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The notion of Weakly Admissible Mesh (WAM) has been introduced in the
seminal paper [4] and since then it has emerged as a powerful tool in multivariate
polynomial approximation. We recall that a WAM is a sequence of finite subsets
of a multidimensional compact set or manifold, say Xn ⊂ K ⊂ Rd (or Cd), which
are norming sets for total-degree polynomial subspaces,

‖p‖L∞(K) ≤ Cn ‖p‖`∞(Xn) , ∀p ∈ Pd
n(K) , (1)

where both Cn and card(Xn) increase at most polynomially with n.
We quote among their properties that WAMs are preserved by affine trans-

formations, can be constructed incrementally by finite union and product, and
are stable under small perturbations on Markov compacts [7]. Moreover, WAMs
are well-suited for uniform least-squares approximation [3, 4], and for polyno-
mial interpolation at suitable extremal subsets extracted from them, which are
approximate versions of Fekete and Leja points [1, 2].

We present here a Matlab package, named WAM, that implements construc-
tion of WAMs (with possible cardinality reduction), polynomial fitting on WAMs
and polynomial interpolation on discrete extremal sets extracted from WAMs,
using only basic Numerical Linear Algebra algorithms, on 2-dimensional and 3-
dimensional compact sets with various geometries: convex and concave polygons,
convex and star-shaped C1,1 domains, circular sections (e.g. circular sectors,
lenses and lunes), cubes, cones and pyramids, solids of rotation.
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[6] A. Kroó, On optimal polynomial meshes, J. Approx. Theory 163 (2011), 1107–
1124.

[7] F. Piazzon and M. Vianello, Small perturbations of polynomial meshes, Appl.
Anal. 92 (2013), 1063–1073.

[8] F. Piazzon, Optimal Polynomial Admissible Meshes on Some Classes of Compact
Subsets of Rd, J. Approx. Theory, under revision.

[9] F. Piazzon and M. Vianello, Sub-optimal polynomial meshes on planar Lipschitz
domains, Numer. Funct. Anal. Optim. 35 (2014), 1467–1475.

[10] A. Sommariva and M. Vianello, Polynomial fitting and interpolation on circular
sections, Appl. Math. Comput. 258 (2015), 410–424.


