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Abstract

We construct norming meshes with cardinality O(ns), s = 3, for
polynomials of total degree at most n, on the closure of bounded planar
Lipschitz domains. Such cardinality is intermediate between optimal-
ity (s = 2), recently obtained by Kroó on multidimensional C2 starlike
domains, and that arising from a general construction on Markov com-
pact sets due to Calvi and Levenberg (s = 4).

2000 AMS subject classification: 41A10, 41A63, 65D05.

Keywords: Polynomial Inequalities, Norming Sets, Polynomial Admissible Meshes,

Planar Lipschitz Domains.

1 Introduction

Polynomial admissible meshes (or polynomial meshes for short), introduced
and studied in the seminal paper [7], are sequences {An} of norming sets (in
the uniform norm) on a multidimensional polynomial determining compact
K ⊂ R

d or K ⊂ C
d (a polynomial vanishing there vanishes everywhere),

i.e., the following polynomial inequality holds

‖p‖K ≤ C ‖p‖An
, ∀p ∈ P

d
n , (1)

with a cardinality increasing at most like O(ns), s ≥ d; here and below,
P
d
n denotes the space of d-variate polynomials of degree at most n, and

‖f‖X denotes the sup-norm of a function f bounded on the set X. Among
their properties, we recall that admissible meshes are preserved by affine
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transformations, and can be easily extended by finite union and product
[7]. In the present note, we restrict our attention to the real case, i.e., real
polynomials and K ⊂ R

d.
Polynomial meshes provide a “good discrete model” of a compact set for

many practical purposes. For example, they are nearly optimal for uniform
least-squares approximation [7, Thm.1], and contain Fekete-like interpola-
tion subsets with the same asymptotic behavior of the continuous Fekete
points of K, that can be computed by numerical linear algebra techniques
(cf., e.g., [3, 4]). Such approximate Fekete points have been used within
spectral element and collocation methods for PDEs (cf. [12, 17]). For a
recent and deep survey on polynomial approximation and interpolation in
several variables, we refer the reader to [2].

In [7, Thm.5], it has been shown that any (real) compact set which
satisfies a Markov polynomial inequality with exponent r

‖∇p(x)‖2 ≤ Mnr‖p‖K , ∀x ∈ K, p ∈ P
d
n , (2)

often called a Markov compact, has a polynomial mesh with O(nrd) cardi-
nality (for example, r = 2 for compact sets which satisfy a uniform interior
cone condition).

On the other hand, in the applications it is important to control the car-
dinality of such discrete models. Indeed, some attention has been devoted
to the construction of optimal and near optimal polynomial meshes, which
have cardinality O(nd) and O((n log n)d), respectively, in compact sets with
special geometries (observe that in (1) necessarily card(An) ≥ dim(Pd

n) ∼
nd/d!); cf., e.g., [6, 11, 13, 15]. Moreover, the polynomial inequality (1)
can be relaxed, asking that it holds with C = Cn, a sequence of constants
increasing at most polynomially with n: in such a case, we speak of weakly
admissible polynomial meshes. Weakly admissible meshes with O(nd) car-
dinality and constants Cn = O((log n)d) are known in several instances, cf.,
e.g., [3, 5, 10].

In the present note we prove constructively that polynomial meshes with
O(n3) cardinality exist for the closure of planar Lipschitz domains. The
cardinality of such meshes is sub-optimal, being intermediate between opti-
mality (s = d = 2) and that arising from the general construction by Calvi
and Levenberg on Markov compact sets (s = 2d = 4).

2 Planar Lipschitz domains

We begin by restricting our attention to a special class of planar Lipschitz
domains.

Lemma 1 Let G be a planar compact graph domain

G = {(x, y) : a ≤ x ≤ b , g1(x) ≤ y ≤ g2(x)} (3)
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where g1(x) < g2(x) for every x ∈ [a, b], and g1, g2 ∈ Lip[a, b].
Then, G has a norming set given by the union of O(n) curves and a

polynomial mesh with O(n3) cardinality which lies on the norming curves.

Proof. First, we show in an elementary way that a Markov polynomial in-
equality holds, since any point ofG belongs to a suitable trapezium (triangle)
contained in G, with minimal distance between pairs of parallel supporting
lines that is bounded from below. Indeed, it is well-known that the closure
of any bounded Lipschitz domain in R

d is a Markov compact with exponent
r = 2; cf., e.g., [1].

Let L1 and L2 be the Lipschitz constants of g1 and g2, respectively,
and let define L = max{L1, L2}. Then, it is not difficult to show that any
point (x, y) of the graph domain G belongs to a suitable isosceles trapezium,
say Tx ⊆ G (depending only on the x-coordinate and possibly degenerating
into an isosceles triangle). To construct the trapezium (triangle), one first
considers the rhombus with opposite vertices in (x, g1(x)) and (x, g2(x)),
whose sides lie on the lines through such vertices with slope ±L, and then
one intersects the rhombus with the graph domain. The required trapezium
(triangle) is the wider of the two ones with common major basis on the
rhombus diagonal joining (x, g1(x)) and (x, g2(x)).

The trapezium major base has length

∆(x) = g2(x)− g1(x) ≥ β = minx∈[a,b](g2(x)− g1(x)) ,

and the trapezium height is bounded form below by

min{∆(x)/(2L), (b − a)/2} ≥ min{β/(2L), (b − a)/2} .

Moreover, the distance of one of the oblique sides from the line parallel to
it through the opposite vertex, is

∆(x) cos(arctan(L)) = ∆(x)/
√

1 + L2 ≥ β/
√

1 + L2 .

The minimal distance between parallel supporting lines of the trapezium
Tx, say σ(x), is then bounded from below

σ(x) ≥ w = min

{

β

max{2L,
√
1 + L2}

,
b− a

2

}

> 0 .

By a well-known result of Wilhelmsen on the Markov polynomial inequality
for convex compact sets [16], we get

‖∇p(x, y)‖2 ≤ 4

σ(x)
n2 ‖p‖Tx ≤ M n2 ‖p‖G , M =

4

w
, (4)

for every p ∈ P
2
n, i.e., G satisfies a Markov polynomial inequality with ex-

ponent r = 2.
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By the arguments of [7, Thm.5], it is not difficult to show that G has a
polynomial mesh with O(n4) points, which is a subset of a O(n2) × O(n2)
grid. Indeed, to be a polynomial mesh with constant C = 1/(1 − λ), it is
sufficient that for any point P ∈ G there exists a point A of the mesh such
that

|P −A| ≤ δn = δn(c) =
2c

Mn2
, (5)

where
λ = λ(c) = 4ce2c < 1 , 0 < c < c∗ , (6)

c∗ = 0.175... being the solution of the equation 4te2t = 1.
We begin by considering a Cartesian grid, with suitable O(1/n2) spacing

in the projections of G on the cartesian axes. Take in both directions a
spacing hn smaller than δn/

√
2, such that (b− a)/hn is a positive integer ν,

namely

hn = hn(c) =
b− a

ν
, ν =

⌈

b− a

δn/
√
2

⌉

, (7)

and consider the grid {(ξi, ηj)}

ξi = a+ (i− 1)hn , i = 1, . . . ,
b− a

hn
+ 1 ,

ηj = min g1 + (j − 1)hn , j = 1, . . . ,

⌈

max g2 −min g1
hn

⌉

+ 1 . (8)

Then, (5) is satisfied by the grid points belonging to G.
The compact G is now contained in the union of O(n2) vertical strip

segments. On each strip, consider the “highest” and the “lowest” rectangle
of the grid which instersect G, fix a point of K in each, say (u, v) and (z, w)
(it is sufficient to choose the points corresponding to the maximum of g2 and
the minimum of g1 in the strip, respectively). Take these two points together
with the intersection points of the vertical lines x = u and x = z with the
horizontal lines of the grid between y = w = g1(z) and y = v = g2(u)
(observe that all such intersection points belong necessarily to the graph
domain G). The points obtained by this construction clearly belong to a
new O(n4) polynomial mesh for G, with constant C = 1/(1 − λ), since by
construction they still satisfy property (5).

It is clear that the union of the segments {x = xi, g1(xi) ≤ y ≤ g2(xi)}
is a norming set for G, with the same constant C. Now, take for example
the Chebyshev points of degree ⌈µn⌉ on each segment, namely the points

{(xi, yik) = (xi, g2(xi)(1 + τk)/2 + g1(xi)(1 − τk)/2)} (9)

where the {τk}, 1 ≤ k ≤ ⌈µn⌉, are the zeros of T⌈µn⌉(t), µ > 1, in (−1, 1).
Since these points form an a polynomial mesh for the segment, with constant
1/ cos(π/2µ), by a well-known result of Ehlich and Zeller [9], the union of
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the points of all the segments is then a polynomial mesh for G, say An, such
that

‖p‖G ≤ 1

(1− λ) cos(π/2µ)
‖p‖An

, ∀p ∈ P
2
n , (10)

with card(An) = O(n2) × ⌈µn⌉ = O(n3). Observe now that this mesh lies
on the union of the ⌈µn⌉ curves

Γk = {(x, fk(x)) , x ∈ [a, b]} , fk(x) = g2(x)(1 + τk)/2 + g1(x)(1− τk)/2 ,
(11)

1 ≤ k ≤ ⌈µn⌉, which thus form a norming set for G. �

Remark 1 Our result improves that of [11], in the case of planar graph
domains with g1, g2 6∈ C4. Indeed, in [11] it is proved that any planar graph
domain with g1, g2 ∈ Ck possesses a polynomial mesh withO(n2+4/k) points.

Remark 2 It is worth noticing that the fulfillement of the interior cone
condition, or even the existence of a Markov polynomial inequality, is not
necessary for a graph domain to possess a polynomial mesh. For instance,
in Example 3 in [11], a polynomial mesh with cardinality O(n3) has been
constructed in a cartesian graph domain with an exponential cusp, that does
not satisfy a Markov inequality for any exponent.

More generally, in [2] an elementary but smart argument shows that any
polynomial determining compact set K ⊂ C

d admits a polynomial mesh of
cardinality O((n log n)d). However, this result is based on the Fekete points
of K, which are explicitly known in very few intances and are extremely
hard to compute.

Remark 3 Continuity of g1 and g2 suffices for a graph domain to possess a
norming set given by the union of O(n) curves, and this can be proved with
a reasoning similar to that developed above. Indeed, consider a cartesian
graph domain like (3), and any of the segments I(z) = {(z, y) : g1(z) ≤ y ≤
g2(z)} for a fixed value of z ∈ [a, b]. The pointsAn(z) = {(z, g2(z)(1+τk)/2+
g1(z)(1 − τk)/2), 1 ≤ k ≤ ⌈µn⌉} form a polynomial mesh for the segment,
thus

⋃

z∈[a,b]An(z) is a norming set for G with constant C = 1/ cos(π/2µ),
which concides with the union of the ⌈µn⌉ curves (11).

We are now ready to state and prove the main result of this note.

Theorem 1 Let K = Ω ⊂ R
2 be the closure of a bounded Lipschitz domain.

Then, K has a polynomial mesh with O(n3) cardinality.

Proof. Roughly speaking, Lipschitz domains can be characterized as do-
mains which are locally epigraphs of Lipschitz continuous functions. We
refer the reader, e.g., to [8, Ch. 5] for definitions and properties.
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It is not difficult to show by compactness that ∂Ω = ∂K can be covered
by a finite number of (compact) rectangles, say Ri, i = 1, . . . ,m, such that
the intersection of K with each rectangle is a compact graph domain of the
form (3) with g1 = 0 (in suitable local Cartesian coordinates, i.e., up to
rotation and translation).

This entails that K ∩⋃Ri has a polynomial mesh, say A1
n, with O(n3)

cardinality, given by the union of meshes of the corresponding Lipschitz
graph domains. Indeed, we recall that a finite union of polynomial meshes
is a polynomial mesh for the corresponding union of compact sets, whose
constant C is the maximum of the corresponding constants.

On the other hand, K \⋃Ri is an open set, whose boundary is contained
in

⋃

∂Ri. Hence, its connected components have as boundary a polygonal
path, i.e., K \ ⋃Ri is a finite union of open polygons. It is known that
any compact polygon has a polynomial mesh with O(n2) cardinality, thus
by finite union the closure of K \⋃Ri has a polynomial mesh, say A2

n, with
O(n2) cardinality. Then, A1

n ∪ A2
n is a polynomial mesh for K with O(n3)

cardinality. �

Lipschitz domains can be also characterized as domains that satisfy a
uniform interior cone condition [8, §2.6], and thus they satisfy a Markov
polynomial inequality with exponent r = 2. The general construction by
Calvi and Levenberg in [7, Thm. 5] would then ensure the existence of a
polynomial mesh with O(n4) cardinality, whereas Theorem 1 reduces the
cardinality to O(n3).

The result can be extended to dimension d > 2, by generalizing Lemma
1 to d-dimensional Lipschitz graph domains; the construction in the proof
of Theorem 1 would involve, in this case, d-dimensional polytopes, where
existence of polynomial meshes with O(nd) cardinality is known [11]. The
result, however, becomes less interesting in possible applications, since in-
creasing d the cardinality of the resulting polynomial mesh, O(n2d−1), gets
far from O(nd) (optimality) and approaches that of the general construction
by Calvi and Levenberg, which is O(n2d).

2.1 Computational issues

We make now a quantitative comparison of the cardinality of the sub-optimal
polynomial mesh as in Lemma 1, with that produced by the general con-
struction of Calvi and Levenberg for Markov compact sets (when specialized
to Lipschitz graph domains). We consider for simplicity the case g1 ≡ 0,
g2 = g > 0.

Choose a grid, say {(ξi, ηj)}, with spacing hn, for a fixed value of c < c∗,
cf. (5)-(8). The construction in [7, Thm. 5] requires the choice of a point of
G in each square of the grid which intersects G. A simple way to perform
this task is to compute the maximum of g in each subinterval of the x-grid,
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say mi = g(xi), xi ∈ [ξi, ξi+1], i = 1, 2, . . . , (b− a)/hn. It is now sufficient to
choose for every i the points (xi,mi) and (xi, jhn), j = 1, . . . , ⌊mi/hn⌋.

The cardinality of the resulting mesh of the form (9) is

NCL(n) =

(b−a)/hn
∑

i=1

(1 + ⌊mi/hn⌋) >
1

h2n

(b−a)/hn
∑

i=1

g(xi)hn

≥ 1

(δn/
√
2)2

(b−a)/hn
∑

i=1

g(xi)hn ∼ M2n4

2c2

∫ b

a
g(x) dx , n → ∞ , (12)

since the second sum is an upper Riemann sum for the continuous function
g. We stress that the approximation given by the Riemann sum is indeed
already sharp at small n, since the step hn ∼ δn/

√
2 is small and naturally

adapted to both, the shape of g and the length of the integration interval,
cf. (4)-(7).

In order to implement the geometric construction of Lemma 1, obtaining
the same constant of the mesh above, C = 1/(1 − λ(c)), it is sufficient to
choose c̃ such that 1−λ(c) = (1−λ(c̃)) cos (π/2µ), i.e., c̃ solves the equation

4c̃e2c̃ = 1− 1− 4ce2c

cos (π/2µ)

where 0 < c < c∗ and µ > π
2 arccos (1−λ(c)) ; cf. (6)-(10). The cardinality of

the resulting mesh turns out to be

NG(n) = ⌈µn⌉ b− a

hn(c̃)
∼ ⌈µn⌉

⌈

(b− a)Mn2

√
2 c̃

⌉

∼ µM(b− a)√
2 c̃

n3 , n → ∞.

We have implemented a Matlab code that computes such a sub-optimal
polynomial mesh, by adaptive estimation of the Lipschitz constant and nu-
merical computation of g extrema; cf. [14].

Finally, we can estimate the ratio of the cardinalities as

NCL(n)

NG(n)
&

√
2c̃

2µc2
M

∫ b
a g(x) dx

b− a
n , n → ∞ ;

notice that the second factor is purely geometric and depends on the shape
of the Lipschitz graph domain (through the product of the Markov constant
M with the integral mean of g), whereas the first one depends on the choice
of the parameters µ and c. Choosing for instance c such that the constant
of the meshes is C = 2 and µ = 2, we get c ≈ 0.1019, c̃ ≈ 0.0644, and

NCL(n)

NG(n)
& αn , n → ∞ , α = 2.19M

∫ b
a g(x) dx

b− a
. (13)

Inequality (13) actually shows that the construction of Lemma 1 is more
adapted to the geometry of the graph domain G, and that the cardinality
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NG(n) of sub-optimal meshes can be much smaller than NCL(n) already at
small values of the degree.

Consider for example the graph domain G = {(x, y) : 0 ≤ x ≤ 1 , 0 ≤
y ≤ g(x) = exp(|x− 0.5|)}, where we obtain M ≈ 13.18 and α ≈ 37.45. For
n = 8 we have that the ratio of cardinalities is approximately 299.79 (and
the estimate from below in (13) is approximately 299.63). Indeed, Lemma 1
gives a mesh made of about 148000 points (with approximately 9200 points
on each of the 16 norming curves (11)), to be compared with the CL-mesh
which has more than 44 millions points.

Observe that there is a simple way to reduce these cardinalities, at the
price of increasing slightly the polynomial mesh constant. In fact, it is clear
from the definition of polynomial mesh (1), that if one has a mesh for a
compact set K, say An with constant C1, and a mesh for a compact subset
H ⊂ K, say Bn with constant C2, then (An ∩ (K \H)) ∪ Bn is still a mesh
for K with constant C1C2.

For the graph domain K = G, one can choose for instance H = [a, b] ×
[0,min g], and Bn a 2n× 2n Chebyshev grid (having mesh constant C2 = 2,
cf. [6]). In such a way, we can reduce the cardinality NG of the example
above from about 148000 to about 43000, and NCL from about 44 millions
to about 4.3 millions (with a ratio approximately 100), both meshes having
now a mesh constant C = 4.
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