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Abstract. Let A be a m dimensional algebraic sub-variety of Cn. For any open bounded
hyperconvex Ω ⊂ A and any compact set K ⊂ Ω we denote by CapA(K,Ω) the relative
(Monge-Ampere) capacity of K in Ω; see [2, 8]. Once the Rudin Coordinates (z,w) ∈
Cm × Cn−m for A are chosen as in [5], we consider the pseudo-balls Ω(z0, r) := {(z,w) ∈
A : |z− z0 | ≤ r} and re-define the Chebyshev constant T (K,A) taking the normalization of
polynomials in its usual definition on the pseudo-ball Ω := Ω(0, 1) in place of the unit ball.
We prove that for any r < 1 there exist 0 < c1, c2 < +∞ such that for any non pluripolar
compact set K ⊂ Ω(0, r) we have(

c1

CapA(K,Ω)

)1/m

≤ − log T (K,A) ≤
c2

CapA(K,Ω)
.

This Comparison Theorem was originally proved in the flat case (i.e.,A = Cn) in [1].
This estimate can be used to recover the main result of [4] in this slightly modified

setting. If {K j} is a sequence of compact subsets of the regular non-pluripolar compact set
K ⊂ Ω(0, r), r < 1 and Ω ⊂ Areg, then the condition

lim
j

Cap
A

(K j,Ω) = Cap
A

(K,Ω)

is equivalent (among other properties) to the local uniform convergence of the plurisubhar-
monic extremal functions VK j (z,A) to VK (z,A) as they are defined in [6].

As an application, we prove a sufficient mass density condition for the Bernstein Markov
property on algebraic sets in Cn and a weighted Bernstein Markov property for unbounded
sets in C using the techniques from [7, 3].
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