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Abstract

We show that any compact subset of Rd which is the closure of a bounded
star-shaped Lipschitz domain Ω, such that {Ω has positive reach in the sense
of Federer, admits an optimal AM (admissible mesh), that is a sequence of
polynomial norming sets with optimal cardinality. This extends a recent
result of A. Kroó on C 2 star-shaped domains.

Moreover, we prove constructively the existence of an optimal AM for
any K := Ω ⊂ Rd where Ω is a bounded C 1,1 domain. This is done by
a particular multivariate sharp version of the Bernstein Inequality via the
distance function.

Keywords: admissible meshes, multivariate polynomial approximation,
positive reach, distance function.

1. Introduction

Let us denote by Pn(Rd) the space of polynomials of d real variables
having degree at most n. We recall that a compact set K ⊂ Rd is said to be
polynomial determining if any polynomial vanishing on K is necessarily the
null polynomial.

Let us consider a polynomial determining compact set K ⊂ Rd and let
A be a subset of K. If there exists a positive constant Cn such that for any
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polynomial p ∈Pn(Rd) the following inequality holds

‖p‖K ≤ Cn‖p‖An , (1)

then An is said to be a norming set for Pn(Rd). Here and throughout the
paper we use this notation: ‖f‖X := supx∈X |f(x)| for any bounded function
on X.

Let {An} be a sequence of norming sets for Pn(Rd) with constants {Cn},
and suppose that both Cn and Card(An) grow at most polynomially with
n (i.e., max{Cn,Card(An)} = O(ns) for a suitable s ∈ N), then {An} is
said to be a weakly admissible mesh (WAM) for K; see2 [14]. Observe that
necessarily

CardAn ≥ N = dim Pn(Rd) =

(
n+ d

n

)
= O(nd)

since a (W)AM is Pn(Rd)-determining, i.e., any polynomial in Pn(Rd) van-
ishing on An is the zero polynomial. If Cn ≤ C ∀n, then {An}N is said an
admissible mesh (AM) for K; in the sequel, with a little abuse of notation,
we term (weakly) admissible mesh not only the whole sequence but also its
n-th element An. When Card(An) = O(nd), following Kroó [22], we speak of
an optimal admissible mesh.

We recall that AMs are preserved by affine transformations and can be
constructed incrementally by finite union and product. Moreover they are
stable under small perturbations and smooth mappings; see [28] and [30].
For a survey on WAMs properties and applications we refer to [10].

The study of AMs has several computational motivations. Indeed, it has
been proved by Calvi and Levenberg that discrete least squares polynomial
approximations based on (W)AMs are nearly optimal in the uniform norm,
see [14, Thm. 1]. Moreover, discrete extremal sets extracted from (W)AMs
(see for instance [10],[12]), are known to be good interpolation sets and to be-
have asymptotically like Fekete points, namely the corresponding sequences
of uniform probability measures converge weakly to the pluripotential equi-
librium measure of the underlying compact set; see [5] [6] or the survey [24].
In principle, it is possible to construct an admissible mesh with O(rd) points
on any real compact set satisfying a Markov Inequality [11] with exponent

2The original definition in [14] is actually a little weaker (sub-exponential growth), here
we prefer to use the present one which is the most common in the literature.
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r. The mesh can be obtained by intersecting the compact set with a uniform
grid having O(n−r) step size by [14, Thm. 5].

Indeed, the hypothesis of [14, Thm. 5] are not too restrictive. For instance
one has a Markov Inequality with exponent 2 for any compact set K ⊂
Rd satisfying a uniform cone condition [3], thus also for the closure of any
bounded Lipschitz domain. However the Markov Inequality holds with an
exponent possibly greater than 2 even for more general classes of sets; see
[26] and [27] for details.

The cardinality growth order of AMs built by this procedure, however,
causes severe computational drawbacks already for d = 2. This gives a strong
practical motivation to construct low-cardinality admissible meshes, in par-
ticular optimal ones.

It has been proved in [7] that for any compact polynomial determining
K ⊂ Cd there exists an admissible mesh with O((n log n)d) cardinality, un-
fortunately the method relies on the determinations of Fekete points, which
are not known in general and whose construction is an extremely hard task.

In order to build meshes with nearly optimal cardinality growth order one
can restrict his attention to sets with easy geometry as simplices, squares,
balls and their images under any polynomial map (see for instance [8]) or
can look at some specific geometric-analytic classes of sets; the present paper
follows this line.

In [23] the author proves that any compact star-shaped set K ⊂ Rd

with Minkowski Functional (see for instance [13, pg. 6]) having α-Lipschitz
gradient has an admissible mesh {Yn} with

CardYn = O(n
2d+α−1
α+1 ).

In particular he notices that this implies the existence of optimal AMs
for the closure of any C 2 star-shaped bounded domain.

In the meanwhile of writing this paper we received a new preprint (now
published) by A. Kroó where the author improves his estimate above by a
fine use of Minkowski Functional smoothness; [23, Theorem 3].

In [22] he also conjectured that any real convex body has an optimal
admissible mesh. In this work we build such optimal admissible meshes on
two relevant classes of compact sets.

The paper is organized as follows.
In Section 2 we work on star-shaped compact sets in Rd with nearly

minimal boundary regularity assumptions. We prove in Theorem 2.3 that if
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Ω ⊂ Rd is a bounded star-shaped Lipschitz domain such that {Ω has positive
reach (see Definition Appendix A.1), then K := Ω has an optimal admissible
mesh.

In Section 3 we address the same problem but we drop the star-shape
assumption on K, it turns out that a little more boundary regularity is
needed. In Theorem 3.6 we prove that if Ω is a bounded C 1,1 domain of Rd,
then there exists an optimal admissible mesh for K := Ω.

In the Appendices we provide for the readers convenience a quick review
of some definitions and results from non-smooth and geometric analysis and
geometric measure theory that are involved in the framework of this paper.

2. Optimal AMs for star-shaped sets having complement with pos-
itive reach

In Approximation theory it is customary to consider as mesh parameter
the fill distance h(Y ) of a given finite set of points Y w.r.t. a compact
subset X of Rd.

h(Y ) := sup
x∈X

inf
y∈Y
|x− y|. (2)

In this definition it is not important whether the segment [x, y] lies in X
or not. If one wants to control the minimum length of paths joining x to
y and supported in X then one may consider the following straightforward
extension of the concept of fill distance given above.

Definition 2.1 (Geodesic Fill-Distance). Let Y be a finite subset of the
set X ⊂ Rd, then we set

Ax,y(X) := {γ ∈ C ([0, 1], X) : γ(0) = x, γ(1) = y,Var[γ] <∞}

and define
hX(Y ) := sup

x∈X
inf
y∈Y

inf
γ∈Ax,y

Var[γ], (3)

the geodesic fill distance of Y over X.

Here and throughout the paper we denote by Var[γ] the total variation of
the curve γ,

Var[γ] := sup
N∈N

sup
0=t0<t1···<tN=1

N∑
i=1

|γ(ti)− γ(ti−1)|.
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Notice that if we make the further assumption of the local completeness of
X, then it ensures the existence of a length minimizer in Ax,y(X) provided it
is not empty, that is if there exists a rectifiable curve ψ connecting any x and
y in X such that Var[ψ] ≤ L < ∞. Thus if X has finite geodesic diameter,
which will be the case of all instances considered in this paper, then we can
replace infγ∈Ax,y Var[γ] by minγ∈Ax,y Var[γ] in (3).

Now we want to build a mesh on the boundary of a bounded Lipschitz
domain having a given geodesic fill distance but keeping as small as possible
the cardinality of the mesh. Then we use such a “geodesic” mesh to build
an optimal AM for the closure of the domain.

For the reader’s convenience we recall here that a domain Ω ⊂ Rd is
termed a (uniformly) Lipschitz domain if there exist 0 < L < ∞, r > 0
and an open neighborhood B of 0 in Rd−1 such that for any x ∈ ∂Ω there
exists ϕx : B →]− r, r[ and Rx ∈ SOd such that ϕx(0) = 0, Lip(ϕx) ≤ L and

R−1
x (Ω ∩ (x+Rx(B×]− r, r[))− x) = epiϕx := {(ξ, t) : ξ ∈ B, t ∈]−R,ϕx(t)[}.

The following result, despite its rather easy proof, is a key element in our
construction. For a bounded Lipschitz domain the euclidean and geodesic
(on the boundary) distances restricted to the boundary are equivalent.

Proposition 2.1. Let Ω be a bounded Lipschitz domain in Rd, then there
exists h̄ > 0 such that there exists Yh ⊂ X := ∂Ω, 0 < h < h and the
following hold:

(i) CardYh = O
(
h1−d) as h→ 0.

(ii) hX(Yh) ≤ h.

Proof. Here we denote by Bs
∞(x0, r) the s dimensional ball of radius r

centered at x0 w.r.t. the norm |x|∞ := maxi∈{1,2,...,s} |xi|, i.e. the coordinate
cube centered at x0 and having sides of length 2r.

Since Ω is a Lipschitz domain using the above notation we can write(
x+RxB

d
∞(0, r)

)
∩ ∂Ω = Rx Graph(ϕx).

Let us denote the graph function of ϕx by gx : Bd−1
∞ (0, r) −→ Rd, that is

Bd−1
∞ (0, r) 3 ξ 7→ {ξ1, ξ2, . . . , ξd−1, ϕx(ξ)} = gx(ξ).
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Figure 1: The geodesic mesh in the proof of Proposition 2.1 is built by lifting the grid
mesh Zh by the local parametrization of the boundary X. The curve γx connecting x to
y is similarly produced by lifting the segment [x′, y′].

By compactness we can pick x1, x2, . . . , xM(r) ∈ ∂Ω such that

∂Ω ⊆ ∪M(r)
i=1 Xi =: ∪M(r)

i=1

( (
xi +RxiB

d
∞(0, r)

)
∩ ∂Ω

)
.

Let h̄ := r
√

1 + L2, take any 0 < h ≤ h̄ and let us consider the grid of
step-size h√

(1+L2)
in the d− 1 dimensional cube

Zh :=

{−r +
jh√

(1 + L2)

}
j=0,1,...,d 2r

√
1+L2

h
e

d−1

⊂ Bd−1
∞ (0, r),

where d·e is the ceil operator. Set

Y i
h := xi +Rxi (gxi(Zh)) ,

Yh := ∪M(r)
i=1 Y i

h .
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Now notice that

CardYh ≤
M(r)∑
i=1

CardY i
h = M(r) CardZh

= M(r)

(
1 +

⌈
2r
√

1 + L2

h

⌉)d−1

= O(h1−d).

In order to verify the (ii) for any x ∈ ∂Ω we explicitly find y ∈ Yh and
build a curve γx connecting x to y whose variation gives an upper bound for
the geodesic distance of x from Yh. For the following construction we refer
to the Figure 1.

Take any x ∈ ∂Ω, then there exist (at least one) i ∈ {1, 2, . . . ,M(r)} such
that x ∈ Xi. Let us pick such an i.

Let us denote by proji the canonical projection on the first d− 1 coordi-
nates acting from R−1

xi

((
xi +RxiB

d
∞(0, r)

)
∩ ∂Ω − xi

)
onto Bd−1

∞ (0, r).
Let x′ := proji(x), by the very construction we can find y′ ∈ Zh such that

|x′− y′| ≤ h√
1+L2 =: h′, moreover the whole segment [x′, y′] lies in Bd−1

∞ (0, r).

We consider the curve αx : ξ 7→ x′+ξ y′−x′
|y′−x′| , ξ ∈ [0, h′] and we set γx(ξ) :=

xi + gxi(α(ξ)) the curve that joins x to y := xi + gxi(y
′) ∈ Yh obtained by

mapping the segment [x′, y′] under gxi .
Now we use Area Formula [20] [18][Th. 1 pg. 96] to compute the length

of the Lipschitz curve γx.

Var[γx] =

∫ h′

0

Jac[γ](t)dt = (4)

=

∫ h′

0

[
d−1∑
i=1

(
y′i − x′i
|y′ − x′|

)2

+ · · ·+
(
∇ϕx

(
x′ + t

y′i − x′i
|y′ − x′|

)
· (t y

′
i − x′i
|y′ − x′|

)

)2
] 1

2

dt

=

∫ h′

0

[∣∣∣∣ y′ − x′|y′ − x′|

∣∣∣∣2 + L

∣∣∣∣ y′ − x′|y′ − x′|

∣∣∣∣2
] 1

2

dt ≤
√

1 + L2h′ = h.

Here Jac is the Jacobian of a Lipschitz mapping, see [18][pg. 101].
We take the maximum over x ∈ ∂Ω using (3), notice that our γx by the

construction is an element of Ax,y,

h∂Ω(Yh) = sup
x∈X

inf
y∈Yh

inf
η∈Ax,y

Var[η] ≤ sup
x∈X

Var[γx] ≤ h.

2
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Now we are ready to state and prove our main result of this section. We
build an optimal mesh for a star shaped Lipschitz bounded domain having
complement of positive reach by the following technique. First, we consider
the hypersurfaces given by the images of the boundary of the domain un-
der a one parameter family of homotheties, being the parameter chosen as
Chebyshev points scaled to the suitable interval. We prove that this family
of hypersurfaces is a norming set for the given compact. The second key
element is that on each such hypersurface we can use a Markov Tangen-
tial Inequality with minimal (with respect to the degree of the considered
polynomial) growth rate n.

Theorem 2.3. Let Ω ⊂ Rd be a bounded star-shaped Lipschitz domain such
that {Ω has positive reach (see Definition Appendix A.1), then K := Ω has
an optimal polynomial admissible mesh.

Proof. We can suppose without loss of generality the center of the star to
be 0 by stability of AM under euclidean isometries [10].

Let us set bin(r) := r
2
(1 + cos π(2n−i)

2n
) for any r > 0 i = 1, 2, . . . 2n+ 1. By

a well known result ([17]) the set Gn(r) of all bin(r)’s (varying the index i) is
an admissible mesh of degree n and constant

√
2 for the interval [0, r]:

‖p‖[0,r] ≤
√

2‖p‖Gn(r) ∀p ∈Pn. (5)

Let us take any x ∈ X := ∂K and consider the set G̃n(x) := xGn(1),
notice that G̃n(x) ⊂ K because K is star-shaped.

One can set Zn := ∪x∈XG̃n(x) , i.e., Zn is the union of the images of X

under the homotheties having parameters cos π(2n−i)
2n

. See Figure 2.
Notice that the restriction of any polynomial of degree at most n in d

variables to any segment is a univariate polynomial of degree at most n, then
due to (5) Zn are norming sets for K, that is

‖p‖K ≤
√

2‖p‖Zn ∀p ∈Pn(Rd). (6)

Therefore we are reduced to finding an admissible polynomial mesh of degree
n for Zn.

Let us consider any3 Lipschitz curve γ : [0, 1] → X, by Proposition Ap-
pendix A.1 for a.e. s ∈]0, 1[ there exists v ∈ Sd such that

3Notice that X is compact connected, nonempty and consists of an infinite number of
points, obviously it contains an infinite number of Lipschitz curves.
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Figure 2: The geometry of Zn.

1. B(γ(s) + rv, r) ⊆ K and

2. γ′(s) ∈ Tγ(s)∂B(γ(s) + rv, r).

Hereafter TpM is, as customary, the tangent space to M at p ∈M.
Since the boundary of the ball is a compact algebraic manifold, it admits

Markov Tangential Inequality of degree 1 (see [9] and the references therein),
moreover the constant of such an inequality is the inverse of the radius of the
ball: ∣∣∣∣∂p∂v (x)

∣∣∣∣ ≤ |v|r n‖p‖B(x0,r) ∀p ∈Pn(Rd) , ∀v ∈ Tx∂B(x0, r). (7)

Let us recall (see for instance [2][Lemma 1.1.4]) that any Lipschitz curve
γ can be re-parametrized by arclength by the inversion of t 7→ Var[γ|[0,t]],
obtaining a Lipschitz curve

γ̃ : [0,Var[γ]] → X

Var[γ̃] = Var[γ]

Lip[γ̃] = 1 =a.e. |γ̃′|

Therefore (using Rademacher Theorem, see for instance [18][Th.2 pg 81])
for a.e. s ∈]0, 1[ we have∣∣∣∣∂(p ◦ γ̃)

∂t
(t)

∣∣∣∣ = |∇p(γ̃(t)) · γ̃′(t)| (8)

≤ |γ̃′(t)|n
r
‖p‖B(γ̃(t)+rv,r) ≤

n

r
‖p‖K . (9)
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By Proposition 2.1 we can pick subsets Y r
2n

on X such that hX
(
Y r

2n

)
≤ r

2n

and CardY r
2n

= O(nd−1). For notational convenience we write Yn in place of
Y r

2n
.
Let us now pick any x ∈ X and consider γ, an arc connecting a closest

point yin of Yn to x and x itself such that Var[γ] ≤ r
2n

, parametrized in the
arclength.

By the Lebesgue Fundamental Theorem of Calculus for any p ∈Pn(Rd)
one has

|p(x)| ≤ |p(yin)|+

∣∣∣∣∣
∫ Var[γ]

0

∂(p ◦ γ)

∂ξ
(ξ)dξ

∣∣∣∣∣
≤ |p(yin)|+

∫ Var[γ]

0

|∇p(γ(ξ)) · γ′(ξ)| dξ

≤ |p(yin)|+
∫ r/2n

0

n

r
‖p‖Kdξ ≤ |p(yin)|+ 1

2
‖p‖K

where in the last line we used (9). Thus we have

‖p‖X ≤ ‖p‖Yn +
1

2
‖p‖K . (10)

By the properties of rescaling, setting bin := bin(1) = 1+cos (iπ/n)
2

, we have also

‖p‖binX ≤ ‖p‖binYn + 1/2‖p‖binK ≤ ‖p‖binYn +
1

2
‖p‖K ,

for, consider the homothety Θi
n : Rd → Rd, where Θi

n(x) := x
bin

and write the

inequality (10) for each qi,n := p ◦Θi
n.

Therefore, taking the union over i = 0, 1, 2n and using xG̃n = ∪mni=0b
i
nx

and Zn = ∪x∈XxG̃n, we have

‖p‖Zn = ‖p‖∪x∈X(∪ibinx) ≤ ‖p‖∪ibinYn +
1

2
‖p‖K .

Hence, setting Xn := ∪2n
i=0b

i
nYn, we can write

‖p‖Zn ≤ ‖p‖Xn +
1

2
‖p‖K .

Now we can use (6) to get ‖p‖K ≤
√

2
(
‖p‖Xn + 1

2
‖p‖K

)
and hence

‖p‖K ≤
2
√

2

2−
√

2
‖p‖Xn = 2(

√
2 + 1)‖p‖Xn .
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Thus Xn is an admissible polynomial mesh for K. The set Xn is the disjoint
union of 2n+ 1 sets binYn,thus

CardXn = (2n+ 1)O(nd−1) = O(nd),

therefore Xn is an optimal admissible mesh of constant 2(
√

2 + 1). 2

This result should be compared to the recent article [23, Theorem 3].
The results achieved by this very new manuscript even if they are set in
a little more general context, still they do not cover the case of a Lipschitz
domain with complement having Positive Reach but not being C 1,1−2/d , d ≥ 2
globally smooth. The key element here is that inward pointing corners and
cusps are allowed in our setting, while they are not in [23].

From an algorithmic point of view an AM built by a straightforward
application of Theorem 2.3 and should be refined. Informally speaking such
a collocation technique creates AMs that are clustered near the center of the
star, while this seem to have no geometrical nor analytical meaning.

This issue can be partially removed by some minor modifications of the
construction which turn the proof of Theorem 2.3 in a more efficient algo-
rithm.

Theorem 2.3 is formulated in a rather general way, here we provide two
corollaries that specialize the same result.

It has been shown (see [1]) that C 1,1 domains (see Appendix B.1) of Rd

are characterized by the so called uniform double sided ball condition, that
is, Ω is a C 1,1 domain iff there exists r > 0 such that for any x ∈ ∂Ω there
exist v ∈ Sd−1 such that we have B(x + rv, r) ⊆ Ω and B(x − rv, r) ⊆ {Ω,
this property in particular says that {Ω (and Ω itself) has positive reach
Appendix A.1. Therefore the following is a straightforward corollary of our
main result.

Corollary 2.4.1. Let Ω be a bounded star-shaped C 1,1 domain, then its clo-
sure has an optimal AM.

It is worth recalling that such domains can also be characterized by the
behavior of the oriented distance function of the boundary (i.e. bΩ(x) :=
d(x,Ω) − d(x, {Ω)). For any such C 1,1 domain there exists a (double sided)
tubular neighborhood of the boundary where the oriented distance function
has the same regularity of the boundary, this condition characterizes C 1,1

domains too. This framework is widely studied in [16] and [15].
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In the planar case a similar result holds under slightly weaker assump-
tions.

Theorem 2.5 ([29]). Let Ω be a bounded star-shaped domain in R2 satisfy-
ing a Uniform Interior Ball Condition (see Definition Appendix A.4), then
K := Ω has an optimal polynomial admissible mesh.

A comparison of the statements of Theorem 2.3 and Theorem 2.5 reveals
that actually in the second one we are dropping two assumptions, first the
domain is no longer required to be Lipschitz, second we ask the weaker
condition UIBC instead of complement of positive reach.

The first property is assumed to hold in the proof of the general case to
make possible the construction of the geodesic mesh with a control on the
asymptotics of the cardinality. In R2 the boundary of a bounded domain
satisfying the UIBC is rectifiable; see [21]. Therefore, the geodesic mesh can
be created by equally spaced (with respect to arc-length) points.

On the other hand the role of the second missing property is recovered
by a deep fact in measure theory. If a set has the UIBC then then the set of
points where the normal space (see Definition Appendix A.2) has dimension
greater or equal to k has locally finite d− k Hausdorff measure; [19, 25]. In
our bi-dimensional (i.e., d = 2) case this result reads as follow: the normal
space has dimension greater or equal to k = 2 on a subset having 0−Hausdorff
measure equal to 0, that is a finite set [19]. Moreover it can be proved that,
apart from this small set, the single valued normal space is Lipschitz.

3. Optimal AM for C 1,1 domains by distance function

As we mentioned above, in [22] the author conjectures that any real com-
pact set admits an optimal AM, in this section we prove (in Theorem 3.6)
that this holds at least for any real compact set K which is the the closure
of a bounded C 1,1 domain Ω, see Appendix B.1

We denote by d{Ω(·) the distance function w.r.t. the complement of Ω,
i.e.

d{Ω(x) := inf
y∈{Ω
|y − x|, (11)

and by proj{Ω(·) the metric projection onto {Ω, that is any minimizer of
(11). We continue to use the same notation as in the previous section for the
closure and the boundary of Ω, namely X := ∂Ω and K := Ω.
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Let us give a sketch of the overall geometric construction before giving
details.

First for a given C 1,1 domain Ω we take 0 < δ < 2rΩ, whererΩ is the
maximum radius of the ball of the uniform interior ball condition satisfied
by Ω.

We can split K := Ω as follows

Ω = Kδ ∪ Ωδ where

Kδ := {x ∈ Ω : d{Ω(x) ≤ δ} and

Ωδ = Ω \Kδ.

To construct an AM of degree n on Ω we work separately on Kδ and Ωδ

to obtain inequalities of the type

‖p‖Kδ ≤ ‖p‖Zn,δ +
1

λ
‖p‖K , λ > 1 and

‖p‖Ωδ ≤ 2‖p‖Yn,δ +
2

µ
‖p‖K , µ > 1,

for p ∈Pn.
In the case of Kδ this is achieved by the trivial observation x ∈ Kδ ⇒

B(x, δ) ⊆ Ω and therefore one can bound using the univariate Bernstein In-
equality (see Theorem 3.1 below) any directional derivative of a given poly-
nomial. The obtained inequality is a variant of a Markov Inequality with
exponent 1 which is convenient and allow us to build a low cardinality mesh
by a modification of the reasoning in [14].

The construction of an AM on Ωδ is more complicated. The resulting
mesh is given by points lining on some properly chosen level surfaces of d{Ω.
The result is proved using the regularity property of the function d{Ω in a
small tubular neighborhood of X and the Markov Tangential Inequality for
the sphere.

3.1. Bernstein-like Inequalities and polynomial estimates via the distance
function.

For the reader’s convenience we recall here the Bernstein Inequality.

Theorem 3.1 (Bernstein Inequality). Let p ∈Pn(R), then for any a <
b ∈ R we have

|p′(x)| ≤ n√
(x− a)(b− x)

‖p‖[a,b], x ∈]a, b[. (12)
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Let us introduce the following notation illustrated in figure 3.

l(x) := min
y∈proj{Ω(x)

inf

{
λ > 0 : y + λ

x− y
|x− y|

/∈ Ω

}
x ∈ Ω (13)

lΩ := inf
x∈Ω

l(x). (14)

Remark 3.2. In the case when Ω is a C 1,1 domain one has the estimate
lΩ ≥ 2r where r < Reach(∂Ω) see Definition Appendix A.1 and thereafter.

x

B

A

C

O

Figure 3: Here A := proj{Ω(x) and l(x) = |A − C| ≥ |A − B| = 2r is the length of the

shortest segment inside Ω containing x and having direction x−proj{Ω(x)
|x−proj{Ω(x)| .

The following consequence of Bernstein Inequality will play a central role
in our construction.

Proposition 3.1. Let Ω be a bounded domain in Rd and let us introduce the
sequence of functions

ϕn(x) :=


n√

d{Ω(x)(lΩ−d{Ω(x))
, if d{Ω(x) < lΩ

n
d{Ω(x)

, otherwise
. (15)
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For any x ∈ Ω let v ∈ { x−y|x−y| : y ∈ proj{Ω(x)}, then for any p ∈ Pn(Rd) we
have

|∂vp(x)| ≤ ϕn(x)‖p‖K . (16)

If moreover we have lΩ > 0, let us pick any 0 < δ < lΩ and define the
sequence of functions

ϕn,δ(x) :=


n√

d{Ω(x)(δ−d{Ω(x))
, if d{Ω(x) < δ

n
d{Ω(x)

, otherwise
. (17)

Then the above polynomial estimate (16) still holds when ϕn,δ is substituted
by ϕn.

Proof. Pick p ∈ Pn(Rd). Let us take x ∈ Ω such that d{Ω(x) < lΩ. We
denoted by Sv(x) the segment x+[−d{Ω(x), lΩ−d{Ω(x)]v, where v is as above
and x ∈ Sv(x) due to d{Ω(x) < lΩ. The restriction of p to this segment is an
univariate polynomial q(ξ) := p(x + vξ) of degree not exceeding n, then we
can use the Bernstein Inequality 3.1 to get∣∣∣∣∂q∂ξ (ξ)

∣∣∣∣ ≤ n√
(ξ + d{Ω(x))(lΩ − d{Ω(x)− ξ)

‖p‖Sv(x),

evaluating at ξ = 0 we get

|∂vp(x)| ≤
n‖p‖Sv(x)√

d{Ω(x)(lΩ − d{Ω(x))
≤ n‖p‖K√

d{Ω(x)(lΩ − d{Ω(x))
, (18)

thus establishing the first case of (17).
Let x be such that d{Ω(x) ≥ lΩ. Notice that B(x, d{Ω(x)) ⊆ Ω and

hence ∀η ∈ Sd−1 (the standard unit d− 1 dimensional sphere) we can pick a
segment in the direction of η having length d{Ω(x) lying in K and having x
as midpoint. The Bernstein Inequality gives

|∂vp(x)| ≤ max
η∈Sd−1

|∂ηp(x)| ≤ n

d{Ω(x)
‖p‖B(x,d{Ω(x)) ≤

n

d{Ω(x)
‖p‖K . (19)

The last statement follows directly by the special choice of δ < lΩ. The
right hand side in (17) dominates (case by case) the r.h.s. in (15) when cases
are chosen accordingly to (17). 2
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Actually the above proof proves also the following corollary, it suffices to take
(17) and substitute n

d{Ω(x)
by n

δ
in the second case.

Corollary 3.3.1. Let Ω be an open bounded domain and δ a positive number
such that Kδ := {x ∈ Ω : d{Ω(x) ≥ δ} 6= ∅. Then for any v ∈ Sd−1 we have
∀p ∈Pn(Rd)

‖∂vp‖Kδ ≤
n

δ
‖p‖K . (20)

A profitable technique in order to build an AM is to find a norming subset
N of the given compact, then try to build an AM for N. We introduce the
following in the spirit of [31].

Let us denote by ds(·) the standard length measure in Rd.

Proposition 3.2. Let Ω be a bounded domain in Rd such that lΩ > 0 and
let 0 < δ ≤ lΩ. Then

(i) for any x ∈ Ω the map

proj
{Ω

(x) 3 y 7→
∫

[y,x]

ϕn,δ(ξ)ds(ξ)

is constant, let Fn,δ(x) be its value.

(ii) We have

Fn,δ(x) =

{
n arcos(1− 2d{Ω(x)

δ
), if d{Ω(x) < δ

n
(
π + ln d{Ω(x)

δ

)
, otherwise.

(21)

In particular Fn,δ extends continuously to Ω.

(iii) Fn,δ is constant on any level set of d{Ω(·) and supΩ\Kδ Fn,δ = nπ.

Let us set ain,δ := inπ
mn

where i = 0, 1, . . .mn and mn is any positive

integer greater than 2nπ, we denote by Γin,δ the ain,δ-level set of Fn,δ.

(iv) We have

Γin,δ = {x ∈ K : d{Ω(x) = din,δ} , where

din,δ :=
δ

2

(
1− cos

(
iπ

mn

))
.
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(v) Let Γn,δ := ∪mni=0Γin,δ, then for any p ∈Pn(Rd) we have

‖p‖K ≤ max{2‖p‖Γn,δ , ‖p‖Kδ}. (22)

10 20 30 40 50

1

2

3

4

Figure 4: A plot of a section of Fn,δ along a segment of metric projection, where δ = 10,
n = 1. Abscissa here is the distance from the boundary.

Proof. (i) The function ϕn,δ(·) depends on its argument only by the dis-
tance function, ϕn,δ(x) =: gn,δ(d{Ω(x)). The length of the segment [y, x] is
clearly constant when y varies in the set proj{Ω(x).

Moreover for any y, z ∈ proj{Ω(x) let us denote by Ry,z an euclidean
isometry that maps [y, x] onto [z, x], one trivially has d{Ω(ξ) = d{Ω(Ry,zξ) for
any ξ ∈ [y, x]. This is because proj{Ω(ξ) 3 y for any ξ ∈ [x, y] by the Triangle
Inequality and thus d{Ω(ξ) = |ξ − y|.

Thus we have∫
[y,x]

ϕn,δ(ξ)ds(ξ) =

∫
[y,x]

gn,δ(d{Ω(ξ))ds(ξ)

=

∫
[y,x]

gn,δ(d{Ω(Ry,zξ))ds(ξ) =

∫ 1

0

gn,δ

(
d{Ω

(
Ry,z

(
y + t

x− y
|x− y|

)))
dt

=

∫ 1

0

gn,δ

(
d{Ω

(
z + t

z − x
|z − x|

))
dt =

∫
[z,x]

ϕn,δ(η)ds(η).
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(ii) Let us parametrize the segment as y + s x−y
|x−y| , then we have

Fn,δ(x) =


∫ d{Ω(x)

0
n√
s(δ−s)

ds, if d{Ω(x) < δ∫ δ
0

n√
s(δ−s)

ds +
∫ d{Ω(x)

δ
n
s
ds , otherwise.

(23)

The first integral can be solved by substitution: s = δ
2
(1 − cos θ). The

integration domain becomes [0, θx] where δ
2
(1− cos(θx)) = d{Ω(x), while the

integral itself becomes
∫ θx

0
dθ = θx, thus the first case in (21) is proven.

The second integral has an immediate primitive. Fn,δ depends on x only
by the distance function, moreover we notice that

lim
s→δ−

arcos

(
1− 2s

δ

)
= π = lim

s→δ+

(
π + ln

s

δ

)
,

hence Fn,δ is a continuous function of the distance function. Since d{Ω is well
known to be 1−Lipschitz Fn,δ is continuous on Ω.

Since d{Ω extends continuously to Ω, then Fn,δ does. Actually we must
take Fn,δ|∂Ω ≡ 0.

(iii) We already used that Fn,δ depends on x only by the distance function
and hence Fn,δ|d←

{Ω
(a) = constant4, moreover the functions arcos

(
1− 2s

δ

)
and(

π + ln s
δ

)
are both increasing in [0,maxx∈Ω d{Ω(x)], see Figure 4, hence any

level set of Fn,δ must coincide with a suitable level set of the distance function.

(iv) The conclusion follows immediately by inverting the equation

n arcos

(
1−

2din,δ
δ

)
= ain,δ.

(v) Let p ∈ Pn(Rd) be fixed, let us pick x ∈ K, then two possibilities can
occur. In the first case x ∈ Kδ. In this case we have |p(x)| ≤ ‖p‖Kδ . In the
second we suppose x /∈ Kδ, let us consider y ∈ proj{Ω(x). The segment [y, x]
cuts Γin,δ for every i such that din,δ ≤ d{Ω(x), moreover [y, x] ∩ Γin,δ = {yi},
due to the monotonicity of Fn,δ along any segment where d{Ω is monotone.

4We denote by f←(a) the inverse image under f : D → R of the number a ∈ Range[f ],
i.e., {x ∈ D : f(x) = a} that, in general, is a set.
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Let i(x) := max{i : din,δ ≤ d{Ω(x)} and let yi(x)+1 be the unique intersec-

tion of Γ
i(x)+1
n,δ and the ray starting from x and having direction x−y

|x−y| .

Let s(·) be the arc length parametrization of the segment [yi(x), yi(x)+1]
now we have

|p(x)| ≤ |p(yi(x))|+
∫ s−1(x)

0

∣∣∣∣∂(p ◦ s)
∂t

(t)

∣∣∣∣ dt
≤ |p(yi(x))|+

∫ 1

0

∣∣∣∣∂(p ◦ s)
∂t

(t)

∣∣∣∣ dt
= |p(yi(x))|+

∫ 1

0

‖p‖Kϕn,δ(s(t))dt

= |p(yi(x))|+
∫

[yi(x),yi(x)+1]

‖p‖Kϕn,δ(ξ)ds(ξ)

≤ |p(yi(x))|+ ‖p‖K
mn

∫
[y0,ymn ]

ϕn,δ(ξ)ds(ξ)

≤ ‖p‖
Γ
i(x)
n,δ

+
Fn,δ(y

mn)

mn

‖p‖K ≤ ‖p‖Γ
i(x)
n,δ

+
1

2
‖p‖K ,

where we used (16) in the third line while the special choice of ain,δ (and thus
yi) as equally spaced points in the image of Fn,δ and the choice of mn > 2nπ
has been used in the last two lines.

To conclude we take the maximum of the above estimates w.r.t. x ∈ K
thus letting i varying among 0, 1, . . . ,mn − 1 and considering both cases
x ∈ Kδ and x /∈ Kδ. 2

Proposition 3.3. Let Ω be a bounded C 1,1 domain, 0 < r < Reach(∂Ω)
0 < δ ≤ r and let mn > 2nπ, then

(i) For any i = 1, . . .mn Γin,δ is a C 1,1 hypersurface.

(ii) For any p ∈Pn(Rd) any x ∈ Γin,δ and any v ∈ Sd−1∩TxΓin,δ where i =
0, 1, . . . ,mn we have

|∂vp(x)| ≤

{
n
δ
‖p‖K i = 0

2n
δ
‖p‖K i = 1, 2, . . . ,mn

. (24)
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Figure 5: Different situations occurring in the proof of Proposition 3.3 (ii). On the left
side the tangent ball at x is chosen outward and on the left side inward, this corresponds
respectively to the first and the second case in (26). The arrow represent ∇bΩ(x).

Proof. (i) Notice that we have, due to Appendix B.2,

0 < min{Reach(Ω),Reach({Ω)} = Reach(∂Ω).

If i > 0 due to (B.1) and Theorem Appendix B.2. We have ∀x ∈ Γin,δ

∇d{Ω(x) = −∇bΩ(x) =
x− proj∂Ω(x)

|x− proj∂Ω(x)|
,

moreover this is a Lipschitz function when restricted to {|bΩ(x)| < δ}
for any 0 < δ < min{Reach(Ω),Reach({Ω)}.
Also we have bΩ|Ω ≡ −d{Ω.

We notice that ∇d{Ω(x) 6= 0, therefore any level-set of d{Ω contained in
Ω \ Kδ is a C 1,1 d − 1 dimensional manifold by the Implicit Function
Theorem.

(ii) If i = 0 Theorem Appendix B.2 tells that for any x in Γin,δ we have
Bx := B(x + δ∇bΩ(x), δ) ⊆ Ω, (cfr. figure 5 point C1) moreover
TxΓin,δ = Tx∂Bx. Therefore we can apply the Markov Tangential In-
equality to the ball Bx : for any polynomial p ∈ Pn and any u ∈
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TxΓin,δ = Tx∂Bx we have

|∂up(x)| ≤ n

δ
‖p‖Bx ≤

n

δ
‖p‖K . (25)

Where the last inequality follows from Bx ⊆ K.

Now we focus on i > 0. Let us take x ∈ Γin,δ, then y = proj{Ω(x) ⇒
∇bΩ(y) = ∇bΩ(x) and hence we have TxΓin,δ = TyX, i = 0, 1, . . . ,mn

Moreover we notice that

Bi
x :=


B

(
y +

din,δ
2 ∇bΩ(x),

din,δ
2

)
⊂ Ω din,δ ≥ δ/2

B

(
y + (din,δ +

2δ−din,δ
2 )∇bΩ(x),

2δ−din,δ
2

)
⊂ Ω din,δ < δ/2.

(26)

TxΓin,δ = TxBi
x. (27)

This can be figured out by looking at in Figure 5 where the first occurrence
is represented on the left and the second on the right.

Now we notice that the radius of Bi
x can be bounded below uniformly in i

by δ/2. Therefore The Markov Tangential Inequality for the ball gives us the
following ∀p ∈Pn and ∀v ∈ TxΓin,δ, |v| = 1 we have

|∂vp(x)| ≤ n

δ/2
‖p‖Bix .

Now due to TxΓin,δ = TxBi
x and Bi

x ⊂ Ω we have ∀p ∈Pn, v ∈ TxΓin,δ, |v| =
1,∀i = 0, 1,mn

|∂vp(x)| ≤ n

δ/2
‖p‖K .

2

3.2. Proof of the main result

We developed all required tools to state and prove the main result of
this paper, Theorem 3.6. The idea of its constructive proof is mixing the
technique of Theorem 2.3 with an improvement of the one being used in
[14][Th. 5]. More precisely the hypersurfaces Zn of Theorem 2.3 here are
replaced by the level sets Γin,δ which together with the set Kδ = {x ∈ K :
d{Ω(x) ≥ δ} are shown to form a norming set for K.

Theorem 3.6. Let Ω be a bounded C 1,1 domain in Rd, then there exists an
optimal admissible mesh for K := Ω.
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Proof. Notice that we have 0 < min{Reach(Ω),Reach({Ω)} = Reach ∂Ω
due to Appendix B.2 we fix δ ≤ r < Reach ∂Ω

Let us recall the above notation

Kδ := {x ∈ K : d{Ω(x) ≥ δ},
Γn,δ := ∪iΓin,δ where

Γin,δ := {x ∈ K : d{Ω(x) = din,δ},

din,δ :=
δ

2

(
1− cos

(
iπ

mn

))
, where we can take

mn := d2nπe+ 1.

Let p ∈Pn(Rd).
• Claim 1. For any λ > 1 there exists Zn,δ,λ ⊂ Kδ such that

‖p‖Kδ ≤ ‖p‖Zn,δ,λ +
1

λ
‖p‖K and (28)

CardZn,δ,λ = O(nd). (29)

• Proof of Claim 1. Let us consider for any λ > 1 a mesh Zn,δ,λ such that
its fill distance

h(Zn,δ,λ) ≤
δ

λn+ 1/2
=: h , see (2).

Let us define Zn,δ,λ ⊂ Kδ as the intersection of K with a grid G with a
step-size h√

d
on a suitable d dimensional cube containing K. It follows that

Card(Zn,δ,λ) =
(√

d
h

)d
= O(nd).

Now pick any x ∈ Kδ and find y ∈ Zn,δ,λ such that |x− y| ≤ h and define
v := x−y

|x−y| and notice that

|p(x)|

≤ |p(y)|+

∣∣∣∣∣
∫ |x−y|

0

∂vp(x+ sv)ds

∣∣∣∣∣ ≤ ‖p‖Zn,δ,λ + |x− y|‖p‖[x,y]

≤ ‖p‖Zn,δ,λ + ‖∂vp‖B(Kδ,h/2).

Where we used minξ∈[x,y] dist(ξ,Kδ) ≥ h/2 due to the Triangle Inequality for
the euclidean distance dist(·, Kδ) from Kδ.

By the observation B(Kδ, h/2) ⊆ Kδ−h/2 we can apply inequality (20)
where δ is replaced by δ − h/2.
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|p(x)| ≤ |p(y)|+ h
n

δ − h/2
‖p‖K

Taking maximum over x ∈ Kδ and using the particular choice h := δ
λn+1/2

we are done.
• Claim 2. For any 2 < µ there exist finite sets Y i

n,δ ⊂ Γin,δ, i = 0, 1, ..mn,
such that if we set Yn,δ := ∪iY i

n,δ we get

‖p‖∪iΓin,δ ≤ ‖p‖Yn,δ +
1

µ
‖p‖K and (30)

CardYn,δ = O(nd). (31)

•Proof of Claim 2. Let us pick Y i
n,δ ⊂ Γin,δ such that

hΓin,δ
(Y i

n,δ) ≤

{
δ
µn

i = 0
δ

2µn
i = 1, 2, . . . ,mn

(see Definition 3). (32)

Now fix any i ∈ {0, 1, . . . ,mn}, by (32) for any x ∈ Γin,δ there exist a point
y ∈ Y i

n,δ and a Lipschitz curve5 γ lying in Γin,δ, connecting x to y and such
that Var[γ] ≤ hΓin,δ

(Yn,δ) . Let us denote the arclength reparametrization of

γ by γ̃, then we have

|p(x)| ≤ |p(y)|+
∫ Var[γ]

0

d(p ◦ γ̃)

dt
(t)dt

≤ ‖p‖Y in,δ + hΓin,δ
(Yn,δ) max

ξ∈Γn,δ,v∈Sd−1∩TξΓin,δ
|∂vp(ξ)|

≤ ‖p‖Y in,δ +
1

µ
‖p‖K .

Here, in the 3rd line, we used the inequality (24). Let us take the maximum
w.r.t. x varying in Γin,δ and i varying over {0, 1, . . . ,mn}, we obtain ‖p‖Γn,δ ≤
‖p‖Yn,δ + 1

µ
‖p‖K .

We are left to prove that we can pick Y i
n,δ such that Card(Yn,δ) = O(nd).

5Notice that Γin,δ are compact C 1,1 hypersurfaces, thus in particular they are locally
complete with respect the geodesic distance. Therefore there exists a curve γ realizing the
infimum in the definition of geodesic fill distance.
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When i = 0 Proposition 2.1 ensures (X is a C 1,1 hypersurface and a
fortiori is Lipshitz) the existence of such an Y 0

n,δ with hΓ0
n,δ

(Y 0
n,δ) ≤ δ

µn
and

Card(Y 0
n,δ) = O(nd−1). Let us study the case i > 0.

Now let us notice that by (v) in Theorem Appendix B.2 one has
proj∂Ω |bΩ=ρ is an injective function for any 0 < ρ < Reach(∂Ω). Since
∇bΩ constant along metric projections we can also notice that ∇bΩ(x) =
∇bΩ(proj∂Ω(x)). Moreover by (iii) in Theorem Appendix B.2 if x ∈ Γin,δ,
y = proj{Ω(x) then

y = proj
{Ω

(x) = x− |x− proj
{Ω

(x)|∇bΩ(x)

= x− din,δ∇bΩ(x) = x− din,δ∇bΩ(proj
∂Ω

(y))

= x− din,δ∇bΩ(y).

Thus we can introduce the family of inverse maps fi :=
(

proj{Ω |Γin,δ
)−1

fi : Γ0
n,δ −→ Γin,δ

x 7−→ x+ din,δ∇bΩ(x).

Notice that ∇bΩ|∂Ω is a Lipschitz function, see Theorem Appendix B.2
(iii). Let us denote L its Lipschitz constant.

Therefore {fi}i=1,2,...,mn is a family of equi-continuous functions of Lips-
chitz constant

max
i=1,2,...,mn

(1 + Ldin,δ) ≤ (1 + Lδ).

Now the Area Formula says that fi (being 1+Lδ Lipschitz) maps a mesh
of Γ0

n,δ with geodesic fill distance h
1+δL

onto a mesh in Γin,δ having geodesic
fill distance bounded by h. We already used this property and explained its
application in more detail in the proof of Theorem 2.3, see (4) and thereafter.

Thanks to Proposition 2.1 we can pick the mesh Ỹ i
n,δ ⊂ Γ0

n,δ such that

hΓ0
n,δ

(Ỹ i
n,δ) ≤ δ

2µn(1+δL)
with the cardinality bound Card(Ỹ i

n,δ) = O(
(
n
h

)d−1
)

where we denote δ
2µ(1+δL)

by h. Let us set Y i
n,δ := {fi(y), y ∈ Ỹ i

n,δ}. Now we
can notice that

Card(Yn,δ) =
mn∑
i=0

CardY i
n,δ = nd−1 +

mn∑
i=1

O

((n
h

)d−1
)

= O(nd).
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• Claim 3: An,δ := Yn,δ ∪ Zn,δ,λ is an optimal admissible mesh for K.
• Proof of Claim 3. By the special choice of δ < r ≤ lΩ/2 we can use
jointly (22), (28) and(30) and we obtain

‖p‖K ≤ max{2‖p‖Yn,δ + 2
1

µ
‖p‖K , ‖p‖Zn,δ,λ +

1

λ
‖p‖K}.

By the elementary properties of max we have

‖p‖K ≤ max{ 2µ

µ− 2
,

1

λ− 1
}‖p‖Yn,δ∪Zn,δ,λ . (33)

Thus Yn,δ ∪ Zn,δ,λ =: An,δ satisfies

‖p‖K ≤ C(δ, λ, µ)‖p‖An,δ ∀p ∈Pn(Rd) ∀n ∈ N (34)

has the correct cardinality order of growth.
2
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Appendix A. Sets of positive reach

Here we provide very concisely some essential tools that we use in the
proofs of the paper. Of course we do not even try to be exhaustive, since
this is far from our aim.

We deal with Federer sets of positive reach, they were introduced in the
outstanding article [19].
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Definition Appendix A.1 (Reach of a Set). [19] Let A ⊂ Rd be any
set, we denote by projA(x) = {y ∈ A : |y−x| = dA(x)} the metric projection
onto A, where we denoted by dA(x) := infy∈A |x−y|. Moreover let Unp(A) :=
{x ∈ Rd : ∃!y ∈ A, projA(x) = {y}}. Then we define

Reach(A, a) := sup
r>0
{r : B(a, r) ⊆ Unp(A)} for any a ∈ A, (A.1)

Reach(A) := inf
a∈A

Reach(A, a). (A.2)

The set A is said to be a set of positive reach if Reach(A) > 0.

By this definition sets of reach r > 0 are precisely the subsets of Rd

for which there exists a tubular neighborhood of radius r where the metric
projection is unique and moreover this tubular neighborhood is maximal.

This class of sets was introduced by Federer in the study of Steiner Poly-
nomial relative to a (very smooth) set, the polynomial that computed at
r > 0 gives the d-dimensional measure of the r tubular neighborhood of the
given set. The main interest on such a class of sets is that under this assump-
tion (in place of high degree of smoothness) one can recover the coefficients
of Steiner Polynomial as Radon measures, the Curvature Measures.

Sets with positive reach may be seen as a generalization of C 1,1 bounded
domains, in fact the latter can be characterized as domains such that the
boundary has positive reach, a more restrictive condition. Moreover if Ω is a
domain having positive reach it can be shown that the subset of ∂Ω where the
distance function defines uniquely a normal vector field (as for C 1,1 domains)
is “big” in the right measure theoretic sense.

However from our point of view the most relevant feature of sets of positive
reach is the one concerning the regularity properties of the distance function
dA(·). They can be found in [19][Section 4]. If A has positive reach then dA(·)
is differentiable at any point of Rd \A having unique projection and we have

∇dA(x) = x−projA(x)
dA(x)

and this is a Lipschitz function in any set of the type

{x : 0 < s ≤ dA(x) ≤ r < Reach(A)}.
In the sequel of the paper we need to use a little of tangential calculus on

non-smooth structures, so we introduce the following.

Definition Appendix A.2 (Tangent and Normal). Let A ⊂ Rd be
any set. Let a ∈ A then we define respectively the tangent and the normal
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set to A at the point a as

Tan(A, a) :=

{
u ∈ Rd : ∀ε > 0 ∃x ∈ A : |x− a| < ε,

∣∣∣∣ u|u| − x− a
|x− a|

∣∣∣∣ < ε

}
Nor(A, a) :=

{
v ∈ Rd : 〈v, u〉 ≤ 0 ∀u ∈ Tan(A, a)

}
.

Here the idea is to take all possible sequences xn ∈ A approaching a and
take the limit of xn−a

|xn−a| . For the normal set in the above definition the ≤ is
preferred to the equality sign to allow to consider the non-smooth case and
to work with more flexibility. The set Nor(A, a) actually is in general a cone
given by the intersection of all half spaces dual6 to a vector of Tan(A, a).

The notion of normal vector we introduced should be compared with
other possible notions, the most relevant one is that of proximal calculus.

Definition Appendix A.3 (Proximal Normal). Let A ⊂ Rd and x ∈
∂A. The vector v ∈ Sd−1 is said to be a proximal normal to A at x (and we
write v ∈ NP

A (x)) iff there exists r > 0 such that〈
v,

y − x
|y − x|

〉
≤ 1

2r
|y − x|, ∀y ∈ ∂A. (A.3)

Notice that the inequality A.3 implies that the boundary of A lies outside
of B(x+ r v

|v| , r). If we focus on the boundary of a closed set the property of
having non empty proximal normal set to the complement at each point of
the boundary, i.e.

NP
{Ω(x) 6= ∅ ∀x ∈ ∂Ω

is known as Uniform Interior Ball Condition (UIBC) and it is usually
stated in the following (equivalent) way

Definition Appendix A.4. Let Ω ⊂ Rd be a domain, suppose that for
any x ∈ ∂Ω there exists y ∈ Ω such that B(y, r) ∩ {Ω = ∅ and x ∈ ∂B(y, r).
Then Ω is said to admit the uniform Interior Ball Condition.

6Hereafter the word dual must be intended in the following sense [19], u is dual to
N ⊂ Rd iff 〈u, v〉 ≤ 0 for any v ∈ N.
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Such a condition (and some variants) appears in the literature also as Exter-
nal Sphere Condition (w.r.t. the complement of the set)in the context of the
study of some properties of Minimum Time function in Optimal Control [25],
while the previous nomenclature is more frequently used in the framework of
regularity theory of PDE.

It is worthwile recalling that positive reach is a strictly stronger condition
when compared to UIBC. Actually if a set A has positive reach, then it
satisfies the UIBC at each point a of its boundary and in any direction of
Nor(A, a).

We will use several times the following easy fact.

Proposition Appendix A.1. Let A ⊂ Rd, γ : [0, 1] → ∂A a Lipschitz
curve, r > 0 and let us suppose Reach(A) > r. Then we have for a.e. s ∈]0, 1[
there exists v ∈ Sd−1 such that

(i) Bs := B(γ(s) + rv, r) ⊆ Ac,

(ii) γ′(s) ∈ Tγ(s)Bs.

Proof. Let us consider the arclength re-parametrization γ̃ of γ that is a
1−Lipschitz curve from [0,Var[γ]] to supp γ. Notice that γ̃, being Lipschitz,
is a.e. differentiable in ]0,Var[γ][, Let Σγ̃ be the set of singular points of γ̃
and let moreover t0 be a point in ]0,Var[γ][\Σγ̃.

First we claim that γ̃′(t0) ∈ Tan(A, γ̃(t0)).
By differentiability of γ̃ at t0 we have

lim
t→ t0

t ∈ [0,Var[γ]] \ Σγ̃

γ̃(t)− γ̃(t0)

t− t0
= γ̃′(t0). (A.4)

Thus, recalling that |γ̃′(t)| = 1 6= 0 in a neighborhood of t0, we have

lim
t→ t0

t ∈ [0,Var[γ]] \ Σγ̃

γ̃(t)− γ̃(t0)

t− t0
|t− t0|

|γ̃(t)− γ̃(t0)|
=

γ̃′(t0)

|γ̃′(t0)|
.

Therefore we have

lim
t→ t0

t ∈ [t0,Var[γ]] \ Σγ̃

∣∣∣∣ γ̃′(t0)

|γ̃′(t0)|
− γ̃(t)− γ̃(t0)

|γ̃(t)− γ̃(t0)|

∣∣∣∣ = 0.
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Thus for any ε > 0 we can build the point x ∈ supp γ of definition Appendix
A.2 that realizes the vector γ̃′(t0) as a vector of Tan(A, a).

Moreover for a.e. s0 in ]0, 1[ the arc length t0 = t(s0) := Var[γ[0,s0]] is an

element of ]0,Var[γ][\Σγ̃ and γ′

|γ′|(s0) = γ̃′(t0).

Now we recall [19] that since A has positive reach and γ(s0) ∈ ∂A then
Nor(A, γ(s0)) is not {0}. Therefore ∃v0 6= 0 in Rd such that 〈γ′(s0), v0〉 ≤ 0.

Now we can consider γ̄(s) := γ(1 − s) and s̄0 := 1 − s0 and apply the
same reasoning above to get

0 ≤ 〈−γ′(s0), v0〉 = 〈γ̄′(s̄0), v0〉 ≤ 0. ⇒ γ′(s0) ∈ 〈v0〉⊥.

Taking v = v0

|v0| we are done. 2

Appendix B. (Oriented) distance function and C 1,1 domains

Now we switch to the case of a bounded C 1,1 domain in Rd. For the
reader’s convenience we clarify that here we are using the following definition,
however several (essentially equivalent) variants are available.

Definition Appendix B.1. Let Ω ⊂ Rd be a domain, then it is said to be
a C 1,1 domain iff the following holds.

There exist r > 0, L > 0 such that for any x ∈ ∂Ω there exist a coordinate
rotation Rx ∈ SOd and fx ∈ C 1,1

(
Bd−1(0, r), ]− r, r[

)
(that is differentiable

function having Lipschitz gradient) such that

fx(0) = 0

∇fx(0) = 0

‖fx‖C 1,1 ≤ L

x+Rx Graph(fx) = ∂Ω ∩ (x+RxB(x, r)),

where‖fx‖C 1,1 := max{supD |f |, supD |∇f |,Lip(∇f)}.

In the spirit of [16] and [15] one may study regularity properties of a
domain Ω comparing it to the smoothness of the Distance Function and
the Oriented Distance Function

bΩ(·) := dΩ(·)− d{Ω.

We recollect all the properties we need of a C 1,1 domain in Rd in the following
theorem. Detailed proofs can be easily provided combining classical results
that can be found in [4][Th. 5.1.9],[19],[1] and [15].
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Theorem Appendix B.2. Let Ω ⊂ Rd be a C 1,1 bounded domain. Then
the following hold.

(i) Both Ω and {Ω have positive reach,

Reach(∂Ω) = min{Reach(Ω),Reach({Ω)}.

(ii) For any 0 < h < Reach(∂Ω) bΩ ∈ C 1 (Uh(Ω)) where Uh(Ω) := {x ∈
Rd : −h < bΩ(x) < h}.

(iii) For any x ∈ Uh(Ω), 0 < h < Reach(∂Ω)

∇bΩ(x) = − x− proj∂Ω(x)

|x− proj∂Ω(x)|
, (B.1)

where the right side is well defined also on ∂Ω. Moreover ∇bΩ is a
Lipschitz function.

(iv) For any x ∈ ∂Ω we have Tan(x, ∂Ω) = Tx∂Ω and
Nor(x,Ω) = 〈∇bΩ(x)〉.

(v) For all x ∈ ∂Ω an d for any r < Reach(∂Ω) we have

B(x− r∇bΩ(x), r) ⊆ Ω (B.2)

B(x+ r∇bΩ(x), r) ⊆ {Ω (B.3)
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