Discussione Titoli RTDB Mat/08

An Overview of my Recent Research

Federico Piazzon Università Ca' Foscari Venezia, June 23 2023

Università degli Studi di Padova

Some qualifications I

1 PhD in Mathemathics. University of Padova 2016, under the supervision of Prof. M. Vianello.

Thesis "Bernstein Markov Properties and Applications". Thesis Advisor: Prof. N. Levemberg (Indiana University)

2 ASN MAT/08 professore seconda facia

3 Teaching/Advising:

- advisor of 1 PhD student (since Jan. 2023)
- advisor of 1 master thesis in Mathematics
- co-advisor of 3 master thesis in Mathematics and 1 in Mathematical Engeneering
- 2 crash courses (12h) and 1 invited lecture for PhD students,
- 3 bachelor courses (with course responsability) 160h of lecture,
- 11 bachelor or master (without course responsability) ≈200h.

4 Previous research positions:

- 4 years of post-doctoral research fellowships (3 contracts),
- 9 months post-lauream research fellowship.

5 Research projects:

- participant of a EC project founded by horizon 2020
- participant of a 18 months research project founded by ENIprogetti
- participant of 5 national research projects

6 Conferences:

- 16 talks given at international conferences,
- 4 posters presented at international conferences.

7 Others:

- Member of doctoral school council of Math. Dept.
- Member of the committee of 3 reaserch fellowships
- 2021 Best Paper Award in Optimization Letters
- 2 invited seminars (international) and 3 visiting periods
- Author of 3 deliverables of EC project, 2 reports for ENIprogetti
- member of the "Commissione di Laurea" for the bachelor and master in Mathematics
- member of sci.comm. or organizer of international conferences
- editor of 2 special issues

Author of

- 21 published articles (5 as unique author)
- 3 conference proceedings
- 1 ar_{\chi} iv preprint (50 pg., submitted to ESAIM: Mathematical Modelling and Numerical Analysis)
- 1 ar χ iv preprint 45 pg.

	Documents	Citations	h-index
Scopus	24	186	9
WoS	24	179	8
Scholar	55	338	11

NB: data are updated at 15/06/2023

Overview of my research

- since 2021: Numerical methods for viscoelastic models and parametric PDEs
- since 2019: Numerical Methods for Optimal Transport
- since 2013: Pluripotential Theory and applications
- since 2013: multivariate Approximation Theory

Pol. Samp., Approx.	Pluripot. Theory	Optimal Transport	PDE and Modelling
ONP and LS behaviour	L ² methods	Energy for L ¹ tran.	Spec. meth. viscoelast.
Low card. meshes	PPT on alg. manif.	GF of energy	Mix. meth. viscoelast.
Mesh stability	Compar. of Cap	FEM approximation	Variational deduction
Meas. and DLS compress.	Explicit formulas	spectral approx.	of Mix form.
Optimal Design	Numer. approx. alg.	related models	dissip. prob.
Polynomial optim.			Param./stoc. PDEs
13 papers and 3 proc.	7 papers	1 paper, 2 prepr.	3 prep.

This talk: selected contributions to the third topic

Ongoing research projects:

- Numerical Approximation of Optimal Transport, with E. Facca (Bergen) and M. Putti, and applications, with G. Santin (FBK Trento),
- 2 Mathematical and numerical (pure spectral) modelling of (linearized) visco-elastic waves propagating in a etherogeneous domain, with N. Crescenzio, A. Larese, G. Giusteri and M. Putti. Project supported by private company (covered by non-disclosure agreement).
- **3** Total variation: mixed formulation, numerical approximation, and application to denoising, with N. Segala.
- 4 Mixed formulation of dissipative models: a variational deduction, with F. Fantin.
- 5 Optimal polynomial approximation of parametric PDEs solution maps, with M. Putti.

Let us focus on the first topic...

Morally speaking

Optimal Transport

Search for the strategy of moving mass from a given configuration to a target one minimizing the total cost.

apart from soil dragging, there are plenty of applications

- Probability theory
- Cosmology
- Image recovery/classification

Mathematical models of OT

Given $v^+, v^- \in \mathcal{M}^+(\mathbb{R}^n)$ with equal mass and $c : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$

Monge formulation

Find a minimizer (optimal transport map) T* of the transport cost

$$\Gamma\mapsto\int c(x,T(x))d\nu^+$$

among the set of transport maps $\{T : \mathbb{R}^n \to \mathbb{R}^n, \text{ Borel} : T_*\nu^+ = \nu^-\}$.

Kantorovich formulation

Find a minimizer (optimal transport plan) γ^* of

$$\gamma \mapsto \int_{\mathbb{R}^n \times \mathbb{R}^n} c(x, y) d\gamma(x, y),$$

subject to $\gamma(\cdot, \mathbb{R}^n) = \nu^+, \gamma(\mathbb{R}^n, \cdot) = \nu^-.$

Our setting: L^1 optimal transport

Assumptions

1
$$c(x, y) := |x - y|.$$

ν[±] are absolutely continuous w.r.t. Lebesgue with densities *f*[±] ∈ *L*[∞](ℝⁿ).

3
$$f := f^+ - f^-$$
 is compactly supported.

Disclamer: the famous works by Benamou, Brenier, and Otto are not concerned on L^1 OT, their results do not apply to this setting.

Monge-Kantorovich Eqs. (Evans-Gangbo '99)

Let Ω be an open bounded Lipschitz domain with $co(\operatorname{supp} f) \subset \Omega$. Find a non-negative function $\mu^* \in L^{\infty}(\Omega)$ for which the following system of PDEs admits a "weak" solution u^*

$$\begin{cases} -div(\mu^* \nabla u^*) = f, & \text{in } \Omega \\ |\nabla u^*| \le 1, & \text{in } \Omega \\ |\nabla u^*| = 1 & \mu^* \text{ a.e. in } \Omega \end{cases}$$
 (MK-eqs)

- μ^* : optimal *transport density*
- u* : Kantorovich potential

 \rightsquigarrow Can be used to find T^*

New approach: L¹ Transport Energy

E. Facca, F. Piazzon, M. Putti. L¹ Transport Energy. Appl. Math. Opt. 2022

Definition (Facca, P., Putti)

We denote by $\mathcal{E}: \mathcal{M}_+(\Omega) \to [0, +\infty]$ the L^1 transport energy functional defined by

$$\mathcal{E}(\mu) := \sup_{u \in \mathscr{C}^{1}(\overline{\Omega}), \int_{\Omega} u dx = 0} \left(2 \int_{\Omega} f u \, dx - \int_{\Omega} |\nabla u|^{2} d\mu \right) + \int_{\Omega} d\mu.$$

Proposition (Facca, P., Putti)

The transport energy admits a unique minimizer and

 $\underset{\mu \in \mathcal{M}_{+}(\Omega)}{\operatorname{argmin}} \mathcal{E}(\mu) = \mu^{*}.$

Our strategy

E. Facca, F. Piazzon, M. Putti. Computing Optimal Transport Density: a FEM approach. Submitted to ESAIM m2an.

Presented at Optimal Transport Theory : Applications to Physics, Les Houches School of Physics

Discretize-Minimize approach

- **Discretize:** construct (by a suitable FEM discretization) a sequence {*E_n*} of "good" *variational approximations* of *E*
- **Minimize:** design a global minimization scheme for \mathcal{E}_n
- "good":
 - finite dimensional
 - smooth, convex, "easy" to compute and differentiate
 - possibly with unique minimizer
 - robust global minimization can be devised
- "variational":
 - sequence of minimizers μ_n^{*} of E_n converging to a minimizer of E.

"good" properties of \mathcal{E}_n :

Defining \mathcal{E}_n

FEM discretization on nested grids + evanescent viscosity $\delta_n \downarrow 0$

- Convex
- real analytic on { $\mu \in \mathbb{R}_n^N : \mu_i > -\delta_n \forall i$ } (δ_n reg. parameter $\rightarrow 0^+$)
- computing $\mathcal{E}_n(\mu)$ requires the solution of a FEM linear system
- derivatives are computed similarly
- a geometric hypothesis (GH) (a posteriori check) provides uniqueness of minimizer

(GH) and FEM

(GH) is a sort of non-linear BLB condition. Experimentally it always holds when **P1-P0** double grid FEM discretization is used for defining \mathcal{E}_n .

"variational" property of \mathcal{E}_n

Theorem (P., Facca, Putti)

If $\mu_n^* = \operatorname{argmin} \mathcal{E}_n$, then

$$\mu_n^* \rightharpoonup \mu^*.$$

Γ-convergence w.r.t weak* topology to a "relaxed functional"

$$\mathcal{E}_n \xrightarrow{\Gamma} \tilde{\mathcal{E}}$$

An energy integral continuity property implies

$$\tilde{\mathcal{E}}|_{L^{\infty}} \equiv \mathcal{E}|_{L^{\infty}}$$

Regularity of minimizer

$$\mu^* \in L^\infty(\Omega)$$

Now we want to **minimize** \mathcal{E}_{n} ...

Idea of minimizing algorithm

New objective

Consider $\mathcal{F}_n(\sigma) := \mathcal{E}_n(\sigma^2), \sigma \in \mathbb{R}^N$.

- + remove positivity constraint of min. problem
- + gain global real analiticity
- loose convexity

Idea: numerically integrate the gradient flow:

Theorem (P., Facca, Putti)

Let $\sigma^0 \in \mathbb{R}^N$, $\nabla \mathcal{F}_n(\sigma^0) \neq 0$, then $\exists !$ real analytic $[0, +\infty[\ni t \mapsto \sigma(t; \sigma^0)$ solving

$$\begin{cases} \sigma' = -\nabla \mathcal{F}_n(\sigma), & t > 0\\ \sigma(0) = \sigma^0 \end{cases} \qquad (\mathcal{F}_n\text{-}\mathsf{GF})$$

Moreover

$$\left(\lim_{t\to+\infty}\sigma(t;\sigma^0)\right)^2=\mu_n^*.$$

Numerical integration of $(\mathcal{F}_n$ -GF)

Derive the algorithm **BEN-GF** using:

- Backward Euler scheme for the Gradient Flow
- Newton solver with prescribed initial guess for each time step
- special "a-posteriori" stopping criterion for the Newton's method

Features

- Backward Euler scheme is variational for $\tau < \tau^*(\sigma^0)$
- the "initial guess = previous step" policy avoids oscillations from basin to basin
- stopping criterion prevents saddle points to become attractors, and provide a stability estimate.

Theorem (P., Facca, Putti)

- If ∇𝓕(σ_n⁽⁰⁾) ≠ 0 and the Newton tollerance is sufficiently small, then **BEN-GF** converges at least polynomially to σ_n^{*} ∈ argmin𝓕_n, i.e., (σ_n^{*})² ∈ argmin𝓕_n.
- If in addition (GH) holds, then BEN-GF converges at least geometrically.
- In the latter case, we can include adaptive time stepping in BEN-GF to achieve super-geometric convergence.

Experimental convergence

18 of 18

Simple test case

$$f = \chi_{[\frac{1}{8},\frac{3}{8}] \times [\frac{1}{4},\frac{3}{4}]} - \chi_{[\frac{5}{8},\frac{7}{8}] \times [\frac{1}{4},\frac{3}{4}]}$$
$$\mu^* = \chi_{[\frac{1}{8},\frac{3}{8}] \times [\frac{1}{4},\frac{3}{4}]} \cdot (x - 1/8) + \frac{1}{4} \chi_{[\frac{3}{8},\frac{7}{8}] \times [\frac{1}{4},\frac{3}{4}]} - \chi_{[\frac{5}{8},\frac{7}{8}] \times [\frac{1}{4},\frac{3}{4}]} \cdot (x - 7/8)$$

$$\mathsf{G}_{h}(\sigma;\eta, au) := \mathcal{F}_{n}(\sigma) + rac{\|\sigma-\eta\|^{2}}{2 au}$$

Algorithm BEN-GF

```
Input \sigma_{h}^{0} \in \mathbb{R}^{N}, \tau > 0, n_{step} \in \mathbb{N}, toll > 0, \epsilon > 0
Set k := 0
Compute res = |\nabla F_h(\sigma_h^0)|
if res = 0 then
    Exit with error.
end if
while k < n_{step} and res > toll do
    Set k = k + 1. \sigma^{new} := \sigma^{old}
    Compute res_{Newton} := \nabla G_h(\sigma^{new}; \sigma^{old}, \tau)
    while |(res_{Newton})_i| > \epsilon |(\sigma^{new} - \sigma^{old})_i| for some i or sign \sigma^{new} \neq sign \sigma^{old} do
         Compute \sigma^{new} = \sigma^{new} - [\text{Hess } G_h(\sigma^{new}; \sigma^{old}, \tau)]^{-1} \nabla G_h(\sigma^{new}; \sigma^{old}, \tau)
         Compute res_{Newton} := \nabla G_h(\sigma^{new}; \sigma^{old}, \tau)
    end while
    Compute res = |\nabla F_h(\sigma^{new})|
end while
return \sigma^{new}
```

From linear to superlinear convergence

Note that:

- the stab. bound $\tau < \tau^*(\sigma^k)$ on time step depends only on $\mathcal{F}_n(\sigma^k)$
- under the above condition $\tau^*(\sigma^k) \to +\infty$.

Idea of modified algorithm:

- Set $\tau_{k+1} = \alpha \tau_k$ ($\alpha > 1$) start Newton solver
- if Newton reaches the exit criterion in few step, go
- else set $\tau_{k+1} = \tau_k$ and restart

Proposition

.

If $\alpha > 1$ is sufficiently small, then the modified algorithm has superlinear convergence rate α

Why we use a $\mathcal{P}_0(\mathcal{T}^n) - \mathcal{P}_1(\mathcal{T}^{2n})$ discretization

Experiments show that

Our FEM discretization with µ ∈ P₀(Tⁿ), u ∈ P₁(T²ⁿ) provides a well-posed and well-conditioned problem:

 $\begin{cases} [\partial_{i,j}^{2} \mathcal{E}_{n}(\mu_{n}^{*})]_{i,j:(\mu_{n}^{*})_{i}\neq0, (\mu_{n}^{*})_{j}\neq0} > 0\\ \partial_{i} \mathcal{E}_{n}(\mu_{n}^{*})\neq0, \forall i: (\mu_{n}^{*})_{i}=0 \end{cases} \Leftrightarrow \operatorname{Hess} \mathcal{F}_{n}(\sigma_{n}^{*}) > 0 \Rightarrow \vartheta = 1/2 \end{cases}$

• other (e.g., $\mathcal{P}_0(\mathcal{T}^n) - \mathcal{P}_1(\mathcal{T}^n)$) classical FEM discretization do not satisfy the above conditions.

