# The Bernstein Markov Property and Applications to Pluripotential Theory 

Sèminaire Analyse \& Gèomètrie CMI Marseille, May 14, 2014

Federico Piazzon


Università degli Studi di Padova

## Outline

1 First definitions
2 Examples
3 The Bergman Function
4 Some notions from Pluripotential Theory
5 Motivations
6 Best Known sufficient conditions
7 Rational BMP sufficient condition
8 Ongoing research: BMP on algebraic sets

## Setting and Notation

■ $K$ compact set in $\mathbb{C}$ or $\mathbb{C}^{n}$
■ $\|f\|_{K}=\max _{K}|f|$.
■ $\mu$ positive finite Borel measure, supp $\mu \subseteq K . \mu \in \mathcal{M}_{+}(K)$.

- $\mathscr{P}^{m}$ space of complex polynomials of degree at most $m$.

■ $N_{m}:=\operatorname{dim} \mathscr{P}^{m}=\binom{n+m}{m}$.
■ $\mathscr{P}_{\mu}^{m}$ Hilbert space $\left(\mathscr{P}^{m},\langle\cdot, \cdot\rangle_{L_{\mu}^{2}}\right)$.
Since $\mathscr{P}^{m}$ is a finite dimensional TVS all norms are comparable. In particular there exists $0<C(\mu, K, m)<\infty$ such that

$$
\frac{1}{\sqrt{\mu(K)}}\|p\|_{L_{\mu}^{2}} \leq\|p\|_{K} \leq C(\mu, K, m)\|p\|_{L_{\mu}^{2}} \forall p \in \mathscr{P}^{m}(K)
$$

## Definitions

The Bernstein Markov Property is a quantitative requirement on the asymptotic of the $m$-th root of the comparability constant $C(\mu, K, m)$.

## Bernstein Markov Property (BMP)

Let $K \subset \mathbb{C}$ be compact and $\mu \in \mathcal{M}_{+}(K)$ then the $(K, \mu)$ is said to enjoy the Bernstein Markov Property if exists a sequence $\left\{C_{m}\right\}_{m \in \mathbb{N}}$ such that

$$
\begin{array}{r}
\|p\|_{K} \leq C_{m}\|p\|_{L_{\mu}^{2}} \forall p \in \mathscr{P}^{m}(K), \\
\limsup C_{m}^{1 / m} \leq 1 . \tag{1}
\end{array}
$$

## Definitions ..continued

Several variants have been introduced
■ Weighted BMP Given a weight function $w: K \rightarrow[0,+\infty[$ one looks at $\left\|p w^{m}\right\|_{K}$ and $\left\|p w^{m}\right\|_{L_{\mu}^{2}}$ for $p \in \mathscr{P} m$.
■ Strong BMP If for any $w \in \mathcal{C}(K)(K, \mu, w)$ has the WBMP.
■ Rational BMP For a given compact set $P, K \cap P=\emptyset$ we set

$$
\mathscr{R}^{m}(P):=\left\{p_{m} / q_{m}, p_{m}, q_{m} \in \mathscr{P}^{m}(K), Z\left(q_{m}\right) \subset P\right\}
$$

then we compare $\|r\|_{K}$ and $\|r\|_{L_{\mu}^{2}}$ for $r \in \mathscr{R}^{m}(P)$.
Weighted Rational and Strong Rational BMP...

## Related studies

■ The first steps are made by Szego, Faber, Erdós and Turan.
■ Classical weight on the real line.
■ Leja $L^{*}$ condition.
■ Systematic study for general measures in the plane erly 90's Stahl, Totik [10]. Regular measures.
■ Determining measure: Widom and Ullman.
Here we follow the approach of Berman,Boucksom, Nymstrom [7], Bloom and Levenberg [3], which is more adapted to the svc context and pluripotential theory.

## Some Examples

$1 K=\bar{\Delta}, \mu=\delta_{0}$. This is not a BM couple.
It should be that $\mu$ defines at least a norm..
$2 K:=\bar{\Delta} \times \bar{\Delta}$, supp $\mu=S(K)$ the Silov boundary and $\mu:=d s \times d s$. Instead is. Monomials are orthonormal..

$$
\|p\|_{K}=\left|p\left(z_{0}\right)\right| \leq \sqrt{\sum_{|\alpha| \leq m}\left|c_{\alpha}\right|^{2}} \sqrt{\sum_{|\alpha| \leq m}\left|z_{0}\right|^{2 \alpha}}=\sqrt{\frac{(m+2)(m+1)}{2}}\|p\|_{L_{\mu}^{2}}
$$

$\mu$ should be thick on $S(K)$..
3 It has been shown that there exists a BM measure for $\bar{\Delta}$ with discrete carrier in the interior of the disk. In general we find out only sufficient conditions.
4 The measure with the weight $w(z)=\exp \left(-|z|^{2}\right)$ makes $(\bar{\Delta}, d s, w)$ not a WBM triple.

## Bergman Function

$\mathscr{P}_{\mu}^{m}:=\left(\mathscr{P}^{m},\langle\cdot ; \cdot\rangle_{L_{\mu}^{2}(K)}\right)$ is a reproducing kernel Hilbert space, being the kernel

$$
\begin{aligned}
& K_{m}^{\mu}(z, \zeta):=\sum_{|\alpha| \leq m} q_{\alpha}(z, \mu) \bar{q}_{\alpha}(\zeta, \mu) .\left\{q_{\alpha}\right\}_{|\alpha| \leq m} \text { o.n.b. } \\
& B_{m}^{\mu}(z):=K_{m}(z, z)=\left\langle K_{m}^{\mu}(z, \zeta) ; K_{m}^{\mu}(z, \zeta)\right\rangle_{L_{\mu(\zeta)}^{2}}(K)
\end{aligned}
$$

■ Let $\delta_{z} \in L\left(\mathscr{P}_{\mu}^{m}, \mathbb{C}\right)$ be the point-wise evaluation, for any $z \in K$ we have $\left\|\delta_{z}\right\|=\sqrt{B_{m}^{\mu}(z)}$.

- The best possible constant in (1) is $\sqrt{\left\|B_{m}^{\mu}\right\|_{K}}$.


## The dd ${ }^{c}$ operator

For an open set $\Omega \subset \mathbb{C}^{n}$ and $u \in C^{2}(\Omega)$ one defines first $d:=(\partial+\bar{\partial})$ and $d^{c}:=i(-\partial+\bar{\partial})$,

$$
{d d^{c}} u:=2 i \sum_{j, k=1}^{n} \frac{\partial^{2} u}{\partial z_{j} \partial \bar{z}_{k}}(z) d z_{j} \wedge d \bar{z}_{k} .
$$

For any plurisubharmonic u we can define by smoothing

$$
d d^{c} u \text { as a positive }(1,1) \text { current }
$$

i.e. an element of the dual of the test forms of bidegree ( $n-1, n-1$ ) such that

$$
\operatorname{dd}^{c} u \wedge \theta>0 \quad \forall \theta \in S P^{(n-1, n-1)}(\Omega) .
$$

## Defining $\left(\mathrm{dd}^{\mathrm{c}}\right)^{2}$

Let $\Omega \subset \mathbb{C}^{2}$ be a domain
11 if $u \in \mathrm{PSH}$ and $\theta$ is a positive $(1,1)$ form

$$
\left\langle\operatorname{dd}^{c} u \wedge \theta, \psi\right\rangle:=\left\langle\operatorname{dd}^{c} u, \theta \wedge \psi\right\rangle \forall \psi \in \mathcal{D}^{(n-2, n-2)}(\Omega)=C_{c}^{\infty}(\Omega) .
$$

2 if $u \in C^{2}(\Omega)$ then we have $\forall \varphi \in C_{c}^{\infty}(\Omega)$

$$
\int_{\Omega} \varphi\left(\mathrm{dd}^{\mathrm{c}} u\right)^{2}=\int_{\Omega} u \mathrm{dd}^{\mathrm{c}} \varphi \wedge \mathrm{dd}^{\mathrm{C}} u
$$

... but the r.h.s. takes sense even for $u \in \mathrm{PSH} \cap L_{\text {loc }}^{\infty} \ldots$

## Extending to plurisubharmonic $u$

Theorem [Chern Levine Nirenberg]
For any $K \subset \subset \Omega$ there exist $C>0$ and compact set $L \subset \Omega \backslash K$ such that

$$
\int_{K}\left(\mathrm{dd}^{c} u\right)^{n} \leq C\|u\|_{L}^{m} \quad \forall u \in C^{2}(\Omega) .
$$

Combining C.L.N. estimate and

## Proposition

Any $(p, p)$ positive current has measure coefficients [6]. Bedford and Taylor find out that

## Monge Ampere Operator

for $u \in \operatorname{PSH}(\Omega) \cap L_{\text {loc }}^{\infty}$ one can iteratively define $\left(d d^{d} u\right)^{n}$ as a positive measure by

$$
\left\langle\left(d^{c} u\right)^{k+1}, \theta\right\rangle:=\left\langle{d d^{c}}^{c} \theta \wedge\left({d d^{c}}^{c} u\right)^{k}, u\right\rangle . \quad \forall \theta \in \mathcal{D}^{n-k-1, n-k-1}(\Omega)
$$

## Theorem [Bedford Taylor|[2]

The operator $\left(\mathrm{dd}^{c}\right)^{n}$ is continuous w.r.t. the weak * topology under point-wise converging decreasing sequence of functions.

This is a fully non linear partial diff operator that in the case $n=1$ corresponds to the distributional Laplacian.

## Dirichlet problem

For "nice" compact set $K$ we can solve the Dirichlet problem

$$
\begin{cases}\left(d d^{c} u\right)^{n}=0 & \text { in } \Omega:=\mathbb{C}^{n} \backslash K \\ u \equiv_{\text {q.e. }} 0 & \text { in } \partial K \\ u \in \mathcal{L} \text { Lelong class. } & \end{cases}
$$

The unique solution $V_{K}^{*}$ is said Extremal Function.

## The extremal function

The solution is in the sense of Perron-Bremermann

$$
V_{K}^{*}(z):=\limsup _{\zeta \rightarrow z}\left(\sup \left\{u(\zeta) \in \mathcal{L},\left.u\right|_{K} \leq 0\right\}\right)
$$

If it is continuous the compact set is said $\mathcal{L}$ regular.
By Siciak and Zaharyuta results we have

$$
V_{K}=\log \Phi_{K}:=\log ^{+} \sup \left\{|p|^{1 / \operatorname{deg} p}:\|p\|_{K} \leq 1\right\}
$$

And Bernstein-Walsh-Siciak Inequality follows

$$
|p(z)| \leq\|p\|_{K} \exp \left(\operatorname{deg} p V_{K}^{*}(z)\right) .
$$

The measure

$$
\mu_{K}:=\left(d^{c} V_{K}^{*}\right)^{n}
$$

is said the equilibrium measure.

## Motivations: from Approx. Theory

■ LS asymptotic. If $(K, \mu)$ has the BMP then
$\limsup _{m} d_{\infty}\left(f, \mathscr{P}^{m}\right)^{1 / m}=\quad \frac{1}{R}\left(\right.$ i.e. $\left.f \in \operatorname{hol}\left(\left\{V_{K}<\log R\right\}\right)\right)$ $\Downarrow$
$\limsup _{m}\left\|f-\mathscr{L}_{m} f\right\|_{K}^{1 / m}=\frac{1}{R}$ (here $\mathscr{L}_{m}$ is the LS projection.)
Moreover

$$
\underset{m}{\lim \sup }\left\|f-\mathscr{L}_{m} f\right\|_{L_{\mu}^{2}}^{1 / m} \leq \frac{1}{R} \Rightarrow f \in \operatorname{hol}\left(\left\{V_{K}<\log R\right\}\right) .
$$

## ..approx. sol. of Monge-Ampere

■ $m$-th roots asymptotic. For regular compact set $K$ if then

$$
\begin{array}{rcc}
(K, \mu) & \text { has } & \text { BMP } \\
& \hat{\mathbb{I}}
\end{array}
$$

## ..probabilistic purposes/interpretation

■ Free energy asymptotic. If $(K, \mu)$ has the BMP then we have

$$
\limsup _{m}\left(\int \ldots \int\left|\operatorname{VDM}\left(z_{1}, \ldots, z_{N_{m}}\right)\right|^{2} d \mu\left(z_{1}\right) \ldots d \mu\left(z_{N_{m}}\right)\right)^{\frac{n+1}{2 n m N_{m}}}=\delta(K)
$$

i.e. the I.h.s. is maximal among $\left\{v \in \mathcal{M}^{+}(K): v(K)=\mu(K)\right\}$..

This is the main tool for proving
1 Strong Bergman Asymptotic. $\frac{B_{m}^{\mu}}{N_{m}} \mu \rightarrow^{*} \mu_{K}$.
2 Large Deviation Principle.
..and all these results go straightforward into the weighted setting.

## Mass Density Condition in $\mathbb{C}$

From the example we guess $\mu$ should be thick on $S(K)$.. We had $\lim _{r \rightarrow 0^{+}} \mu(B(z, r)) / r=1 \forall z \in S(K)$.

## Theorem [Stahl Totik]

Let $\mu$ be positive Borel measure with compact support $K=\operatorname{supp} \mu$ in $\mathbb{C}$, suppose that $K$ is a non-polar regular set w.r.t. the Dirichlet problem for the Laplace operator and there exists $t>0$ such that

$$
\lim _{r \rightarrow 0^{+}} \operatorname{cap}\left(\left\{z \in K: \mu(B(z, r))>r^{t}\right\}\right)=\operatorname{cap}(K) .
$$

Then $(K, \mu)$ has the BMP.

## Capacity in $\mathbb{C}$

Here $\operatorname{cap}(K)$ is the logarithmic capacity of the set $K$,

$$
\operatorname{cap}(K):=\max _{v \in \mathcal{M}_{1}(K)} \exp \left(\iint \log |z-\zeta| d v(z) d v(\zeta)\right)
$$

That is the (inverse of the exponential) of the minimum of the logarithmic energy functional: the variational formulation of the Dirichlet problem for the Laplacian in $\mathbb{C} \backslash K$.

## Mass Density Condition in $\mathbb{C}^{n}$

## Theorem [Bloom Levenberg]

Let $\mu$ be positive Borel measure with compact support $K:=\operatorname{supp} \mu \subset B(0,1)$ in $\mathbb{C}^{n}$, suppose that $K$ is a non-pluripolar $\mathcal{L}$-regular set and there exists $t>0$ such that

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \operatorname{Cap}\left(\left\{z \in K: \mu(B(z, r))>r^{t}\right\}, B(0,1)\right)=\operatorname{Cap}(K, B(0,1)) . \tag{2}
\end{equation*}
$$

Then $(K, \mu)$ has the BMP.

## Relative Capacity

But here $\operatorname{Cap}(K, \Omega)$ is capacity in the non-linear pluripotential theory in $\mathbb{C}^{n}$ related to the Monge Ampere complex operator, namely the relative capacity $\operatorname{Cap}(K, \Omega)$ w.r.t. a hyperconvex sup-set $\Omega$ of $K$.

## Relative Capacity in $\mathbb{C}^{n}$

$$
\operatorname{Cap}(K, \Omega):=\sup \left\{\int _ { K } \left({\left.\left.d d^{c} u\right)^{n}: u \in \operatorname{PSH}(\Omega), 0 \leq u \leq 1\right\}, ~}_{0}\right.\right.
$$

## core of the proof

The proof of these results relays on the following facts
(A) The regularity assumption on the set: $V_{K}^{*}$ is continuous.
(B) Bernstein Walsh Siciak Iemma.

$$
\begin{equation*}
|p(z)| \leq\|p\|_{K} \exp \left(\operatorname{deg}(p) V_{K}(z)\right) \tag{3}
\end{equation*}
$$

(C) The following theorem

## Capacity Convergence [Bloom Levenberg]

For any sequence of compact subsets of the compact non pluripolar $\mathcal{L}$-regular set $K$ the following facts are equivalent
(i) $\lim _{j} \operatorname{Cap}\left(K_{j}, B(0,1)\right)=\operatorname{Cap}(K, B(0,1))$.
(ii) $\lim _{j} V_{K_{j}}=V_{K}$ locally uniformly in $\mathbb{C}^{n}$.

## RBM mass density condition

Motivation: LDP for vector energy problems [4].

## Theorem [P.]

Let $K$ be a regular non polar compact set in the complex plane, $\Omega:=\mathbb{C}_{\infty} \backslash \hat{K}$ and $P \subset \Omega$ a compactum. Let $\mu \in \mathcal{M}(K)$, supp $\mu=K$ and suppose there exists a positive $t$ such that

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \operatorname{cap}\left(\left\{z: \mu(B(z, r)) \geq r^{t}\right\}\right)=\operatorname{cap}(K) \tag{4}
\end{equation*}
$$

Then $\mu$ enjoys the Bernstein Markov property on $K$ for the rational functions with poles in $P$.

## idea of the proof

■ We replace the Bernstein Walsh Siciak Inequality by

$$
\left|r_{m}(z)\right| \leq\|r\|_{K} \exp \left(\sum_{z_{j} \in \operatorname{Poles}\left(r_{m}\right)} g_{\Omega_{K}}\left(z, z_{j}\right)\right) \forall r_{m} \in \mathscr{R}_{m}(K, P) .
$$

Here $g_{\Omega_{k}}\left(z, z_{j}\right)$ is the generalized Green function

- We recover a modified capacity convergence result.


## Proposition [P.]

Let $K \subset \mathbb{C}$ be a regular non polar compact set, let $\Omega_{K}$ be the unbounded component of $\mathbb{C} \backslash K$ and $P$ a compact subset of $\Omega_{K}$ such that $P \cap K=\emptyset$. Then there exist a domain $D$ such that $K \subset \subset D$ and $P \cap \bar{D}=\emptyset$, such that for any sequence $\left\{K_{j}\right\}$ of compact subsets of $K$ the following are equivalent (here $\Omega_{K_{j}}$ is defined similarly to $\Omega_{K}$ ).

$$
\begin{aligned}
\lim _{j} \operatorname{cap}\left(K_{j}\right) & =\operatorname{cap}(K) . \\
\lim _{j} g_{\Omega_{j}}(z, a) & =g_{\Omega}(z, a) \text { loc. unif. for } z \in D \text { unif. for } a \in P .
\end{aligned}
$$

## Unbounded sets in $\mathbb{C}$

In the case of a closed unbounded set $K$ and an admissible weight function $w: \mathbb{C} \rightarrow[0,+\infty[$ can we do something?

## Idea:

■ Compactification, we look to the real sphere.
■ search for Strong BMP, leads to..
■ complexification: $\mathcal{A}:=\left\{z \in \mathbb{C}^{3}: \sum z_{j}^{2}=1\right\}$ of the sphere
■ use Pluripotential Theory for Algebraic Submanifold.

In such a setting the proof of an adapted formulation of sufficient mass density condition works provided an adapted version of the capacity convergence result.

## The adapted setting

There is a specific $\mathbb{C}$-linear change of (Rudin) coordinates[8] such that

$$
\mathcal{A} \subset\left\{(z, w) \in \mathbb{C}^{2} \times \mathbb{C}:|w|^{2} \leq C\left(1+|z|^{2}\right)\right\}
$$

Sadullaev [9] defined $V_{K}^{*}(\cdot, \mathcal{A})$ and gived sense to pluripotential theory on algebraic sets.
Notation: for $R$ >> 1 we use the pseudo-ball

$$
\Omega(r):=\left\{(z, w) \in \mathcal{A}:|z|^{2}-R<r\right\}
$$

$\Omega:=\Omega\left(-\sqrt{R^{2}-1}\right)$.

## Capacity convergence on algebr. man.

## Theorem [P.]

Let $\mathcal{A} \subset \mathbb{C}^{n}$ be an algebraic variety of pure dimension $m<n$, $\mathcal{A}_{\text {reg }} \supset \Omega_{0} \supset K$ where $K$ is a compact $\mathcal{L}$ regular nonpluripolar set. Let $\left\{K_{j}\right\}_{j \in \mathbb{N}}$ be a sequence of compact subsets of $K$, then the following are equivalent.
(i) $\lim _{j} \operatorname{Cap}\left(K_{j}, \Omega\right)=\operatorname{Cap}(K, \Omega)$.
(ii) $V_{K_{j}}^{*}(\cdot, \mathcal{A}) \rightarrow V_{K}^{*}(\cdot, \mathcal{A})$ locally uniformly on $\mathcal{A}$.

## What's new?

The proof is similar to the original one ... if
we provide a modified version of the Capacities Comparison Theorem of Alexander and Taylor [1].

To do it ,first we re-defined the (modified) Tchebyshev constant as

$$
\begin{aligned}
m_{v}(K) & :=\inf \left\{\|p\|_{K}: p \in \mathscr{P}_{\mathbb{C}}(K), \operatorname{deg} p \leq v,\|p\|_{z \mid \leq 1} \geq 1\right\} \\
T(K, \mathcal{A}) & :=\inf _{v>0} m_{v}^{1 / v}(K) .
\end{aligned}
$$

## Capacities Comparison

## Theorem [P.]

Let $\mathcal{A}$ be a $m$-dimensional algebraic variety of $\mathbb{C}^{n}$, such that for an $R>1$ $\mathcal{A}_{\text {reg }} \supset \Omega_{0}$, then for any $r<-\sqrt{R^{2}-1}$ there exist two positive constants $c_{1}, c_{2}$ such that for any compact $K \subset \Omega_{r}$

$$
\begin{aligned}
& \exp \left[-\left(\frac{c_{1}}{\operatorname{Cap}(K, \Omega)}\right)^{1 / m}\right] \geq T(K, \mathcal{A}), \\
& T(K, \mathcal{A}) \geq \exp \left(-\frac{c_{2}}{\operatorname{Cap}(K, \Omega)}\right)
\end{aligned}
$$

In particular for any $E \subseteq K$ we have

$$
\left\|V_{E}(z, \mathcal{A})\right\|_{\Omega} \leq \frac{c_{2}}{\operatorname{Cap}(E, \Omega)}
$$

## Element of the proof

Among other issue we need a further sharpening of Chern Levine Nirenberg Estimate for $u \leq 0$
$\operatorname{CLN} \int_{K}\left(\mathrm{dd}^{c} u\right)^{n} \leq C\|u\|_{L}^{m} \quad \forall u \in C^{2}(B)$
AT $\int_{K}\left({d d^{c}}^{c}\right)^{m} \leq C(-u(0))\|u\|_{B}^{m-1} \quad u \in \operatorname{PSH}(B)$
New $\int_{K}\left(\operatorname{dd}^{c} u\right)^{m} \leq C \int_{\Omega\left(z_{0}, r\right)}-u\left(\operatorname{dd}^{c} \rho\right)^{m}\|u\|_{\Omega}^{m-1} u \in \operatorname{PSH}(\Omega)$ $\Omega \subset \Omega\left(z_{0}, r\right) \subset \mathcal{A}$.
For the case of the relative extremal function the r.h.s. integral can be dominated by the same function for the projected set, i.e.

$$
\int_{\Omega\left(z_{0}, r\right)}-U_{K, \Omega\left(z_{0}, r\right.}\left({d d^{c}}^{c} \rho\right)^{m} \leq C^{\prime}(r)\left(-U_{\pi K, B_{C} m}\left(z_{0}\right)\right)
$$

The main tool here is the Leelong Jensen Formula proven by Demailly [5].


Thank you for the attention.
H. J. Alexander and B. A. Taylor.

Comparison of two capacities in $\mathbb{C}^{n}$.
Math. Z., 186:407-414, 1984.

## E. Bedord and B. A. Taylor.

A new capacity for plurisubharmonic functions.
Acta Mathematica, 149[1]:1-40, 1982.
T. Bloom and N. Levenberg.

Capacity convergence results and applications to a Bernstein Markov Inequality.
Trans. of AMS, 351[12]:4753-4767, 1999.
T. Bloom, N. Levenberg, and F. Wielonsky.

Vector energy and large deviations.
J. Anal. Math, preprint, 2013.
J. P. Demailly.

Complex Analytic and Differential Geometry.
Universit e de Grenoble I Institut Fourier, UMR 5582 du CNRS, 2012.
M. Klimek.

Pluripotential Theory.
Oxford Univ. Press, 1991.
R.Berman, S. Boucksom, and D.W.Nymstrom.

Fekete points and convergence toward equilibrium on complex manifolds.
Acta. Mat., 207:1-27, 2011.
W. Rudin.

A geometric criterion for algebraic varieties.
J. Math. Mech., 17:671-693, 1967-1968.
A. Sadullaev.

An estimates for polynomials on analytic sets.
Math. URSS Izvestiya, 20[3]:493-502, 1982.
H. Stahl and V. Totik.

General Orthogonal Polynomials.
Cambridge Univ. Press, 1992.

## LATP - 31 of 31

