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First definitions (1)

(Weakly) Admissible Meshes, (W)AM. [Calvi-Levenberg]

Let K € R? (or C9) be a compact polynomial determining set.
The sequence {A,} of finite subsets of K is said to be an
Admissible Mesh for K if there exist C,s > 0 such that

Card A, = O(n®)
lpllk < Cliplla, VP € 2°(K)

If instead

Ipllk < Gallplla, VP € 27(K)
limsupp(C, Card A,,)l/” =1

then we say that A, is a Weakly Admissible Mesh.
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First definitions (1)

A slightly enforced definition that is being used in the literature
Weakly Admissible Meshes, WAM

Let K C RY (or CY) be a compact polynomial determining set.
The sequence {A,}y of finite subsets of K is said to be an
Admissible Mesh for K if there exist s, g > 0 such that

CardA, = O(n)
C, = O(n%)
Ipllk < Gillplla, VP € 27(K).

N
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First definitions (2)

By the definitions both AMs and WAMSs are determining for
P"(K), thus we have

Card A, > dim 27(K) = (”t d) — 0(n%)

For this reason A. Krod introduced
Optimal Admissible Mesh
The AM A, w.rt. K C R? is said to be optimal if

Card A, = O(n9).
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Motivations

DLS Approximation on a WAM - Calvi Levenberg (2008)

Let K € R? (or C9) be compact and polynomial determining, A,
a WAM on it and f € €°(K), then one has

1 = Aa,fllx < (14 o (IIFllk(2 + V/Card(A,))) ) dn(f, K)

Where Ay, is the discrete least squares (DLS) operator performed sampling f
on A, and d,(f, K) is the error of best polynomial approximation to f on K.

4

’Mild regularity of f and K = convergence of DLS operator. ‘
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Properties (1) e,

WAMs work nicely under some fundamental operations.

m Stability under affine mappings, unions and tensor
products.

m “Weak” stability under polynomial mappings.
m Supersets of WAMs are WAMs.
m Good interpolation sets are WAMs.
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Properties (2)

Discrete Extremal Sets - Bos, De Marchi, Sommariva and
Vianello
Starting from a WAM one can extract by standard Numerical
Linear Algebra

m AFP Approximate Fekete Points

m ALS Approximate Leja Sequences
such that

m Unisolvent sets.
m Slowly increasing Lebesgue constants.

m Same asymptotic (in measure theoretic sense) of true
Fekete.
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Properties (3) B

~ Card A, < 0

Asimptotically Bernstein Markov sequence of measures

If there exists {M,}y such that for any p € #,(C?) we have

bl < Mallell,
limsup(M,)7 = 1.

n

Then {p,}w is an as. BM sequence of measures for K.

’ For measure arising from meshes we can choose M, := C, - Card A,,.
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A new motivation By

Asimptotically B-M sequences of measures can be thought as a partial
generalization of Optimal Measures introduced by Bloom Bos
Levenberg and Waldron [1].

Proposition

Let u, be a as. BM sequence for the compact non-pluripolar set K, then

limsup (GF") = = 8(K). (1)
n
Where GY is the Gram matrix of (229, (-,)2) , ap = 93l and

1
an

d(K) = lim, max;cxn [VDM(C)
is the transfinite diameter of K.
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A new motivation

Let {qj(.")} N be an o.n.b. of Z, N Li , the Bergman function is
j=1,2,..., n

2
Bir(2) =S g @) -
Thanks to (1) Strong Bergman Asymptotic applies.

Theorem.

Let A, be a WAM for the compact non-pluripolar set K ¢ C? and
14 as above then we have

Bh"
Rl =" lK,

the pluripotential equilibrium measure of K.
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New motivation for optimality

. - - . Hn .
If A, is an optimal admissible mesh, then B,"V is a bounded sequence
of function, thus we can prove

Theorem [P.]

In the above hypothesis suppose that wu, —* u, then

Bl
-

D, (1K) > liminf,

Where D; is the lower Lebesgue Radon Nikodym derivative.

Unfortunately to prove

Hn
D, (k) = Iimninf W

Bi"

n— decreasing.)

we need further assumptions... (e.g. being
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Problems

Two questions naturally arise..

How to build AMs or even WAM s for a given K?

How to build Optimal AMs for a given K7
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Solving (Q1) fio i

One should choose/combine different results requiring K to have

’particular shape and/or smoothness

m Ehlich-Zeller: Double degree Chebyshev points for the interval are
AM of constant 2.

m shape: Use symmetries of K, polar coordinates, tensors, quadratic
maps..

m Calvi-Levenberg used Multivariate Markov Inequality.

m Krod: Star shaped bounded domains with smooth Minkowski
functional 4 Bernstein Inequality .

m P. and Vianello Mapping and Perturbing WAMs and AMs.
m Plesniak improve for sub-analytic sets.
m Krod result on Analytic Graph domains.

m Bloom Bos Calvi and Levenberg existence for L-regular sets.

e waa v o3 16ors5.



UNIVERSITA

Building AM by Markov Inequality ErE

Markov Inequality (MI)

The set K is preserving a Markov Inequality of constant Mk and
exponent r if

IVplllk < Mxn'llpllx- Vp € 2"(RY)

MI holds under mild assumptions on K, typically r = 2.

Idea: take any equally spaced grid having step size O(n™").

Calvi Levenberg (2008)

If K C RY preserves a Markov Inequality of exponent r, then it has
a AM with O(n") points.
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Building AM by

Bernstein Inequality and Star Shape

Using the classical Bernstein Inequality on segments and
star-shaped property it has been proved

Kroé (2011)

Let K € RY be compact and star-shaped with €1T® smooth
2d+a—1
Minkowski functional. Then K has an AM with O(n ati ) points.
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Mapping and Perturbing

Perturbation Result P. and Vianello

Let K C C9 be a polynomially convex and Markov compact set. If
that there exists a sequence of compact sets {Kj}n such that

m there exists A, ; (W)AM for K; having constant C,; and
m dy(K, K;) < ¢j where limsup; ¢;C,; = 0 Vn.
Then K has a (W)AM.

Mapping Result P. and Vianello

(W)AMs are “weakly“ stable under smooth mapping: for any
holomorphic map ¢ : Q — K there exists j,(n) = O(log n) such
that B, := (A, (n)) is a WAM for K.
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Nearly Optimal AM T

AM having Card A, = O((nlog n)?) as the ones above are termed
nearly optimal.

m W. Plesniak showed that Piazzon-Vianello results in particular
apply to any compact sub-analytic set that hence has a nearly
optimal AM.

m A. Kroé proved that analytic graph domains have a nearly
optimal AM

m Bloom,Bos,Calvi and Levenberg [2] showed (non
constructively) that any L-regular compact set has.
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Solving (Q2)

How to build Optimal AMs for a given K7

m Polytopes, Balls have Optimal AMs by 1dim techniques,
symmetry or thanks to the particular shape and finite unions.

m The Kroé result applies to star-shaped % smooth sets.

m The Kroé result has been refined: if d = 2, then €2
smoothness can be replaced by uniform interior ball condition.

’What about sets with a more general shape?‘
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Main Result

‘ Idea: Smoothness may completely replace Particular Shape. ‘

\J

P. 2013

Let Q be a bounded €1! domain ﬂ RY, then there exists an
optimal admissible mesh for K := Q.
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Bernstein Inequality

Let p € Z"(R), then for any a < b € R we have

dp n

Pyl < : BI

dx(x)'_ (X—a)(b—x)Hp“"’bl ()
and thus | £(252)| < 255l s

Markov Tangential Inequality

Let p € 2"(RY), then for any xg € R, r > 0 and
v € NTx0B(xp, r), |v| = 1 we have

dp n
00| < 2lelgont (M)
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€11 domains

Q c R? domain whose boundary is locally the graph of a €'
function of controlled norm. If Q is bounded, then all the
parameters involved in this definition can be chosen uniformly.




Geometric Characterization

Bounded ¢! domains are characterized by the uniform double
sided ball condition.
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Oriented Distance Function

ba(x) := inf |x —y| — inf |x — 2|
yeQ zelQ




Regularity Properties of bq(-)

If Q is a bounded €11 domain, then there exists  such that for

any 0 < 0 < § we have

m The metric projection on the boundary x — maq(x) is single
valued on Us where Uy is a §-tubular neighborhood of 0S2.

bq € (gl’l(Ug).
Vbo(x) = %{ZX)(X) #0in Us.

m Differentiability across the boundary.
m We can take § as the radius of the ball.

m Level sets of bg are €11 manifolds.

Vbq(x) defines the outer normal unit vector field w.r.t. Q.
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Sketch of the Proof 1 il

Bound normal derivatives of polynomials by a modified Bern-
stein Inequality along segments of metric projection. Thanks
to boundary regularity.

4

Find a norming set for Q : by union of m, = O(n) hypersurfaces
which are level sets of b and Ky := {x € Q: |bq(x)| > d}

el < 2max{I1pllss lpllumr | - ¥ € 27(RY)
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Sketch of the Proof 2

Bound any directional derivative of polynomials by a modified
Bernstein Inequality holding in Kj.

4

Find a weak norming set for K; : w.r.t. Q by a grid mesh Z,,
of stepsize O(n~1) i.e.

Ipllks < lIpllz, + Xllpllg A>2. Vp e 2"(RY)

Card Z, = O(n%)
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Sketch of the Proof 3 Uil s

Bound tangential derivatives of polynomials on s by the com-
bination of

m Regularity of s = Ball property.

m Markov Tangential Inequality

i

Find weak norming sets for U,flo,,ri w.r.t. Q by the union of
geodesic meshes Y/ C I having geodesic fill distance O(n~1)

lpllomr < llplly; + Hipllg A > 2. vp e 27(R)

Card U™ T = m,O(n9~1) = O(n?).
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Sketch of the Proof 4 o sy

Finally we set

Ap = Z,U (UM )
and the inequalities above read as

2 ,
lplg = 2lplla, + S llplg VP e Z"(RY)

2\

_ T oph(md
Ipllg T 5llPlla, VP e ZM(RT)

Card(A,) = O(nY).
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further investigations...

We conclude by recalling the open problem

Conjecture Bloom Bos Calvi and Levenberg

If K € C9 is compact and L-regular then there exists ¢ := c(K)
such that any array of degree c(K)n Fekete points forms an
Admissible mesh for K, that hence is Optimal.
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Thank you and...

Happy Birthday!!
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’Step 1 we build a norming set.‘

We pick § < r and work out a modification of (BI) of the form

[Dsp(x)| < nps(ba(x))lplle

Where S is a segment of metric projection,
s arises as follows..
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Then we define a function by integration along segments of metric
projection

~—bq(x)

x = Fp5(x) = n/ @s(£)d¢

0
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and consider equally spaced level sets

ri),é = F”:(S(ai) = 0 17 o.My = O(n)a

where
Py — O,...,méian’(S
1/2 Z ai+1 — ai.
Therefore we have
Ipllg <

1Pl , +1/2lplleg =
2Pl

;

IN
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For some technical reasons we switch
m i m i m i
Uiznornﬁ =UZolhs U UiZm+1! no

where the second set is a subset of

Ks := {x € Q: |ba(x)| > §}
and then we can replace it by Kj itself.

ol < 2max{ Pl por, - I7l1x,)-
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’Step 2: finding a norming mesh Z, for K.

we use (BI) jointly with B(x,d) C Q Vx € Ks to get
n
VP = 5llpllg:

Thus we can build a suitable Z, by a grid of step size 4% =0(n 1)
and hence cardinality

Card Z, = O(n?)

obtaining

Ipllks < lIpllz, + llplg
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m

Step 3: finding a norming mesh Y, for u,;or;;ﬁ

m Any I 5 is a € manifold.
m we can pick a tangent ball of radius 6/2 lying in Q.




We can bound any tangential derivative by MTI applied to the ball
to get

&

d—1
P | < 5r5lells W €T,

Therefore if we pick a mesh Y, on each r;_d having controlled
geodesic fill distance h' = O(n™1) we get

1Pl pors . < Il + 3l
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The regularity of rf”;'s ensures that we can produce suitable Y,;'(;
using O(n?~1) points, since we have m, = O(n) level set ' < we
have

Card Y, 5 := Card; Y} 5 = O(n%)
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Proof (10)

Step 4: joining all the inequalities.‘

Finally putting all together we get [|pllg < 2 (I|plly, ,uz, + 3llPlg)
and thus

lpllg < 4(||P||Yn,5uzn) where (3)
Card(Yn7(§ U Zn) = O(nd) (4)

That is optimal.
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