Optimal Polynomial Admissible Meshes on the Closure of $\mathscr{C}^{1,1}$ Bounded Domains

Workshop on Multivariate Approximation in honor of Prof. Len Bos 60th birthday Verona, November 29-30, 2013

F. Piazzon, joint work with M. Vianello

Department of Mathematics. Doctoral School in Mathematical Sciences, Computational Mathematics Area

Università degli Studi di Padova

1 Introducing Polynomial Admissible Meshes

- Defining (Weakly) Admissible Meshes, Optimal Admissible Meshes.
- Main properties and motivations.
- Relation with the Equilibrium Measure.
- Building Admissible Meshes, the state of the art.
- **2** A new result for $\mathscr{C}^{1,1}$ bounded domains
 - Main Result.
 - Tools: Bernstein Inequality and regularity property of oriented distance function
 - Sketch of the proof.

(Weakly) Admissible Meshes, (W)AM. [Calvi-Levenberg]

Let $K \subset \mathbb{R}^d$ (or \mathbb{C}^d) be a compact polynomial determining set. The sequence $\{A_n\}_{\mathbb{N}}$ of finite subsets of K is said to be an **Admissible Mesh** for K if there exist C, s > 0 such that

$$\mathsf{Card}\, A_n = \mathcal{O}(n^s) \\ \|p\|_{\mathcal{K}} \leq C \|p\|_{A_n} \, \forall p \in \mathscr{P}^n(\mathcal{K})$$

If instead

$$\|p\|_{\mathcal{K}} \leq C_n \|p\|_{\mathcal{A}_n} \ \forall p \in \mathscr{P}^n(\mathcal{K})$$

limsup_n($C_n \operatorname{Card} \mathcal{A}_n)^{1/n} = 1$

then we say that A_n is a Weakly Admissible Mesh.

A slightly enforced definition that is being used in the literature

Weakly Admissible Meshes, WAM

Let $K \subset \mathbb{R}^d$ (or \mathbb{C}^d) be a compact polynomial determining set. The sequence $\{A_n\}_{\mathbb{N}}$ of finite subsets of K is said to be an **Admissible Mesh** for K if there exist s, q > 0 such that

$$\begin{aligned} \mathsf{C}\mathsf{ard}\, A_n &= \mathcal{O}(n^s) \\ C_n &= \mathcal{O}(n^q) \\ \|p\|_{\mathcal{K}} &\leq C_n \|p\|_{\mathcal{A}_n} \ \forall p \in \mathscr{P}^n(\mathcal{K}). \end{aligned}$$

By the definitions both AMs and WAMs are determining for $\mathscr{P}^n(K)$, thus we have

Card
$$A_n \ge \dim \mathscr{P}^n(\mathcal{K}) = \binom{n+d}{n} = \mathcal{O}(n^d)$$

For this reason A. Kroó introduced

Optimal Admissible Mesh

The AM A_n w.r.t. $K \subset \mathbb{R}^d$ is said to be **optimal** if

Card
$$A_n = \mathcal{O}(n^d)$$
.

WMA - VR 2013 - 5 of 45

DLS Approximation on a WAM - Calvi Levenberg (2008)

Let $K \subset \mathbb{R}^d$ (or \mathbb{C}^d) be compact and polynomial determining, A_n a WAM on it and $f \in \mathscr{C}^0(K)$, then one has

$$||f - \Lambda_{A_n} f||_{\mathcal{K}} \leq \left(1 + C_n \left(||f||_{\mathcal{K}} (1 + \sqrt{\mathsf{Card}(A_n)})\right)\right) d_n(f, \mathcal{K})$$

Where Λ_{A_n} is the discrete least squares (DLS) operator performed sampling f on A_n and $d_n(f, K)$ is the error of best polynomial approximation to f on K.

Mild regularity of f and $K \Longrightarrow$ convergence of DLS operator.

11

WAMs work nicely under some fundamental operations.

- Stability under affine mappings, unions and tensor products.
- "Weak" stability under polynomial mappings.
- Supersets of WAMs are WAMs.
- Good interpolation sets are WAMs.

Discrete Extremal Sets - Bos, De Marchi, Sommariva and Vianello

Starting from a WAM one can extract by standard Numerical Linear Algebra

- AFP Approximate Fekete Points
- ALS Approximate Leja Sequences

such that

- Unisolvent sets.
- Slowly increasing Lebesgue constants.
- Same asymptotic (in measure theoretic sense) of true Fekete.

Properties (3)

$$A_n \dashrightarrow \mu_n := \frac{1}{\operatorname{Card} A_n} \sum_{i=1}^{\operatorname{Card} A_n} \delta_{x_i}$$

Asimptotically Bernstein Markov sequence of measures

If there exists $\{M_n\}_{\mathbb{N}}$ such that for any $p\in \mathscr{P}_n(\mathbb{C}^d)$ we have

$$\|p\|_{\mathcal{K}} \leq M_n \|p\|_{L^2_{\mu}}$$
$$\limsup_n (M_n)^{\frac{1}{n}} = 1.$$

Then $\{\mu_n\}_{\mathbb{N}}$ is an **as. BM** sequence of measures for *K*.

For measure arising from meshes we can choose $M_n := C_n \cdot \text{Card } A_n$.

Asimptotically B-M sequences of measures can be thought as a partial generalization of **Optimal Measures** introduced by Bloom Bos Levenberg and Waldron [1].

Proposition

Let μ_n be a as. BM sequence for the compact non-pluripolar set K, then

$$\limsup_{n} \left(G_{n}^{\mu_{n}} \right)^{\frac{1}{\alpha_{n}}} = \delta(K).$$
(1)

Where G_n^{ν} is the Gram matrix of $(\mathscr{P}_n^d, \langle \cdot, \cdot \rangle_{L^2_{\nu}})$, $\alpha_n := \frac{d+1}{dNn}$ and

$$\delta(\mathcal{K}) := \lim_{n} \max_{\zeta \in \mathcal{K}^N} |\mathsf{VDM}(\zeta)|^{rac{1}{lpha_n}}$$

is the transfinite diameter of K.

WMA - VR 2013 - 10 of 45

Let
$$\{q_j^{(n)}\}_{j=1,2,...,N}$$
 be an o.n.b. of $\mathscr{P}_n \cap L^2_{\mu_n}$, the **Bergman function** is

$$B_n^{\mu_n}(z) := \sum_{j=1}^N \left| q_j^{(\mu_n)}(z) \right|^2.$$

Thanks to (1) Strong Bergman Asymptotic applies.

Theorem.

Let A_n be a WAM for the compact non-pluripolar set $K \subset \mathbb{C}^d$ and μ_n as above then we have

$$\frac{B_n^{\mu_n}}{N}\mu_n \rightharpoonup^* \mu_K,$$

the pluripotential equilibrium measure of K.

WMA - VR 2013 - 11 of 45

If A_n is an **optimal admissible mesh**, then $\frac{B_n^{\mu_n}}{N}$ is a bounded sequence of function, thus we can prove

Theorem [P.]

In the above hypothesis suppose that $\mu_n \rightharpoonup^* \mu$, then

$$D^-_{\mu}(\mu_{\mathcal{K}}) \geq \liminf_n \frac{B^{\mu_n}_n}{N}.$$

Where ${\cal D}_{\mu}^{-}$ is the lower Lebesgue Radon Nikodym derivative. Unfortunately to prove

$$D_{\mu}(\mu_{K}) = \liminf_{n} \frac{B_{n}^{\mu_{n}}}{N}$$

we need further assumptions... (e.g. being $\frac{B_n^{\mu_n}}{N}$ decreasing.)

WMA - VR 2013 - 12 of 45

Two questions naturally arise..

Question 1

How to build AMs or even WAMs for a given K?

Question 2

How to build Optimal AMs for a given K?

WMA - VR 2013 - 13 of 45

One should choose/combine different results requiring K to have

particular shape and/or smoothness

- Ehlich-Zeller: Double degree Chebyshev points for the interval are AM of constant 2.
- shape: Use symmetries of K, polar coordinates, tensors, quadratic maps..
- **Calvi-Levenberg** used Multivariate Markov Inequality.
- Kroó: Star shaped bounded domains with smooth Minkowski functional + Bernstein Inequality.
- **P. and Vianello** Mapping and Perturbing WAMs and AMs.
- Plesniak improve for sub-analytic sets.
- **Kroó** result on Analytic Graph domains.
- Bloom Bos Calvi and Levenberg existence for L-regular sets.

Building AM by Markov Inequality

Markov Inequality (MI)

The set K is preserving a Markov Inequality of constant M_K and exponent r if

$$\| |\nabla p| \|_{\mathcal{K}} \leq M_{\mathcal{K}} n^{r} \| p \|_{\mathcal{K}}. \ \forall p \in \mathscr{P}^{n}(\mathbb{R}^{d})$$

MI holds under mild assumptions on K, typically r = 2.

Idea: take any equally spaced grid having step size $\mathcal{O}(n^{-r})$.

Calvi Levenberg (2008)

If $K \subset \mathbb{R}^d$ preserves a Markov Inequality of exponent r, then it has a AM with $\mathcal{O}(n^{rd})$ points.

Using the classical Bernstein Inequality on segments and star-shaped property it has been proved

Kroó (2011)

Let $K \subset \mathbb{R}^d$ be compact and star-shaped with $\mathscr{C}^{1+\alpha}$ smooth Minkowski functional. Then K has an AM with $\mathcal{O}(n^{\frac{2d+\alpha-1}{\alpha+1}})$ points.

Perturbation Result P. and Vianello

Let $K \subset \mathbb{C}^d$ be a polynomially convex and Markov compact set. If that there exists a sequence of compact sets $\{K_j\}_{\mathbb{N}}$ such that

• there exists $A_{n,j}$ (W)AM for K_j having constant $C_{n,j}$ and

•
$$d_{\mathscr{H}}(K, K_j) \leq \epsilon_j$$
 where $\limsup_{j \in j} \epsilon_j C_{n,j} = 0 \ \forall n$.

Then K has a (W)AM.

Mapping Result P. and Vianello

(W)AMs are "weakly" stable under smooth mapping: for any holomorphic map $\varphi : Q \to K$ there exists $j_{\varphi}(n) = \mathcal{O}(\log n)$ such that $B_n := \varphi(A_{n:j_{\varphi}(n)})$ is a WAM for K.

AM having Card $A_n = O((n \log n)^d)$ as the ones above are termed **nearly optimal.**

- W. Plesniak showed that Piazzon-Vianello results in particular apply to any *compact sub-analytic set* that hence has a nearly optimal AM.
- A. Kroó proved that analytic graph domains have a nearly optimal AM
- Bloom, Bos, Calvi and Levenberg [2] showed (non constructively) that any *L-regular* compact set has.

Question 2

How to build Optimal AMs for a given K?

- Polytopes, Balls have Optimal AMs by 1dim techniques, symmetry or thanks to the particular shape and finite unions.
- The Kroó result applies to **star-shaped** \mathscr{C}^2 smooth sets.
- The Kroó result has been refined: if *d* = 2, then *C*² smoothness can be replaced by uniform interior ball condition.

What about sets with a more general shape?

Idea: Smoothness may completely replace Particular Shape.

Ļ

P. 2013

Let Ω be a bounded $\mathscr{C}^{1,1}$ domain in \mathbb{R}^d , then there exists an optimal admissible mesh for $K := \overline{\Omega}$.

WMA - VR 2013 - 20 of 45

Tools I

Bernstein Inequality

Let $p \in \mathscr{P}^n(\mathbb{R})$, then for any $a < b \in \mathbb{R}$ we have

$$\left|\frac{dp}{dx}(x)\right| \le \frac{\mathsf{n}}{\sqrt{(x-a)(b-x)}} \|p\|_{[a,b]}.$$
 (BI)

and thus
$$\left|\frac{dp}{dx}(\frac{a+b}{2})\right| \leq \frac{2\mathbf{n}}{(b-a)} \|p\|_{[a,b]}.$$

Markov Tangential Inequality

Let $p \in \mathscr{P}^n(\mathbb{R}^d)$, then for any $x_0 \in \mathbb{R}^d$, r > 0 and $v \in \cap \mathcal{T}_x \partial B(x_0, r)$, |v| = 1 we have

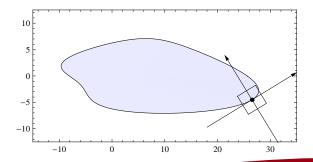
$$\left|\frac{dp}{dv}(x)\right| \le \frac{\mathsf{n}}{r} \|p\|_{B(x_0,r]}.$$
 (MTI)

WMA - VR 2013 - 21 of 45

Tools II

$\mathscr{C}^{1,1}$ domains

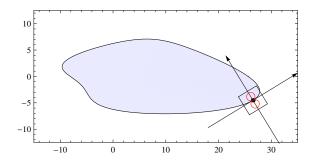
 $\Omega \subset \mathbb{R}^d$ domain whose boundary is locally the graph of a $\mathscr{C}^{1,1}$ function of controlled norm. If Ω is bounded, then all the parameters involved in this definition can be chosen uniformly.



WMA - VR 2013 - 22 of 45

Geometric Characterization

Bounded $\mathscr{C}^{1,1}$ domains are characterized by the **uniform double** sided ball condition.

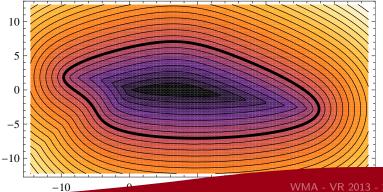


WMA - VR 2013 - 23 of 45

Tools IV

Oriented Distance Function

$$b_{\Omega}(x) := \inf_{y \in \overline{\Omega}} |x - y| - \inf_{z \in \complement\Omega} |x - z|$$



WMA - VR 2013 - 24 of 45

Regularity Properties of $b_{\Omega}(\cdot)$

If Ω is a bounded $\mathscr{C}^{1,1}$ domain, then there exists $\bar{\delta}$ such that for any $0<\delta<\bar{\delta}$ we have

- The metric projection on the boundary $x \mapsto \pi_{\partial\Omega}(x)$ is single valued on U_{δ} where U_{δ} is a δ -tubular neighborhood of $\partial\Omega$.
- $b_{\Omega} \in \mathscr{C}^{1,1}(U_{\delta}).$

•
$$abla b_\Omega(x) = rac{x - \pi_{\partial\Omega}(x)}{b_\Omega(x)}
eq 0$$
 in U_δ .

- $\nabla b_{\Omega}(x)$ defines the outer normal unit vector field w.r.t. Ω .
- Differentiability across the boundary.
- We can take $\overline{\delta}$ as the radius of the ball.
- Level sets of b_{Ω} are $\mathscr{C}^{1,1}$ manifolds.

Bound normal derivatives of polynomials by a **modified Bernstein Inequality** along segments of metric projection. Thanks to boundary regularity.

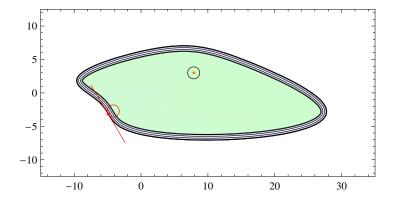
₽

Find a **norming set** for $\overline{\Omega}$: by union of $m_n = \mathcal{O}(n)$ hypersurfaces which are **level sets of** b_{Ω} and $K_{\delta} := \{x \in \overline{\Omega} : |b_{\Omega}(x)| \ge \delta\}$

$$\|p\|_{\mathcal{K}} \leq 2 \max\left\{\|p\|_{\mathcal{K}_{\delta}}, \|p\|_{\cup_{i=0}^{m_{n}}\Gamma^{i}}
ight\}. \ \forall p \in \mathscr{P}^{n}(\mathbb{R}^{d})$$

WMA - VR 2013 - 26 of 45

construction



WMA - VR 2013 - 27 of 45

Bound any directional derivative of polynomials by a **modified** Bernstein Inequality holding in K_{δ} .

\Downarrow

Find a weak norming set for K_{δ} : w.r.t. $\overline{\Omega}$ by a grid mesh Z_n , of stepsize $\mathcal{O}(n^{-1})$ i.e.

$$\|p\|_{\mathcal{K}_{\delta}} \leq \|p\|_{Z_n} + \frac{1}{\lambda} \|p\|_{\overline{\Omega}} \ \lambda > 2. \ \forall p \in \mathscr{P}^n(\mathbb{R}^d)$$

Card
$$Z_n = \mathcal{O}(n^d)$$

WMA - VR 2013 - 28 of 45

Bound tangential derivatives of polynomials on $\Gamma^i s$ by the combination of

- Regularity of $\Gamma^i s \Rightarrow$ Ball property.
- Markov Tangential Inequality

\Downarrow

Find weak norming sets for $\bigcup_{i=0}^{m} \Gamma^{i}$ w.r.t. $\overline{\Omega}$ by the union of geodesic meshes $Y_{n}^{i} \subset \Gamma^{i}$ having geodesic fill distance $\mathcal{O}(n^{-1})$

$$\|p\|_{\cup_{i=0}^{m_n}\Gamma^i} \le \|p\|_{Y_n^i} + \frac{1}{\lambda} \|p\|_{\overline{\Omega}} \ \lambda > 2. \ \forall p \in \mathscr{P}^n(\mathbb{R}^d)$$

Card
$$\cup_{i=0}^{m_n} \Gamma^i = m_n \mathcal{O}(n^{d-1}) = \mathcal{O}(n^d).$$

WMA - VR 2013 - 29 of 45

Finally we set

$$A_n := Z_n \cup \left(\cup_{i=0}^{m_n} \Gamma^i \right)$$

and the inequalities above read as

$$\begin{split} \|p\|_{\overline{\Omega}} &\leq 2\|p\|_{A_n} + \frac{2}{\lambda}\|p\|_{\overline{\Omega}} \ \forall p \in \mathscr{P}^n(\mathbb{R}^d) \\ & \Downarrow \\ \|p\|_{\overline{\Omega}} &\leq \frac{2\lambda}{\lambda - 2}\|p\|_{A_n} \ \forall p \in \mathscr{P}^n(\mathbb{R}^d) \\ \mathsf{Card}(A_n) &= \mathcal{O}(n^d). \end{split}$$

WMA - VR 2013 - 30 of 45

We conclude by recalling the open problem

Conjecture Bloom Bos Calvi and Levenberg

If $K \subset \mathbb{C}^d$ is compact and L-regular then there exists c := c(K) such that any array of degree c(K)n Fekete points forms an Admissible mesh for K, that hence is Optimal.

References

T. BLOOM, L. BOS, N. LEVENBERG, AND S. WALDRON.

On convergence of optimal measures. *Constr. Approx*, **32**:159–179, 2010.

T. BLOOM, L. P. BOS, J.P. CALVI, AND N. LEVENBERG.

Interpolation and approximation in \mathbb{C}^n . Annales Polonici Mathematici, to appear. http://arxiv.org/abs/1111.6418.

J.P. CALVI AND N. LEVENBERG.

Uniform approximation by discrete least squares polynomials. *JAT*, **152**:82–100, 2008.

A. Kroó.

On optimal polinomial meshes. *JAT*, **163**:1107–1124, 2011.

L.Bos, S. DE MARCHI, A.SOMMARIVA, AND M.VIANELLO.

Weakly admissible meshes and discrete extremal sets. Numer. Math. Theory Methods Appl., 4(1):1-12, 2011.

F. PIAZZON.

Optimal polynomial admissible meshes on compact subsets of \mathbb{R}^d with mild boundary regularity. preprint submitted to JAT, arXiv:1302.4718, 2013.

F. PIAZZON AND M. VIANELLO.

Analytic transformation of admissible meshes. *East J. on Approx*, **16**:389–398, 2010(4).

F. PIAZZON AND M. VIANELLO.

Small perturbations of admissible meshes. Appl. Anal., pubblished online 18 ion of the second

WMA - VR 2013 - 32 of 45

Thank you and...

WMA - VR 2013 - 33 of 45

more details....

WMA - VR 2013 - 34 of 45

Step 1 we build a norming set.

We pick $\delta < r$ and work out a modification of (BI) of the form

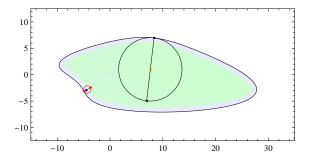
 $|D_S p(x)| \leq n \varphi_{\delta}(b_{\Omega}(x)) \|p\|_{\Omega}$

Where S is a segment of metric projection, φ_{δ} arises as follows..

WMA - VR 2013 - 35 of 45

Proof (2)

$$\varphi_{\delta}(\xi) := \begin{cases} \frac{1}{\sqrt{\xi(\delta-\xi)}}, & \text{if } \xi < \delta\\ \frac{1}{\xi}, & \text{otherwise} \end{cases}.$$
(2)

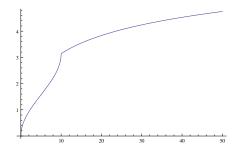


WMA - VR 2013 - 36 of 45

Proof (3)

Then we define a function by integration along segments of metric projection

$$x\mapsto F_{n,\delta}(x):=n\int_0^{-b_\Omega(x)}\varphi_\delta(\xi)d\xi$$



and consider equally spaced level sets

$$\Gamma^{i}_{n,\delta} := F_{n,\delta}(a^{i}) \ i = 0, 1, \dots m_n = \mathcal{O}(n),$$

where

$$a^{i} = 0, \dots, \max_{\Omega} F_{n,\delta}$$

$$1/2 \geq a^{i+1} - a^{i}.$$

Therefore we have

$$\begin{split} \|p\|_{\overline{\Omega}} &\leq \|p\|_{\cup_{i}\Gamma^{i}_{n,\delta}} + 1/2\|p\|_{\overline{\Omega}} \Rightarrow \\ &\leq 2\|p\|_{\cup_{i}\Gamma^{i}_{n,\delta}}. \end{split}$$

WMA - VR 2013 - 38 of 45

For some technical reasons we switch

$$\cup_{i=0}^{m_n} \Gamma^i_{n,\delta} = \cup_{i=0}^{\tilde{m}_n} \Gamma^i_{n,\delta} \uplus \cup_{i=\tilde{m}_n+1}^{m_n} \Gamma^i_{n,\delta}$$

where the second set is a subset of

$$\mathcal{K}_{\delta} := \{x \in \overline{\Omega} : |b_{\Omega}(x)| \geq \delta\}$$

and then we can replace it by K_{δ} itself.

$$\|p\|_{\overline{\Omega}} \leq 2 \max\{\|p\|_{\cup_i^{\widetilde{m}_n} \Gamma_{n,\delta}^i}, \|p\|_{\mathcal{K}_{\delta}}\}.$$

WMA - VR 2013 - 39 of 45

Step 2: finding a norming mesh Z_n for K_{δ} .

we use (BI) jointly with $B(x, \delta) \subset \overline{\Omega} \ \forall x \in K_{\delta}$ to get

$$|
abla p(x)| \leq rac{n}{\delta} \|p\|_{\overline{\Omega}}.$$

Thus we can build a suitable Z_n by a grid of step size $\frac{\delta}{4n} = \mathcal{O}(n^{-1})$ and hence cardinality

$$\mathsf{Card}\, Z_n = \mathcal{O}(n^d)$$

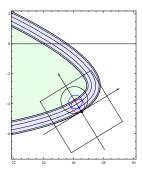
obtaining

$$\|p\|_{\mathcal{K}_{\delta}} \leq \|p\|_{Z_n} + rac{1}{4}\|p\|_{\overline{\Omega}}$$

WMA - VR 2013 - 40 of 45

Step 3: finding a norming mesh Y_n for $\bigcup_{i=0}^{\tilde{m}_n} \Gamma_{n,\delta}^i$

- Any $\Gamma_{n,\delta}^i$ is a $\mathscr{C}^{1,1}$ manifold.
- we can pick a tangent ball of radius $\delta/2$ lying in Ω .



WMA - VR 2013 - 41 of 45

We can bound any tangential derivative by $\ensuremath{\textbf{MTI}}$ applied to the ball to get

$$\left|\frac{dp}{dv}(x)\right| \leq \frac{n}{\delta/2} \|p\|_{\overline{\Omega}} \,\forall v \in \mathbb{S}^{d-1} \cap \mathcal{T}_x \Gamma^i_{n,\delta}$$

Therefore if we pick a mesh Y_n^i on each $\Gamma_{n,\delta}^i$ having controlled **geodesic fill distance** $h^i = \mathcal{O}(n^{-1})$ we get

$$\|p\|_{\cup_i^{\widetilde{m}_n}\Gamma_{n,\delta}^i} \leq \|p\|_{\cup_i Y_n^i} + \frac{1}{4}\|p\|_{\overline{\Omega}}.$$

WMA - VR 2013 - 42 of 45

The regularity of $\Gamma_{n,\delta}^i$'s ensures that we can produce suitable $Y_{n,\delta}^i$ using $\mathcal{O}(n^{d-1})$ points, since we have $m_n = \mathcal{O}(n)$ level set $\Gamma_{n,\delta}^i$ we have

$$\mathsf{Card}\; Y_{n,\delta} := \mathsf{Card} \cup_i Y_{n,\delta}^i = \mathcal{O}(n^d)$$

WMA - VR 2013 - 43 of 45

Step 4: joining all the inequalities.

Finally putting all together we get $\|p\|_{\overline{\Omega}} \leq 2\left(\|p\|_{Y_{n,\delta}\cup Z_n} + \frac{1}{4}\|p\|_{\overline{\Omega}}\right)$ and thus

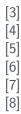
$$\|p\|_{\overline{\Omega}} \leq 4 \left(\|p\|_{Y_{n,\delta} \cup Z_n}\right) \text{ where } (3)$$

Card $(Y_{n,\delta} \cup Z_n) = \mathcal{O}(n^d)$ (4)

That is optimal.

WMA - VR 2013 - 44 of 45

cit



WMA - VR 2013 - 45 of 45