RELATIVE CAPACITY ON ALGEBRAIC SUB-VARIETIES OF Cⁿ AND APPLICATION TO THE BERNSTEIN MARKOV PROPERTY

FEDERICO PIAZZON

ABSTRACT. Let \mathcal{A} be a *m* dimensional algebraic sub-variety of \mathbb{C}^n . For any open bounded hyperconvex $\Omega \subset \mathcal{A}$ and any compact set $K \subset \Omega$ we denote by $\operatorname{Cap}_{\mathcal{A}}(K, \Omega)$ the relative (Monge-Ampere) capacity of K in Ω ; see [2, 8]. Once the Rudin Coordinates $(z, w) \in$ $\mathbb{C}^m \times \mathbb{C}^{n-m}$ for \mathcal{A} are chosen as in [5], we consider the pseudo-balls $\Omega(z_0, r) := \{(z, w) \in \mathbb{C}^n : z \in \mathbb{C}\}$ $\mathcal{A}: |z-z_0| \leq r$ and re-define the Chebyshev constant $T(K, \mathcal{A})$ taking the normalization of polynomials in its usual definition on the pseudo-ball $\Omega := \Omega(0, 1)$ in place of the unit ball. We prove that for any r < 1 there exist $0 < c_1, c_2 < +\infty$ such that for any non pluripolar compact set $K \subset \Omega(0, r)$ we have

$$\left(\frac{c_1}{\operatorname{Cap}_{\mathcal{A}}(K,\Omega)}\right)^{1/m} \leq -\log T(K,\mathcal{A}) \leq \frac{c_2}{\operatorname{Cap}_{\mathcal{A}}(K,\Omega)}.$$

This *Comparison Theorem* was originally proved in the flat case (i.e., $\mathcal{A} = \mathbb{C}^n$) in [1].

This estimate can be used to recover the main result of [4] in this slightly modified setting. If $\{K_i\}$ is a sequence of compact subsets of the regular non-pluripolar compact set $K \subset \Omega(0, r), r < 1$ and $\Omega \subset \mathcal{R}_{reg}$, then the condition

$$\lim_{j} \operatorname{Cap}_{\mathcal{A}}(K_{j}, \Omega) = \operatorname{Cap}_{\mathcal{A}}(K, \Omega)$$

is equivalent (among other properties) to the local uniform convergence of the plurisubharmonic extremal functions $V_{K_i}(z, \mathcal{A})$ to $V_K(z, \mathcal{A})$ as they are defined in [6].

As an application, we prove a sufficient mass density condition for the Bernstein Markov property on algebraic sets in \mathbb{C}^n and a weighted Bernstein Markov property for unbounded sets in \mathbb{C} using the techniques from [7, 3].

References

- [1] H. J. ALEXANDER AND B. A. TAYLOR. Comparison of two capacities in Cⁿ. Math. Z., 186:407-414, 1984.
- [2] E. BEDORD AND B. A. TAYLOR. A new capacity for plurisubharmonic functions. Acta Mathematica, 149[1]:1-40, 1982.
- Т. ВLOOM. Orthogonal polynomials in \mathbb{C}^n . Indiana University Mathematical Journal, **46**[2]:427–451, 1997. [4] T. BLOOM AND N. LEVENBERG. Capacity convergence results and applications to a Bernstein Markov Inequality. *Trans. of AMS*, 351[12]:4753–4767, 1999.
- W. RUDIN. A geometric criterion for algebraic varieties. J. Math. Mech., 17:671-693, 1967-1968. [5]
- [6] A. SADULLAEV. An estimates for polynomials on analytic sets. *Math. URSS Izvestiya*, 20[3]:493–502, 1982.
 [7] H. STAHL AND V. TOTIK. *General Orthogonal Polynomials*. Cambridge Univ. Press, 1992.
- [8] A. ZERIAHI. Fonction de Green pluriclomplexe à pole à l'infini sur un espace de Stein parabolique et applica-tion. *Mathematica Scandinavica*, [69]:89–126, 1981.

ROOM 712 DEPARTMENT OF MATHEMATICS, UNIVERSITÁ DI PADOVA, ITALY. PHONE +39 0498271260

E-mail address: fpiazzon@math.unipd.it

URL: http://www.math.unipd.it/~fpiazzon/

Date: June 2, 2014.