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Abstract. We compute the extremal plurisubharmonic function of the real torus
viewed as a compact subset of its natural algebraic complexification.

1. Introduction

Pluripotential Theory is the study of the complex Monge Ampere operator (ddc)n

and plurisubharmonic functions. It is a non linear potential theory on multi-dimensional
complex spaces that can be understood as the natural generalization of classical Potential
Theory. Indeed, when the dimension n of the ambient space is 1, the two theories coincide.
We refer to the classical monograph [21] and to [24] for an extensive review on the subject,
including the more recent topics and developments.

Pluripotential Theory is deeply related to complex analysis, approximation theory,
algebraic and differential geometry, random polynomials and matrices, as discussed e.g.,
[23, 20, 8, 3, 9]. Despite this rather wide range of applications, there are very few examples
in which analytic formulas for the main quantities of Pluripotential Theory are available.
The aim of the present work is to compute a formula for one of these objects, the extremal
plurisubharmonic function VT(·, T ) (see Definition 1.5 below) of the set of real points of
the two dimensional torus, i.e.,

T := T ∩ R3,

considered as a compact subset of its algebraic complexification

(1) T := {z ∈ C3 : (z2
1 + z2

2 + z2
3 − (R2 + r2))2 = 4R2(r2 − z2

3)}, 0 < r < R <∞.

Geometrically, the set T is obtained as surface of revolution rotating the real circle {(z1−
R)2 + z2

2 = r2, z3 = 0}∩R3 with respect to the <z3 axis. Note that T can be equivalently
described by

(2) T = {z ∈ C3 : (z2
1 + z2

2 + z2
3 +R2 − r2)2 = 4R2(z2

1 + z2
2)}, 0 < r < R <∞.

The motivation of this investigation is three-fold. First, building examples of explicit
formulas for extremal plurisubharmonic functions has its own interest since the known
cases are so few. Second, the torus is a very classical set in various branches of Mathe-
matics, so it would be interesting to specialize to the case of the torus certain applications
of Pluripotential Theory, e.g., approximation of functions, orthogonal expansions, poly-
nomial sampling inequalities and optimization, random polynomials, random arrays, and
determinantal point processes. Lastly we mention our original motivation. Let (M, g) be
a compact real analytic Riemannian manifold. It has been proven that (an open bounded
subset of) the Riemann foliation of the real tangent space TM admits a natural complex
structure such that the leaves of the Riemannian foliation glue together to construct a
complex (Stein) manifold X in which M embeds as a totally real submanifold [22]. The
Stein manifold X is termed the Grauert tube of M . The most relevant two examples of
unbounded Grauert tubes (see [26] and references therein), are relative to the real sphere
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and real projective space. Their construction is in some sense canonical, not only from
the Riemannian perspective, but also from the pluripotential point of view. In this last
situation two elements are crucial: the algebraicity of the starting real manifold and the
fact that the Baran metric [12] ( a specific Finsler metric that can be defined starting from
the extremal plurisubharmonic function) is Riemannian.

Analogous investigations for the torus, that will be the subject of our future studies,
necessitate the computation of the extremal plurisubharmonic function for the torus. This
is accomplished in the present paper as stated in the following theorem.

Theorem 1.1. The extremal plurisubharmonic function of the torus (of radii 0 < r <
R <∞) is

VT(z, T ) := log h

{
max

[
|
√

1− (z3/r)2 + 1|+ |
√

1− (z3/r)2 − 1|
2

,(3) ∣∣∣∣∣
√
z2

1 + z2
2 + z2

2(r +R)

∣∣∣∣∣+

∣∣∣∣∣
√
z2

1 + z2
2 − z2

2(r +R)

∣∣∣∣∣+

∣∣∣∣∣
√
z2

1 + z2
2

(r +R)
− 1

∣∣∣∣∣
]}

,

where equality holds only for z ∈ T and h(z) := z +
√
z2 − 1 is the inverse Joukowski

function, see (7) below.

Remark 1.2. It is worth saying that, even though the maximization procedure of formula
(3) may cause in principle a rather irregular behavior of V ∗T (·, T ), the plot we made seem
to reveal that indeed V ∗T (·, T ) is quite smooth away from T. Since so far we have only
partial results on this aspect, we display some sections of the graph of V ∗T (·, T ) in Figure
1. Note in particular that the apparent jump in the derivative in the last two pictures of
Figure 1 is confined to the singular set of T (two leaves comes together) and it is actually
only due to the choice of the branch of the square root when defining the local coordinates
(z1, z2) 7→ (z1, z2, z

(h)(z1, z2)) for T that are used in the proof of formula (3). This is
evident in Figure 2 below, where the two branches are plotted together.

Acknowledgements. Obviously the present work has been deeply influenced by the
discussions that I had with Norm Levenberg, both during and after my PhD period. This
is fairly evident also by the number of papers of Professor Levenberg appearing in the
references. Norm was the first one teaching me Pluripotential Theory and he is responsible
of my fascination for the subject, which is a direct consequence of his enthusiastic lectures.

The first version of the present work contained an error which has been pointed out
by Miros law Baran during the multivariate polynomial approximation and pluripotential
theory section of the DRWA18 workshop. Sione Ma‘u find out in few hours how to fix the
issue: the last part of the proof of Theorem 1.1 is essentially due to him.

1.1. Pluripotential Theory in the Euclidean setting. Before proving equation (3),
we recall for the reader’s convenience some notation, definitions, and basic facts from
Pluripotential Theory in different settings.

Plurisubharmonic functions on a domain Ω ⊂ Cn are functions that are globally up-
persemicontinuous and subharmonic on the intersection with Ω of any complex line (or
analytic disk in Ω). We denote this set of functions by PSH(Ω). If u ∈ C 2(Ω) the condition
u ∈ PSH(Ω) reduces to the positivity of the (1, 1) differential form

ddc u = 2i∂∂̄u :=

n∑
j=1

∂2u

∂zj∂z̄j
(z)dzj ∧ dz̄j .
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Here we used the classical notation for exterior and partial differentiation in Cn, i.e.,

d := (∂ + ∂̄) , dc := i(∂̄ − ∂),

∂u :=

n∑
j=1

∂u

∂zj
dzj , ∂̄u :=

n∑
j=1

∂u

∂z̄j
dz̄j

If a function u is uppersemicontinuous and locally integrable, we can still check if it is
a plurisubharmonic functions by checking the positivity of the current (i.e., differential
form with distributional coefficients) ddc u. We refer the reader to [21] for an extensive
treatment of the subject.

The complex Monge Ampere operator (ddc)n can be defined for C 2(Ω) functions by
setting

(ddc u)n := ddc u ∧ ddc u ∧ . . . · · · ∧ ddc u = cn det[∂h∂̄ku]h,k d VolCn .

Note that, in contrast with ddc, this is a fully non linear differential operator, therefore
its extension to functions that are not C 2(Ω) is highly non-trivial..

In the seminal paper [6], Bedford and Taylor extended such a definition to locally
bounded plurisubharmonic functions by an inductive procedure on the dimension n. In
this more general setting (ddc u)n is a measure. Further extensions have been carried out
more recently [17].

Among all plurisubharmonic functions, maximal plurisubharmonic functions play a
very special role: one can think of the relation of this subclass with PSH as an analogue
to the relation of harmonic functions with subharmonic functions in C. Indeed a plurisub-
harmonic function u is maximal in Ω if for any subdomain Ω′ ⊂ Ω and for any v ∈ PSH(Ω)
such that u(z) ≥ v(z) for any z ∈ ∂Ω′, it follows that u ≥ v in Ω′. Perhaps more impor-
tantly to our aims, a maximal plurisubharmonic function u on Ω is characterized by (being
plurisubharmonic and) (ddc u)n ≡ 0 on Ω in the sense of measures.

In Pluripotential Theory there is an analogue of the Green Function with pole at
infinity. Let K ⊆ Cn be a compact set. One can consider the upper envelope

(4) VK(z) := sup{u(z) : u ∈ L(Cn), u(w) ≤ 0 ∀w ∈ K},
where L(Cn) is the Lelong class of plurisubharmonic functions on Cn having logarithmic
growth, i.e., u ∈ L(Cn) if u is plurisubharmonic on Cn and for any M large enough there
exists a constant C such that u(z) ≤ log |z| + C for any |z| > M. There are two possible
scenarios. Either VK is not locally bounded and in this case the set K is termed pluripolar
(roughly speaking it is too small for pluripotential theory). Or VK is locally bounded and
its uppersemicontiunuous regularization

(5) V ∗K(z) := lim sup
w→z

VK(w),

which is called Zaharjuta extremal plurisubharmonic function, is a locally bounded plurisub-
harmonic function on Cn which is maximal on Cn \K, that is

(ddc V ∗K)
n

= 0 on Cn \K.
One important fact about VK is that one can recover the same function by a different

upper envelope. More in detail, following [30], we have

VK(z) = log+ ΦK(z),

where the Siciak extremal function ΦK is defined by setting

(6) ΦK(z) := lim
j→∞

(
sup{|p(z)|, p ∈Pj(C), ‖p‖K ≤ 1}

)1/j

.

Here Pj(Cn) denotes the space of polynomial functions with complex coefficients on Cn
whose total degree is at most j ∈ N and ‖ · ‖K denotes the uniform norm on K.

The function V ∗K(z) = log Φ∗K(z) is referred as the pluricomplex Green function with
pole at infinity of Cn \K or as the extremal plurisubharmonic function of K.
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Computing extremal plurisubharmonic functions is, in general, a very hard task. There
are very few examples (see [11, 7]) of settings in which it has been computed by various
(hard to be generalized) techniques. Numerical methods for the approximation of extremal
functions have been developed in [27]. An exceptional case is the one of K being a centrally
symmetric convex real body. In such a case the Baran formula (see (8) below) gives an
analytic expression for V ∗K , moreover even deeper properties of this function have been
studied (see [13, 15, 16]) as the structure of the Monge Ampere foliation of Cn \K and
the density of (ddc V ∗K)n with respect to the n dimensional Lebesgue measure on K, [2, 1].

Let K ⊂ Rn be a real convex body. We denote by K∗ its polar set

K∗ := {x ∈ Rn : 〈x; y〉 ≤ 1, ∀y ∈ K}
and by ExtrK∗ the set of its extremal points. That is, x ∈ ExtrK∗ if x ∈ K∗ and x is not
an interior point of any segment lying in K∗ (note that K∗ is convex by definition but it
may be not strictly convex).

We denote by h : C→ C the inverse Joukowski map

(7) h(z) : z +
√
z2 − 1.

Baran [2] proved that, for any centrally symmetric convex real body,

(8) V ∗K(z) = sup
y∈ExtrK∗

log |h(〈z, y〉)|.

1.2. Pluripotential Theory on algebraic varieties. Let A be an algebraic variety
having pure dimension m, 1 ≤ m < n. Take any set of local defining function f1, f2, . . . , fk
for A and consider the function

f(z) := max
j∈{1,2,...,k}

log |fj(z)|.

This is a a plurisubharmonic function on Cn such that A is (locally) contained in the {−∞}
set of it. This is (see for instance [21]) equivalent to the fact that A is locally pluripolar,
that is too small for n dimensional pluripotential theory. On the other hand, the set
Areg of the regular points of A is an m−dimensional complex manifold so m-dimensional
pluripotential theory is well defined on it by naturally extending the definitions given in the
Euclidean setting using local holomorphic coordinates. Then, using the nice properties of
coordinate projections [18], it is possible to define pluripotential theory (and in particular
the complex Monge Ampere operator and an associated capacity) on the set A, [32, 19, 5].

Up to this point, this procedure can be carried out on analytic sets. In contrast, if we
want to deal with the restriction of polynomials of Cn to A, the algebraicity of A becomes
determining as shown by the following fundamental result.

Theorem 1.3 (Sadullaev [29]). Let A ⊂ Cn be a irreducible analytic subvariety of Cn of
dimension 1 ≤ m < n. Then A is algebraic if and only if there exists a compact set K ⊂ A
such that

(9) VK(z,A) := log+ lim
j→∞

(
sup

{
|p|, p ∈Pj(Cn) : ‖p‖K ≤ 1

})1/j

is locally bounded on A. If this is the case, then VL(·, A) is locally bounded for any compact
set L ⊂ A such that L ∩Areg is not pluripolar in Areg and the function

(10) V ∗L (z,A) := lim sup
Areg3ζ→z

VL(ζ, A)

is maximal in A \ L, i.e.,

(11) (ddc V ∗L (z,A))m = 0, in A \ L.

The extremal plurisubharmonic function V ∗K(·, A) defined by Sadullaev can be under-
stood as the natural counterpart of the (log of the) Siciak type extremal function defined
in (6). The definition of a Zaharjuta type (i.e., built by an upper envelope of plurisub-
harmonic functions of a given growth) extremal function in this setting can be view as a
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particular case of the pluricomplex green function for Stein Spaces with parabolic poten-
tial, developed in [32]. Let A ⊂ Cn an algebraic irreducible variety of pure dimension
m < n, then we denote by L(A) the class of locally bounded functions u on A that are
plurisubharmonic on Areg such that for some constant (depending on u) we have

u(z) < max
j=1,2,...,n

log |zi|+ cu

for any z ∈ A and |z| large enough. In this simplyfied setting we have the following.

Theorem 1.4 (Zeriahi [32]). Under the above assumption the Siciak and the Zaharjuta
type extremal functions are the same, that is

(12) V ∗K(z,A) = lim sup
ζ→z

sup {u(ζ) ∈ L(A) : u ≤ 0 on K}

for any compact set K ⊂ A.

Definition 1.5 (Plurisubharmonic extremal function). Since in our setting of an irre-
ducible algebraic variety of pure dimension m < n embedded in Cn the extremal functions
(10) and (12) are the same, we refer to both of them as the plurisubharmonic extremal
function of K.

Remark 1.6. We warn the reader that, for the sake of an easier presentation of the def-
initions and results, we restrict our attention to the case of irreducible algebraic varieties.
This avoids some ambiguity in the considered class of plurisubharmonic functions (namely
any weakly plurisubharmonic function is actually plurisubharmonic [19]) and consequently
in the definition of the extremal functions. Indeed, in our setting u ∈ PSH(A) equivalently
means that

• u is the restriction to A of a plurisubharmonic function ũ : Ω → [−∞,∞[, for
some neighbourhood Ω of A in Cn or

• the restriction û of the uppersemicontinuous function u to the regular points Areg

of A is a plurisubharmonic function on the complex manifold Areg.

1.3. Polynomial degrees and P-pluripotential Theory. When dealing with multi-
variate polynomials, the concept of degree of a polynomial needs to be specified. Al-
though the standard choice is to use the so-called total degree deg (i.e., deg(zα) := |α|1
and deg(

∑k
i=1 ciz

α) = max1≤i≤k{deg(zαi) : ci 6= 0}), for various applications it may be
convenient to use different definitions of ”degree”. Classical examples of this are the so
called tensor degree and Euclidean degree [31], corresponding to the use of `∞ and `2

norms instead of the `1 norm in the definition of the function deg, respectively.
It is clear that the definition of the Siciak type extremal function (6) depends on which

definition of degree is used, but the Lelong class L(Cn) used in defining the Zaharjuta
type extremal function (4) a priori does not.

More in general one can define a degree degP on P(Cn) depending on a subset P of
Rn+ := {x ∈ Rn : xi ≥ 0 ∀i = 1, 2, . . . , n} satisfying certain geometric properties. The
study of this variant of Pluripotential Theory has been started very recently in [10, 4] and
it is termed P-pluripotential Theory. We recall a few facts about P-pluripotential Theory
that we will need to use later on.

Let P ⊂ Rn+ be a convex set containing a neighborhood of 0 (in the relative topology
of Rn+). We denote consider the following polynomial complex vector spaces

(13) Poly(kP ) := span{zα : α ∈ kP ∩ Nn}, ∀k ∈ N.

Equivalently one can set

(14) degP (zα) := inf
k∈N
{k : α ∈ kP}, degP (

∑
α∈I

cαz
α) := max

α∈I,cα 6=0
degP (zα),
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and p ∈ Poly(kP ) if and only if p is a polynomial and degP (p) ≤ k. Let us recall that the
support function φP of the convex set P is defined as

φP (x) := sup
y∈P
〈x; y〉, ∀x ∈ Rn+.

We can use the support function of P to introduce a dependence on P in (a modified
version of) the definition of the Lelong class. Namely, we define the logarithmic support
function HP and the P -Lelong class

HP (z) := φP (log |z1|, log |z2|, . . . , log |zn|).(15)

LP (Cn) := {u ∈ PSH(Cn) : u−HP is bounded above for |z| → ∞}.(16)

Note that the standard case of total degree polynomials corresponds to picking P = Σ,
the standard unit simplex. Indeed we have Σ = {y ∈ Rn+ : |y|1 ≤ 1} and φΣ(x) = |x|∞, so
that HP (z) = maxi log |zi| and LΣ(Cn) reduces to the classical Lelong class.

We can introduce a Zaharjuta type extremal function for any such P and any compact
set K ⊂ Cn setting

VK,P (z) := sup{u(z) : u ∈ LP (Cn), u|K ≤ 0},(17)

V ∗K,P (z) := lim
ζ→z

VK,P (ζ),(18)

and a Siciak type extremal function by setting

(19) ΦK,P (z) := lim
k

sup{|p|1/k : p ∈ Poly(kP ), ‖p‖K},

where the existence of the limit is part of the statement (see [4]) and if the limit is
continuous the convergence improves from point-wise to locally uniform.

For any non pluripolar set K we have

(20) VK,P (z) = log+ ΦK,P (z).

Many results of Pluripotential Theory have been extended to the P-pluripotential setting.
Among others, we recall for future use this version of the Global Domination Principle.

Proposition 1.1 (P-Global Domination Principle [25]). Let u ∈ LP (Cn) and v ∈ L+
P (Cn),

i.e. v ∈ LP (Cn) and |v−HP |(z) is bounded for |z| → ∞. Assume that u ≤ v (ddc v)n-a.e.,
then

u(z) ≤ v(z), ∀z ∈ Cn.

2. Proof of Theorem 1.1

We divide the proof in some steps since they might have their own interest. Let
Ψ : C3 → C3 be defined by

Ψ(z) :=

 z21+z22+z23+R2−r2

2R

z2
1 + z2

2

z2
2

 =:

 w1

w2

w3

 .

This can be used as a polynomial change of coordinates, indeed we have Ψ(T ) = C, where
C is the parabolic cylinder

C := {w ∈ C3 : w2
1 = w2}.

Indeed, by elementary algebraic manipulation, we can derive by (1) the equivalent repre-
sentation of T as

T =

{
z ∈ C3 :

(
z2

1 + z2
2 + z2

3 +R2 − r2

2R

)2

= z2
1 + z2

2

}
.
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Figure 1. Plots of V ∗T ((z1, z2, z
h
3 (z1, z2)), T ). Here (z1, z2) 7→

zh3 (z1, z2), h = 1, 2, 3, 4 are the four leaves of T , that is the four lo-
cal inverses of the coordinate projection T 3 z 7→ (z1, z2). By symmetry
we need to look only at two of these leaves (i.e., h = 1, 2), as the graph of
V ∗T is the same on the other two. From left to right and from above to be-
low, we plot R2 3 (z1, z2) 7→ V ∗T ((z1, z2, z

1
3(z1, z2)), T ), R2 3 (z1, z2) 7→

V ∗T ((z1, z2, z
2
3(z1, z2)), T ), R2 3 (<z1,=z1) 7→ V ∗T ((z1, 0, z

1
3(z1, 0)), T ),

R2 3 (<z1,=z1) 7→ V ∗T ((z1, 0, z
2
3(z1, 0)), T ).

Notice also that Ψ has 8 (possibly coinciding) inverses determined by

Ψ←(w) =


 α1

√
w2 − w3

α2
√
w3

α3

√
2Rw1 − w2 + r2 −R2

 : α ∈ {−1, 1}3
 .

Lemma 2.1. In the above notation we have

(21) V ∗T (z, T ) =
1

2
V ∗E(Ψ(z), C),

where

E := {w ∈ C ∩ R3 : 0 ≤ w3 ≤ w2
1, R− r ≤ w1 ≤ R+ r}.

In particular, the function V ∗T (·, T ) is constant on Ψ−1(w) for any w ∈ C.

Proof. The mapping Ψ is a polynomial mapping having the same (total) degree in each
component and whose homogeneous part

Ψ̂(z) :=

 z21+z22+z23
2R

z2
1 + z2

2

z2
2





8 FEDERICO PIAZZON

Figure 2. The multifunctions R2 3 (<z1,=z1) 7→
{V ∗T ((z1, 0, z

(1)
3 (z1, 0)), T ), V ∗T ((z1, 0, z

(2)
3 (z1, 0)), T )} (above) and R2 3

(<z1,<z2) 7→ {V ∗T ((z1, z2, z
(1)
3 (z1, z2)), T ), V ∗T ((z1, z2, z

(2)
3 (z1, z2)), T )}

(below) exhibit a nice smoothness away from T.

clearly satisfies the Klimek condition

Ψ̂←(0) = 0.

Moreover it is straightforward to check that Ψ(T) = E and Ψ←(E) = T.
Therefore we can apply [21, Th. 5.3.1] in its ”equality case” to get (21). �

Remark 2.1. Note that [21, Th. 5.3.1] is not formulated in terms of varieties or complex
manifolds, it holds for honest extremal functions in Euclidean space. Nevertheless we can
apply it. Indeed the statement of the theorem does not require the compact set of which
we are computing the extremal function to be non pluripolar and, due to the deep result
of Sadullaev (see Prop. 1.3 and [29]), we can recover the extremal function of a compact
subset of an algebraic variety by using global polynomials.
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Proposition 2.1. Let π : C → C2, π(w) := (w1, w3). Then we have

(22) V ∗E(w, C) = Vπ(E),Σ2,1
(π(w)), ∀w ∈ C,

where Σ2,1 := {y ∈ R2
+ : y1/2 + y2 ≤ 1}.

Proof. By definition we have VE(w, C) = sup{u(w), u ∈ E}, where

E := {u ∈ L(C), u|E ≤ 0},
while Vπ(E),Σ2,1

(η) = sup{v(η), u ∈ F}, where

F := {v ∈ PSH(C2), v −max{2 log |w1|, log |w3|} bounded above as |w| → ∞, v|πE ≤ 0}.
Here we used that the logarithmic support function (cf. (15)) for Σ2,1 is HΣ2,1(z) :=
max{2 log |η1|, log |η2|}.

We use the holomorphic coordinates ζ := (w2, w3) for C. These coordinates are a set of
so called Rudin coordinates [28], i.e., C ⊂ {w ∈ C3 : |w1| ≤ C(1 + |ζ|)} for some constant
C. This choice allows us to re-define the Lelong class L(C) as

L(C) ={u ∈ PSH(C) : u−max{log |w2|, log |w3|} bounded above as |w| → ∞}
={u ∈ PSH(C) : u−max{2 log |w1|, log |w3|} bounded above as |w| → ∞}.

Also note that the coordinate projection π : C → C2, π(w) := (w1, w3) is one to one.
It follows that, if u ∈ E , then u ◦π−1 ∈ F and, if v ∈ F , then v ◦π ∈ E . Therefore the two
upper envelopes coincide when composed with the coordinate projection map. �

Proposition 2.2. Let

K := {x ∈ R2 : −1 ≤ x1 ≤ 1, −(rx1 +R) ≤ x2 ≤ rx1 +R},
then we have

(23) VπE,Σ2,1(t) = 2VK(Φ(t)), ∀t ∈ C2,

where

Φ

(
t1
t2

)
=

(
t1−R
r√
t2

)
and, by symmetry, we can choose any branch of the square root.

Proof. Let v(t) := 2V ∗K(Φ(t)). This is a plurisubharmonic function on C2 \ {t ∈ C2 :
t2 ∈ R, t2 < 0} because it is the composition of a plurisubharmonic function with an
holomorphic map. Note that N := {t ∈ C2 : t2 ∈ R, t2 ≤ 0} is a pluripolar set in C2.

Due to the symmetry of V ∗K(t1, t2) = V ∗K(t1,−t2) (this is a byproduct of the proof of
Theorem 1.1 below), the uppersemicontinuous extension to C2 of v|C2\N is a continuous
plurisubharmonic function, that indeed coincides with v. Hence v is plurisubharmonic on
C2.

It is a classical result (see for instance [21]) that V ∗K ∈ L+(C2). More precisely, there
exist C ∈ R such that, for |w| large enough, we have

(24) |V ∗K(w)−max{log |w1|, log |w2|}| < C.

It follows that

|2VK(Φ(t))− 2 max{log |Φ1(t)|, log |Φ2(t)|}| ∼ |2VK(Φ(t))−max{2 log |t1|, log |t2|}| < C,

since v ∈ PSH(C2) we get v ∈ L+
P (C2).

Now note that v = 0 on πE. This follows by the fact that Φ(πE) ⊆ K and V ∗K = 0
on K. This last statement will clarified in the ”proof of Theorem 1.1” below, where the
function V ∗K is computed.

Now we notice that (ddc v)2 is zero on (C2 \N) \πE. This follows by the fact that Φ is
holomorphic and on C2\N and v = 2V ∗K ◦Φ, where V ∗K is maximal on C2\K ⊃ C2\Φ(πE).
Since N is pluripolar and v is locally bounded we have (ddc v)2 = 0 on C2 \πE, [6]. Hence
supp(ddc v)2 ⊆ πE.
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We can apply Proposition 1.1 with u(t) := V ∗πE,Σ2,1
(t) which is by definition a function

in LP (C2) q.e. vanishing on πE. Indeed, since the Monge Ampere of locally bounded
PSH function does not charge pluripolar sets [6], we have u ≤ v almost everywhere with
respect to (ddc v)2. We conclude that

V ∗πE,Σ2,1
(t) ≤ 2V ∗K(Φ(t)), ∀t ∈ C2.

But, since the left end side is (q.e.) defined by an upper envelope containing the right
hand side, equality must hold. �

End of the proof of Theorem 1.1. In order to conclude the proof, we are left to compute
the extremal function of the trapezoid K. Note that this is a convex real body but it is
not centrally symmetric, hence the Baran formula (see eq. (8)) is not applicable for this
case.

Instead we need to use another technique that has been suggested by Sione Ma‘u.
We want to show that

V ∗K(ζ) = max{V ∗K1
(ζ1), V ∗K2

(ζ)} ∀ζ ∈ C2, where

(25)

K1 := {z ∈ R : |z| ≤ 1}, K2 := {ζ ∈ R2 : −R/r ≤ z1 ≤ 1,−rz1 −R ≤ z2 ≤ rz1 +R}.
(26)

Let us denote the function appearing in the right hand side of (25) by v. Notice that v
is a good candidate for V ∗K , indeed it is fairly clear that v ∈ PSH(C2) because it is the
maximum of two plurisubharmonic functions on C2, in the same way v ∈ L+(C2). We
prove that the functions indeed coincide using the extremal ellipses technique.

Let us pick z ∈ C2 \ K. Since K is a real convex body, there exists at least one leaf
Ez 3 z of the Monge Ampere foliation relative to K. We recall [15, 14, 16] that C2 is
foliated by a set of complex analytic curves {Eα} such that V ∗K |Eα is a subharmonic func-
tion that coincides with VEα∩K(·, Eα). The curves Eα are extremal ellipses, i.e., (possibly
degenerate) complex ellipses whose area is maximal among all ellipses of given direction
and eccentricity that are inscribed in K. We need the following lemma.

Lemma 2.2. If E is an extremal ellipse for K, then at least one of the following holds
true

(i) E is an extremal ellipse for K2 or
(ii) E 3 ζ 7→ V ∗K1

(ζ1) is harmonic on E \ C ×K1 and the orientation of E is not in the
direction ζ2.

We postpone the proof of this claim and we show first why this implies that V ∗K ≡ v.
Assume (i). Then we have

(27) V ∗K(ζ)|E = V ∗E∩K(ζ, E) = V ∗K2
(ζ)|E ∀ζ ∈ E .

Here the first equality is due to the fact that E is extremal for K and the second to the
fact that it is extremal for K2.

Assume now (ii) We define the function u : E → [−∞,+∞[ by setting u(ζ) := V ∗K1
(ζ1).

Notice that u ∈ L+(E), u ≤ 0 on E \ (K1 × C) and ddc u = 0 on E \ (K1 × C) (i.e., the
support of ddc u is in E ∩ (K1×C). Therefore, by the Global Domination Principle on the
smooth algebraic variety E , we have u(ζ) = V ∗E∩(K1×C)(·, E). Then it follows that

(28) V ∗K(ζ)|E = V ∗E∩(K1×C)(ζ, E) = u(ζ) = V ∗K1
(ζ1), ∀ζ ∈ E .

For any (possibly degenerate) extremal ellipse E for K we denote by E the (possibly
degenerate) filled-in real ellipse relative to E . Note that V ∗K(·)|E = V ∗E |E = V ∗E∩K(·, E)
since E is trivially an extremal ellipse for E.
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If we assume (i), then the monotonicity of extremal functions with respect to the set
inclusion implies

(29) V ∗E(ζ) ≥ V ∗K1
(ζ1), ∀ζ ∈ C2,

while if we assume (ii) the monotonicity property implies

(30) V ∗E(ζ) ≥ V ∗K2
(ζ), ∀ζ ∈ C2.

Finally, assumption (i) implies (27) and (29), thus we have

V ∗K(ζ) = V ∗K2
(ζ) ≥ VK1(ζ1), ∀ζ ∈ E ,

and assumption (ii) implies (28) and (30), thus we have

V ∗K(ζ) = V ∗K1×C(ζ) ≥ VK2 , ∀ζ ∈ E .

Therefore, on any extremal ellipse V ∗K coincides with v, but, since extremal ellipses for K
are a foliation of C2, it follows that V ∗K ≡ v everywhere.

Now we need to compute V ∗K2
.

Let us mention a possible way to compute based on [2, Example 3.9]. Note that

V ∗K2
(z) = V ∗K2+(R/r,0)(z + (R/r, 0)) and set K̃2 := K2 + (R/r, 0). Then we can easily see

that

K̃2 := {ζ ∈ R2 : 2ζ · yk − 1 ∈ [−1, 1],∀k ∈ {1, 2, 3}},

y1 :=
1

2(R+ r)

(
r
1

)
, y2 :=

1

2(R+ r)

(
r
−1

)
, y3 := y1 + y2.

(31) V ∗K̃2
(ζ) = log h

[
max

1≤k≤3

(
2∑
l=1

Ak,l|yl · ζ|+ |yk · ζ − 1|

)]
, where A :=

 1 0
0 1
1 1

 .
Therefore we have

(32) V ∗K2
(ζ) = log h

[
max

1≤k≤3

(
2∑
l=1

Ak,l|yl · (ζ + ζ(0))|+ |yk · (ζ + ζ(0))− 1|

)]
,

where ζ(0) := (R/r, 0). On the other hand, it is probably more easy to consider the linear
map R2 → R2 represented by the invertible matrix

L :=

[
r

2(R+r)
1

2(R+r)
r

2(R+r)
−1

2(R+r)

]
and to notice that L(K2 + ζ(0)) = LK2 = Σ := {x ∈ R2 : xi ≥ 0, x1 + x2 ≤ 1}, the
standard simplex. Hence we have

(33) V ∗K2
(ζ) = V ∗Σ (L(ζ + ζ(0))) = log h(|s1|+ |s2|+ |s1 + s2 − 1|)

∣∣∣
s=L(ζ+ζ(0))

.

Here the last equality is a classical result, see for instance [16]. Note that in particular this
shows that V ∗K is continuous and V ∗K((t1, t2)) = V ∗K((t1,−t2)), as assumed in the proof of
Proposition 2.2.

By Proposition 2.2, and using V ∗K1
(ζ1) = log h

(
|ζ1+1|

2
+ |ζ1−1|

2

)
, we get

VπE,Σ2,1(t) = 2VK(Φ(t))

=2 max

[
log h

(
| t1−R+r

r
|

2
+
| t1−R−r

r
|

2

)
, V ∗Σ

((
t1 +

√
t2

2(R+ r)
,
t1 −

√
t2

2(R+ r)

))]
, ∀t ∈ C2.

By equation (22) we get, ∀w ∈ C,

V ∗E(w, C) = 2 max

[
log h

(
|w1−R+r

r
|

2
+
|w1−R−r

r
|

2

)
, V ∗Σ

((
w1 +

√
w3

2(R+ r)
,
w1 −

√
w3

2(R+ r)

))]
.
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By equation (21) we obtain, ∀z ∈ T ,

V ∗T (z, T )

= max

[
log h

(
|Ψ1(z)−R+r

r
|

2
+
|Ψ1(z)−R−r

r
|

2

)
,

V ∗Σ

((
Ψ1(z) +

√
Ψ3(z)

2(R+ r)
,

Ψ1(z)−
√

Ψ3(z)

2(R+ r)

))]

= log h

{
max

[
|
√

1− (z3/r)2 + 1|+ |
√

1− (z3/r)2 − 1|
2

,∣∣∣∣∣
√
z2

1 + z2
2 + z2

2(r +R)

∣∣∣∣∣+

∣∣∣∣∣
√
z2

1 + z2
2 − z2

2(r +R)

∣∣∣∣∣+

∣∣∣∣∣
√
z2

1 + z2
2

(r +R)
− 1

∣∣∣∣∣
]}

.

Here we used the monotonicity of h on the positive real semi-axis, equation (33), the
definition of Ψ, and the equation of the torus in the form (2). �

Proof of Lemma 2.2. Let us first consider non-degenerate ellipses. It is easy to see that,
if E is an extremal ellipse for K, then card(E ∩ ∂K) ≥ 2. Note that, if E intersects ∂K
only on the two diagonal edges or in the oblique edges and on the side lying on ζ1 = −1 it
can not be extremal for K. For, we can simply translate the ellipse along the z1 axis by a
small but positive displacement (e.g., E ′ := E + εe1) and then slightly dilate the ellipse to
get a larger ellipse E ′′ := (1 + δ)E ′ that is still in K; this essentially follows by the strict
convexity of the ellipse. It is even more clear that if E intersects ∂K only on two adjacent
edges can not have maximal area. As a consequence, for a non-degenerate maximal ellipse
for K there are only two possible configurations

(1) card(E ∩ ∂K) = 4, one point on each edge of K
(2) card(E ∩ ∂K) = 3, two points on oblique edges and one on ζ1 = 1
(3) card(E ∩ ∂K) = 3, two points on vertical edges and one on an oblique edge
(4) card(E ∩ ∂K) = 2, two points on vertical edges and major axis on ζ2 = 0.

It is fairly clear that (3) and (4) implies (ii). Indeed, in each of this cases, ζ 7→ V ∗K1
(ζ1) is

pluriharmonic on C2 \ (K1 ×C). On the other hand, in the cases (1) and (2) the ellipse E
is tangent on at least three sides of ∂K2, so it needs to be maximal for it.

Let us consider the case of degenerate maximal ellipses, that are line segments. If E
is a maximal line for K, then E ∩ ∂K can not be the set of one point on a oblique edge
and one point on the vertical edge z1 = −1. For, consider any small enough ε > 0 and
let E ′ = E + εn, where n is the unit normal to E pointing the half plane containing the
barycenter of K. Then we have length(E ∩K) < length(E ′ ∩K). Also, if E is a vertical
line , then it must be the side of ∂K with z1 = 1. Therefore, for a maximal line for K
there are only the following cases

(1) E ∩ ∂K = {z ∈ K : z1 = 1}
(2) E ∩ ∂K = {z ∈ ∂K, z2 = ±rz1 ±R}
(3) card(E ∩ ∂K) = 2, two points on the oblique sides
(4) card(E ∩ ∂K) = 2, two points on the vertical sides

In the cases (1) and (3) E is evidently extremal forK2, so (i) holds true. In the cases (2) and
(4), since the function ζ 7→ V ∗K1

(ζ) is pluriharmonic on C2\(K1×C) and (E∩K) ⊂ (K1×C)
, (ii) holds. �
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