Polynomial Admissible Meshes

S. De Marchi, <u>F. Piazzon</u>, A. Sommariva and M. Vianello Dept. of Mathematics University of Padova fpiazzon@math.unipd.it

DEFINITION

Let $K \subset \mathbb{C}^d$ (or \mathbb{R}^d) be a compact polynomial determining set. A sequence $\{A_n\}$ of its subsets is said to be a weakly admissible mesh (**WAM**) of constant C_n if

- i) $\max_K |p| \leq C_n \max_{A_n} |p|$ for any polynomial p such that $\deg p \leq n$,
- ii) $Card(A_n)$ and C_n grow at most polynomially w.r.t. n.

If $\sup_n A_n =: C < \infty$ then A_n is said an admissible mesh (**AM**). If furthermore $\operatorname{Card}(A_n) = \mathcal{O}(n^d)$ then $\{A_n\}$ is termed optimal.

RELEVANT (UNIVARIATE) EXAMPLES

- Chebyshev-Lobatto nodes. For an interval [a,b], $X_n(a,b) = \left\{\frac{b-a}{2}\xi_j + \frac{b+a}{2}\right\}$, where $\xi_j = \cos(j\pi/n)$, $0 \le j \le n$.
- Chebyshev nodes. $Z_n(a,b) = \left\{ \frac{b-a}{2} \eta_j + \frac{b+a}{2} \right\}$, where $\eta_j = \cos \left(\frac{(2j+1)\pi}{2(n+1)} \right)$, $0 \le j \le n$.
- Chebyshev-like subperiodic angular nodes. $\Theta_n(\alpha,\beta) = \varphi_\omega(Z_{2n}(-1,1)) + \frac{\alpha+\beta}{2} \subset (\alpha,\beta)$, $\omega = \frac{\beta-\alpha}{2} \leq \pi$, where $\varphi_\omega(s) = 2\arcsin\left(\sin\left(\frac{\omega}{2}\right)s\right)$

The following inequalities hold with $c_n = \frac{2}{\pi} \log(n+1) + 1$.

$$||p||_{[a,b]} \le c_n ||p||_{X_n} \forall p \in \mathbb{P}_n^1.$$

$$||p||_{[a,b]} \le c_n ||p||_{Z_n} \forall p \in \mathbb{P}_n^1.$$

$$||t||_{[\alpha,\beta]} \le c_{2n} ||t||_{\Theta_n} \ \forall t \in \mathbb{T}_n^1.$$

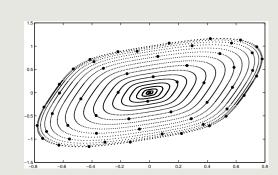
Basic Properties

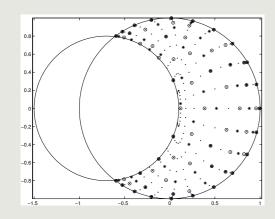
- Any affine transformation of a WAM is still a WAM, C_n being invariant;
- Any sequence of unisolvent interpolation sets whose Lebesgue constant Λ_n grows at most polynomially with n is a WAM, with constant $C_n = \Lambda_n$;
- A finite product of WAMs is a WAM on the corresponding product of compacts, C_n being the product of the corresponding constants;
- A finite union of WAMs is a WAM on the corresponding union of compacts, C_n being the maximum of the corresponding constants.

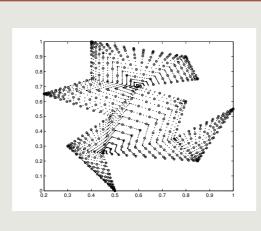
APPLICATIONS

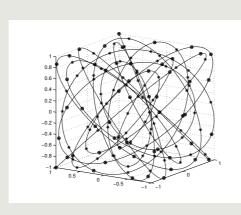
- Polynomial least squares fitting. Theoretical and numerical bounds for the projection operator norm available.
- Discrete orthonormal polynomials computation and fitting, with algorithm for computing a stable basis.
- Extraction of unisolvent interpolation nodes with slow growth of Lebesgue constant.
- Collocation methods for PDEs.

CONVEX SET, LUNE, POLYGON, LISSAJOUS WAM









References

- [1] L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. Weakly admissible meshes and discrete extremal sets. Numer. Math. Theory Methods Appl., 4(1):1-12, 2011.
- [2] J.P. Calvi and N. Levenberg. Uniform approximation by discrete least squares polynomials. JAT, 152:82-100, 2008.
- [3] S. De Marchi, F. Piazzon, A. Sommariva, and M. Vianello. Polynomial meshes: Computation and approximation. *Proceedings of CMMSE 2015, to appear*.
- [4] F. Piazzon. Optimal polynomial admissible meshes on compact subsets of R^d with mild boundary regularity. submitted to JAT, underr revision, arXiv:1302.4718, 2013.
 [5] E. Diazzon and M. Wienelle. Small contembations of admissible meshes. Appl. Appl.
- [5] F. Piazzon and M. Vianello. Small perturbations of admissible meshes. Appl. Anal., 92, 2013.
- [6] F. Piazzon and M. Vianello. Computing optimal polynomial meshes on planar starlike domains. Dolomites Res. Notes Approx. DRNA, 7:22-25, 2014.

CONSTRUCTING WAMS

The bilinear transformation

$$\sigma(s_1, s_2) = \frac{1}{4} ((1 - s_1)(1 - s_2)\mathbf{v}_1 + (1 + s_1)(1 - s_2)\mathbf{v}_2 + (1 + s_1)(1 + s_2)\mathbf{v}_3 + (1 - s_1)(1 + s_2)\mathbf{v}_4$$

maps the square $[-1,1]^2$ onto the *convex* quadrangle with vertices v_1, v_2, v_3, v_4 ; with a triangle, e.g. $v_3 = v_4$, as a special degenerate case.

Proposition 1 (Quadrangles and Triangles). The sequence $A_n = \sigma(X_n(-1,1) \times X_n(-1,1))$ is a WAM of the convex quadrangle $\sigma([-1,1]^2)$, with constant $C_n = c_n^2 = \mathcal{O}(\log^2 n)$ and $\operatorname{card}(A_n) \leq (n+1)^2$.

Proposition 2 (Polygons). Let K be a polygon with ℓ sides. Then K has a WAM given by the union of the WAMs of $\ell-2$ triangles of a minimal triangulation, with constant $C_n = c_n^2 = \mathcal{O}(\log^2 n)$ and $\operatorname{Card}(A_n) \sim (\ell-2)n^2$.

The blending transformation

$$\psi_{u,v}(s,\theta) = s\mathbf{u}(\theta) + (1-s)\mathbf{v}(\theta),$$

maps $[0,1] \times [\alpha,\beta]$ onto the region $K_{u,v}$ lying between \boldsymbol{u} and \boldsymbol{v} , where $\boldsymbol{u}(\theta) = \boldsymbol{a}_1 \cos(\theta) + \boldsymbol{b}_1 \sin(\theta) + \boldsymbol{c}_1$, $\boldsymbol{v}(\theta) = \boldsymbol{a}_2 \cos(\theta) + \boldsymbol{b}_2 \sin(\theta) + \boldsymbol{c}_2$, $\theta \in [\alpha,\beta]$, $\boldsymbol{a}_i = (a_{i1},a_{i2})$, $\boldsymbol{b}_i = (b_{i1},b_{i2})$, $\boldsymbol{c}_i = (c_{i1},c_{i2})$, i = 1,2, with \boldsymbol{a}_i , \boldsymbol{b}_i not all zero and $[\alpha,\beta]$, $0 < \beta - \alpha \leq 2\pi$.

Proposition 3 (Circular sections). The sequence $A_n = \psi_{u,v}(X_n(0,1) \times \Theta_n(\alpha,\beta))$ is a WAM for $K_{u,v}$ with $C_n = \mathcal{O}(\log^2 n)$ and $\operatorname{Card}(A_n) \leq (n+1)(2n+1)$.

Similar results are available in higher dimension e.g. for cylinders, cones, pyramids and solids of rotation.

Proposition 4 (Star-like UIBC bodies). Let $K \subset \mathbb{R}^2$ be the closure of a star-like domain satisfying the Uniform Interior Ball Condition (UIBC) of parameter $\rho > 0$. Then, for every fixed $\alpha \in (0, 1/\sqrt{2})$, K has an optimal admissible mesh $\{A_n\}$ such that $C_n \equiv \frac{\sqrt{2}}{1-\alpha\sqrt{2}}$, $\operatorname{Card} A_n \sim n^2 \frac{\operatorname{length}(\partial K)}{\alpha \rho}$.

Finally, WAMS have been shown to be stable under small perturbations and moreover WAMs can be computed on sets that are images under smooth maps of sets where a WAM is given.

LISSAJOUS WAMS IN THE CUBE

$$\int_{[-1,1]^3} p(\boldsymbol{x}) \frac{d\boldsymbol{x}}{\sqrt{(1-x_1^2)(1-x_2^2)(1-x_3^2)}} = \pi^2 \int_0^{\pi} p(\boldsymbol{\ell}_n(\theta)) d\theta , \quad \forall p \in \mathbb{P}_{2n}^3$$

where we used the Lissajous curve

$$\ell_n(\theta) = (\cos(\alpha_n \theta), \cos(\beta_n \theta), \cos(\gamma_n \theta)), \theta \in [0, \pi],$$

$$(\alpha_n, \beta_n, \gamma_n) = \begin{cases} \left(\frac{3}{4}n^2 + \frac{1}{2}n, \frac{3}{4}n^2 + n, \frac{3}{4}n^2 + \frac{3}{2}n + 1\right), n \text{ even,} \\ \left(\frac{3}{4}n^2 + \frac{1}{4}, \frac{3}{4}n^2 + \frac{3}{2}n - \frac{1}{4}, \frac{3}{4}n^2 + \frac{3}{2}n + \frac{3}{4}\right), n \text{ odd} \end{cases}$$

Proposition 5 (Lissajous WAMs by hyperinterpolation). The sequence $\{A_n\} = \{\ell_n(s\pi/\nu)\}, s = 0, \ldots, \nu = n\gamma_n + 1 \text{ is a WAM for the cube, with } C_n = \mathcal{O}(\log^3 n) \text{ and } \operatorname{Card} A_n \sim \frac{3}{4} n^3.$

COMPRESSION AND INTERPOLATION SETS

Proposition 6. Let $\{A_n\}$ be a WAM of a compact set $K \subset \mathbb{R}^d$ with $\operatorname{Card} A_n > N_{2n} = \dim(\mathbb{P}_{2n})$ and constant C_n . Then there exists (and can be numerically computed) a WAM $A_n^* \subset A_n$ with $\operatorname{Card} A_n^* \leq N_{2n}$ with constant $C_n^* = C_n \sqrt{\operatorname{Card} A_n}$.

It is possible to extract unisolvent interpolation sets from a WAM by numerical linear algebra, namely approximate Fekete points (AFP) by QR and Discrete Leja Sequences (DLS) by LU factorization.

Proposition 7. Let $\mathcal{F}_n = \{\boldsymbol{\xi}_{i_1}, \dots, \boldsymbol{\xi}_{i_N}\}$ the AFP or DLP extracted from a WAM of a compact set $K \subset \mathbb{R}^d$ (or $K \subset \mathbb{C}^d$). Then $\lim_{n \to \infty} \frac{1}{N} \sum_{k=1}^N f(\boldsymbol{\xi}_{i_k}) = \int_K f(\boldsymbol{x}) \, d\mu_K$ for every $f \in \mathcal{C}(K)$, where μ_K is the pluripotential equilibrium measure of K.