along segments of metric
projection

—bQ(X)
X = Fps(x) = nfo @s(£)dé




and consider equally spaced level sets

M= Fas(@) i=0,1,...m, = O(n),

where
a = 0,...,max Fns
Q
12 > at'-4a
Therefore we have
llollg <

Pl + 1/2llplg =
2lplly i -

e o s swerss
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For some technical reasons we switch

My =i My i mp i
Ui:orn,6 - Ui:orn,o‘ v Ui:r’nn—H rn.é

where the second set is a subset of

Ks == {x € Q: |ba(x)| = 6}

and then we can replace it by Kj itself.

lipllg < 2max{llpll npi  lIPllks}-
UI rn,&
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] ’Step 2: finding a norming mesh Z, for K.

we use (Bl) jointly with B(x, ) c Q Vx € Kj to get
n
Vp(x)! < <lpllg:

Thus we can build a suitable Z, by a grid of step size 2 = O(n™")
and hence cardinality

Card Z, = O(n9)

obtaining

1
IPllk; =< lIpllz, + 7 llPlig

e o o ssrss.
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m | Step 3: finding a norming mesh Y, for u@or;ﬁ

m Any T} ;is a "' manifold.
m we can pick a tangent ball of radius 6/2 lying in €.




Proof (8)

We can bound any tangential derivative by MTI applied to the ball
to get

d—1
'E(X' 6/2||p||Q Yves ﬂ‘TX

Therefore if we pick a mesh Yj, on each '], ; having controlled
geodesic fill distance h' = O(n~") we get

1
ol mapi < llPlly.yi + S lIPlig-
Y rn;,() In 4
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The regularity of I'], ;’s ensures that we can produce suitable Y} ;
using O(n®") points, since we have m, = O(n) level set ' < we

have

Card Yy := CardU;Y;, s = O(n)
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Proof (10)

m | Step 4: joining all the inequalities. ‘

Finally putting all together we get llpllg < 2(lpllv, uz, + 3liplig)
and thus

lpllg < 4(llplly,,uz,) where (2)
Card(Y,sUZ,) = 0O(n% (3)

That is optimal.
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