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Some qualifications I
1 PhD in Mathemathics. University of Padova 2016, under the supervision

of Prof. M. Vianello.
Thesis ”Bernstein Markov Properties and Applications”.
Thesis Advisor: Prof. N. Levemberg (Indiana University)

2 ASN MAT/08 professore seconda facia

3 Teaching/Advising:

advisor of 1 PhD student (since Jan. 2023)
advisor of 1 master thesis in Mathematics
co-advisor of 3 master thesis in Mathematics and 1 in Mathematical
Engeneering
2 crash courses (12h) and 1 invited lecture for PhD students,
3 bachelor courses (with course responsability) 160h of lecture,
11 bachelor or master (without course responsability) ≈200h.

4 Previous research positions:

4 years of post-doctoral research fellowships (3 contracts),
9 months post-lauream research fellowship.

5 Research projects:

participant of a EC project founded by horizon 2020
participant of a 18 months research project founded by ENIprogetti
participant of 5 national research projects



Some qualifications II

6 Conferences:

16 talks given at international conferences,
4 posters presented at international conferences.

7 Others:

Member of doctoral school council of Math. Dept.
Member of the commitee of 3 reaserch fellowships
2021 Best Paper Award in Optimization Letters
2 invited seminars (international) and 3 visiting periods
Author of 3 deliverables of EC project, 2 reports for ENIprogetti
member of the ”Commissione di Laurea” for the bachelor and master in
Mathematics
member of sci.comm. or organizer of international conferences
editor of 2 special issues



Bibliometrics

Author of

21 published articles (5 as unique author)

3 conference proceedings

1 arχiv preprint (50 pg., submitted to ESAIM: Mathematical
Modelling and Numerical Analysis)

1 arχiv preprint 45 pg.

Documents Citations h-index
Scopus 24 186 9
WoS 24 179 8
Scholar 55 338 11

NB: data are updated at 15/06/2023
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Overview of my research

since 2021: Numerical methods for viscoelastic models and parametric
PDEs

since 2019: Numerical Methods for Optimal Transport

since 2013: Pluripotential Theory and applications

since 2013: multivariate Approximation Theory

Pol. Samp., Approx. Pluripot. Theory Optimal Transport PDE and Modelling
ONP and LS behaviour L2 methods Energy for L1 tran. Spec. meth. viscoelast.

Low card. meshes PPT on alg. manif. GF of energy Mix. meth. viscoelast.
Mesh stability Compar. of Cap FEM approximation Variational deduction

Meas. and DLS compress. Explicit formulas spectral approx. of Mix form.
Optimal Design Numer. approx. alg. related models dissip. prob.

Polynomial optim. Param./stoc. PDEs
13 papers and 3 proc. 7 papers 1 paper, 2 prepr. 3 prep.

This talk: selected contributions to the third topic
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Ongoing research projects:

1 Numerical Approximation of Optimal Transport, with E. Facca
(Bergen) and M. Putti, and applications, with G. Santin (FBK Trento),

2 Mathematical and numerical (pure spectral) modelling of (linearized)
visco-elastic waves propagating in a etherogeneous domain, with N.
Crescenzio, A. Larese, G. Giusteri and M. Putti. Project supported
by private company (covered by non-disclosure agreement).

3 Total variation: mixed formulation, numerical approximation, and
application to denoising, with N. Segala.

4 Mixed formulation of dissipative models: a variational deduction,
with F. Fantin.

5 Optimal polynomial approximation of parametric PDEs solution
maps, with M. Putti.

Let us focus on the first topic. . .
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Morally speaking

Optimal Transport

Search for the strategy of moving mass from a given configuration
to a target one minimizing the total cost.

Déblais ≈ f+ Remblais ≈ f−∫
Rn f+ =

∫
Rn f−

T

apart from soil dragging, there are plenty of applications

Probability theory

Cosmology

Image recovery/classification
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Mathematical models of OT

Given ν+, ν− ∈ M+(Rn) with equal mass and c : Rn × Rn → R+

Monge formulation

Find a minimizer (optimal transport map) T ∗ of the transport cost

T 7→
∫

c(x,T(x))dν+

among the set of transport maps {T : Rn → Rn, Borel : T∗ν+ = ν−}.

Kantorovich formulation
Find a minimizer (optimal transport plan) γ∗ of

γ 7→

∫
Rn×Rn

c(x, y)dγ(x, y),

subject to γ(·,Rn) = ν+, γ(Rn, ·) = ν−.
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Our setting: L1 optimal transport

Assumptions

1 c(x, y) := |x − y |.

2 ν± are absolutely continuous w.r.t. Lebesgue with densities
f± ∈ L∞(Rn).

3 f := f+ − f− is compactly supported.

Disclamer: the famous works by Benamou, Brenier, and Otto are not concerned on L1 OT,
their results do not apply to this setting.
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Search for a transport density

Monge-Kantorovich Eqs. (Evans-Gangbo ’99)

Let Ω be an open bounded Lipschitz domain with co(supp f) ⊂⊂ Ω.
Find a non-negative function µ∗ ∈ L∞(Ω) for which the following
system of PDEs admits a ”weak” solution u∗

−div(µ∗∇u∗) = f , in Ω

|∇u∗| ≤ 1, in Ω

|∇u∗| = 1 µ∗ a.e. in Ω

. (MK-eqs)

µ∗ : optimal transport density

u∗ : Kantorovich potential
⇝ Can be used to find T∗
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New approach: L1 Transport Energy
E. Facca, F. Piazzon, M. Putti. L1 Transport Energy. Appl. Math. Opt. 2022

Definition (Facca, P., Putti)

We denote by E :M+(Ω)→ [0,+∞] the L1 transport energy
functional defined by

E(µ) := sup
u∈C 1(Ω),

∫
Ω

udx=0

(
2
∫
Ω

fu dx −
∫
Ω
|∇u|2dµ

)
+

∫
Ω

dµ.

Proposition (Facca, P., Putti)

The transport energy admits a unique minimizer and

argmin
µ∈M+(Ω)

E(µ) = µ∗.
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Our strategy
E. Facca, F. Piazzon, M. Putti. Computing Optimal Transport Density: a FEM approach. Submitted to ESAIM m2an.

Presented at Optimal Transport Theory : Applications to Physics, Les Houches School of Physics

Discretize-Minimize approach

Discretize: construct (by a suitable FEM discretization) a
sequence {En} of ”good” variational approximations of E

Minimize: design a global minimization scheme for En

”good”:

- finite dimensional
- smooth, convex, ”easy” to compute and differentiate
- possibly with unique minimizer
- robust global minimization can be devised

”variational”:

- sequence of minimizers µ∗n of En converging to a
minimizer of E.
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”good” properties of En :

Defining En

FEM discretization on nested grids + evanescent viscosity δn ↓ 0

Convex

real analytic on {µ ∈ RN
n : µi > −δn ∀i} (δn reg. parameter→ 0+)

computing En(µ) requires the solution of a FEM linear system

derivatives are computed similarly

a geometric hypothesis (GH) (a posteriori check) provides uniqueness of minimizer

(GH) and FEM

(GH) is a sort of non-linear BLB condition.
Experimentally it always holds when P1-P0
double grid FEM discretization is used for
defining En.

u
µ
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”variational” property of En

Theorem (P., Facca, Putti)

If µ∗n = argminEn, then
µ∗n ⇀ µ

∗.

Γ-convergence w.r.t weak∗ topology to a ”relaxed functional”

En
Γ
−→ Ẽ

An energy integral continuity property implies

Ẽ|L∞ ≡ E|L∞

Regularity of minimizer
µ∗ ∈ L∞(Ω)

Now we want to minimize En. . .
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Idea of minimizing algorithm

New objective

Consider Fn(σ) := En(σ
2), σ ∈ RN .

+ remove positivity constraint of min. problem

+ gain global real analiticity

− loose convexity

Idea: numerically integrate the gradient flow:

Theorem (P., Facca, Putti)

Let σ0 ∈ RN , ∇Fn(σ
0) , 0, then ∃! real analytic [0,+∞[∋ t 7→ σ(t ;σ0)

solving σ′ = −∇Fn(σ), t > 0
σ(0) = σ0 (Fn-GF)

Moreover (
lim

t→+∞
σ(t ;σ0)

)2
= µ∗n.



Numerical integration of (Fn-GF)

Derive the algorithm BEN-GF using:

Backward Euler scheme for the Gradient Flow

Newton solver with prescribed initial guess for each time step

special ”a-posteriori” stopping criterion for the Newton’s
method

Features

Backward Euler scheme is variational for τ < τ∗(σ0)

the ”initial guess = previous step” policy avoids oscillations
from basin to basin

stopping criterion prevents saddle points to become
attractors, and provide a stability estimate.
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Convergence analysis

Theorem (P., Facca, Putti)

If ∇F (σ(0)n ) , 0 and the Newton tollerance is sufficiently
small, then BEN-GF converges at least polynomially to
σ∗n ∈ argminFn, i.e., (σ∗n)

2 ∈ argminEn.

If in addition (GH) holds, then BEN-GF converges at least
geometrically.

In the latter case, we can include adaptive time stepping in
BEN-GF to achieve super-geometric convergence.
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Experimental convergence
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Simple test case

f = χ[ 1
8 ,

3
8 ]×[

1
4 ,

3
4 ]
− χ[ 5

8 ,
7
8 ]×[

1
4 ,

3
4 ]

µ∗ = χ[ 1
8 ,

3
8 ]×[

1
4 ,

3
4 ]
· (x − 1/8) +

1
4
χ[ 3

8 ,
7
8 ]×[

1
4 ,
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8 ,
7
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4 ,
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4 ]
· (x − 7/8)



Gh(σ; η, τ) := Fn(σ) +
∥σ − η∥2

2τ

Algorithm BEN-GF

Input σ0
h ∈ R

N , τ > 0, nstep ∈ N, toll > 0, ϵ > 0
Set k := 0
Compute res = |∇Fh(σ

0
h)|

if res = 0 then
Exit with error.

end if
while k < nstep and res > toll do

Set k = k + 1, σnew := σold

Compute resNewton := ∇Gh(σ
new ;σold , τ)

while |(resNewton)i | > ϵ|(σ
new − σold)i | for some i or signσnew , signσold do

Compute σnew = σnew − [HessGh(σ
new ;σold , τ)]−1∇Gh(σ

new ;σold , τ)
Compute resNewton := ∇Gh(σ

new ;σold , τ)
end while
Compute res = |∇Fh(σ

new)|
end while
return σnew
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From linear to superlinear convergence

Note that:

the stab. bound τ < τ∗(σk ) on time step depends only on
Fn(σ

k )

under the above condition τ∗(σk )→ +∞.

Idea of modified algorithm:

Set τk+1 = ατk (α > 1) start Newton solver

if Newton reaches the exit criterion in few step, go

else set τk+1 = τk and restart

Proposition

If α > 1 is sufficiently small, then the modified algorithm has
superlinear convergence rate α

.
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Why we use a P0(T
n) − P1(T

2n) discretization
Experiments show that

Our FEM discretization with µ ∈ P0(T
n), u ∈ P1(T

2n) provides a well-posed
and well-conditioned problem:[∂2

i,jEn(µ
∗
n)]i,j:(µ∗n)i,0, (µ∗n)j,0 ≻ 0

∂iEn(µ
∗
n) , 0, ∀i : (µ∗n)i = 0

⇔ HessFn(σ
∗
n) ≻ 0 ⇒ ϑ = 1/2

other (e.g., P0(T
n) − P1(T

n)) classical FEM discretization do not satisfy
the above conditions.

h0/16 h0/8 h0/4 h0/2 h0
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λmaxHess.F (σn) ∼ h1.55
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