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Setting and Notation

K compact set in C or Cn

‖f‖K . = maxK |f |.

µ positive finite Borel measure, supp µ ⊆ K . µ ∈ M+(K).

Pm space of complex polynomials of degree at most m.

Nm := dim Pm =
(
n+m

m

)
.

Pm
µ Hilbert space

(
Pm, 〈·, ·〉L2

µ

)
.

Since Pm is a finite dimensional TVS all norms are comparable.
In particular there exists 0 < C(µ,K ,m) < ∞ such that

1√
µ(K)

‖p‖L2
µ
≤ ‖p‖K ≤ C(µ,K ,m)‖p‖L2

µ
∀p ∈Pm(K).
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Definitions

The Bernstein Markov Property is a quantitative requirement on
the asymptotic of the m−th root of the comparability constant
C(µ,K ,m).

Bernstein Markov Property (BMP)

Let K ⊂ C be compact and µ ∈ M+(K) then the (K , µ) is said to
enjoy the Bernstein Markov Property if exists a sequence
{Cm}m∈N such that

‖p‖K ≤ Cm‖p‖L2
µ
∀p ∈Pm(K),

lim sup
m

C1/m
m ≤ 1.

(1)
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Definitions ..continued

Several variants have been introduced

Weighted BMP Given a weight function w : K → [0,+∞[ one
looks at ‖pwm‖K and ‖pwm‖L2

µ
for p ∈Pm.

Strong BMP If for any w ∈ C(K) (K , µ,w) has the WBMP.

Rational BMP For a given compact set P,K ∩ P = ∅ we set

Rm(P) := {pm/qm , pm, qm ∈Pm(K), Z(qm) ⊂ P},

then we compare ‖r‖K and ‖r‖L2
µ

for r ∈ Rm(P).

Weighted Rational and Strong Rational BMP...
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Related studies

The first steps are made by Szego, Faber, Erdós and Turan.

Classical weight on the real line.

Leja L∗ condition.

Systematic study for general measures in the plane erly 90’s
Stahl, Totik [10]. Regular measures.

Determining measure: Widom and Ullman.

Here we follow the approach of Berman,Boucksom, Nymstrom [7],
Bloom and Levenberg [3], which is more adapted to the svc
context and pluripotential theory.
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Some Examples

1 K = ∆, µ = δ0. This is not a BM couple.
It should be that µ defines at least a norm..

2 K := ∆ ×∆, supp µ = S(K) the Śilov boundary and
µ := ds × ds. Instead is. Monomials are orthonormal..

‖p‖K = |p(z0)| ≤

√ ∑
|α|≤m

|cα|2
√ ∑
|α|≤m

|z0|
2α =

√
(m + 2)(m + 1)

2
‖p‖L2

µ

µ should be thick on S(K)..

3 It has been shown that there exists a BM measure for ∆ with
discrete carrier in the interior of the disk. In general we find
out only sufficient conditions.

4 The measure with the weight w(z) = exp(−|z|2) makes
(∆, ds,w) not a WBM triple.
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Bergman Function

Pm
µ := (Pm, 〈·; ·〉L2

µ (K)) is a reproducing kernel Hilbert space,
being the kernel

Kµ
m(z, ζ) :=

∑
|α|≤m

qα(z, µ)q̄α(ζ, µ). {qα}|α|≤m o.n.b.

Bµ
m(z) := Km(z, z) = 〈Kµ

m(z, ζ); Kµ
m(z, ζ)〉L2

µ(ζ)
(K).

Let δz ∈ L(Pm
µ ,C) be the point-wise evaluation, for any z ∈ K

we have ‖δz‖ =
√

Bµ
m(z).

The best possible constant in (1) is
√
‖Bµ

m‖K .
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The ddc operator

For an open set Ω ⊂ Cn and u ∈ C2(Ω) one defines first
d := (∂ + ∂̄) and dc := i(−∂ + ∂̄),

ddc u := 2i
n∑

j,k=1

∂2u
∂zj∂z̄k

(z)dzj ∧ dz̄k .

For any plurisubharmonic u we can define by smoothing

ddc u as a positive (1, 1) current

i.e. an element of the dual of the test forms of bidegree
(n − 1, n − 1) such that

ddc u ∧ θ > 0 ∀θ ∈ SP(n−1,n−1)(Ω).
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Defining (ddc)2

Let Ω ⊂ C2 be a domain

1 if u ∈ PSH and θ is a positive (1, 1) form

〈ddc u ∧ θ, ψ〉 := 〈ddc u, θ ∧ ψ〉 ∀ψ ∈ D(n−2,n−2)(Ω) = C∞c (Ω).

2 if u ∈ C2(Ω) then we have ∀ϕ ∈ C∞c (Ω)∫
Ω
ϕ(ddc u)2 =

∫
Ω

u ddc ϕ ∧ ddc u.

. . . but the r.h.s. takes sense even for u ∈ PSH∩L∞loc. . .
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Extending to plurisubharmonic u

Theorem [Chern Levine Nirenberg]

For any K ⊂⊂ Ω there exist C > 0 and compact set L ⊂ Ω \ K such
that ∫

K
(ddc u)n ≤ C‖u‖mL ∀u ∈ C2(Ω).

Combining C.L.N. estimate and

Proposition

Any (p, p) positive current has measure coefficients [6].

Bedford and Taylor find out that
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Monge Ampere Operator

for u ∈ PSH(Ω) ∩ L∞loc one can iteratively define (ddc u)n as a
positive measure by

〈(ddc u)k+1, θ〉 := 〈ddc θ ∧ (ddc u)k , u〉. ∀θ ∈ Dn−k−1,n−k−1(Ω)

Theorem [Bedford Taylor][2]
The operator (ddc)n is continuous w.r.t. the weak ∗ topology under
point-wise converging decreasing sequence of functions.

This is a fully non linear partial diff operator that in the case n = 1
corresponds to the distributional Laplacian.

LATP - 12 of 31



Dirichlet problem

For “nice” compact set K we can solve the Dirichlet problem
(ddc u)n = 0 in Ω := Cn \ K

u ≡q.e. 0 in ∂K

u ∈ L Lelong class.

The unique solution V∗K is said Extremal Function.
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The extremal function

The solution is in the sense of Perron-Bremermann

V∗K (z) := lim sup
ζ→z

(sup{u(ζ) ∈ L , u|K ≤ 0})

If it is continuous the compact set is said Lregular.
By Siciak and Zaharyuta results we have

VK = log ΦK := log+ sup{|p|1/ deg p : ‖p‖K ≤ 1}.

And Bernstein-Walsh-Siciak Inequality follows

|p(z)| ≤ ‖p‖K exp(deg pV∗K (z)).

The measure
µK := (ddc V∗K )n

is said the equilibrium measure.
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Motivations: from Approx. Theory

LS asymptotic. If (K , µ) has the BMP then

lim sup
m

d∞(f ,Pm)1/m =
1
R

(i.e. f ∈ hol({VK < log R}) )

⇓

lim sup
m
‖f −Lmf‖1/mK =

1
R

(here Lm is the LS projection.)

Moreover

lim sup
m
‖f −Lmf‖1/m

L2
µ
≤

1
R
⇒ f ∈ hol({VK < log R}).
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..approx. sol. of Monge-Ampere

m-th roots asymptotic. For regular compact set K if then

(K , µ) has BMP

m

lim
m

1
2m

log Bµ
m = VK loc. uniformly in Cn.
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..probabilistic purposes/interpretation

Free energy asymptotic. If (K , µ) has the BMP then we have

lim sup
m

(∫
. . .

∫ ∣∣∣∣∣VDM
m

(z1, . . . , zNm )

∣∣∣∣∣2 dµ(z1) . . . dµ(zNm )

) n+1
2nmNm

= δ(K)

i.e. the l.h.s. is maximal among {ν ∈ M+(K) : ν(K) = µ(K)}..
This is the main tool for proving

1 Strong Bergman Asymptotic. Bµ
m

Nm
µ ⇀∗ µK .

2 Large Deviation Principle.

..and all these results go straightforward into the weighted setting.
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Mass Density Condition in C

From the example we guess µ should be thick on S(K).. We had
limr→0+ µ(B(z, r))/r = 1 ∀z ∈ S(K).

Theorem [Stahl Totik]

Let µ be positive Borel measure with compact support K = supp µ
in C, suppose that K is a non-polar regular set w.r.t. the Dirichlet
problem for the Laplace operator and there exists t > 0 such that

lim
r→0+

cap
(
{z ∈ K : µ(B(z, r)) > r t }

)
= cap(K).

Then (K , µ) has the BMP.
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Capacity in C

Here cap(K) is the logarithmic capacity of the set K ,

cap(K) := max
ν∈M1(K)

exp
(∫ ∫

log |z − ζ |dν(z)dν(ζ)

)
.

That is the (inverse of the exponential) of the minimum of the
logarithmic energy functional: the variational formulation of the
Dirichlet problem for the Laplacian in C \ K .
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Mass Density Condition in Cn

Theorem [Bloom Levenberg]

Let µ be positive Borel measure with compact support
K := supp µ ⊂ B(0, 1) in Cn, suppose that K is a non-pluripolar
L-regular set and there exists t > 0 such that

lim
r→0+

Cap
(
{z ∈ K : µ(B(z, r)) > r t },B(0, 1)

)
= Cap(K ,B(0, 1)).

(2)
Then (K , µ) has the BMP.

LATP - 20 of 31



Relative Capacity

But here Cap(K ,Ω) is capacity in the non-linear pluripotential
theory in Cn related to the Monge Ampere complex operator,
namely the relative capacity Cap(K ,Ω) w.r.t. a hyperconvex
sup-set Ω of K .

Relative Capacity in Cn

Cap(K ,Ω) := sup
{ ∫

K
(ddc u)n : u ∈ PSH(Ω), 0 ≤ u ≤ 1

}

LATP - 21 of 31



core of the proof

The proof of these results relays on the following facts

(A) The regularity assumption on the set: V∗K is continuous.

(B) Bernstein Walsh Siciak lemma.

|p(z)| ≤ ‖p‖K exp(deg(p)VK (z)). (3)

(C) The following theorem

Capacity Convergence [Bloom Levenberg]

For any sequence of compact subsets of the compact non
pluripolar L−regular set K the following facts are equivalent

(i) limj Cap(Kj ,B(0, 1)) = Cap(K ,B(0, 1)).

(ii) limj VKj = VK locally uniformly in Cn.
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RBM mass density condition

Motivation: LDP for vector energy problems [4].

Theorem [P.]

Let K be a regular non polar compact set in the complex plane,
Ω := C∞ \ K̂ and P ⊂ Ω a compactum. Let µ ∈ M(K), supp µ = K
and suppose there exists a positive t such that

lim
r→0+

cap
(
{z : µ(B(z, r)) ≥ r t }

)
= cap(K). (4)

Then µ enjoys the Bernstein Markov property on K for the rational
functions with poles in P.
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idea of the proof
We replace the Bernstein Walsh Siciak Inequality by∣∣∣rm(z)

∣∣∣ ≤ ‖r‖K exp

 ∑
zj∈Poles(rm)

gΩK (z, zj)

 ∀rm ∈ Rm(K ,P).

Here gΩK (z, zj) is the generalized Green function
We recover a modified capacity convergence result.

Proposition [P.]

Let K ⊂ C be a regular non polar compact set, let ΩK be the unbounded
component of C \ K and P a compact subset of ΩK such that P ∩ K = ∅.
Then there exist a domain D such that K ⊂⊂ D and P ∩ D = ∅, such that
for any sequence {Kj} of compact subsets of K the following are
equivalent (here ΩKj is defined similarly to ΩK ).

lim
j

cap(Kj) = cap(K).

lim
j

gΩj (z, a) =gΩ(z, a) loc. unif. for z ∈ D unif. for a ∈ P.
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Unbounded sets in C

In the case of a closed unbounded set K and an admissible weight
function w : C→ [0,+∞[ can we do something?

Idea:

Compactification, we look to the real sphere.

search for Strong BMP, leads to..

complexification: A := {z ∈ C3 :
∑

z2
j = 1} of the sphere

use Pluripotential Theory for Algebraic Submanifold.

In such a setting the proof of an adapted formulation of sufficient
mass density condition works provided an adapted version of the
capacity convergence result.
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The adapted setting

There is a specific C−linear change of (Rudin) coordinates[8] such
that

A ⊂ {(z,w) ∈ C2 × C : |w |2 ≤ C(1 + |z|2)}.

Sadullaev [9] defined V∗K (·,A) and gived sense to pluripotential
theory on algebraic sets.
Notation: for R >> 1 we use the pseudo-ball

Ω(r) := {(z,w) ∈ A : |z|2 − R < r}.

Ω := Ω(−
√

R2 − 1).
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Capacity convergence on algebr. man.

Theorem [P.]

Let A ⊂ Cn be an algebraic variety of pure dimension m < n,
Areg ⊃ Ω0 ⊃ K where K is a compact L regular nonpluripolar set.
Let {Kj}j∈N be a sequence of compact subsets of K , then the
following are equivalent.

(i) limj Cap(Kj ,Ω) = Cap(K ,Ω).

(ii) V∗Kj
(·,A)→ V∗K (·,A) locally uniformly on A.
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What’s new?

The proof is similar to the original one . . .
if

we provide a modified version of the Capacities Comparison
Theorem of Alexander and Taylor [1].

To do it ,first we re-defined the (modified) Tchebyshev constant as

mν(K) := inf{‖p‖K : p ∈PC(K), deg p ≤ ν, ‖p‖|z|≤1 ≥ 1},

T(K ,A) := inf
ν>0

m1/ν
ν (K).
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Capacities Comparison

Theorem [P.]

Let A be a m-dimensional algebraic variety of Cn, such that for an R > 1
Areg ⊃ Ω0, then for any r < −

√
R2 − 1 there exist two positive constants

c1, c2 such that for any compact K ⊂ Ωr

exp

− (
c1

Cap(K ,Ω)

)1/m ≥ T(K ,A),

T(K ,A) ≥ exp
(
−

c2

Cap(K ,Ω)

)
.

In particular for any E ⊆ K we have

‖VE(z,A)‖Ω ≤
c2

Cap(E,Ω)
.
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Element of the proof

Among other issue we need a further sharpening of Chern Levine

Nirenberg Estimate for u ≤ 0

CLN
∫

K (ddc u)n ≤ C‖u‖mL ∀u ∈ C2(B)

AT
∫

K (ddc u)m ≤ C(−u(0))‖u‖m−1
B u ∈ PSH(B)

New
∫

K (ddc u)m ≤ C
∫

Ω(z0,r)
−u (ddc ρ)m

‖u‖m−1
Ω u ∈ PSH(Ω)

Ω ⊂ Ω(z0, r) ⊂ A.

For the case of the relative extremal function the r.h.s. integral can
be dominated by the same function for the projected set, i.e.∫

Ω(z0,r)
−UK ,Ω(z0,r (ddc ρ)m

≤ C ′(r)
(
−UπK ,BCm (z0)

)
.

The main tool here is the Leelong Jensen Formula proven by
Demailly [5].
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.

Thank you for the attention.
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