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Abstract. We give a summary of results in (pluri-)potential theory that naturally come
into play when considering classical approximation theory issues both in one and (very
concisely) in several complex variables. We focus on Fekete points and the asymptotic of
orthonormal polynomials for certain L2 counterpart of Fekete measures.

1. One variable case

1.1. Interpolation and Fekete Points. Let K ⊂ C be a compact set such that C∞ \ K is
connected and f : K → C be a continuous function that is holomorphic in the interior of
K, then Mergelyan Theorem ensures the existence of sequences of polynomials uniformly
approximating f on K.

Two reasonable questions are whether we can compute such a sequence by interpolation
or not, and how the interpolation nodes should be chosen. It turns out that these questions
become much more difficult when suitably translated in the several variables context.

From here on we suppose K to be a polynomial determining set, that is if a polynomial
vanish on K then it is the zero polynomial. If we consider the monomial basis {z j} j=1,2,...,k

for the space Pk of polynomials of degree at most k and we pick k + 1 distinct points zk :=
(z0, z1, . . . , zk) ∈ Kk+1 the interpolation problem can be written as VDMk(z0, . . . , zk)c =

( f (z0), . . . , f (zk))t where c ∈ Ck+1 and

VDM
k

(z0, . . . , zk) := [z j
i ]i, j=0,...,k

is the Vandermonde Matrix. Notice that for each k+1-tuple of distinct points det VDMk(zk) ,
0 so the problem is well posed.

It is a classical result that the norm of the operator Ik : (C (K), ‖ · ‖K) →
(
Pk, ‖ · ‖K

)
is the

Lebesgue Constant Λk := maxz∈K
∑k

m=0

∣∣∣lm,k(z)
∣∣∣, where lm,k(z) := det VDMk(z0,...,zl−1,zl,...,zk)

det VDMk(z0,...,zk) .

Minimizing Λk(zk) is an extremely hard task so one can consider the simplified problem of
maximizing | det VDM(zk)|, though it is still a very hard one.
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Definition 1.1 (Fekete Points). Let K ⊂ C be a compact set and zk := (z0, . . . , zk) ∈ Kk+1.
If we have | det VDMk(zk)| = maxζ∈Kk+1 | det VDMk(ζ)|, then zk is said to be a Fekete array
of order k, its elements are said Fekete points.

The relevance of Fekete points is easy to see: one has Λk(Fk) ≤ k + 1 for any Fekete array
Fk; moreover notice that in general Fk is not unique.

An interesting property of Vandermonde determinants is that for any array of points zk we
have

| det VDM
k

(zk)| =
∏

i< j≤k

|zi − z j|

that is the product of their distances; this is one of the main points in connecting interpola-
tion with logarithmic potential theory. We introduce the number dk(K) := |VDMk(zk)|1/(

k
2)

for one (thus any) Fekete array zk of order k. In analogy with the case k = 0, dk(K) is called
k-th diameter of K, it is a decreasing positive sequence, its limit d(K) is called transfinite
diameter of K.

Example 1.2 (Fekete points on the unit disc). Let D be the unit circle. Take any set of dis-
tinct points z = {z0, . . . , zk} and consider the determinant of the matrix V(z) := VDMk(z).
We have

‖V:, j(z)‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥


z j

0

z j
1
...

z j
k



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

=
√

k + 1, for any j = 0, 1, . . . k.

Therefore Hadamard Inequality for determinants implies | det VDMk(z)| ≤
∏k

j=0 ‖V:, j(z)‖2 =

(k + 1)
k+1

2 . This upper bound is achieved if and only if the columns of V(z) are orthonormal
and this condition is satisfied for z a set of k + 1 roots of unity. Therefore { 2iπ j

k+1 } j=0,...,k is a
Fekete set for D.

1.2. logarithmic Potential Theory. It is customary to introduce the differential operators
d := ∂+ ∂̄ and dc := i(∂̄−∂) such that (passing to real coordinates) one has ∆ = 2i∂∂̄ = ddc.

We recall that using the Green Identity it is possible to show that E(z) := 1
2π log |z| is a

fundamental solution for the Laplacian, i.e., ddc E(z) = δ0 in the sense of distributions.
We also recall that a real valued function u ∈ C 2 on a domain Ω is said to be harmonic if
∆u = 0 in Ω. A upper semi-continuous function v is said to be subharmonic in Ω if for any
open relatively compact subset Ω1 ⊂ Ω and any harmonic function u on Ω such that v ≤ u
on ∂Ω1 we have v ≤ u on Ω1. It follows that, given any compactly supported finite Borel
measure µ, the function

Uµ(z) := µ ∗ E(z) =

∫
log

1
|z − ζ |

dµ(ζ),

said the logarithmic potential of µ, is a superharmonic function (i.e. −Uµ is subharmonic)
on C and in particular harmonic in C \ supp µ, moreover we have ddc Uµ = µ.
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To the Laplace operator is naturally attached an energy minimization problem; we refer the
reader to [21], [23] and [22] for details.

Problem 1.1 (Logarithmic Energy Minimization). Let K be a compact subset of C, mini-
mize

(LEM) I[µ] :=
∫ ∫

log
1
|z − ζ |

dµ(ζ)dµ(z) =

∫
Uµ(z)dµ(z),

among µ ∈ M1(K), the set of Borel probability measures on K endowed with the weak∗

topology.

We notice that if we consider the electrostatic interaction between k + 1 unitary charges in
the plan, the force acting on the i-th particle is

∑
j,i

(xi,x j,yi−y j)
|zi−z j |

2 = −∇Uµ, where µ denotes
the uniform probability measure associated to the charges distribution. The electrostatic
energy associated to this charges distribution is precisely Ũµ =

∑
i, j

∑
log 1

|zi−z j |
, this min-

imization problem is very close to (LEM), we will see that in particular (LEM) it is, in a
suitable sense, its limit.

It turns out that I[·] is a lower semi-continuous functional on a locally compact space,
one can use the Direct Methods of Calculus of Variation to prove that two situations may
occur. Either I[µ] = +∞ for all µ ∈ M1(K), either there exists a unique minimizer that is
the equilibrium measure of K and is usually denoted by µK .

In the latter case one has UµK (z) = − log c(K) − gK(z), where gK := GC∞\K is the gener-
alized (e.g. possibly not continuous) Green function with logarithmic pole at ∞ for the
complement of K. The number c(K) called logarithmic capacity of K and is defined as
c(K) := exp(− infµ∈M1(K) I[µ]), thus is non zero precisely when the minimization problem
is well posed. It turns out that UµK (z) = − log c(K) quasi everywhere on K, that is for any
z ∈ K but for set of zero logarithmic capacity.

Sets of zero capacity are, roughly speaking, too small for logarithmic potential theory, they
are termed polar and it can been shown that c(K) = 0 if and only if K is the −∞ set of
some subharmonic function defined in a neighbourhood of K.

The following result is due to Szego, Leja and Fekete.

Theorem 1.3 (Fundamental Theorem of Logarithmic Potential Theory). Let K ⊂ C be a
compact non polar set, we have

c(K) = d(K).

Therefore, for any sequence of Fekete arrays {Fk}, setting µk := 1
k+1

∑k
j=0 δF j

k
, we have

µk ⇀
* µK .

Moreover locally uniformly on C \ K we have

lim
k
−Uµk (z) := lim

k

1
k + 1

log
k+1∏
j=0

|z − F j
k | = gK(z) − log c(K) = −UµK .
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The proof is based on lower semi-continuity and strict convexity of the energy func-
tional and on the extremal property of Fekete points. Moreover the result holds true
for any sequence of so called asymptotically Fekete arrays that is, arrays Lk such that
limk |VDMk(Lk)|1/(

n
2) = d(K).

1.3. Back to Approximation. Other deep connections between interpolation and loga-
rithmic potential theory are given by the following two results. We recall that a compact
set K is said to be regular if gK is a continuous function.

Theorem 1.4 (Bernstein Walsh [25]). Let K be a compact polynomially determining non
polar set, then we have

gK(z) = lim sup
ζ→z

({
1

deg p
log+ |p(ζ)|, ‖p‖K ≤ 1

})
.

Moreover

(Bernstein Wals Ineq.) |p(z)| ≤ ‖p‖K exp(deg p gK(z)) ∀p ∈P(C).

The approximation theorem comes as an application of Hermite reminder formula and the
previous theorem.

Theorem 1.5 (Bernstein-Walsh [25]). Let K ⊂ C be a compact regular polynomially con-
vex non polar set and f : K → C be a bounded function. Let dk( f ,K) := inf{‖ f − p‖K :
p ∈Pk}, then for any real number R > 1 the following are equivalent

(1) limk dk( f ,K)1/k < 1/R

(2) f is the restriction to K of f̃ ∈ hol(DR), where DR := {gK < log R}.

1.4. L2 theory. We want to show that some analogues of results for Fekete points (that
are L∞ maximizers, in some sense) holds for particular measures in a L2 fashion.

Definition 1.6 (Bernstein Markov Measures). Let K ⊂ C be a compact set and µ be a
Borel measure such that supp µ ⊆ K, assume that

lim sup
k

 ‖pk‖K

‖pk‖L2
µ

1/ deg(pk)

≤ 1,

for any sequence of non zero polynomials {pk}. Then we say that (K, µ) has the Bernstein
Markov property, BMP for short, or equivalently µ is a Bernstein Markov measure on K.

Example 1.7. We claim that dµ := 1
2πdθ is a Bernstein Markov measure for S1. To show

that, one first notice that the monomials (up to degree k) are a orthonormal basis of(
Pk, 〈·; ·〉L2

µ

)
. Therefore, for any p ∈Pk we have

|p(z)| =

∣∣∣∣∣∣∣∣
k∑

j=0

〈p; z j〉L2
µ
z j

∣∣∣∣∣∣∣∣ ≤ ‖p‖L2
µ

 k∑
j=0

|z j|2


1/2

≤
√

k + 1‖p‖L2
µ
,
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hence lim supk

(
‖pk‖K
‖pk‖L2

µ

)1/ deg(pk)

≤ lim supk(k + 1)1/2k = 1.

Bernstein Markov measures on a given K are in general a very large set as the following
sufficient condition shows. For a exhaustive treatment of regular measures (e.g. a weak-
ened version of Bernstein Markov property) the reader is referred to [24]; generalization
to the Cn version can be found in [5]. A survey with further development is [10].

Theorem 1.8 (Sufficient condition for BMP [24]). Let K be a compact non polar regular
set and µ a Borel measure such that supp µ = K, assume that there exists a positive number
t > 0 such that

(1) lim
r→0+

c
(
{z ∈ K : µ(B(z, r)) ≥ rt}

)
= c(K).

Then (K, µ) satisfies the Bernstein Markov property.

Finding necessary condition is a relevant open question in the general theory of orthogonal
polynomials, a necessary condition was stated as a conjecture by Erdös.

The first interest on BMP is from the approximation point of view. Let us take a orthonor-
mal system {q j} j=0,1,... for P , then each Pk is a Reproducing Kernel Hilbert Space, being
Kµ

k (z, ζ) :=
∑k

j=0 q j(z)q̄ j(ζ) the kernel. We denote by Bµk (z) the diagonal of the kernel,
say the Bergman Function Bµk (z) = Kµ

k (z, z) =
∑k

j=0 |q j(z)|2. It is not hard to see that the
Bergman function represent the worst possible case for the l.h.s. of the definition of BMP,

that is supdeg p≤k
‖p‖K
‖p‖L2

µ

=

√
‖Bµk‖K .

We consider natural the projection operator Lµk :
(
C 0(K), ‖ · ‖K

)
→

(
Pk, ‖ · ‖K

)
defined by

embedding the two spaces in L2
µ, L

µ
k [ f ](z) :=

∑k
j=0〈 f , q j〉q j(z). It follows that

‖L
µ
k [ f ]‖K ≤

 k∑
j=0

|〈 f , q j〉|
2


1/2

∥∥∥∥∥∥∥∥
 k∑

j=0

|q j(z)|2


1/2
∥∥∥∥∥∥∥∥

K

≤ ‖ f ‖L2
µ

√
‖Bµk (z)‖K ≤ ‖ f ‖K

√
µ(K)‖Bµk (z)‖K .

Therefore we have ‖Lµk‖ ≤
√
µ(K)‖Bµk (z)‖K . This can be used to bound the error of poly-

nomial approximation by least square projection, let pk be the best uniform polynomial
approximation of degree at most k to f

‖ f−Lµk [ f ]‖K = ‖ f−pk+pk−L
µ
k [ f ]‖K ≤ dk( f ,K)+‖Lµk [ f−pk]‖K ≤ dk( f ,K)

(
1 +

√
µ(K)‖Bµk (z)‖K

)
.

This allow us to state a version of the Bernstein Walsh Lemma in a L2 fashion for Bernstein
Markov measures.

Theorem 1.9 (Bernstein Walsh L2 version [17]). Let K be a compact polynomially convex
regular non polar set and µ a Borel probability measure such that supp µ = K satisfying
the Bernstein Markov property. Then the following are equivalent.

(1) limk dk( f , µ)1/k < 1/R
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(2) f is the restriction to K of f̃ ∈ hol(DR), where DR := {gK < log R}.

Here limk dk( f , µ) is the error of best L2
µ polynomial approximation to f of degree not

greater than k.

There are other interesting analogies between BM measures and measures associated to
Fekete points. First we notice that if we pick a Fekete array Fk for K and we compute the
squares of the modulus of the Vandermonde determinant on such points we can rewrite it
as a L2 norm w.r.t. the associated Fekete measure µk, that is
(2)

(k(k + 1))!| det VDM(Fk)|2 =

∫
. . .

∫
| det VDM(ζ0, . . . , ζk)|2dµk(ζ0) . . . dµk(ζk) := Zk(µk),

notice that the right hand side can be generalized to any measure on E. On the other hand
if we perform the Gram-Schmidt ortogonalization of the Vandrmonde matrix one the right
hand side of (2) we obtain (up to a normalizing constant (k(k+1))!) the product of L2

µ norms
of the monic orthonormal polynomials relative to µ and this is precisely the determinant of
the Gram-matrix Gµk

k w.r.t.
(
Pk, ‖ · ‖L2

µk

)
in the standard basis, that is Gµk

k = [〈ziz̄ j〉L2
µk

]i, j.

This observation leads to a generalization of asymptotically Fekete points to any measure,
namely µ ∈ M1(E) is asymptotically Fekete for E if limk Zk(µ, E)1/(k(k+1)) = d(E).

The following result, despite a not very difficult proof is fundamental, especially in more
general contexts: Bernstein Markov measures are asymptotically Fekete; see [8, 6].

Proposition 1.1. Let K be a compact non polar set and µ a Borel probability measure such
that supp µ ⊂ K satisfying the Bernstein Markov property. We have

lim
k

(∫
. . .

∫
| det VDM(ζ0, . . . , ζk)|2dµ(ζ0) . . . dµ(ζk)

) 1
k(k+1)

= lim
k

[
(k(k + 1))! det Gµ

k

] 1
k(k+1)

= d(K).

Morally speaking, Fekete points are L∞ maximizers, while BM measures are L2 maximiz-
ers.

Also we have that other interesting properties of Fekete points can be translated in this
fashion.

Theorem 1.10. Let K be a compact non polar set and µ a Borel probability measure such
that supp µ ⊂ K satisfying the Bernstein Markov property. We have

i) limk
1

2k(k+1) log Bµk (z) = gK(z) point-wise, locally uniformly if K is regular.

ii) limk
Bµk

k(k+1)µ = µK in the weak∗ sense.

Notice that for Fekete measures Bµk
k is the sum of the squared modulus of Lagrange poly-

nomials and Bµk
k

k(k+1) ≡ 1 on the support of µk.
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There are other applications of Bernstein Markov measures and potential theory tools con-
cerning for instance random polynomials ensambles generalizing the classical result on
Kac polynomials and asymptotic of zeroes of orthogonal polynomials; see for instance
[11], [5], [9].

2. Several Variables Case

The extension of what we saw in the case of one complex variable is much more diffi-
cult and technical, but still the most of the relation in the previous section have their scv
counterpart, provided a correct ”translation”.

The first difficulty is in defining the n-dimensional transfinite diameter for a given compact
set, in particular showing the existence of the limit and its independence by the ordering
of the monomial basis. The solution has been given by Zaharjuta [26] by a sophisticate
procedure comparing the k-th diameter with certain integral mean of directional Chebyshev
constants.

The second problem is that logarithmic energy is not related to maximization of Vander-
monde determinants when n > 1. As a consequence, subharmonic functions are no more
the ”correct space” to look at; they are replaced in this context by plurisubharmonic ones.

Plurisubharmonic functions, PSH for short, are upper semi continuous functions being
subharmonic along each complex line. This property is invariant under any holomorphic
mapping, moreover there is a differential operator (the complex Monge Ampere) playing
a role with PSH function similar to the one of Laplacian with respect to subharmonic
functions in C.

Let u ∈ PSH(Cn) ∩ C 2, then one can consider the continuous (1, 1) form ddc u,

ddc u :=
n∑

i=1

2i
∂2

∂zi∂z̄ j
u(z)dzi ∧ dz̄ j

and then take the wedge powers of it

(ddc u)n := ddc u ∧ · · · ∧ ddc u = det[
∂2

∂zi∂z̄ j
u(z)]i, jdVn,

where dVn is the standard volume form on Cn.

It is a classical result that ddc u can be defined as a positive current (i.e., an element of the
dual of test forms) for any PSH function and, due to the seminal works of Bedford and
Taylor [1] [2], for locally bounded PSH function the operator (ddc u)n is well defined as a
positive Borel measure. This extension is termed the generalized complex Monge Ampere
operator, Pluripotential Theory is the study of plurisubharmonic functions and Monge
Ampere operator; we refer the reader to [15] for a detailed treatment of the subject.
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In this context the role of Harmonic function is replaced by maximal plurisubharmonic
functions that are defined requiring precisely the domination property that harmonic func-
tions enjoy with respect to subharmonic functions inC; they are characterized by (ddc u)n =

0 in the sense of measures on the given domain. We denote by L(Cn) the class of plurisub-
harmonic functions with logarithmic pole at infinity, the Dirichlet problem for the Monge
Ampere operator (ddc u)n = 0 in Cn \ K

u =q.e. 0 on K, u ∈ L(Cn) ∩ L∞loc

enjoys the role of the Dirichlet problem for the Laplacian in C, its solution V∗K is called
plurisubharmonic extremal function or, by analogy, pluricomplex Green function. Being
V∗K representable, precisely as gK , with the (upper-semicontinuous regularization of the)
upper envelope of function v in L(Cn) such that v ≤ 0 on K.

V∗K(z) := lim sup
ζ→z

VK(ζ)

VK(ζ) := sup{u(ζ), u ∈ L(Cn), u|K ≤ 1}.

Again, as in the one dimension, one has ∆gK = µK here one has a pluripotential equilibrium
measure µK := (ddc V∗K)n, thus it is supported on K by definition.

Pluripotential theory has analogies with potential theory but also differences, first the
Monge Ampere operator if fully non linear, there is no notion of potential, a suitable en-
ergy functional has been found only recently and there is no direct connection between
polynomials and finitely supported measures. However there are plenty of good news as
well.

First, the (Bernstein Wals Ineq.) goes precisely to Cn replacing gK by V∗K , due to that and
a density result one has the scv counterpart (again replacing gK by V∗K) of the Bernstein
Walsh Lemma 1.4, usually referred as the Bernstein Walsh Siciak Theorem.

For years the extension of the asymptotic property of Fekete points to Cn has been only
conjectured. The work (see [4], [3]) of Berman Boucksom and Nymstrom finally proved
that, despite the strong differences between potential and pluripotential theory, one has
the same L∞ and L2 asymptotic results. More precisely, for a non pluri-polar (i.e., not
contained in the −∞ set of a plurisubharmonic function) compact set K the following
holds.

(1) Fekete measures for K converge weakly∗ to µK .

(2) The same remains true for any sequence of asymptotically Fekete arrays.

(3) For any Bernstein Markov measure µ limk
Bµk

dim Pk(Cn)µ = µK .

(4) For any Bernstein Markov measure µ limk
1
2k log Bµk = V∗K locally uniformly if K

is L-regular, e.g. V∗K is continuous.
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Moreover, the sufficient condition for the Bernstein Markov property can be translated to
Cn by replacing the logarithmic capacity by a non linear ”local” (e.g., relative to a open
hold all set) capacity associated with the Monge Ampere operator, say the relative capacity;
see [7].

3. A discrete approach

Admissible meshes, shortly AM, are sequences {Ak} of finite subsets of a given compact
set K such that

• there exists a positive real constant C such that for any p ∈Pk we have

max
K
|p| ≤ C max

Ak
|p|.

• Card Ak increase at most polynomially.

They have been first introduced [14] as good sampling sets for uniform polynomial ap-
proximation by discrete least squares. The construction of such subsets has been studied
for several cases, with emphasis in holding the cardinality growth rate; see for instances
[12, 18, 20, 16].

Let associate the uniform probability measure µk to Ak, then we can see that, picking an
orthonormal system q1, . . . , qNk of Pk we have√√√

‖

Nk∑
j=1

|q j|‖K =

√
‖Bµk

k ‖K ≤ C sup
p∈Pk

‖p‖Ak

‖p‖L2
µk

≤ C
√

Card Ak.

As a consequence the error of uniform polynomial approximation by DLS on an AM has
the (far to be sharp) upper bound ‖ f − Lµk

k [ f ]‖K ≤ (1 + C
√

Card Ak)dk( f ,K).

Notice that in particular we shown that lim supk

(
‖pk‖K
‖pk‖L2

µk

)1/k

≤
(
C
√

Card Ak

)1/k
= 1 for any

sequence of polynomials pk, deg pk ≤ k. In this sense admissible meshes are a kind of
discrete model of Bernstein Markov measures suitable for applications since for each finite
degree they are finitely supported, moreover in a variety of cases we can explicitly compute
an admissible mesh for the given K.

Another analogy of these sequences of finitely supported measures is that it still hold true
that the sequence of uniform probability measures µk associated to an admissible mesh for
K s an asymptotically Fekete sequence of measures, namely

lim
k

(∫
. . .

∫
| det VDM(z1, . . . , zNk )|dµk(z0) . . . dµk(zNk )

) n+1
2nkNk

= d(K), where Nk :=
(
k + d

d

)
.

As a consequence it is possible to prove (following the case of a fixed Bernstein Markov
measure; see [13] [19]) that one has

• limk
Bµk

k
Nk
µk = µK .
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• limk
1

2Nk
log Bµk

k = V∗K locally uniformly if K is L-regular.

Lastly we can extract (by numerical linear algebra) from an admissible mesh its Fekete
points Fk ⊂ Ak, it turns out that they are asymptotically Fekete for K and thus

• limk µFk = µK in the weak∗ sense; see [12].
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