Monge-Ampere Capacities on Algebraic Varieties: Comparability and Convergence Results

> Mini-courses in Mathematical Analysis Padova, June 27th - July 1st, 2016

F. Piazzon joint work with N. Levenberg

A HALL

Università degli Studi di Padova

Department of Mathematics.

2 Motivations and Applications

4 Application of our results

Pluripotential Theory

Minicourses - 2016 - 2 of 30

Concise overview of a non linear extension of logarithmic potential theory to several complex dimensions.

psh functions

Pluripotential theory is the study of plurisubharmonic (psh) functions in several complex variables.

■ $u : \mathbb{C}^n \supseteq \Omega \to \mathbb{R} \cup \{-\infty\}$ is upper semi-continuous,

• u is shm along each complex line.

We introduce

$$\partial := \sum_{j=1}^{n} \frac{\partial}{\partial z_j} dz_j, \ \ \overline{\partial} := \sum_{i=j}^{n} \frac{\partial}{\partial \overline{z}_j} d\overline{z}_j$$

 $d := \partial + \overline{\partial}, \ \ d^c := i(\overline{\partial} - \partial)$

such that $dd^c = 2i\partial\bar{\partial}$.

 $u \in C^2$ is psh iff dd^c u is a positive (1, 1) form.

more generally (using the theory of distributions)

 $u \in L^1_{loc}$ usc is psh iff dd^c u is a positive (1, 1) *current*.

Complex Monge Ampere operator I

If $u \in C^2$ we can consider

 $(\operatorname{dd^{c}} u)^{n} := \operatorname{dd^{c}} u \wedge \operatorname{dd^{c}} u \wedge \cdots \wedge \operatorname{dd^{c}} u = c_{n} \operatorname{det}[\partial \bar{\partial} u] \operatorname{dVol}_{\mathbb{C}^{n}},$

but defining the product of currents may be complicated.

Theorem [Bedford and Taylor (1981)]

If u_1, \ldots, u_n are locally bounded psh functions then

$$\mathrm{dd}^{\mathrm{c}}\,u_1\wedge\mathrm{dd}^{\mathrm{c}}\,u_2\wedge\cdots\wedge\mathrm{dd}^{\mathrm{c}}\,u_n:=\lim_{\epsilon\to 0^+}^*\mathrm{dd}^{\mathrm{c}}\,u_1^\epsilon\wedge\mathrm{dd}^{\mathrm{c}}\,u_2^\epsilon\wedge\cdots\wedge\mathrm{dd}^{\mathrm{c}}\,u_n^\epsilon$$

is a well defined locally bounded positive measure. Here u^{ϵ} is any radial smooth mollification.

Inductive definition, for a test form θ :

$$\int \mathrm{d} \mathrm{d}^{\mathsf{c}} \, u \wedge \mathrm{d} \mathrm{d}^{\mathsf{c}} \, u \wedge \theta := \int u \, \mathrm{d} \mathrm{d}^{\mathsf{c}} \, u \wedge \mathrm{d} \mathrm{d}^{\mathsf{c}} \, \theta.$$

- approximation property of psh functions
- locally boundedness (for a good definition)
- positivity (distribution ~> measure)

Rmk: continuity under decreasing limits is part of the statement.

Counterexample to L^1 continuity

Warning: the monotonicity is a important assumption!

General procedure for counterexamples:

- Fact: if v = (c log |f|)⁺ for a positive c and a never vanishing holomorphic f, then (dd^c v)ⁿ = 0
- Let (the limit is in L_{loc}^1)

$$u(z) := \log \max\{|f_1(z)|, \dots, |f_m(z)|\} = \lim_{p \to \infty} \left(\frac{1}{p} \log \left|\sum_{j=1}^m f_j(z)\right|\right)^+$$

in general $(dd^c u)^n \neq 0$.

but we always have

$$\left(\mathrm{dd}^{\mathrm{c}}\left(\frac{1}{\rho}\log\left|\sum_{j=1}^{m}f_{j}(z)\right|\right)^{+}\right)^{n}=0$$

If *v* is psh in Ω and for any domain $\Omega_1 \subset \Omega$ and *u* psh with $u \leq v$ in $\partial \Omega_1$ we have $u \leq v$ in Ω_1 , we say that *v* is maximal.

v is maximal iff it has minimal MA, i.e., $(dd^c v)^n = 0$.

Geometrically

sh
ightarrow pshh
ightarrow maximal psh.

Example: $u := \log(|z|^2 + 1)$, $v := \log^+ |z| + c$.

Global. Lelong class $\mathcal{L}(\mathbb{C}^n)$, i.e., psh with logarithmic pole at infinity. For any $E \subset \mathbb{C}^n$ compact the extremal plurisubharmonic function

$$V_E(z) := \sup\{u(z) : u \in \mathcal{L}(\mathbb{C}^n), u|_E \le 0\}$$
$$V_E^*(z) := \overline{\lim}_{\zeta \to z} V_E(\zeta).$$

is the counterpart of the Green function for $\mathbb{C}^n \setminus E$ with pole at infinity.

It turns out (Siciak and Zaharjuta) that $\tilde{V}_{E}^{*}(z) \equiv V_{E}^{*}(z)$, where

$$ilde{V}_E(z):=\sup\left\{rac{1}{\deg p}\log^+|p(z)|:||p||_E\leq 1
ight\}.$$

Local. For open $\Omega \supset E$ compact

$$U_{E,\Omega}(z) := \sup\{u(z) : u \in psh(\Omega), u|_E \le -1, u \le 0\}$$
$$U_{E,\Omega}^*(z) := \overline{\lim}_{\zeta \to z} U_{E,\Omega}(\zeta).$$

Is *close* to the potential of a condenser...

pluripolar sets are subsets of the $-\infty$ level sets of psh functions. Facts:

V_E^{*} is either +∞ (off a *pluripolar set*) or is a locally bounded psh function such that the equilibrium measure μ_E := (dd^c V_E^{*})ⁿ is supported on *E*. That is μ_E = 0 on Cⁿ \ *E*.
 U_{E,Ω}^{*} is either 0 (off a *pluripolar set*) or is a locally bounded psh function such that the relative equilibrium measure μ_{E,Ω} := (dd^c U_{E,Ω}^{*})ⁿ is supported on *E*.

Capacities

Many (non equivalent but comparable) capacities have been introduced in pluripotential theory.

Bedford and Taylor introduced the relative MA capacity

$$\operatorname{Cap}(E,\Omega) := \sup\left\{\int_{E} (\operatorname{dd}^{c} u)^{n}, u \in psh(\Omega), 0 \le u \le 1\right\}$$

and showed that

$$\operatorname{Cap}(E,\Omega) = \int_E (\operatorname{dd}^{\operatorname{c}} U_{E,\Omega})^n.$$

Siciak used the Chebyshev constant

$$T(E) := \lim_{k} \left(\inf_{\deg p \le k} \{ ||p||_{E} : ||p||_{\Omega} \ge 1 \} \right)^{1/k}$$

we have $\sup_{|z| \le 1} V_E^*(z) = -\log T(E)$.

Motivations and Applications

Minicourses - 2016 - 13 of 30

almost no "practical" applications so far

- ongoing research in superstring theory
- plenty of theoretical motivations and applications
 - Approximation Theory
 - Complex Analysis
 - Complex Geometry
 - Probabillity

- V^{*}_E is related to the maximal growth of polynomials (Bernstein Walsh Inequality) and control the relationship among the radius of maximum holomorphic extension and the approximation numbers of a function.
- V^{*}_E is related to the asymptotic behaviour of general orthogonal polynomials
- (dd^c V_E^{*})ⁿ is the asymptotic of good interpolation points (Berman and Boucksom)
- Applications to the Bergman metric
- Calabi Conjecture, Kahler-Einstein metrics
- Large deviation principles for random arrays, polynomials and matrices. Determinantal point processes.

New Results

Minicourses - 2016 - 16 of 30

- We assume A ⊂ C^m to be a algebraic irreducible variety of pure dimension 1 ≤ m < n.</p>
- We use Rudin coordinates z = (z', z'') ∈ C^m × C^{n-m} : A is an analytic covering.
- We define $\mathcal{L}(A) := \{ u \in psh(A) : u \log |z'| \text{ bounded at } \infty \}$
- psh and weakly psh functions almost coincide (Demailly).

This setting was first considered by Zeriahi and Bedford: *extension* of *m*-dimensional pluripotential theory from A_{reg} to A.

Consider any irreducible variety A and $E \subset A$ compact and define

$$\tilde{V}_E(\zeta) := \sup\{\frac{1}{\deg p} \log |p(\zeta)| : ||p||_E \le 1\}.$$

Two situation may occur

- \tilde{V}_E is locally bounded for any such set *E* and $\tilde{V}_E^* \equiv V_E^*$ on A_{reg} , the second scenario occurs if and only if *A* is algebraic.

Extend to A the results holding in \mathbb{C}^n

- Comparability of Cap(E, Ω) with T(E) (Alexander and Taylor 1984)
- Continuity properties under convergence in capacity (Bloom and Levenberg 2009)

Application to general orthogonal polynomials (Bloom 1996) Notation:

$$\Omega(r) := \{z \in A : |z'| < r\}, \quad \Omega := \Omega(1).$$

Theorem 1 [P., Levenberg]

Let *A* be a irreducible pure *m*-dimensional algebraic subset of \mathbb{C}^n . For any 0 < r < 1 there exist two positive constants c_1, c_2 (depending only on *A* and *r*) such that for any compact non pluripolar $E \subset \Omega(r)$ we have

$$\exp\left[-\left(\frac{c_1}{\operatorname{Cap}(E,\Omega)}\right)^{1/m}\right] \ge T(E,A), \tag{1}$$
$$T(E,A) \ge \exp\left(-\frac{c_2}{\operatorname{Cap}^2(E,\Omega)}\right). \tag{2}$$

In particular

$$\max_{\overline{\Omega}} V_E(\cdot, A) \le \frac{c_2}{\operatorname{Cap}^2(E, \Omega)}.$$
(3)

Elements of the proof

relation among $V_E(\cdot, A)$ and T(E, A) still valid (Zeriahi)

- combine the original technique of Alexander and Taylor with properties of proper coordinate projections and extremal functions of images and pre-images under projections.
- provide a particular Chern Levine type estimate for

$$\int_{E} \left(\mathrm{d} \mathrm{d}^{\mathrm{c}} \, u \right)^{m} \leq C^{m-1} ||u||_{D'}^{m-1} \, \int_{D'} \mathrm{d} \mathrm{d}^{\mathrm{c}} \, u \wedge \beta_{m}^{m-1}, \ E \subset D' \subset D$$

Need to prove integration by parts formulas for currents.

■ use the Poisson Jensen Lelong Formula for algebraic varieties proved by Demailly $\mu_r := (dd^c \varphi_r)^m - \chi_{A \setminus \Omega_r} (dd^c \varphi)^m$

$$\int u d\mu_r = \int_{\Omega_r} u \left(dd^c \varphi_r \right)^m + \int_{-\infty}^r \int_{\Omega_t} dd^c \, u \wedge \left(dd^c \varphi \right)^{m-1} dt$$
$$= \int_{\Omega_r} u \left(dd^c \varphi_r \right)^m + \int_{\Omega_r} (r - \varphi) \, dd^c \, u \wedge \left(dd^c \varphi \right)^{m-1}.$$

Let $E_j \subset E \subset \Omega \subset A$ and set $u_j(z) := U^*_{E_j,\Omega}(z)$ $v_j(z) := V^*_{E_j}(z, A)$

what can we say about $u_j \rightarrow u := U_{E,\Omega}^*$ and $v_j \rightarrow V_E^*(\cdot, A)$?

In general convergence holds if $E_j \uparrow E$.

Theorem 2 [P., Levenberg]

Let $A \subset \mathbb{C}^n$ be a pure *m*-dimensional irreducible algebraic subset of \mathbb{C}^n , and $E \subset \Omega$ be a compact set. Let $\{E_i\}$ be a sequence of Borel subsets of *E*. Then the following are equivalent.

- i) $\lim_{j} \operatorname{Cap}(E_{j}, \Omega) = \operatorname{Cap}(E, \Omega)$
- ii) $\lim_{j} u_{j} = u$ in capacity and $(dd^{c} u_{j})^{m} \rightarrow^{*} (dd^{c} u)^{m}$.
- iii) $\lim_{j \to 0} u_{j} = u$ point-wise on Ω .
- iv) $\lim_{j} v_{j} = v$ point-wise on *A*.

If we furthermore suppose *E* to be regular and E_j to be compact for any *j*, then equations (iii) and (iv) can be replaced by

- **v**) $\lim_{j} u_{j} = u$ uniformly on Ω .
- vi) $\lim_{j} v_{j} = v$ uniformly on A.

- technical adjustment of the proof by Bloom and Levenberg
- back to the original reasoning by Bedford and Taylor (proof of quasicontinuity)
- $A_{sing} \neq \emptyset$ implies a longer reasoning...
- bounds for $||V_{E_i}(\cdot, A)||_{\Omega}$ given by Theorem 1
- Integration by parts for currents
- improving of the mode of convergence: Hartog's Lemma.

Application of our results

Borel Measure $\mu \in \mathcal{M}^+(E)$, $E \subset \mathbb{C}$ compact, with *regular* asymptotic behaviour:

$$\overline{\lim}_{k} \left(\sup \left\{ |p(z)| : \deg p \le k, ||p||_{L^{2}_{\mu}} \le 1 \right\} \right)^{1/k} =_{q.e.} 1 \text{ on } E.$$

Set $B_k^{\mu}(z) := \sum_{j=0}^k |q_j(z,\mu)|^2$ (o.n. poly), it follows that

$$\lim_{k} \frac{1}{2k} \log B_k^{\mu}(z) =_{q.e.} g_E(z)$$

They provide an almost sharp sufficient condition fot the regular asymptotic behaviour...

Borel Measure $\mu \in \mathcal{M}^+(E)$, $E \subset \mathbb{C}^n$ compact such that

$$\overline{\lim}_k \left(\|B_k^{\mu}\|_E \right)^{1/k} = 1.$$

Important consequences

$$\lim_{k} \frac{1}{2k} \log B_{k}^{\mu}(z) = V_{E}^{*}(z) \text{ uniformly,}$$

$$\lim_{k} \frac{B_{k}^{\mu}}{\dim \mathscr{P}^{k}(\mathbb{C}^{n})} \mu = \mu_{E} \text{ weak}^{*}$$

Sufficient mass density condition: $\exists t > 0$

$$\lim_{r\to 0^+} \operatorname{Cap}(\{z\in E: \mu(B(z,r)) > r^t\}, \Omega) = \operatorname{Cap}(E, \Omega).$$

Theorem 3 [P., Levenberg]

Let *A* be a pure *m* dimensional irreducible algebraic set in \mathbb{C}^n , n > m. Let *E* be a compact regular subset of Ω and $\mu \in \mathcal{M}^+(E)$ such that supp $\mu = E$. Suppose that there exists t > 0 such that the following mass density condition holds

$$\operatorname{Cap}(E,\Omega) = \lim_{r \to 0^+} \operatorname{Cap}\left(\left\{z \in E : d(z',Y) > 2r \text{ and } \mu(\Omega_{j(z)}(z,r)) > r^t\right\}, \Omega\right).$$

Then (E, μ) has the Bernstein Markov property for the restriction of polynomials to *A*.

Here $\Omega_{i(z)}$ is the leaf of $\pi^{-1}\pi(\Omega)$ containing *z*.

Corollary : the standard volume measure has the Bernstein Markov Property.

Main References I

H. J. Alexander and B. A. Taylor.

Comparison of two capacities in \mathbb{C}^n . Math. Z., 186:407–414, 1984.

E. Bedford.

The operator $(dd^c)^n$ on complex spaces. Lecture Notes in Math. Springer, Berlin-New York, 919.

E. Bedord and B. A. Taylor.

A new capacity for plurisubharmonic functions. *Acta Mathematica*, 149(1):1–40, 1982.

T. Bloom and N. Levenberg.

Capacity convergence results and applications to a Bernstein Markov Inequality. *Trans. of AMS*, 351(12):4753–4767, 1999.

H. Chirka.

Complex analytic sets. Kluwer Accademic pubblishers, 1985.

A. Sadullaev.

An estimates for polynomials on analytic sets. Math. URSS Izvestiya, 20(3):493–502, 1982.

A. Zeriahi.

Fonction de Green pluriclomplexe à pole à l'infini sur un espace de Stein parabolique et application. *Mathematica Scandinavica*, (69):89–126, 1981.

Thank You!

Minicourses - 2016 - 30 of 30