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Abstract. The Bernstein Markov Property (BMP) is a comparability conditions of the L2
µ

and maxK | · | norms of polynomials for a given a compact set K ⊂ Cn and a measure µ with
supp µ ⊆ K . Several variants (i.e., Lp, weighted, . . . ) of this property has been introduced.

Bernstein Markov property arises as a key tool in the proofs of some fundamental
results in (weighted) Pluripotential Theory [10, 11] and random polynomials [4]. More
recently, it has been shown that such results can be reinterpreted in a probability fashion
proving a Large Deviation Principle.

We recall [3, 5] the best-known sufficient condition for the standard BMP and present
two new results. Namely, a sufficient mass density condition for the BMP for rational
functions and a sufficient mass density condition for the weighted BMP on unbounded
closed sets in the complex plane.

Talk outline for the seminar to be given at Sminaire Analyse et Gomtrie of LATP-CMI of
Universite Aix-Marseille May 14th 2014.

1. First Definitions.

Let Pm(K) the space of holomorphic polynomials restricted to the compact set K ⊂ Cn.
Since dim Pm < ∞ any norm on it is comparable, in particular for any positive Borel
measure µ ∈ M+(K) supported on K there exists 0 < C(µ,K,m) < ∞

1√
µ(K)

‖p‖L2
µ
≤ ‖p‖C(K) ≤ C(µ,K,m)‖p‖L2

µ
∀p ∈Pm(K).

The Bernstein Markov Property is a quantitative requirement on the asymptotic of the m−th
root of the comparability constant C(µ,K,m).

Definition 1.1 (Bernstein Markov Property (BMP)). Let K ⊂ C be compact and µ ∈
M+(K) then the (K, µ) is said to enjoy the Bernstein Markov Property if exists a sequence
{Cm}m∈N such that

(1)
‖p‖K ≤ Cm‖p‖L2

µ
∀p ∈Pm(K),

lim sup
m

C1/m
m ≤ 1.

There are several variants of such a property.
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Definition 1.2. Let K ⊂ C be compact and µ ∈ M+(K) If for a given function w : K →
[0,+∞[ there exists a sequence {C(w)

m }m∈N such that

(2)
‖pwm‖K ≤ C(w)

m ‖pwm‖L2
µ
∀p ∈Pm(K),

lim sup
m

(C(w)
m )1/m ≤ 1.

Then we say that the triple (K, µ,w) enjoy the Weighted Bernstein Markov Property. If
for any w ∈ C(K) there exists such a {C(w)

m }m∈N, then (K, µ) is said to enjoy the Strong
Bernstein Markov Property. For a given compact set P,K ∩ P = ∅ we set

Rm := {pm/qm , pm, qm ∈Pm(K), Z(qm) ⊂ P},

the triple (K, µ, P) enjoys the Rational Bernstein Markov Property [respectively the
Weighted Rational Bernstein Markov Property] if there exists a sequence {C(w)

m }m∈N

such that (1) (resp (2) for a given w) hold when Pm(K) is substituted by Rm.

2. Historical Remarks.

The first motivations to such a study comes from Approximation Theory and Analytic
Function Theory and goes back to Szego Faber and immediatly after Erdós and Turan.
Properties of this kind for general measures has been more intensively studied and devel-
oped during the late 80’s and 90’s.

The most important contributes are due to Widom andUllman who introduced determining
measures and Stahl and Totik [14] who mostly studied regular measures essentially in the
complex plane. Under the additional standard hypothesis of K = supp µ being regular (see
Section (5) below) the second class of measures is precisely the Bernstein Markov ones,
while the first is smaller.

The present setting is instead the one more related (and adapted) to Several Complex Vari-
ables and Pluripotential Theory, it is due to Bloom Levenberg Berman and Boucksom.

3. Examples.

Example 1. Let K = ∆, µ = δ0. This is not a BM couple.

This tells us that µ needs at least to induce a norm on Pm(K) for any m ∈ N.

Example 2. Let K := ∆ × ∆, supp µ = S (K) the Śilov boundary and µ := ds × ds. Then
monomials zα, |α| ≤ m are an o.n basis of Pm(K) and for z0 ∈ S (K) extremal point for
p(z) :=

∑
|α|≤m cαzα we can compute

‖p‖K = |p(z0)| ≤
∑
|α|≤m

|cα||zα0 | ≤
√∑
|α|≤m

|cα|2
√∑
|α|≤m

|z0|
2α =

√
dim Pm(K)‖p‖L2

µ
=

√
(m + 2)(m + 1)

2
‖p‖L2

µ

Notice that, being z0 arbitrary, the constant in the inequality is exactly maxK

√∑
|α|≤m |z|2α.

Looking at this example one can notice some things. First if (S (K), µ) has BMP then (K, µ)
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has. We are induced to think that a BM measure for a given K should be thick on S (K).
Actually here we have

lim
r→0+

µ(B(z, r))
r

= 1 ∀z ∈ S (K).

Example 3. In [6] authors build an example of BM measure for a given (real, initially)

compact set K ⊂ Cn taking µm :=
∑ δzm

j

Nm
where Nm = dim Pm and (z(m)

1 , . . . , z(m)
Nm

) is a
Fekete sett of degree m for K and setting µ := c

∑∞
m=1 µm, c > 0 such that µ(K) = 1. Notice

that the support of µ is discrete (and hence (pluri-)polar), thus is small on the potential
theoretic point of view. This is an example of the following fact, in general we can find
only sufficient conditions for BMP.

Example 4. Let K = ∆ µ = ds and consider the weight function w(z) := exp−|z|2. Taking
the monomials as a counterexample we can see that zmw(z)m is achieving its maximum
modulus at any z : |z| = 2−1/2 with the value ‖zmwm‖K = exp m(1/2 log 2 − 2), while the L2

µ

norms are ‖zmwm‖L2
µ

= e−m. Therefore we have
(
‖zmwm‖K
‖zmwm‖L2

µ

)1/m

= e
√

2
> 1. This shows that the

weighted case is essentially different, but some measures are good for all weights.

4. Bergman Function.

Let us go back to Example 2. We calculated the constant for the inequality as

(3) Cm = max
K

√∑
|α|≤m

|z|2α = max
K

√∑
|α|≤m

|qα(z, µ)|2.

Where we indicated by qα(z, µ) the orthogonal polynomial of degree α obtained by Gram-
Schmidt ortogonalization with lexicographical ordering.

More generally we can notice that Pm
µ := (Pm, 〈·; ·〉L2

µ(K)) is a reproducing kernel Hilbert
space, being the kernel

Kµ
m(z, ζ) :=

∑
|α|≤m

qα(z, µ)q̄α(ζ, µ).

It is customary to denote by Bµn the diagonal of such a kernel, namely the Bergman function

Bµm(z) := Km(z, z) = 〈Kµ
m(z, ζ); Kµ

m(z, ζ)〉L2
µ(ζ)(K).

It is not difficult to prove that this is actually the general case:

• Let δz ∈ L(Pm
µ ,C) be the point-wise evaluation, for any z ∈ K we have ‖δz‖ =√

Bµm(z).

• The best possible constant in (1) is
√
‖Bµm‖K .

To go on we need to introduce some concepts from Pluripotential Theory.
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5. Rawly concise survey on Pluripotential Theory.

Pluripotential theory is a non linear potential theory arising from the study of the Monge
Ampere operator and the plurisubharmonic functions.

For an open set Ω ⊂ Cn and u ∈ C2(Ω) one defines first

(4) ddc u :=
n∑

j,k=1

∂2u
∂z j∂z̄k

(z)dz j ∧ dz̄k.

Then by smoothing it turns out that for any plurisubharmonic u the matrix [ ∂2u
∂z j∂z̄k

] j,k can be
defined as a positive definite Hermitian form in the sense of distributions. That is ∀v ∈ Cn

and any test function ϕ we set〈
vT [

∂2u
∂z j∂z̄k

](z)v ; ϕ
〉

:=
∫

u vT [
∂2ϕ

∂z j∂z̄k
](z)v d Vol

Cn
(z).

Even more interesting is that it can be defined as a positive (1, 1) current (i.e. an element
of the dual of the test forms of bidegree n − 1, n − 1)).

In a fundamental paper [2] Bedford and Taylor found out how to define the wedge product
(ddc u)n = ∧n ddc u for any plurisubharmonic locally bounded function, enjoying some
continuity property and such that for C2 functions we have

(5) (ddc u)n = c(n) det[
∂2u
∂z j∂z̄k

] j,kd Vol
Cn

.

We denote by L the Lelong class of plurisubharmonic functions having logarithmic pole
at infinity. Given a nonpluripolar (see[9][pg. 67]) compact set K we set

(6) V∗K(z) := lim sup
ζ→z

(
sup{u(ζ) ∈ L , u|K ≤ 0}

)
the Plurisubharmonic (locally bounded) Extremal Function which is solving the differential
problem (ddc u)n = 0 on Cn \ K among all plurisubharmonic function having logarithmic
pole at∞.

It turns out that µK := (ddc V∗K(z))n is a Borel probability measure on K, we call it the
pluripotential equilibrium measure for K.

6. Motivations for BMP.

Why should be worth to study the BMP? There are at least three good different reasons.

• DLS asymptotic. There exists a sort of L2 Bernstein Walsh Lemma for regular
compact sets K. Let Lm : C(K) → Pm

µ be the o.n. projection. If (K, µ) has the
BMP then if d∞( f ,Pm)1/m = 1

R (i.e. f ∈ hol({VK < log R})) then ‖ f −Lm f ‖1/mK =
1
R . On the other hand, if d2( f ,Pm)1/m = 1

R , then d∞( f ,Pm)1/m ≤ 1
R and thus

f ∈ hol({VK < log R}).

• m-th roots asymptotic. For any regular compact set K ⊂ Cn and any admissible
weight w = − log Q such that (K, µ,w) has the WBMP

(7) lim
m

1
2m

log Bµ,wm = VK,Q loc. uniformly in Cn.
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This result is achieved combining the reproducing property and the BMP to relate
Bµ,wm to the weighted Siciak extremal function[13] Φm,K,Q in the inequality(

Φm,K,Q

Nm

)2

≤
Bµ,wm

Nm
≤ C2

mΦ2
m,K,Q.

• Free energy asymptotic. If (K, µ) has the BMP then we have

(8) lim sup
m

(∫
. . .

∫ ∣∣∣∣∣VDM
m

(z1, . . . , zNm )
∣∣∣∣∣2 dµ(z1) . . . dµ(zNm )

) n+1
2nmNm

= δ(K)

Where δ(K) = limm δm(K)
n+1
nNm is the transfinite diameter, VDM is the Vadermonde

matrix and δm = maxKm |VDMm(z1, . . . , zNm )|. This statement goes directly to the
weighted case. Equation (8) is exactly what is needed for the so called Strong
Bergman Asymptotic, i.e.we have

(9)
∗

lim
m

Bµ,Qm

Nm
= µK,Q.

Moreover is the starting point to develop a sophisticate probabilistic machinery
which leads to introduce a sequence of measures and prove [7], [8] a Large De-
viation Principle where the good rate functional is the primitive of the Monge
Ampere, namely the pluripotential energy.

.

7. Sufficient Condition for BM.

How to find a measure satisfying a BMP for a given compact set K?

Let us go back again to Example 2, we have

K = ∆ × ∆, supp µ = S (K) and

lim
r→0+

µ(B(z, r))
r

= 1 ∀z ∈ S (K).

This is somehow a prototypical case, is not difficult to move to any K = ClC(D) ⊂⊂ C for
some open set D and µ absolutely continuous w.r.t. the arc-length measure on the outher
boundary of K.

To deal with general sets and measures and to grasp the core of the problem one should
move from looking at geometrical/analytical properties to use purely potential theoretic
means. Working in this spirit Stahl and Totik proved the following theorem working in one
complex variable.

Theorem 7.1 (Mass-density sufficient condition in the plane.). Let µ be positive Borel
measure with compact support K = supp µ in C, suppose that K is a non-polar regular set
w.r.t. the Dirichlet problem for the Laplace operator and there exists t > 0 such that

(10) lim
r→0+

cap
(
{z ∈ K : µ(B(z, r)) > rt}

)
= cap(K).

Then (K, µ) has the BMP.
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Here cap() is the logarithmic capacity of the set K,

cap(K) := max
ν∈M1(K)

exp
(∫ ∫

log |z − ζ |dν(z)dν(ζ)
)
.

This techniques are working in the complex plane, thinking to the distributional Laplacian
and the linear potential theory related to it.

There is a capacity in the non-linear pluripotential theory in Cn related to the Monge Am-
pere complex operator, namely the relative capacity Cap(K,Ω) w.r.t. a hyperconvex sup-
set Ω of K.

In this setting Bloom and Levenberg [5] have extended Theorem 7.1 above that reads as
follows.

Theorem 7.2 (Mass-density sufficient condition in Cn.). Let µ be positive Borel measure
with compact support K := supp µ ⊂ B(0, 1) in Cn, suppose that K is a non-pluripolar
L-regular set and there exists t > 0 such that

(11) lim
r→0+

Cap
(
{z ∈ K : µ(B(z, r)) > rt}, B(0, 1)

)
= Cap(K, B(0, 1)).

Then (K, µ) has the BMP.

The proof of these results relays on th following facts

(A) One side of the Bernstein Walsh and Bernstein Walsh Siciak lemmas respectively.
That is, for any regular non pluripolar polynomially convex compact K and p ∈P(K)
we have

(12) |p(z)| ≤ ‖p‖K exp(deg(p)VK(z)).

(B) Polynomials are holomorphic functions in a neighborhood of K, we can use a Cauchy
type estimate.

(C) A part of a five conditions equivalence theorem due (in the Cn case) to Bloom and
Levenberg.

Theorem 7.3. For any sequence of compact subsets of the compact non pluripolar
regular set K the following facts are equivalent

(i) lim j cap(K j) = cap(K), if n = 1, otherwise lim j Cap(K j, B(0, 1)) = Cap(K, B(0, 1)).

(ii) lim j VK j = VK locally uniformly in Cn.

What follows is the work I made here with my co-advisor N. Levenberg and has been deeply
stimulated/motivated by his work with F. Wielonsky.

8. Rational BMP

The Large Deviation Principle (LDP) proved in [8] applies to sequences of (vector of)
probability measures which are defined starting from a rational Bernstein Markov measure.

We searched for a nice potential theoretic sufficient condition by the same argument of
theorems 7.1 and7.2. We proved the following.
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Theorem 8.1. Let K be a regular non polar compact set in the complex plane, Ω := C∞ \ K̂
and P ⊂ Ω a compactum. Let µ ∈ M(K) and suppose there exists a positive T such that

(13) lim
r→0+

Cap
(
{z : µ(B(z, r)) ≥ rT }

)
= Cap(supp µ).

Then µ enjoys the Bernstein Markov property on K for the rational functions with poles in
P.

The overall outline of the proof is similar, however we are no more dealing with polyno-
mials, the Bernstein Walsh Inequality is replaced by the following estimate

(14) |rm(z)| ≤ ‖r‖K exp

 ∑
z j∈Poles(rm)

gΩK (z, z j)

 ∀rm ∈ Rm(K, P).

Here gΩK (z, z j) is the generalized Green function for the set ΩK := C∞ \ K having pole at
z j. Therefore the Theorem 7.3 is no more useful, we need to state and prove a different one.

Theorem 8.2. Let K ⊂ C be a regular non polar compact set, let ΩK be the unbounded
component of C \ K and P a compact subset of ΩK such that P ∩ K = ∅. Then there exist
a domain D such that K ⊂⊂ D and P ∩ D = ∅, such that for any sequence {K j} of compact
subsets of K the following are equivalent (here ΩK j is defined similarly to ΩK).

lim
j

Cap(K j) = Cap(K).(15)

lim
j

gΩ j (z, a) =gΩ(z, a) loc. unif. for z ∈ D unif. for a ∈ P.(16)

9. The task of unbounded set in C

We almost finished proving a couple of theorems... In the case of a closed unbounded set
K and an admissible weight function w : C → [0,+∞[ we address the task of providing a
sufficient mass density condition for the Weighted Bernstein Markov Property.

We can proceed as follows.

• First we consider a compactification of the problem, this is done by means of
inverse stereographic projection S. Consequently we gain an extra term in the
weight, namely log(1 + |z|2). S(K) is now a compact subset of S2 ⊂ R3.

• We try to build a Strong Bernstein Markov Measure. We can use a generalization
of the technique used in [8][Th. 4.6]. That is..

• We consider the complexification: A := {z ∈ C3 :
∑

z2
j = 1} of the sphere, if we

prove a Bernstein Markov property for holomorphic polynomials P(A) then it
turns in a strong Bernstein Markov one on the real points where K lives.

• We notice that A is a smooth (unbounded!) algebraic subvariety of C3, there is
a specific pluripotential Theory for such kind of sets [12],[15]. We denote by
VE(z,A) the new extremal function.

• In such a setting the proof of an adapted formulation of 7.2 works provided an
adapted version of 7.3.

There is a specific C−linear change of coordinates such thatA ⊂ {(z,w) ∈ C2 × C : |w|2 ≤
C(1 + |z|2)}. We fix it and we introduce for R >> 1 Ω(r) := {(z,w) ∈ A : |z|2 − R < r}, then
we the new theorem reads as follows.
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Theorem 9.1. LetA ⊂ Cn be an algebraic variety of pure dimension m < n,Areg ⊃ Ω0 ⊃

K where K is a compactL regular nonpluripolar set. Let {K j} j∈N be a sequence of compact
subsets of K, then the following are equivalent.

(i) lim j Cap(K j,Ω(−
√

R2 − 1)) = Cap(K,Ω(−
√

R2 − 1)).

(ii) V∗K j
(·,A)→ V∗K(·,A) point-wise onA.

The proof (of even the other equivalences) is almost finished and the main difference with
the original one is in providing the Capacity comparison theorem originally stated in Cn

by Alexnder and Taylor [1], for which we give a new formulation and a new proof.

Theorem 9.2. Let A be a m-dimensional algebraic variety of Cn, such that for an R > 1
Areg ⊃ Ω0, then for any r < −

√
R2 − 1 there exist two positive constants c1, c2 such that

for any compact K ⊂ Ωr.

exp

−
 c1

Cap(K,Ω(−
√

R2 − 1))

1/m ≥ T A(K),(17)

T A(K) ≥ exp

− c2

Cap(K,Ω(−
√

R2 − 1))

 .(18)

In particular for any E ⊂ K we have ‖VE(z,A)‖
Ω(−
√

R2−1) ≤
c2

Cap(K,Ω(−
√

R2−1))
.

Here T A(K) is a specific variant of the Tchebyshev constant we introduce for replacing the
standard one in this particular coordinates switching.
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