Polynomial Admissible Meshes

S. De Marchi, <u>F. Piazzon</u>, A. Sommariva and M. Vianello Dip. Matematica Univ Padova fpiazzon@math.unipd.it

UNIVERSITÀ DEGLI STUDI DI PADOVA

DEFINITION

Let $K \subset \mathbb{C}^d$ (or \mathbb{R}^d) be a compact polynomial determining set. A sequence $\{A_n\}$ of its subsets is said to be a *weakly admissible mesh* (**WAM**) of constant C_n if

i) $\max_K |p| \le C_n \max_{A_n} |p|$ for any polynomial p such that deg $p \le n$,

ii) $Card(A_n)$ and C_n grow at most polynomially w.r.t. n.

If $\sup_n A_n =: C < \infty$ then A_n is said an *admissible mesh* (**AM**). If furthermore $\operatorname{Card}(A_n) = \mathcal{O}(n^d)$ then $\{A_n\}$ is termed *optimal*.

RELEVANT (UNIVARIATE) EXAMPLES

- Chebyshev-Lobatto nodes. For an interval [a,b], $X_n(a,b) = \left\{\frac{b-a}{2}\xi_j + \frac{b+a}{2}\right\}$, where $\xi_j = \cos(j\pi/n)$, $0 \le j \le n$.
- Chebyshev nodes. $Z_n(a,b) = \left\{ \frac{b-a}{2} \eta_j + \frac{b+a}{2} \right\}$, where $\eta_j =$

BUILDING WAMS

The bilinear transformation

$$\sigma(s_1, s_2) = \frac{1}{4} \left((1 - s_1)(1 - s_2)\boldsymbol{v}_1 + (1 + s_1)(1 - s_2)\boldsymbol{v}_2 + (1 + s_1)(1 + s_2)\boldsymbol{v}_3 + (1 - s_1)(1 + s_2)\boldsymbol{v}_4 \right)$$

maps the square $[-1, 1]^2$ onto the *convex* quadrangle with vertices v_1, v_2, v_3, v_4 ; with a triangle, e.g. $v_3 = v_4$, as a special degenerate case.

Proposition 1 (Quadrangles and Triangles). The sequence $A_n = \sigma(X_n(-1,1) \times X_n(-1,1))$ is a WAM of the convex quadrangle $\sigma([-1,1]^2)$, with constant $C_n = c_n^2 = \mathcal{O}(\log^2 n)$ and $\operatorname{card}(A_n) \leq (n+1)^2$.

Proposition 2 (Polygons). Let K be a polygon with ℓ sides. Then K has a WAM given by the union of the WAMs of $\ell - 2$ triangles of a minimal triangulation, with constant $C_n = c_n^2 = \mathcal{O}(\log^2 n)$ and $\operatorname{Card}(A_n) \sim (\ell - 2)n^2$.

 $\cos\left(\frac{(2j+1)\pi}{2(n+1)}\right)$, $0 \le j \le n$.

• Chebyshev-like subperiodic angular nodes. $\Theta_n(\alpha,\beta) = \varphi_{\omega}(Z_{2n}(-1,1)) + \frac{\alpha+\beta}{2} \subset (\alpha,\beta)$, $\omega = \frac{\beta-\alpha}{2} \leq \pi$, where $\varphi_{\omega}(s) = 2 \arcsin\left(\sin\left(\frac{\omega}{2}\right)s\right)$

The following inequalities hold with $c_n = \frac{2}{\pi} \log(n+1) + 1$.

 $\begin{aligned} \|p\|_{[a,b]} &\leq c_n \|p\|_{X_n} \ \forall p \in \mathbb{P}_n([a,b]). \\ \|p\|_{[a,b]} &\leq c_n \|p\|_{Z_n} \ \forall p \in \mathbb{P}_n([a,b]). \\ \|t\|_{[\alpha,\beta]} &\leq c_{2n} \|t\|_{\Theta_n} \ \forall t \in \mathbb{T}_n(S^1). \end{aligned}$

BASIC PROPERTIES

- any affine transformation of a WAM is still a WAM, C_n being invariant;
- any sequence of unisolvent *interpolation sets* whose Lebesgue constant Λ_n grows at most polynomially with n is a WAM, with constant $C_n = \Lambda_n$;
- a *finite product* of WAMs is a WAM on the corresponding product of compacts, C_n being the product of the corresponding constants;
- a finite union of WAMs is a WAM on the corresponding union of compacts, C_n being the maximum of the corresponding constants.

The blending transformation

$$\boldsymbol{v}_{u,v}(s,\theta) = s\boldsymbol{u}(\theta) + (1-s)\boldsymbol{v}(\theta)$$

maps $[0,1] \times [\alpha,\beta]$ onto the region $K_{u,v}$ lying between \boldsymbol{u} and \boldsymbol{v} , where $\boldsymbol{u}(\theta) = \boldsymbol{a}_1 \cos(\theta) + \boldsymbol{b}_1 \sin(\theta) + \boldsymbol{c}_1$, $\boldsymbol{v}(\theta) = \boldsymbol{a}_2 \cos(\theta) + \boldsymbol{b}_2 \sin(\theta) + \boldsymbol{c}_2$, $\theta \in [\alpha,\beta]$, $\boldsymbol{a}_i = (a_{i1}, a_{i2})$, $\boldsymbol{b}_i = (b_{i1}, b_{i2})$, $\boldsymbol{c}_i = (c_{i1}, c_{i2})$, i = 1, 2, with $\boldsymbol{a}_i, \boldsymbol{b}_i$ not all zero and $[\alpha, \beta]$, $0 < \beta - \alpha \leq 2\pi$.

Proposition 3 (Circular sections). The sequence $A_n = \psi_{u,v}(X_n(0,1) \times \Theta_n(\alpha,\beta))$ is a WAM for $K_{u,v}$ with $C_n = \mathcal{O}(\log^2 n)$ and $\operatorname{Card}(A_n) \leq (n+1)(2n+1)$.

Similar results are available in higher dimension e.g. for cylinders, cones, pyramids and solids of evolution.

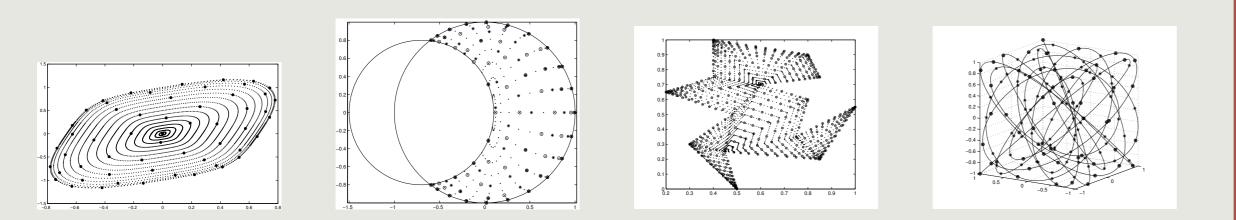
Proposition 4 (Star-like UIBC bodies). Let $K \subset \mathbb{R}^2$ be the closure of a star-like domain satisfying the Uniform Interior Ball Condition (UIBC) of parameter $\rho > 0$. Then, for every fixed $\alpha \in (0, 1/\sqrt{2})$, K has an optimal admissible mesh $\{A_n\}$ such that $C_n \equiv \frac{\sqrt{2}}{1-\alpha\sqrt{2}}$, Card $A_n \sim n^2 \frac{\text{length}(\partial K)}{\alpha \rho}$.

Finally, WAMS have been shown to be stable under small perturbations and moreover WAMs can be computed on sets that are images under smooth maps of sets where a WAM is given.

HYPERINTERPOLATION ON THE CUBE

APPLICATIONS

- Polynomial least squares fitting. Theoretical and numerical bounds for the projection operator norm available.
- Discrete orthonormal polynomials computation and fitting, with algorithm for computing a stable basis.
- Extraction of unisolvent interpolation nodes with slow growth of Lebesgue constant.
- Collocation methods for pde.



References

- L. Bos, J.P. Calvi, N.Levenberg, A. Sommariva, and M. Vianello. Geometric weakly admissible meshes, discrete least squares approximation and approximate Fekete points. *Math Comp*, 80(275):1623-1638, 2011.
- J.P. Calvi and N. Levenberg. Uniform approximation by discrete least squares polynomials. JAT, 152:82-100, 2008.
- [3] S. De Marchi, F. Piazzon, A. Sommariva, and M. Vianello. Polynomial meshes: Computation and approximation. *Proceedings of CMMSE 2015, to appear.*
- [4] F. Piazzon and M. Vianello. Analytic transformation of admissible meshes. East J. on Approx, 16:389-398, 2010(4).
- [5] F. Piazzon and M. Vianello. Computing optimal polynomial meshes on planar starlike domains. *Dolomites Res. Notes Approx. DRNA*, 7:22-25, 2014.

 $\int_{[-1,1]^3} p(\boldsymbol{x}) \frac{d\boldsymbol{x}}{\sqrt{(1-x_1^2)(1-x_2^2)(1-x_3^2)}} = \pi^2 \int_0^{\pi} p(\boldsymbol{\ell}_n(\theta)) \, d\theta \,\,, \ \, \forall p \in \mathbb{P}_{2n}^3$

where we used the Lissajous curve

 $\boldsymbol{\ell}_{n}(\theta) = (\cos(\alpha_{n}\theta), \cos(\beta_{n}\theta), \cos(\gamma_{n}\theta)), \theta \in [0, \pi],$ $(\alpha_{n}, \beta_{n}, \gamma_{n}) = \begin{cases} \left(\frac{3}{4}n^{2} + \frac{1}{2}n, \frac{3}{4}n^{2} + n, \frac{3}{4}n^{2} + \frac{3}{2}n + 1\right), n \text{ even},\\ \left(\frac{3}{4}n^{2} + \frac{1}{4}, \frac{3}{4}n^{2} + \frac{3}{2}n - \frac{1}{4}, \frac{3}{4}n^{2} + \frac{3}{2}n + \frac{3}{4}\right), n \text{ odd} \end{cases}$

Proposition 5 (WAM and onp on the cube). The sequence $\{A_n\} = \{\ell_n(s\pi/\nu)\}, s = 0, \ldots, \nu = n\gamma_n + 1$ is a WAM for the cube, with $C_n = \mathcal{O}(\log^3 n)$ and $\operatorname{Card} A_n \sim \frac{3}{4}n^3$.

COMPRESSION AND INTERPOLATION SETS

Proposition 6. Let $\{A_n\}$ be a WAM of a compact set $K \subset \mathbb{R}^d$ with Card $A_n > N_{2n} = \dim(\mathbb{P}_{2n})$ and constant C_n . Then there exists (and can be numerically computed) a WAM $A_n^* \subset A_n$ with Card $A_n^* \leq N_{2n}$ with constant $C_n^* = C_n \sqrt{\operatorname{Card} A_n}$.

It is possible to extract unisolvent interpolation sets from a WAM by numerical linear algebra, namely approximate Fekete points (AFP) by QR and Discrete Leja Sequences (DLS) by LU factorization.

Proposition 7. Let $\mathcal{F}_n = \{\boldsymbol{\xi}_{i_1}, \dots, \boldsymbol{\xi}_{i_N}\}$ the AFP or DLP extracted from a WAM of a compact set $K \subset \mathbb{R}^d$ (or $K \subset \mathbb{C}^d$). Then $\lim_{n\to\infty} \frac{1}{N} \sum_{k=1}^N f(\boldsymbol{\xi}_{i_k}) = \int_K f(\boldsymbol{x}) d\mu_K$ for every $f \in \mathscr{C}(K)$, where μ_K is the pluripotential equilibrium measure of K.

The norm of the interpolation operator $\mathcal{L}_{\mathcal{F}_n}$: $\mathcal{C}^0(K) \to \mathbb{P}_n(K)$ is bounded above by

