The Bernstein Markov Property and Applications to Pluripotential Theory

Sèminaire Analyse & Gèomètrie CMI Marseille, May 14, 2014

Federico Piazzon

Department of Mathematics. Doctoral School in Mathematical Sciences, Applied Mathematics Area

Università degli Studi di Padova

1 First definitions

2 Examples

- 3 The Bergman Function
- 4 Some notions from Pluripotential Theory
- 5 Motivations
- 6 Best Known sufficient conditions
- 7 Rational BMP sufficient condition
- 8 Ongoing research: BMP on algebraic sets

- K compact set in \mathbb{C} or \mathbb{C}^n
- $||f||_{K}$. = max_K |f|.
- μ positive finite Borel measure, supp $\mu \subseteq K$. $\mu \in \mathcal{M}_+(K)$.
- \mathcal{P}^m space of complex polynomials of degree at most m.

•
$$N_m := \dim \mathscr{P}^m = \binom{n+m}{m}.$$

• \mathscr{P}^m_{μ} Hilbert space $(\mathscr{P}^m, \langle \cdot, \cdot \rangle_{L^2_{\mu}}).$

Since \mathscr{P}^m is a finite dimensional TVS all norms are comparable. In particular there exists $0 < C(\mu, K, m) < \infty$ such that

$$\frac{1}{\sqrt{\mu(K)}} \|p\|_{L^2_{\mu}} \leq \|p\|_{K} \leq C(\mu, K, m) \|p\|_{L^2_{\mu}} \quad \forall p \in \mathscr{P}^m(K).$$

The Bernstein Markov Property is a quantitative requirement on the asymptotic of the *m*-th root of the comparability constant $C(\mu, K, m)$.

Bernstein Markov Property (BMP)

Let $K \subset \mathbb{C}$ be compact and $\mu \in \mathcal{M}_+(K)$ then the (K, μ) is said to enjoy the **Bernstein Markov Property** if exists a sequence $\{C_m\}_{m \in \mathbb{N}}$ such that

$$|p||_{K} \leq C_{m} ||p||_{L^{2}_{\mu}} \quad \forall p \in \mathscr{P}^{m}(K),$$
$$\limsup_{m} C_{m}^{1/m} \leq 1.$$
(1)

Several variants have been introduced

- Weighted BMP Given a weight function $w : K \to [0, +\infty[$ one looks at $||pw^m||_K$ and $||pw^m||_{L^2_u}$ for $p \in \mathscr{P}^m$.
- **Strong BMP** If for any $w \in C(K)$ (K, μ, w) has the WBMP.
- **Rational BMP** For a given compact set $P, K \cap P = \emptyset$ we set

$$\mathscr{R}^m(P) := \{p_m/q_m, p_m, q_m \in \mathscr{P}^m(K), Z(q_m) \subset P\},\$$

then we compare $||r||_{\mathcal{K}}$ and $||r||_{L^2_{\mu}}$ for $r \in \mathscr{R}^m(P)$. Weighted Rational and Strong Rational BMP...

- The first steps are made by Szego, Faber, Erdós and Turan.
- Classical weight on the real line.
- Leja L^* condition.
- Systematic study for general measures in the plane erly 90's Stahl, Totik [10]. Regular measures.
- Determining measure: Widom and Ullman.

Here we follow the approach of Berman,Boucksom, Nymstrom [7], Bloom and Levenberg [3], which is more adapted to the svc context and pluripotential theory.

Some Examples

1 $K = \overline{\Delta}, \mu = \delta_0$. This is not a BM couple. It should be that μ defines at least a norm.

2 $K := \overline{\Delta} \times \overline{\Delta}$, supp $\mu = S(K)$ the Śilov boundary and $\mu := ds \times ds$. Instead is. Monomials are orthonormal...

$$||p||_{\mathcal{K}} = |p(z_0)| \le \sqrt{\sum_{|\alpha| \le m} |c_{\alpha}|^2} \sqrt{\sum_{|\alpha| \le m} |z_0|^{2\alpha}} = \sqrt{\frac{(m+2)(m+1)}{2}} ||p||_{L^2_{\mu}}$$

 μ should be thick on S(K)..

- It has been shown that there exists a BM measure for $\overline{\Delta}$ with discrete carrier in the interior of the disk. In general we find out only sufficient conditions.
- 4 The measure with the weight $w(z) = \exp(-|z|^2)$ makes $(\overline{\Delta}, ds, w)$ not a WBM triple.

 $\mathscr{P}^m_\mu := (\mathscr{P}^m, \langle \cdot; \cdot \rangle_{L^2_\mu(K)})$ is a reproducing kernel Hilbert space, being the kernel

$$\mathcal{K}^{\mu}_{m}(z,\zeta) := \sum_{|lpha| \leq m} q_{lpha}(z,\mu) ar{q}_{lpha}(\zeta,\mu). \ \{q_{lpha}\}_{|lpha| \leq m} ext{ o.n.b.}$$

$$B_m^{\mu}(z) := K_m(z,z) = \langle K_m^{\mu}(z,\zeta); K_m^{\mu}(z,\zeta) \rangle_{L^2_{\mu(\zeta)}(K)}.$$

Let $\delta_z \in L(\mathscr{P}^m_\mu, \mathbb{C})$ be the point-wise evaluation, for any $z \in K$ we have $||\delta_z|| = \sqrt{B^{\mu}_m(z)}$.

The best possible constant in (1) is $\sqrt{||B_m^{\mu}||_{\kappa}}$.

The dd^c operator

For an open set $\Omega \subset \mathbb{C}^n$ and $u \in C^2(\Omega)$ one defines first $d := (\partial + \overline{\partial})$ and $d^c := i(-\partial + \overline{\partial})$,

$$\mathrm{dd}^{\mathsf{c}} u := 2i \sum_{j,k=1}^{n} \frac{\partial^2 u}{\partial z_j \partial \overline{z}_k}(z) dz_j \wedge d\overline{z}_k.$$

For any *plurisubharmonic u* we can define by smoothing

 $dd^{c} u$ as a positive (1, 1) current

i.e. an element of the dual of the test forms of bidegree (n-1, n-1) such that

$$\mathrm{dd}^{\mathsf{c}}\, u \wedge \theta > 0 \ \, \forall \theta \in SP^{(n-1,n-1)}(\Omega).$$

Let $\Omega \subset \mathbb{C}^2$ be a domain

1 if $u \in PSH$ and θ is a positive (1, 1) form

$$\langle \mathsf{dd}^{\mathsf{c}} \, u \wedge \theta, \psi \rangle := \langle \mathsf{dd}^{\mathsf{c}} \, u, \theta \wedge \psi \rangle \ \forall \psi \in \mathcal{D}^{(n-2,n-2)}(\Omega) = C^{\infty}_{\mathsf{c}}(\Omega).$$

2 if $u \in C^2(\Omega)$ then we have $\forall \varphi \in C^{\infty}_c(\Omega)$

$$\int_{\Omega} \varphi (\mathrm{dd}^{\mathrm{c}} \, u)^2 = \int_{\Omega} u \, \mathrm{dd}^{\mathrm{c}} \, \varphi \wedge \mathrm{dd}^{\mathrm{c}} \, u.$$

... but the r.h.s. takes sense even for $u \in \mathsf{PSH} \cap L^{\infty}_{loc}$...

Theorem [Chern Levine Nirenberg]

For any $K \subset \Omega$ there exist C > 0 and compact set $L \subset \Omega \setminus K$ such that

$$\int_{K} (\mathrm{dd}^{\mathrm{c}} \, u)^{n} \leq C ||u||_{L}^{m} \ \forall u \in C^{2}(\Omega).$$

Combining C.L.N. estimate and

Proposition

Any (p, p) positive current has measure coefficients [6].

Bedford and Taylor find out that

Monge Ampere Operator

for $u \in \mathsf{PSH}(\Omega) \cap L^{\infty}_{\mathsf{loc}}$ one can iteratively define $(\mathsf{dd}^{\mathsf{c}} u)^n$ as a positive measure by

 $\langle (\mathsf{dd}^{\mathsf{c}} u)^{k+1}, \theta \rangle := \langle \mathsf{dd}^{\mathsf{c}} \theta \wedge (\mathsf{dd}^{\mathsf{c}} u)^{k}, u \rangle. \ \forall \theta \in \mathcal{D}^{n-k-1,n-k-1}(\Omega)$

Theorem [Bedford Taylor][2]

The operator $(dd^c)^n$ is continuous w.r.t. the weak * topology under point-wise converging decreasing sequence of functions.

This is a fully non linear partial diff operator that in the case n = 1 corresponds to the distributional Laplacian.

For "nice" compact set K we can solve the Dirichlet problem

 $\begin{cases} (\mathrm{dd}^{\mathrm{c}} \, u)^n = 0 & \text{ in } \Omega := \mathbb{C}^n \setminus K \\ u \equiv_{\mathrm{q.e.}} 0 & \text{ in } \partial K \\ u \in \mathcal{L} \text{ Lelong class.} \end{cases}$

The unique solution V_{K}^{*} is said **Extremal Function**.

The solution is in the sense of Perron-Bremermann

$$V_{K}^{*}(z) := \limsup_{\zeta \to z} \left(\sup\{u(\zeta) \in \mathcal{L} \ , \ u|_{K} \leq 0 \} \right)$$

If it is continuous the compact set is said \mathcal{L} **regular**. By Siciak and Zaharyuta results we have

$$V_{\mathcal{K}} = \log \Phi_{\mathcal{K}} := \log^{+} \sup\{|p|^{1/\deg p} : \|p\|_{\mathcal{K}} \le 1\}.$$

And Bernstein-Walsh-Siciak Inequality follows

$$|p(z)| \leq ||p||_{\mathcal{K}} \exp(\deg pV_{\mathcal{K}}^*(z)).$$

The measure

$$\mu_{K} := (\mathsf{dd^{c}} \, V_{K}^{*})^{n}$$

is said the equilibrium measure.

LATP - 14 of 31

LS asymptotic. If (K, μ) has the BMP then

$$\limsup_{m} d_{\infty}(f, \mathscr{P}^{m})^{1/m} = \frac{1}{R} (\text{i.e. } f \in hol(\{V_{K} < \log R\}))$$

$$\downarrow$$

$$\lim_{m} \sup_{m} ||f - \mathscr{L}_{m}f||_{K}^{1/m} = \frac{1}{R} (\text{here } \mathscr{L}_{m} \text{ is the LS projection.})$$
Moreover

$$\limsup_{m} \|f - \mathscr{L}_m f\|_{L^2_{\mu}}^{1/m} \leq \frac{1}{R} \Rightarrow f \in hol(\{V_K < \log R\}).$$

LATP - 15 of 31

• *m*-th roots asymptotic. For regular compact set *K* if then

$$(K,\mu)$$
 has BMP
 $\widehat{}$
 $\lim_{m} \frac{1}{2m} \log B_{m}^{\mu} = V_{K}$ loc. uniformly in \mathbb{C}^{n} .

Free energy asymptotic. If (K, μ) has the BMP then we have

$$\limsup_{m} \left(\int \dots \int \left| \mathsf{VD}_{m}(z_{1}, \dots, z_{N_{m}}) \right|^{2} d\mu(z_{1}) \dots d\mu(z_{N_{m}}) \right)^{\frac{n+1}{2nmN_{m}}} = \delta(K)$$

i.e. the l.h.s. is maximal among $\{v \in \mathcal{M}^+(K) : v(K) = \mu(K)\}$. This is the main tool for proving

1 Strong Bergman Asymptotic. $\frac{B_m^{\mu}}{N} \mu \rightarrow^* \mu_K$. Large Deviation Principle.

.. and all these results go straightforward into the *weighted* setting.

From the example we guess μ should be *thick* on S(K).. We had $\lim_{r\to 0^+} \mu(B(z,r))/r = 1 \ \forall z \in S(K)$.

Theorem [Stahl Totik]

Let μ be positive Borel measure with compact support $K = \text{supp }\mu$ in \mathbb{C} , suppose that K is a non-polar regular set w.r.t. the Dirichlet problem for the Laplace operator and there exists t > 0 such that

$$\lim_{r\to 0^+} \operatorname{cap}\left(\{z\in K: \mu(B(z,r))>r^t\}\right) = \operatorname{cap}(K).$$

Then (K, μ) has the BMP.

Here cap(K) is the logarithmic capacity of the set K,

$$\operatorname{cap}(K) := \max_{\nu \in \mathcal{M}_1(K)} \exp\left(\int \int \log |z - \zeta| d\nu(z) d\nu(\zeta)\right).$$

That is the (inverse of the exponential) of the minimum of the logarithmic energy functional: the variational formulation of the Dirichlet problem for the Laplacian in $\mathbb{C} \setminus K$.

Theorem [Bloom Levenberg]

Let μ be positive Borel measure with compact support $K := \operatorname{supp} \mu \subset B(0, 1)$ in \mathbb{C}^n , suppose that K is a non-pluripolar \mathcal{L} -regular set and there exists t > 0 such that

$$\lim_{r \to 0^+} \operatorname{Cap}(\{z \in K : \mu(B(z, r)) > r^t\}, B(0, 1)) = \operatorname{Cap}(K, B(0, 1)).$$
(2)

Then (K, μ) has the BMP.

But here $\operatorname{Cap}(K, \Omega)$ is capacity in the **non-linear** pluripotential theory in \mathbb{C}^n related to the Monge Ampere complex operator, namely the **relative capacity** $\operatorname{Cap}(K, \Omega)$ w.r.t. a hyperconvex sup-set Ω of K.

Relative Capacity in \mathbb{C}^n

$$\operatorname{Cap}(\mathcal{K},\Omega) := \sup \left\{ \int_{\mathcal{K}} (\operatorname{dd}^{c} u)^{n} : u \in \operatorname{PSH}(\Omega), 0 \le u \le 1 \right\}$$

LATP - 21 of 31

The proof of these results relays on the following facts

- (A) The regularity assumption on the set: V_{κ}^* is continuous.
- (B) Bernstein Walsh Siciak lemma.

$$|p(z)| \le ||p||_{\mathcal{K}} \exp(\deg(p) V_{\mathcal{K}}(z)).$$
(3)

(C) The following theorem

Capacity Convergence [Bloom Levenberg]

For any sequence of compact subsets of the compact non pluripolar \mathcal{L} -regular set K the following facts are equivalent

(i) $\lim_{j} \operatorname{Cap}(K_{j}, B(0, 1)) = \operatorname{Cap}(K, B(0, 1)).$

(ii) $\lim_{j} V_{\kappa_{j}} = V_{\kappa}$ locally uniformly in \mathbb{C}^{n} .

Motivation: LDP for vector energy problems [4].

Theorem [P.]

Let *K* be a regular non polar compact set in the complex plane, $\Omega := \mathbb{C}_{\infty} \setminus \hat{K}$ and $P \subset \Omega$ a compactum. Let $\mu \in \mathcal{M}(K)$, supp $\mu = K$ and suppose there exists a positive *t* such that

$$\lim_{t\to 0^+} \operatorname{cap}\left(\{z: \mu(B(z,r)) \ge r^t\}\right) = \operatorname{cap}(K).$$
(4)

Then μ enjoys the Bernstein Markov property on *K* for the rational functions with poles in *P*.

idea of the proof

We replace the Bernstein Walsh Siciak Inequality by

$$|r_m(z)| \leq ||r||_{\mathcal{K}} \exp\left(\sum_{z_j \in \mathsf{Poles}(r_m)} g_{\Omega_{\mathcal{K}}}(z, z_j)\right) \quad \forall r_m \in \mathscr{R}_m(\mathcal{K}, \mathcal{P}).$$

Here $g_{\Omega_{\kappa}}(z, z_j)$ is the generalized Green function • We recover a modified capacity convergence result.

Proposition [P.]

Let $K \subset \mathbb{C}$ be a regular non polar compact set, let Ω_K be the unbounded component of $\mathbb{C} \setminus K$ and P a compact subset of Ω_K such that $P \cap K = \emptyset$. Then there exist a domain D such that $K \subset D$ and $P \cap \overline{D} = \emptyset$, such that for any sequence $\{K_j\}$ of compact subsets of K the following are equivalent (here Ω_{K_i} is defined similarly to Ω_K).

$$\lim_{j} \operatorname{cap}(K_{j}) = \operatorname{cap}(K).$$

$$\lim_{j} g_{\Omega_{j}}(z, a) = g_{\Omega}(z, a) \text{ loc. unif. for } z \in D \text{ unif. for } a \in P.$$

In the case of a closed unbounded set *K* and an admissible weight function $w : \mathbb{C} \to [0, +\infty[$ can we do something?

Idea:

- **Compactification**, we look to the real sphere.
- search for Strong BMP, leads to..
- **complexification**: $\mathcal{A} := \{z \in \mathbb{C}^3 : \sum z_i^2 = 1\}$ of the sphere
- use Pluripotential Theory for Algebraic Submanifold.

In such a setting the proof of an adapted formulation of sufficient mass density condition works provided an adapted version of the capacity convergence result.

There is a specific $\mathbb{C}-\text{linear}$ change of (Rudin) coordinates[8] such that

$$\mathcal{A} \subset \{(z, w) \in \mathbb{C}^2 \times \mathbb{C} : |w|^2 \le C(1 + |z|^2)\}.$$

Sadullaev [9] defined $V_{K}^{*}(\cdot, \mathcal{R})$ and gived sense to pluripotential theory on algebraic sets.

Notation: for R >> 1 we use the pseudo-ball

$$\Omega(r) := \{(z,w) \in \mathcal{A} : |z|^2 - R < r\}.$$

 $\Omega := \Omega(-\sqrt{R^2-1}).$

Theorem [P.]

Let $\mathcal{A} \subset \mathbb{C}^n$ be an algebraic variety of pure dimension m < n, $\mathcal{A}_{\text{reg}} \supset \Omega_0 \supset K$ where K is a compact \mathcal{L} regular nonpluripolar set. Let $\{K_j\}_{j \in \mathbb{N}}$ be a sequence of compact subsets of K, then the following are equivalent.

(i)
$$\lim_{j} \operatorname{Cap}(K_{j}, \Omega) = \operatorname{Cap}(K, \Omega).$$

(ii) $V^*_{\mathcal{K}_i}(\cdot, \mathcal{A}) \to V^*_{\mathcal{K}}(\cdot, \mathcal{A})$ locally uniformly on \mathcal{A} .

The proof is similar to the original one ... **if** we provide a modified version of the *Capacities Comparison Theorem* of Alexander and Taylor [1].

To do it ,first we re-defined the (modified) Tchebyshev constant as

$$m_{\nu}(K) := \inf\{ \|p\|_{K} : p \in \mathscr{P}_{\mathbb{C}}(K), \deg p \le \nu, \|p\|_{|z|\le 1} \ge 1 \},\$$

$$T(K, \mathcal{A}) := \inf_{\nu > 0} m_{\nu}^{1/\nu}(K).$$

LATP - 28 of 31

Theorem [P.]

Let \mathcal{A} be a *m*-dimensional algebraic variety of \mathbb{C}^n , such that for an R > 1 $\mathcal{A}_{reg} \supset \Omega_0$, then for any $r < -\sqrt{R^2 - 1}$ there exist two positive constants c_1, c_2 such that for any compact $K \subset \Omega_r$

$$\exp\left[-\left(\frac{c_1}{\operatorname{Cap}(K,\Omega)}\right)^{1/m}\right] \ge T(K,\mathcal{A}),$$
$$T(K,\mathcal{A}) \ge \exp\left(-\frac{c_2}{\operatorname{Cap}(K,\Omega)}\right).$$

In particular for any $E \subseteq K$ we have

$$\|V_E(z,\mathcal{A})\|_{\Omega} \leq \frac{c_2}{\operatorname{Cap}(E,\Omega)}.$$

LATP - 29 of 31

Among other issue we need a further sharpening of Chern Levine Nirenberg Estimate for $u \leq 0$

$$\begin{aligned} \mathsf{CLN} \quad & \int_{\mathcal{K}} (\mathsf{dd}^{\mathsf{c}} \, u)^n \leq C ||u||_L^m \quad \forall u \in C^2(B) \\ \mathsf{AT} \quad & \int_{\mathcal{K}} (\mathsf{dd}^{\mathsf{c}} \, u)^m \leq C(-u(0)) ||u||_B^{m-1} \quad u \in \mathsf{PSH}(B) \\ \mathsf{New} \quad & \int_{\mathcal{K}} (\mathsf{dd}^{\mathsf{c}} \, u)^m \leq C \int_{\Omega(z_0,r)} -u \, (\mathsf{dd}^{\mathsf{c}} \, \rho)^m \, ||u||_{\Omega}^{m-1} \, u \in \mathsf{PSH}(\Omega) \\ & \Omega \subset \Omega(z_0,r) \subset \mathcal{A}. \end{aligned}$$

For the case of the relative extremal function the r.h.s. integral can be dominated by the same function for the projected set, i.e.

$$\int_{\Omega(z_0,r)} -U_{\mathcal{K},\Omega(z_0,r)} \left(\mathsf{dd}^{\mathsf{c}} \rho \right)^m \leq C'(r) \left(-U_{\pi\mathcal{K},\mathcal{B}_{\mathbb{C}^m}}(z_0) \right).$$

The main tool here is the Leelong Jensen Formula proven by Demailly [5].

Thank you for the attention.

LATP - 31 of 31

H. J. Alexander and B. A. Taylor.

Comparison of two capacities in \mathbb{C}^n . Math. Z., **186**:407–414, 1984.

E. BEDORD AND B. A. TAYLOR.

A new capacity for plurisubharmonic functions. *Acta Mathematica*, **149**[1]:1–40, 1982.

T. BLOOM AND N. LEVENBERG.

Capacity convergence results and applications to a Bernstein Markov Inequality. *Trans. of AMS*, **351**[12]:4753–4767, 1999.

T. BLOOM, N. LEVENBERG, AND F. WIELONSKY.

Vector energy and large deviations. *J. Anal. Math*, **preprint**, 2013.

J. P. DEMAILLY.

Complex Analytic and Differential Geometry. Universit e de Grenoble I Institut Fourier, UMR 5582 du CNRS, 2012.

M. KLIMEK.

Pluripotential Theory. Oxford Univ. Press, 1991.

R.BERMAN, S. BOUCKSOM, AND D.W.NYMSTROM.

Fekete points and convergence toward equilibrium on complex manifolds. *Acta. Mat.*, **207**:1–27, 2011.

W. RUDIN.

A geometric criterion for algebraic varieties. J. Math. Mech., **17**:671–693, 1967-1968.

A. SADULLAEV.

An estimates for polynomials on analytic sets. Math. URSS Izvestiya, **20**[3]:493–502, 1982.

General Orthogonal Polynomials. Cambridge Univ. Press, 1992.

LATP - 31 of 31