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Abstract. The Bernstein Markov Property, is an asymptotic quantitative assumption on

the growth of uniform norms of polynomials or rational functions on a compact set with

respect to L2
µ-norms, where µ is a positive finite measure. We consider two variants of the

Bernstein Markov property for rational functions with restricted poles and compare them

with the polynomial Bernstein Markov property finding out some sufficient conditions for

the latter to imply the former. Moreover, we recover a sufficient mass-density condition

for a measure to satisfy the rational Bernstein Markov property on its support. Finally we

present, as an application, a meromorphic L2 version of the Bernstein Walsh Lemma.
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1. Introduction

Let K ⊂ C be compact and have infinitely many points. In such a case ‖p‖K :=

maxz∈K |p(z)| is a norm on the space Pk of polynomials of degree not greater than k for

any k ∈ N.

Let us pick a positive finite Borel measure µ supported on K. When ‖ · ‖L2
µ(K) is a norm

on Pk we can compare it with the uniform norm on K. In fact, since Pk is a finite

dimensional normed vector space, there exist positive constants c1, c2 depending only on

(K, µ, k) such that

c1‖p‖L2
µ
≤ ‖p‖K ≤ c2‖p‖L2

µ
∀p ∈Pk.

Notice that there exists such a c1 because the measure µ is finite (one can take c1 =

µ(K)−1/2) while c2 is finite precisely when µ induces a norm.

The Bernstein Markov property is a quantitative asymptotic growth assumption on c2

as k → ∞. Namely, the couple (K, µ) is said to enjoy the Bernstein Markov property if for

any sequence {pk} : pk ∈Pk we have

(1) lim sup
k

 ‖pk‖K

‖pk‖L2
µ

1/k

≤ 1.

The Bernstein Markov property can be equivalently defined in several complex vari-

ables and/or for weighted polynomials, i.e., functions of the type pwdeg(p) where w is an

admissible weight as in [22], see Definition 2.1.

We remark that the class of measures having the Bernstein Markov property is very close

to the Reg class studied in the monograph [23] (later generalized to the multidimensional

case in [7]). Precisely, if we restrict our attention to measures µ whose support supp µ is

a regular set for the Dirichlet problem for the Laplace operator (i.e., C \ supp µ admits a

classical Green function g with logarithmic pole at infinity such that g|∂ΩK ≡ 0, where ΩK

is the unbounded component of C \ K) the two notions coincide.

The terminology Bernstein Markov property has been introduced in the framework of

several complex variables and pluripotential theory; [3] and [8]. In such a context it turns

out that the Bernstein Markov property is a powerful tool in proving some deep results; see

[4].

In the present paper we prefer to deal with the Bernstein Markov property, though its

name could be misleading, both because some of our proofs rely on the continuity of the

Green function and because it looks more tailored to the proposed applications than the

property of the class Reg.

A first motivation to the study of the Bernstein Markov property comes from approxi-

mation theory. If (K, µ) have the Bernstein Markov property then, given any holomorphic

function f , the error of best polynomial approximation pk of degree not greater than k to
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f and the error of the approximation qk given by projection in L2
µ on the subspace Pk are

asymptotically the same in the sense that for any 0 < r < 1 and f ∈ C (K)

lim sup
k
‖ f − pk‖

1/k
K ≤ r if and only if lim sup

k
‖ f − qk‖

1/k
L2
µ
≤ r.

Consequently, one has a L2 version of the Bernstein-Walsh Lemma [25] for Bernstein

Markov measures relating the rate of best L2 approximation of a function to its maximum

radius of holomorphic extension; [17, Prop. 9.4]. The several complex variables version

of the Bernstein Walsh Lemma is usually referred as the Bernstein Walsh Siciak Theorem,

see for instance [17, Th. 9.7].

Moreover, the Bernstein Markov property has been studied (see for instance [4, 3, 9, 7,

18]) in relation to (pluri-)potential theory, the study of plurisubharmonic functions in sev-

eral complex variables. It turns out that such a property is fundamental both to recover the

Siciak Zaharyuta extremal plurisubharmonic function and the (pluripotential) equilibrium

measure (see [17]) by L2 methods.

Lastly, Bernstein Markov measures play a central role in a recent theory of Large De-

viation for random arrays and common zeroes of random polynomials; see for instance

[10, 12] and references therein.

In the present paper we investigate two slightly modified versions of (1). To do that we

define the following classes of sequences of rational functions

R(P) :=
{
{pk/qk} : pk, qk ∈Pk,Z(qk) ⊆ P ∀k ∈ N

}
and

Q(P) :=
{
{pk/qk} : pk, qk ∈Pk, deg qk = k,Z(qk) ⊆ P ∀k ∈ N

}
,

where we set Z(p) := {z ∈ C : p(z) = 0} and where P ⊂ C is any compact set that from

now on we suppose to have empty intersection with K.

Throughout the paper we use the symbolM+(K) to denote the cone of positive Borel

finite measures µ such that supp µ ⊆ K, adding a subscript 1 for probability measures.

Definition 1.1 (Rational Bernstein Markov Property). Let K, P ⊂ C be compact disjoint

sets and µ ∈ M+(K).

(i) (Rational Bernstein Markov Property.) If

(2) lim sup
k

 ‖rk‖K

‖rk‖L2
µ

1/k

≤ 1 ∀{rk} ∈ R(P),

then (K, µ, P) is said to enjoy the rational Bernstein Markov Property.

(ii) (sub-diagonal Rational Bernstein Markov Property.) If

(3) lim sup
k

 ‖rk‖K

‖rk‖L2
µ

1/k

≤ 1 ∀{rk} ∈ Q(P),

then (K, µ, P) is said to enjoy the sub-diagonal rational Bernstein Markov property.
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One motivation to study such properties is given by the discretization of a quite general

class of vector energy problems performed in [11]. Bloom, Levenberg and Wielonsky in-

troduce a probability Prob(·) on the space of sequences of arrays of points {z(1), . . . , z(m)},

where z(l) = {z(l)
0 , . . . , z

(l)
k } ∈ (K(l))k+1, on a vector of compact sets {K(1), . . . ,K(m)} in

the complex plane based on a vector of probability measures µ(i) ∈ M+
1 (K(i)) such that

(K(i), µ(i),∪ j,iK( j)) has the rational Bernstein Markov property. In [11] the authors actually

deal with strong rational Bernstein Markov measures, which is a variant of rational Bern-

stein Markov property where weighted rational function are considered instead of standard

ones, however their paper can be read in the un-weighted setting picking (in their notation)

Q ≡ 0. Then they prove a Large Deviation Principle (LDP) for measures canonically asso-

ciated to arrays of points randomly generated according to Prob. Also, they show that the

validity of the LDP is not affected by the particular choice of {µ(1), µ(2), . . . , µ(m)} that are

only required to form a vector of rational Bernstein Markov measures.

Measures having the rational Bernstein Markov property are worth to be studied also

from the approximation theory point of view. In fact, for such measures it turns out that the

radius of maximum meromorphic extension with exactly m poles of a function f ∈ C (K)

is related to the asymptotic of its L2
µ approximation numbers

(
min

deg p≤k,deg q=m
‖ f − p/q‖L2

µ

)1/k

.

The reader is referred to Section 5 for a precise statement.

The paper is organized as follows.

In Section 2 we compare Definition 1.1 to the polynomial Bernstein Markov property.

We address the following question. Are there sufficient additional conditions on (K, µ, P)

for the polynomial Bernstein Markov property to imply the rational Bernstein Markov

property or the sub-diagonal rational Bernstein Markov property? A positive answer to

both instances of such a question is given in Theorem 2.3, by means of an equivalent for-

mulation of the problem suggested in Propositions 2.1 and 2.2.

In Section 3 we consider the classical Λ∗ condition (see [23]) or mass density sufficient

condition [8] for the Bernstein Markov property. We notice (in Theorem 3.1) that, due

to Theorem 2.3, this condition implies the rational Bernstein Markov property as well,

provided that K̂ ∩ P = ∅ (K̂ is the polynomial hull of K, see (15)).

In the case K̂ ∩ P , ∅, P̂ ∩ K = ∅ we show in Proposition 3.1 that it is possible to

build a suitable conformal mapping f such that the images E of K and Q of P under f are

in the relative position of the hypothesis of Theorem 3.1. Thus, we derive (Theorem 3.2)

a sufficient mass density condition for the rational Bernstein Markov property in a more

general case.
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In Section 4 we provide a uniform convergence result (see Theorem 4.1) for sequences

of Green functions with poles in P associated to compact subsets K j of K whose logarith-

mic capacity (see (20) below) is converging to the one of K. Then we use such a theorem

to give an alternative direct proof of the sufficient mass density condition of Theorem 3.1 .

In Section 5 we present, as an application, a meromorphic L2
µ version of the Bernstein

Walsh Lemma; see Theorem 5.

2. Polynomial versus Rational BernsteinMarkov property

Let us illustrate some significantly different situations which can occur by providing

some easy examples where we are able to perform explicit computations.

We recall that, given an orthonormal basis {q j} j=1,2,... of a separable Hilbert space H

(endowed with its induced norm ‖ · ‖H) of continuous functions on a given compact set, the

Bergman Function Bk(z) of the subspace Hk := span{q1, q2, . . . , qk} is

Bk(z) :=
k∑

j=1

|q j(z)|2.

It follows by its definition and by Parseval Identity that for any function f ∈ Hk one has

| f (z)| ≤
√

Bk(z)‖ f ‖H , while the function f (z) :=
∑k

j=1 q̄ j(z0)q j(z) achieves the equality at

the point z0, thus

(4) Bk(z) = max
f∈Hk\{0}

(
| f (z)|
‖ f ‖H

)2

.

Example 1.

(a) Let µ be the arc length measure on the boundary ∂D of the unit disk. Let K = ∂D and

P = {0}.

Let us take a sequence {rk} =
{ plk

zk

}
in R(P) where deg plk = lk ≤ k, then we have

‖rk‖K =

∥∥∥∥∥ plk

zk

∥∥∥∥∥
K

= ‖plk‖K ≤

‖Bµlk‖K
1/2
‖plk‖L2(µ) = ‖Bµlk‖K

1/2
‖rk‖L2(µ).

(5)

Here we indicated by Bµk (z) the Bergman function of the space
(
Pk, 〈·, ·〉L2

µ

)
.

For this choice of µ the orthonormal polynomials qk(z, µ) are simply the normalized

monomials
{

zk
√

2π

}
, thus we have

(6) (max
K

Bµk )1/2k =

max
K

∑k
j=0 |z|

2 j

2π

1/2k

=

(
k + 1

2π

)1/2k

.

It follows by (5) and (6) that (K, µ, P) has the rational Bernstein Markov Property.

A similar computation shows that actually any ν such that (K, ν) has the Bernstein

Markov Property is such that (K, ν, P) has the rational Bernstein Markov Property.
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(b) On the other hand, the same measure µ does not enjoy the sub-diagonal rational Bern-

stein Markov Property in the triple (K, µ, P) with K = {1/2 ≤ |z| ≤ 1} and P = {0} as

the sequence of functions {1/zk} clearly shows: ‖z−k‖K = 2k, ‖z−k‖L2
µ

= 1. A fortiori the

rational Bernstein Markov Property is not satisfied by (K, µ, P).

(c) On the contrary, the arc length measure on the inner boundary of K = {1/2 ≤ |z| ≤ 1}

and P = {0} has the sub-diagonal rational Bernstein Markov Property, equation (3), but

neither the rational Bernstein Markov Property equation (2), nor the polynomial one,

equation (1), as is shown by the sequence
{
zk
}
. Notice that

∫
1
2 ∂D

|z|2k ds
1/2

=
√
π2−k and ‖zk‖K = 1, thus

 ‖zk‖K

‖zk‖L2
µ

1/k

= 2π−1/2k → 2 � 1.

In fact, in these last two examples the support of µ is not the whole set K, however we

can provide a similar example also under the restriction supp µ = K.

(d) Let us take a dense sequence {z j} in K = {1/2 ≤ |z| ≤ 1} and a summable sequence of

positive numbers c := {c j} such that
∑∞

j=1 c j = 1, we define

µc :=
1

4π
ds|∂D +

1
2

∞∑
j=1

c jδz j ∈ M
+
1 (K).

Notice that supp µ = K. It is well known that ds|∂D has the Bernstein Markov property

for D, so does the measure µc have.

On the other hand, we can show that (K, µc, {0}) does not have the rational Bernstein

Markov property, provided a suitable further assumption on c and z j.

Precisely, let {c j} ∈ `
1 and a sequence {nk} of natural numbers be such that

lim inf
k

1 +

∞∑
j=k+1

c j|z j|
2nk

1/2nk

= 1

0 ≤ k ≤ nk(7)

lim
k

k/nk < 1.

We construct a sequence {r̃k} ∈ Q({0}) of rational functions for which (3) does not

hold with µ = µc and P = {0}; hence we show that (K, µc, P) does not have the sub-

diagonal rational Bernstein Markov property.
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Let us define rnk (z) := pk(z)
znk =

∏k
l=1 z−zl

znk . We notice that

‖rnk‖K = max
{
2nk‖pk‖1/2∂D, ‖pk‖∂D

}
≥ 2nk‖pk‖1/2∂D,

‖rnk‖L2
µc

=

 1
4π

∫
∂D

|pk |
2ds +

1
2

∞∑
j=k+1

c j

|z j|
2nk
|pk(z j)|2

1/2

≤
‖pk‖∂D
√

2

1 +

∞∑
j=k+1

c j

|z j|
2nk

1/2

≤ 2−1/2+k‖pk‖1/2∂D

1 +

∞∑
j=k+1

c j

|z j|
2nk

1/2

.

Here we used the second equation in (7) and the classical Bernstein Walsh Inequality

for 1/2∂D twice, e.g. |p(z)| ≤ ‖p‖1/2∂D exp(deg p log+(2|z|)). It follows that ‖rnk‖K

‖rnk‖L2
µc

1/nk

≥ 21− k
nk

+ 1
2nk

1(
1 +

∑+∞
j=k+1 c j|z j|

−2nk
)1/2nk

.

We can construct the sequence {r̃m} above setting r̃m = rnk for any m for which it

exists k with m = nk and picking any other rational function with at most m zeros and a

m-order pole at 0 for other values of m. Now we use the assumptions (7) and properties

of lim sup to get

lim sup
m

 ‖rm‖K

‖rm‖L2
µc

1/m

≥ lim sup
k

 ‖rnk‖K

‖rnk‖L2
µc

1/nk

>
1

lim infk

(
1 +

∑∞
j=k+1 c j|z j|

2nk
)1/2nk

= 1.

Thus (K, µc, {0}) does not have the rational sub-diagonal Bernstein Markov property,

since the rational Bernstein Markov is a stronger property.

(e) Lastly, the measure dµ := dµ1 + dµ2 := 1/2 ds|∂D + 1/2 ds|1/2∂D (here ds denotes the

standard arc length measure and 1/2∂D := {z : |z| = 1/2}) has the rational Bernstein

Markov property for K = ∂D ∪ 1/2∂D, P = {0}.

In order to show that, we pick any sequence of polynomials {pk} of degree not

greater than k and {mk} where mk ∈ {0, 1, . . . , k}, we consider the Bergman function for

µ1 and µ2 and using (4) we get∥∥∥∥∥ pk

zmk

∥∥∥∥∥
L2
µ

= ‖pk‖L2
µ1

+ 2mk‖pk‖L2
µ2
≥

(Bµ1
k (z1))−1/2|pk(z1)|

∣∣∣∣
z1∈∂D

+ 2mk (Bµ2
k (z2))−1/2|pk(z2)|

∣∣∣∣
z2∈1/2∂D

=
 2π∑k

j=0 |z
j
1|

2

1/2

|pk(z1)|


z1∈∂D

+ 2mk

 2π∑k
j=0 2|z2

j|2

1/2

pk(z2)|z2∈∂D.
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Now we pick z1 ∈ ∂D and z2 ∈ 1/2∂D maximizing |pk | and we get

∥∥∥∥∥ pk

zmk

∥∥∥∥∥
L2
µ

≥

√
2π

k + 1
‖pk‖∂D + 2mk

√
3π

4k+1 − 1
‖pk‖1/2∂D ≥√

3π
4k+1 − 1

·
(
‖pk‖∂D + 2mk‖pk‖1/2∂D

)
=√

3π
4k+1 − 1

(∥∥∥∥∥ pk

zmk

∥∥∥∥∥
∂D

+

∥∥∥∥∥ pk

zmk

∥∥∥∥∥
1/2∂D

)
≥√

3π
4k+1 − 1

∥∥∥∥∥ pk

zmk

∥∥∥∥∥
K
.

It follows that, denoting pk/zk by rk, we have

lim sup
k

 ‖rk‖K

‖rk‖L2
µ

1/k

≤ lim
k

(
4k+1 − 1

3π

)1/(2k)

= 1,

hence (K, µ, {0}) has the rational Bernstein Markov property.

The relation between these three properties is a little subtle: the examples above show

that different aspects come in play from the geometry of K and P and the classesR(P),Q(P).

It will be clear later that the measure theoretic and potential theoretic features are important

as well.

We relate the sub-diagonal rational Bernstein Markov property and the rational Bern-

stein Markov property to the weighted Bernstein Markov property with respect to a spe-

cific class of weights in Proposition 2.1 and 2.2; to do that we first recall the definition of

weighted Bernstein Markov Property.

Definition 2.1 (Weighted Bernstein Markov Property). Let K ⊂ C be a closed set and

w : K → [0,+∞[ be an upper semicontinuous function, let µ ∈ M+(K), then the triple

[K, µ,w] is said to have the weighted Bernstein Markov property if for any sequence of

polynomials pk ∈Pk we have

(8) lim sup
k

 ‖pkwk‖K

‖pkwk‖L2
µ

1/k

≤ 1.

In what follows we deal with weak∗ convergence of measures. We recall that, given a

metric space X and a Borel measure µ on X, the sequence of measures (µi) on X is said to

weak∗ converge to µ if for any bounded continuous function f we have limi

∣∣∣∫
X f dµ −

∫
X f dµi

∣∣∣ =

0; in such a case we write µi ⇀
∗ µ. Also, we recall that the space of Borel probability mea-

suresM+
1 (X) is weak∗ sequentially compact, that is for any sequence there exists a weak∗

converging subsequence.
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If X is a compact space, then C (X) is a separable Banach space. It turns out that the

space of Borel measures is isometrically isomorphic to the dual space C ∗(X) and the topol-

ogy of weak∗ convergence is generated by the family of semi-norms {p f : f ∈ F } where

p f (µ) := |
∫

X f dµ| and F is any countable dense subset of C (X).

Using these facts it is not difficult to prove the following statement that we will use in

the proof of the next proposition.

Let P be a compact set in C and σ a Borel measure supported on it having total mass

equal to 1. There exists a sequence of arrays {(z(k)
1 , . . . , z(k)

k )} of points of P such that we get

(9) σk :=
1
k

k∑
j=1

δz(k)
j
⇀∗ σ.

For any compact set P we introduce the following notation

W(P) := {eUσ

: σ ∈ M+(P), 0 ≤ σ(P) < ∞} ,

W1(P) := {eUσ

: σ ∈ M+
1 (P)},

where Uσ(z) := −
∫

log |z − ζ |dσ(ζ) is the logarithmic potential of the measure σ and we

set by definition U0 ≡ 0.

Proposition 2.1. Let K ⊂ C be a non polar compact set, µ ∈ M+(K) and P any compact

set disjoint by K. Then the following are equivalent

(i) ∀w ∈ W1(P) the triple [K, µ,w] has the weighted Bernstein Markov Property.

(ii) (K, µ, P) has the sub-diagonal rational Bernstein Markov Property.

Proof of (i) implies (ii). Let us pick a sequence {rk} = {pk/qk} inQ(P),where qk :=
∏k

j=1(z−

z j), and let us set σk := 1
k
∑k

j=1 δz j . Then we can notice that

Uσk =

∫
log

1
|z − ζ |

dσk(ζ) =
1
k

k∑
j=1

log
1

|z − z j|
= −

1
k

log |qk |.

Thus, setting Uk := Uσk , we have

(10) ak :=

 ‖rk‖K

‖rk‖L2
µ

1/k

=

 ‖pke(kUk)‖K

‖pke(kUk)‖L2
µ

1/k

.

Now we pick any maximizing subsequence j 7→ k j for ak, that is lim supk ak = lim j ak j . Let

us pick any weak∗ limit σ ∈ M+
1 (P) and a subsequence l 7→ jl such that σ̃l := σk jl

⇀∗ σ.

Moreover liml bl := liml ak jl
= lim supk ak.

Let us notice that U := Uσ and all Ul := Uσ̃l are harmonic functions on C\P, moreover,

due to [22, Th. 6.9 I.6], {Ul} converges quasi everywhere to U. Notice that Uσ̃l := −E ∗ σ̃l,

where E(z) := log |z| is a locally absolutely continuous function on C \ {0}, hence weak

convergence of measures supported on P implies local uniform convergence of potentials

on C \ P.
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We can exploit this uniform convergence as follows. For any ε > 0 there exists lε such

that for any l > lε we have

(11) U − ε ≤ Ul ≤ U + ε uniformly on K.

Now we denote k jl by k̃l and pk̃l
by p̃l. It follows by (11) that for l large enough

‖p̃lek̃lUl‖K ≤ ‖p̃lek̃l(U+ε)‖K ≤ ek̃lε‖p̃lek̃lU‖K ,

‖ p̃lek̃lUl‖L2
µ
≥ ‖p̃lek̃l(U−ε)‖L2

µ
≥ e−εk̃l‖ p̃lek̃lU‖L2

µ
and thus

‖ p̃lek̃lUl‖K

‖p̃lek̃lUl‖L2
µ

≤ e2k̃lε
‖ p̃lek̃lU‖K

‖p̃lek̃lU‖L2
µ

.

Hence, exploiting w := eU ∈ W1(P) and µ having the weighted Bernstein Markov property

for such a weight, we have

lim sup
k

ak = lim
l

 ‖ p̃lek̃lUl‖K

‖p̃lek̃lUl‖L2
µ

1/k̃l

≤ e2ε lim
l

 ‖p̃lek̃lU‖K

‖p̃lek̃lU‖L2
µ

1/k̃l

≤ e2ε lim
l

 ‖p̃lwk̃l‖K

‖p̃lwk̃l‖L2
µ

1/k̃l

= e2ε −→ 1 as ε→ 0.

�

Proof of (ii) implies (i). Suppose by contradiction that there exists σ ∈ W1(P) such that

[K, µ, exp Uσ] does not have the weighted Bernstein Markov Property.

We pick {z(k)
1 , . . . , z(k)

k }k=1,... and σk = 1
k
∑k

j=1 δz(k)
j

as in (9).

Let us set w = exp Uσ, wk = exp Uσk . We can perform the same reasoning as above,

using the absolute continuity of the log kernel away from 0, to get Uσk → Uσ uniformly

on K. Thus for any ε > 0 we have Uσk − ε ≤ Uσ ≤ Uσk + ε uniformly on K for k large

enough. That is

(12) wke−ε ≤ w ≤ wkeε uniformly on K for k large enough.

Notice that given any sequence {pk} such that pk ∈Pk we have

{rk} := {pkwk
k} =

 pk∏k
j=1(z − z j)

 ∈ Q(P).

Since we assumed that [K, µ,w] does not have the weighted Bernstein Markov property we

can pick pk such that, using (12),

1 < lim sup
k

 ‖pkwk‖K

‖pkwk‖L2
µ

1/k

≤ lim sup
k

e2ε

 ‖pkwk
k‖K

‖pkwk
k‖L2

µ

1/k

≤e2ε → 1 as ε→ 0.

This is a contradiction. �
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We can prove the following variant of the previous proposition by some minor modifi-

cations of the proof.

Proposition 2.2. Let K ⊂ C be a non polar compact set, µ ∈ M+(K) and P any compact

set disjoint by K. Then the following are equivalent

(i) ∀w ∈ W(P) the triple [K, µ,w] has the weighted Bernstein Markov Property.

(ii) (K, µ, P) has the rational Bernstein Markov Property.

Proof of (i) implies (ii). We pick an extremal sequence in R(P) (i.e., for ak as in (10))

rk :=
plk
qmk

, where deg plk = lk ≤ k and deg qmk = mk ≤ k.

We notice that

rk = plk e
(mkUσmk ) = plk e

(
kU

mk
k σmk

)
=: plk e

(kUσ̂k ) , where

σk are as in the previous proof. Notice that the sequence of measures {σ̂k} := {mk
k σmk } has

the property
∫

P dσ̂k ≤
∫

P dσmk = 1 since mk/k ≤ 1.

By the local sequential compactness we can extract a subsequence (relabeling indeces)

converging to any weak∗ closure point σ that necessarily is a Borel measure such that∫
P dσ ≤ 1. Notice that σ can be also the zero measure: here is the main difference between

this case and Proposition 2.1 where each weak∗ limit has the same positive mass.

Notice that Uσ̂k converges to Uσ uniformly on K as in the previous proof, hence for any

ε > 0 we can pick kε such that for any k > kε we have

Uσ̂k − ε ≤ Uσ ≤ Uσ̂k + ε.

Therefore, seetting w := Uσ we have

rke−kε = plk e
(kUσ̂k )e(−kε) ≤ plk e

(kUσ) = plk w
k

≤ plk e
(kUσ̂k )e(kε) = rkekε.

(13)

The result follows by the same lines as in proof of Proposition 2.1, using the weighted

Bernstein Markov property of [K, µ,w] ∀w ∈ W(P). �

Proof of (ii) implies (i). Pick σ such that Uσ ∈ W(P). If σ = 0 we notice that the rational

Bernstein Markov property is stronger than the usual Bernstein Markov property.

If σ is not the zero measure we set c :=
∫

P dσ, σ̂ = σ/c ∈ M+
1 (P), and we pick a

sequence of natural numbers 0 ≤ mk ≤ k such that limk mk/k = c. We find σk ∈ M
+
1 (P),

σk := (1/mk)
∑mk

j=1 δz(mk )
j

such that σk →
∗ σ̂ as in the previous proof, thus mk

k σk →
∗ σ.

It follows that

(14) mkUσk + kε = k(
mk

k
Uσk − ε) ≤ kUσ ≤ k(

mk

k
Uσk − ε) = mkUσk − kε,

for k large enough.
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We can work by contradiction supposing that [K, µ,Uσ] does not satisfy the weighted

Bernstein Markov property and following the same lines of the proof of (ii) implies (i) of

the previous proposition using (14) instead of (12).

�

Remark 2.2. The combination of the two previous propositions proves in particular that

if (K, µ, P) has the sub-diagonal rational Bernstein Markov property and (K, µ) has the

Bernstein Markov property, it follows that (K, µ, P) has the rational Bernstein Markov

property.

On the other hand if (K, µ, P) has the sub-diagonal rational Bernstein Markov property

but not the rational Bernstein Markov property, it follows that (K, µ) does not satisfy the

Bernstein Markov property.

According to Proposition 2.2, our original question boils down to whether the Bern-

stein Markov property implies the weighted Bernstein Markov property for any weight in

the class W(P). In the next theorem we give two possible sufficient conditions for that,

corresponding to two different situations that are rather extremal in a sense. The reader is

invited to compare them with situation of Example 1(a) and 1(b).

We denote by S K the Shilov boundary of K with respect to the uniform algebra P(K)

of functions that are uniform limits on K of entire functions (or equivalently polynomials).

We recall that S K is defined as the smallest closed subset B of K such that maxz∈K | f (z)| =

maxz∈B | f (z)| for all f ∈ P(K).

We use the standard notation for the polynomial hull of a compact set K, that is

(15) K̂ := {z ∈ C : |p(z)| ≤ ‖p‖K , ∀p ∈P},

where P := ∪k∈NPk.

Theorem 2.3. Let K ⊂ C be a compact non polar set and µ ∈ M+(K) be such that

supp µ = K and (K, µ) has the Bernstein Markov Property. For a compact set P ⊂ C such

that K ∩ P = ∅, suppose that one of the following occurs.

Case a: S K = K.

Case b: K̂ ∩ P = ∅.

Then the triple [K, µ,w] has the weighted Bernstein Markov Property with respect to any

weight w ∈ W(P) and thus (K, µ, P) has the rational Bernstein Markov Property.

Proof. Let us pick σ ∈ M+(P) and set w = exp Uσ, also we pick a sequence {pk}, where

pk ∈Pk.We show that in both cases [K, µ,w] has the weighted Bernstein Markov Property

with respect to any weight w ∈ W1(P), the rest following by Proposition 2.2.
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Case a. We first recall (see [23, Lemma 3.2.4 pg. 70]) that the set {|g| : g ∈P} is dense

in the cone of positive continuous functions on S K , which w belongs to.

For any ε > 0 we can pick gε ∈Pmε such that

(16) (1 − ε)|gε| ≤ w ≤ (1 + ε)|gε|.

Notice that |gε|k = |gk
ε| = |τε,k |, where τε,k ∈Pmεk.

If for any pk ∈Pk we set p̃k := τε,k pk ∈P (mε+1)k, then we have

‖pkwk‖K ≤(1 + ε)k‖τε,k pk‖K = ‖p̃k‖K ,

‖pkwk‖L2
µ
≥(1 − ε)k‖τε,k pk‖L2

µ
= ‖p̃k‖L2

µ
, and thus ‖pkwk‖K

‖pkwk‖L2
µ

1/k

≤
1 + ε

1 − ε


 ‖ p̃k‖K

‖p̃k‖L2
µ


1

(mε+1)k


mε+1

.

(17)

Using the polynomial Bernstein Markov property of (K, µ) and the arbitrariness of ε > 0

we can conclude that lim supk

(
‖pkwk‖K

‖pkwk‖L2
µ

)1/k

≤ 1.

Case b. Suppose first that K̂ is connected, then it follows that there exists an open

neighbourhood D of K̂ which is a simply connected domain and P ∩ D = ∅. We recall that

any harmonic function on a simply connected domain is the real part of a holomorphic one.

Hence, being Uσ harmonic on D, we can pick f holomorphic on D such that

(18) w = exp Uσ = exp Re f = | exp f |.

Since g := exp f is an holomorphic function on D, by Runge Theorem, we can uni-

formly approximate it by polynomials gε on K̂ := {z ∈ C, |p(z)| ≤ ‖p‖K ∀p ∈P(C)}. Now

we can conclude the proof by the same argument (17) and (18) of the Case a above.

If otherwise K̂ is not known to be connected, we apply the following version of the

Hilbert Lemniscate Theorem [15, Th. 16.5.6], given any open neighbourhood U of K̂ not

intersecting P we can pick a polynomial s ∈ P such that |s(z)| > ‖s‖K̂ = ‖s‖K for any

z ∈ C \ U.

It follows that, picking a suitable positive δ, the set E := {|s| ≤ ‖s‖K + δ} is a closed

neighbourhood of K̂ not intersecting P.

Notice that the set E has at most deg s connected components E j and by definition it is

polynomially convex. Moreover the Maximum Modulus Theorem implies that each D j :=

int E j is simply connected or the disjoint union of a finite number of simply connected

domains that we do not relabel.

For any j = 1, 2, . . . , deg s we set w j := w|D j . We can find holomorphic functions f j and

g j on D j, continuous up to its boundary, such that w j = | exp f j| = |g j|.

Now notice that the function g(z) = g j(z) ∀z ∈ D j is holomorphic on D and continuous

on E, since D is the disjoint union of the sets D j’s. Hence we can apply the Mergelyan
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Theorem to find for any ε > 0 a polynomial gε such that

(1 − ε)|gε(z)| ≤ w(z) ≤ (1 + ε)|gε(z)| ∀z ∈ E ⊇ K.

We are back to the Case a and the proof can be concluded by the same lines. �

3. A sufficientMass-Density Condition for the rational BernsteinMarkov property

In the case of K = supp µ being a regular set for the Dirichlet problem, the Bernstein

Markov Property for (K, µ) is equivalent (cfr. [7, Th. 3.4]) to µ ∈ Reg. A positive Borel

measure is in the class Reg or has regular n-th root asymptotic behaviour if for any se-

quence of polynomials {pk} one has

(19) lim sup
k

 |pk(z)|
‖pk‖L2

µ

1/ deg pk

≤ 1 for z ∈ K \ N, N ⊂ K,N is polar.

However, the definition can be given in terms of other equivalent conditions, see [23, Th.

3.1.1, Def. 3.1.2]. We recall for the reader’s convenience that a set P is polar if it is locally

representable as a subset of the {−∞} level set of a subharmonic function.

Moreover in [23, Th. 4.2.3] it has been proven that any Borel compactly supported finite

measure having regular support K ⊂ C and enjoying a mass density condition (Λ∗-criterion

[23, pag. 132]) is in the class Reg, consequently (K, µ) has the Bernstein Markov property.

In order to fulfil such Λ∗ condition a measure needs (roughly speaking) to be thick in a

measure-theoretic sense on a subset of its support which has full logarithmic capacity (see

equation (23) below for the rigorous statement).

Notice that, even if this Λ∗ criterion is not known to be necessary for the Bernstein

Markov property, in [23] authors show that the criterion has a kind of sharpness property

and no counterexamples to the conjecture of Λ∗ being necessary for the Bernstein Markov

property are known. Moreover, this mass density sufficient condition has been extended

(here the logarithmic capacity has been substituted by the relative Monge-Ampere capacity

with respect to a ball containing the set K) to the case of several complex variables by

Bloom and Levenberg [8].

Here we observe that under the hypothesis of Theorem 2.3 this condition turns out to be

sufficient for the rational Bernstein Markov property as well; we state this in Theorem 3.1

then we generalize this result in Theorem 3.2.

We recall the definition of the logarithmic capacity cap(·) of a compact subset of the

complex plane

(20) cap(K) := sup
µ∈M+

1 (K)
exp (−I[µ]) ,

where we denote by

(21) I[µ] :=
∫

Uµdµ =

∫ ∫
log

1
|z − ζ |

dµ(z)dµ(ζ)
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the logarithmic energy of the measure µ.

The existence of a minimizers for I[·] holds true provided K is a non polar set [22, Part

I] while the uniqueness follows by the strict convexity of I[·]. The unique minimizer is

named equilibrium measure or extremal measure and is denoted by µK . It is a fundamental

result that, for non-polar K,

(22) µK = ∆gK(z,∞) and gK(z,∞) =

∫
log |z − ζ |dµK(ζ) − log cap(K),

where gK(z,∞) is the Green function for the unbounded component ΩK of C \ K with

logarithmic pole at ∞. Here the Laplacian has to be intended in the sense of distributions

and has been normalized to get a probability measure.

Theorem 3.1. Let K ⊂ C be a compact regular set and P ⊂ ΩK be compact. Let µ ∈

M+(K), supp µ = K and suppose that there exists t > 0 such that

(23) lim
r→0+

cap
(
{z ∈ K : µ(B(z, r)) ≥ rt}

)
= cap(K).

Then (K, µ, P) has the rational Bernstein Markov Property.

i. By [23, Th. 4.2.3] it follows that (K, µ) has the Bernstein Markov property, by Theorem

2.3 Case b we can conclude that the rational Bernstein Markov property holds for (K, µ, P)

for any P ⊂ ΩK as well. �

ii. See subsection 4.1. �

If we remove the hypothesis P ⊂ ΩK , then Theorem 2.3 is no more applicable. We

go around such a difficulty in the case K ⊂ ΩP by a suitable conformal mapping f of a

neighbourhood of K ∪ P given by the Proposition 3.1 below.

We recall, for the reader’s convenience, the definitions of Fekete points and transfinite

diameter. Given any compact set K in the complex plane, for any positive integer k, a set

of Fekete points of order k is an array zk = {z0, . . . , zk} ∈ Kk that maximizes the product of

distances of its points among all such arrays, that is

Vk(zk) :=
∏

1≤i< j≤k

|zi − z j| = max
ζ∈Kk

∏
1≤i< j≤k

|ζi − ζ j|.

Notice that such maximizing array does not need to be unique.

It turns out that, denoting by δk(K) :=
(
maxζ∈Kk Vk(ζ)

) 2
k(k+1) the k-th diameter of K, we

have

(24) lim
k
δk(K) =: δ(K) = cap(K),

where δ(K) is the transfinite diameter of K (existence of the limit being part of the state-

ment). We refer the reader to [19, 22, 21] for further details.

Recall that we indicate by Ê the polynomial hull of the set E, see (15).
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Proposition 3.1. Let K, P ⊂ C be compact sets, where K ∩ P̂ = ∅. Then there exist

w1,w2, . . . ,wm ∈ C \ (K ∪ P̂) and R2 > R1 > 0 such that denoting by f the function

z 7→ 1∏m
j=1(z−w j)

we have

K ⊂⊂ {| f | < R1},

P ⊂⊂ {R1 < | f | < R2}.

Proof. We first suppose P to be not polar.

Moreover we show that we can suppose without loss of generality that

(25) log δ(P) < min
K

gP(·,∞).

To do that, consider 0 < λ < 1
δ(P) and notice that

log δ(λP) = log λδ(P) < 0.

On the other hand one has gλP(z,∞) = gP( z
λ
,∞), thus it follows that

min
z∈K

gP(z,∞) = min
z∈λK

gλP(z,∞) > 0 > log δ(λP),

where the first inequality is due to the assumption K ∩ P̂ = ∅.

If we build f̃ as in the proposition for the sets P′ := λP and K′ := λK, then f := f̃ ◦ 1
λ

enjoys the right properties for the original sets P,K.Hence in the following we can suppose

(25) to hold.

Let us pick 0 < ρ < ρ̄ := d(P̂,K)/2, where d(A, B) := infx∈A,y∈B |x − y|, and consider the

set P̂ρ.

For the sake of an easier notation we denote by g(z) and gρ(z) the functions gP(z,∞) and

gP̂ρ (z,∞).

For any k ∈ N let us pick any set Zk(ρ) := {z(k)
1 , . . . , z(k)

k } of Fekete points for P̂ρ,

moreover we denote the polynomial
∏k

j=1(z − z(k)
j ) by qk. Notice that Zk(ρ) ⊂ (∂P̂ρ)k ⊂

(C \ (K ∪ P))k, hence {z(k)
1 , . . . , z(k)

k } is an admissible tentative choice for w1,w2, . . . ,wk.

Let us set

a(ρ) := min
K

gρ,

a := min
ρ∈[0,ρ̄]

a(ρ) = a(ρ̄),

b := max
ρ∈[0,ρ̄]

max
K

gρ = max
K

g.

We recall that (see [22, III Th. 1.8])

lim
k

1
k

log+ |qk | = gρ, locally uniformly on C \ P̂ρ.

Thus for any ε > 0 we can choose m(ε) ∈ N such that∥∥∥∥∥ 1
m

log+ |qm| − g
∥∥∥∥∥

B(ρ)
< ε ∀m ≥ m(ε),
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where B(ρ) := {z ∈ C : a ≤ gρ(z) ≤ b}, notice that P̂ρ ∩ B(ρ) = ∅.

Then, taking ε < a we have ∀m ≥ m(ε)

K ⊂
{

a(ρ) − ε ≤
1
m

log+ |qm| ≤ b + ε

}
={

em(a(ρ)−ε) ≤ |qm| ≤ em(b+ε)
}

=: A(ε, ρ,m).
(26)

On the other hand, exploiting the extremal property of Fekete polynomials [19, Th. 5.5.4

(b)], we have ‖qm‖P̂ρ ≤ δm(P̂ρ)m, where δm(E) is the m-th order diameter of E. In other

words

P ⊂
{
|qm| ≤ δm(P̂ρ)m

}
=: D(ρ,m).

In order to prove that A(ε, ρ,m) ∩ D(ρ,m) = ∅, for suitable ε > 0, dist(K, P̂) > ρ > 0

and m > m(ε), we need to show that for such values of parameters

(27) log δm(P̂ρ) < a(ρ) − ε.

In such a case the function f (z) := 1
qm(z) satisfies the properties of the proposition since

‖ f ‖K ≤ e(−m(a(ρ)−ε)) < δm(P̂ρ)−m ≤ min
P
| f |.

To conclude, we are left to prove that we can choose admissible m, ρ > 0 and ε > 0

such that (27) holds. To do that we recall that, since P = ∩l∈NP 1
l

, by [19, Th. 5.1.3] we

have

δ(P) = lim
l
δ(P 1

l
) = lim

l
lim

m
δm(P 1

l
).

By the same reason g1/m is uniformly converging by the Dini’s Lemma to g on a neigh-

bourhood of K not intersecting Pρ̄.

Therefore, it follows by (26) and (25) that possibly shrinking ε to get

0 < ε < min{a,min
K

g − log δ(P)} we have

lim
l

lim
m

log δm(P 1
l
) = log δ(P) < min

K
g − ε = lim

m
min

K
g1/m − ε.

Hence (possibly taking ε′ < ε) there exists a increasing subsequence k 7→ lk with

lim
m

log δm(P1/lk ) < lim
m

min
K

g1/m − ε
′ for any k ∈ N.

In the same way we can pick a subsequence k → mk such that log δmk (P1/lk ) < minK g1/mk −

ε′′ for all k ∈ N. Taking k large enough to get mk > m(ε′′) and setting m := mk, ρ := 1/lk
suffices.

In the case of P being a polar subset of C we observe that for any positive ρ the set

P̂ρ is not polar since it contains at least one disk. Moreover notice that limm δm(P1/m) =

log δ(P) = −∞ whereas the sequence of harmonic (on a fixed suitable neighbourhood of

K) functions g1/m is positive and increasing. Equation (26) is then satisfied for m large

enough. The rest of the proof is identical. �
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We use the standard notation f∗µ(A) :=
∫

f −1(A) dµ for any Borel set A ⊂ C.

If we use Proposition 3.1 and set E := f (K), Q := f (P) we can see that Ê ∩ Q = ∅ thus

E,Q are precisely in the same relative position as in the Theorem 3.1. Therefore we are

now ready to state a sufficient condition for the rational Bernstein Markov property under

more general hypothesis, where we do not assume K̂ ∩ P = ∅.

Theorem 3.2 (Mass-Density Sufficient Condition). Let K, P ⊂ C be compact disjoint sets

where K is regular with respect to the Dirichlet problem and P̂∩K = ∅. Let µ ∈ M+(K) be

such that supp µ = K and suppose that there exist t > 0 and f as in Proposition 3.1 such

that the following holds

(28) lim
r→0+

cap
(
{z ∈ f (K) : f∗µ(B(z, r)) ≥ rt}

)
= cap( f (K)).

Then (K, µ, P) has the rational Bernstein Markov Property.

Proof. By Theorem 3.1 it follows that the triple (E, f∗µ,Q) has the rational Bernstein

Markov Property.

To conclude the proof it is sufficient to notice that for any sequence {rk} in R(P), the

sequence {r̃ j} defined by

r̃ j := rb j/mc ◦ f j = 1, 2, . . .

is an element of R(Q). Moreover by the rational Bernstein Markov property of (E, f∗µ,Q)

we can pick c j > 0 such that lim sup j c1/ j
j ≤ 1 and

‖rk‖K = ‖r̃mk‖E ≤ cmk‖r̃mk‖L2( f∗µ) ≤ cmk‖rk‖L2(µ).

Thus we have (
‖rk‖K

‖rk‖L2(µ)

)1/k

≤
(
c1/(mk)

mk

)m
→ 1m = 1.

�

We can also state the above result in a simpler way, thought not completely equivalent.

Corollary 3.2.1. Let K, P ⊂ C be compact sets where K is regular with respect to the

Dirichlet problem and P̂ ∩ K = ∅. Let µ ∈ M+(K) be such that supp µ = K and suppose

that there exist t > 0 and f as in Proposition 3.1 such that the following holds

(29) lim
r→0+

cap
(

f
(
{ζ ∈ K : µ(B(ζ, r)) ≥ rt}

))
= cap( f (K)).

Then (K, µ, P) has the rational Bernstein Markov Property.

Proof. Let L := LipK f = inf{L : | f (x) − f (y)| < L|x − y|, for all x, y ∈ K}, we set

Ar := {ζ ∈ K : µ(B(ζ, r/L)) ≥ rt}

Dr := {z ∈ f (K) : f∗µ(B(z, r)) ≥ rt}.
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We observe that if ζ0 ∈ Ar then z0 := f (ζ0) lies in Dr. For, notice that

f∗µ(B(z0, r)) =

∫
f −1(B(z0,r))

dµ ≥
∫

B(ζ0,r/L)
dµ

since f (B(ζ0, r/L)) ⊆ B(z0, r). Therefore f (Ar) ⊆ Dr.

If we suppose that cap( f (Ar)) → cap( f (K)), then it follows that cap(Dr) → cap( f (K))

as well by the inequality cap( f (K)) ≥ cap(Dr) ≥ cap( f (Ar))→ cap( f (K)).

Now consider the set Br := {ζ ∈ K : µ(B(ζ, r)) ≥ rt′ }, for some t′ > t, condition (29)

says lims→0+ cap( f (Bs)) = cap( f (K)). Now take s = r/L and notice that for small r we

have
(

r
L

)t′
≥ rt, thus by condition (29) it follows that limr→0+ cap( f (Ar)) = cap( f (K)). By

the previous argument condition (28) follows and Theorem 3.2 applies. �

Example 2. We go back to the case of the Example 1 (e) to show that the same

conclusion follows by applying Corollary 1. Let us recall the notation. We consider the

annulus A := {z : 1/2 ≤ |z| ≤ 1}, set K := ∂A, P := {0} and µ := 1/2ds|∂D + 1/2ds| 1
2 ∂D

,

where ds is the standard arc length measure.

We proceed as in Proposition 3.1 to build the map f : we take ρ = 0.1 and for each

m ∈ N we pick a set of Fekete points for Pρ = {|z| ≤ 0.1}.

In this easy example m = 2 suffices to our aim, so we can choose w1 = 0.1, w2 = −0.1,

f (z) = 1
(z−w1)(z−w2) = 1

z2−0.01 .

We notice that f is a holomorphic map of a neighbourhood Kδ of K and we can compute

its Lipschitz constant LipK( f ) := inf{L > 0 : | f (x)− f (y)| ≤ L|x−y|,∀x , y ∈ K} as follows.

Lδ := Lip
Kδ

( f ) = ‖ f ′‖Kδ = max
z∈Kδ

∣∣∣∣∣ −2z
(z2 − 0.01)2

∣∣∣∣∣ .
For instance, taking δ = 0.1 we get Lδ =

4(1−2δ)
1−4δ = 5.3.

For any ζ ∈ ∂D and r < 1/2 we have

µ (B(ζ, r)) =
1
2

∫
B(ζ,r)∩∂D

ds =
1
2

∫ arg(ζ)+arcsin(r)

arg(ζ)−arcsin(r)
1 dθ

= arcsin (r) ,

similarly for any ζ ∈ 1/2∂D we have

µ (B(ζ, r)) =
1
2

∫
B(ζ,r)∩1/2∂D

ds =
1
2

∫ arg ζ+2 arcsin(r)

arg ζ−2 arcsin(r)
1

dθ
2

= arcsin(r).

Notice that taking t = 1 and r < 1/2 (29) is satisfied since {ζ ∈ K : µ(B(ζ, r)) ≥ r} = K for

all 0 < r < 1/2.

Finally we notice that also (A, µ, P) has the rational Bernstein Markov property (as we

observed in Example 1 (e)) since any rational function having poles on P achieves the

maximum of its modulus on K.
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It is worth to notice that a measure µ can satisfy (29) even if the mass of balls of radius

r decays very fast (e.g. faster than any power of r) as r → 0 at some points of the support

of µ. This is the case of the following example.

Example 3. Let us consider the measure µ, where

dµ
dθ

:= exp

 −1

1 −
(
θ
π

)2

 , −π ≤ θ ≤ π

defined on the unit circle ∂D and pick as pole set P := {0}.

µ(B(eiθ, r)) =

∫ θ+2 arcsin r/2

θ−2 arcsin r/2
exp

(
−π2

π2 − u2

)
du(30)

≥


4 arcsin r/2 exp

(
−π2

π2−(θ+2 arcsin r/2)2

)
, 0 ≤ θ < π − 2 arcsin r/2

4 arcsin r/2 exp
(

−π2

π2−(θ−2 arcsin r/2)2

)
,−π + 2 arcsin r/2 ≤ θ ≤ 0.

.(31)

We try to test condition (29) using t = 1 and the map f (z) := 1
z−0.01 which is a bi-

holomorphism of a neighbourhood of ∂D. Therefore the condition limr→0+ cap( f (Kr)) =

cap( f (K)) of Corollary 1 for sets Kr ⊆ K is equivalent to limr→0+ cap Kr = cap K and we

are reduce to test the simpler condition

(32) lim
r→0+

cap ({z ∈ ∂D : µ(B(z, r)) ≥ r}) =: lim
r→0+

cap Kr = cap(∂D).

It is not difficult to see by (31) that

Kr ⊃{
eiθ : θ ∈ [0, π − 2 arcsin r/2[ , exp

(
−π2

π2 − (θ + 2 arcsin r/2)2

)
≥

r
4 arcsin r/2

}⋃
{

eiθ : θ ∈] − π + 2 arcsin r/2, 0] , exp
(

−π2

π2 − (θ − 2 arcsin r/2)2

)
≥

r
4 arcsin r/2

}
=

K1
r ∪ K2

r =: K̃r,
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where

Ki
r = {eiθ, θ ∈ [ai, bi]}

a1 = max

0, 2 arcsin r/2 − π

√
1 +

1

log 4 arcsin r/2
2


b1 = min

π − 2 arcsin r/2, π

√
1 −

1
log 2 arcsin r

r

− arcsin r


a2 = min

−π + 2 arcsin r/2, π

√
1 −

1
log 2 arcsin r

r

− arcsin r


b2 = max

0,−2 arcsin r/2 + π

√
1 +

1

log 4 arcsin r/2
2

 .
It is not difficult to see that for r → 0+ we have [a1, b1] = [0, π − 2 arcsin r/2], [a2, b2] =

[−π + 2 arcsin r/2, 0], hence Kr ⊇ {eiθ, θ ∈ [−π + 2 arcsin r/2, π − 2 arcsin r/2]

We recall that the logarithmic capacity of an arc of circle of radius 1 and length α is

sin(α/4); see [19, pg. 135]. Therefore we have

cap(∂D) ≥ lim
r→0+

cap(Kr) ≥ lim
r→0+

cap(K̃r) =

lim
r→0+

sin
(

2π − 4 arcsin r/2
4

)
= 1 = cap(∂D),

(33)

this proves (32) and since we considered a bi-holomorphic map f (29) follows. By Corol-

lary 3.2.1 we can conclude that {∂D, µ, {0}} has the rational Bernstein Markov property.

4. Convergence of Green functions and mass density condition

The aim of this section is to relate the convergence of logarithmic capacities of compact

subsets K j of a given compact regular set K to the uniform convergence of the Green

functions gK j (z, a) to gK(z, a) with poles a in a given compact set P disjoint by K. We

provide a one variable version (see Th. 4.1 below) of [8, Th. 1.2] adapted to our setting of

moving poles.

Then we give, as an application, another proof of Theorem 3.1 using this convergence

property.

We recall that given a proper sub-domain D of the one point compactification C∞ of

C the Green function of D is the unique function GD : D × D →] − ∞,∞] such that

GD(·, ζ) is harmonic in D \ {ζ} and bounded out from any neighbourhood of ζ, GD(·, ζ) has

a logarithmic pole at ζ and limz→z0 GD(z,w) = 0 for all z0 ∈ ∂D \ N where N is a polar set.

Let K ⊂ C be any compact set, then we can consider the standard splitting in connected

components

C \ K := ΩK

⋃ (
∪ j∈IΩ j

)
,
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where Ω j’s are open bounded, while ΩK is the only unbounded connected component of

C \ K.

To simplify the notation from now on we denote by gK(z, ζ) the Green function GΩK (z, ζ)

of the unbounded domain ΩK , notice that the notation is consistent with the case when

ζ = ∞.

There exists another characterization of the Green function that allows also a generaliza-

tion to several complex variables. Namely one considers the Lelong class L (C) of all sub-

harmonic functions on the complex plane having a logarithmic pole at∞, e.g., u(z)−log+ |z|

is bounded on any neighbourhood of {∞}. Then the extremal subharmonic function is in-

troduced

(34) VK(z) := sup{u ∈ L (C), u|K ≤ 0}.

The upper envelope defining VK has been proved to be equal to the logarithm of the Siciak-

Zaharyuta function

ΦK := sup{|p(z)|1/ deg(p), p ∈P(C), ‖p‖K ≤ 1}.

By these definitions it follows the Bernstein Walsh Inequality

(35) |p(z)| ≤ ‖p‖K exp(deg(p)VK(z)) , p ∈P(C).

Moreover, it turns out that the upper semi-continuous regularization

V∗K(z) := lim sup
ζ→z

VK(ζ)

coincides with gK(z,∞) for all non polar compact K; see [17, Sec. 3].

Lastly, we recall that a compact set K is said to be regular if gK(·,∞) (or equivalently

V∗K) is continuous on K and hence on C.

We will make repeated use of this classical result (see for instance [19])

(36) gK(z, a) = gηa(K)(ηa(z),∞),

where ηa(z) = 1
z−a .

From now on we use the following notation, given any compact set K and a positive ε

we set

Kε := {z : d(z,K) ≤ ε},

where d(z,K) := minζ∈K |z − ζ | is the standard euclidean distance.

Theorem 4.1. Let K ⊂ C be a regular compact set and P a compact subset of ΩK . Then

for any bounded simply connected domain D such that K ⊂ D and P ∩ D = ∅, and for any
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sequence {K j} of compact subsets of K the following are equivalent.

lim
j

cap(K j) = cap(K).(i)

lim
j

gK j (z, a) = gK(z, a) loc. unif. for z ∈ D , unif. for a ∈ P .(ii)

In order to prove Theorem 4.1 we need the following proposition.

Proposition 4.1. Let K ⊂ C be a regular compact set and {K j} a sequence of compact

subsets of K, let D be a bounded simply connected domain such that K ⊂ D and f : D→ C

a bi-holomorphism on its image. Then the following are equivalent

i) lim j cap(K j) = cap(K),

ii) gK j (z,∞)→ gK(z,∞) locally uniformly,

iii) g f (K j)(z,∞)→ g f (K)(z,∞) locally uniformly and

iv) lim j cap( f (K j)) = cap( f (K)).

Proof. It follows by the hypothesis on convergence of capacities that µK j ⇀
∗ µK , see for

instance [23, Proof of Th. 4.2.3].

Let us pick any sequence {z j} of complex numbers converging to ẑ ∈ C, it follows by

the Principle of Descent [22, Th. 6.8] that

lim sup
j
−UµK j (z j) ≤ −UµK (ẑ).

On the other hand, due to regularity of K, the fact that K j ⊂ K for all j and since by

assumption the sequence − log cap(K j) does have limit, we have

gK(ẑ,∞) = lim inf
j

gK(z j,∞) ≤ lim inf
j

gK j (z j,∞) ≤ lim sup
j

gK j (z j,∞)

= lim sup
j

(
−UµK j (z j) − log cap(K j)

)
= lim sup

j
−UµK j (z j) − log cap(K)

≤ − UµK (ẑ) − log cap(K) = gK(ẑ,∞).(37)

Thus equality holds, moreover, since the sequence and the limit point are arbitrary we

get gK j (·,∞) → gK(·,∞) locally uniformly in C. Indeed, we can pick any compact set

L ⊂ C and any maximizing1 sequence {z j} of points in L for |gK j (z,∞) − gK(z,∞)|, i.e.,

gK j (z j,∞)−gK(z j,∞) = maxz∈L gK j (z,∞)−gK(z,∞), and notice that extracting a converging

1Notice that gK j (z,∞) ≤ gK (z,∞) at any z ∈ C and, by the continuity of gK (·,∞), the function |gK j (z j,∞) −

gK (z j,∞)| = gK j (z j,∞) − gK (z j,∞) is upper semi continuous, thus it achieves its maximum on L.
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subsequence of z jk → ẑ ∈ L and relabelling indexes we have

lim sup
j
‖gK j (z,∞) − gK(z,∞)‖L = lim sup

j
|gK j (z j,∞) − gK(z j,∞)|

≤ lim sup
j
|gK j (z j,∞) − gK(ẑ,∞)| + lim sup

j
|gK(z j,∞) − gK(ẑ,∞)|

= lim sup
j
|gK j (z j,∞) − gK(ẑ,∞)| = 0.

Here we used both the continuity of gK(·,∞) and (37).

Now we introduce some tools that are classical in (pluri-)potential theory in several

complex variables. The one variable counterparts of these notions are just normalizations

by a negative scaling factor: this leads to consider sup in place of inf and superharmonic

functions in place of subharmonic. We choose this setting because it is easier to provide a

proof of the above statement in this notation; we refer the reader to [22, Ch. II.5] for the

one variable definitions and properties.

We pick a domain D containing K and we define the relative extremal subharmonic

function

(38) U∗K,D(z) := lim sup
ζ→z

sup{u(ζ) ∈ shm(D), u ≤ 0, u|K ≤ −1}.

Here shm(D) stands for the set of subharmonic functions on D. U∗K,D is a subharmonic

function on D whose distributional Laplacian is a positive measure supported on K, more-

over U∗K,D ≡ −1 q.e. on K for an arbitrary compact set K and U∗K,D ≡ −1 for any regular

compact set K ⊂ D; see [2]. The reader is invited to compare this to the Green potential of

the condenser (K, ∂D) in [22, Ch. II.5].

The function U∗K,D − 1 solves the following variational problem that defines the relative

capacity of K in D.

(39) cap(K,D) := sup
{∫

K
∆u : u ∈ shm(D, [0, 1])

}
,

namely one has cap(K,D) =
∫

K ∆U∗K,D =
∫

K −U∗K,D∆U∗K,D.

Now we show that, under our hypothesis, U∗K j,D
→ U∗K,D uniformly on D.

On one hand, by the definition (38) above, ∀z ∈ D we have

U∗K,D(z) ≤ U∗K j,D(z),

U∗K j,D(z) −max
K

U∗K j,D − 1 ≤ U∗K,D(z)

and thus

(40) 0 ≤ U∗K j,D(z) − U∗K,D(z) ≤ max
K

U∗K j,D + 1 ∀z ∈ D.
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On the other hand, by the estimate gK j (z,∞) ≥ infζ∈∂D gK j (ζ,∞)(U∗K j,D
(z) + 1) for all

z ∈ D (see [16, Prop. 5.3.3]), it follows that

−1 ≤ U∗K j,D(z) ≤
gK j (z,∞)

infζ∈∂D gK j (ζ,∞)
− 1 ∀z ∈ D.

Note that the right hand side of the above inequality converges uniformly on K to −1 ≡

U∗K,D since we proved that gK j (z,∞)→ gK(z,∞) locally uniformly and hence infw∈∂D gK j (w,∞)→

infw∈∂D gK(w,∞) > 0; here the last inequality is due to K̂ ⊂ D since D is simply connected

and thus

inf
ζ∈∂D

gK j (ζ,∞) ≥ inf
ζ∈∂D

gK(ζ,∞) > 0.

We get maxK U∗K j,D
+ 1→ 0 locally uniformly on K and finally, due to (40), U∗K j,D

→ U∗K,D
locally uniformly on D.

It follows by the above convergence that cap(K j,D) → cap(K,D) as well; see the

definition (39) of relative capacity and lines below. To show that we simply pick ϕ ∈

C∞c (D, [0, 1]) such that ϕ ≡ 1 in a neighbourhood of K and we write

cap(K,D) =

∫
K

∆U∗K,D =

∫
D
ϕ∆U∗K,D =

∫
D
ϕ∆U∗K,D

= lim
j

∫
D
ϕ∆U∗K j,D = lim

j
cap(K j,D).

Now we note that, given a biholomorphism f of D on the smooth domain f (D) = Ω ⊂ C

there is a one to one correspondence between functions in {u ∈ shm(D) : u ≤ 0, u|G ≤ −1}

and {v ∈ shm(Ω) : v ≤ 0, v| f (G) ≤ −1} for any compact set G ⊂ D. For this reason, setting

F = f (K) and F j = f (K j) , one has U∗F j,Ω
≡ U∗K j,D

◦ f and U∗F,Ω ≡ U∗K,D ◦ f . Therefore we

have

U∗F j,Ω
→ U∗F,Ω locally uniformly in Ω. and

cap(F j,Ω)→ cap(F,Ω).

Let us recall that we can find a constant A > 0 such that supΩ gF j (z,∞) ≤ A
cap(F j,Ω) for

each subset of the compact set F; see [1]. Thus we can pick j0 such that, for j ≥ j0, we

have supΩ gF j (z,∞) ≤ 2A
cap(F,Ω) = M.

It follows by the definition of relative extremal function that we have

0 ≤
gF j (z,∞)

M
− 1 ≤ U∗F j,Ω

(z),∀ j > j0,∀z ∈ Ω.

But since the right hand side converges uniformly to −1 on F we get that gF j (z,∞) → 0

uniformly on F. Note that the same reasoning shows that in particular gF(z,∞) ≡ 0 on F,

that is F is regular.

In particular for any ε > 0 we can pick jε such that for any j > jε we have gF j (z,∞)−ε ≤

0 ≡ gF(z,∞) for any z ∈ F.
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Now we recall that for any compact set L ⊂ C the Green function with logarithmic pole

at ∞ can be expressed as the upper semi continuous regularization of the upper envelopes

of all subharmonic functions on C in the Lelong class (i.e., locally bounded and having

a logarithmic pole at infinity) that are bounded above by zero on L; see (34) above, [17,

Sec. 3] and [19]. Hence, we get gF j (z,∞) − ε ≤ gF(z,∞),∀ j > jε, z ∈ C. Similarly,

gF(z,∞) ≤ gF j (z,∞),∀ j ∈ N, z ∈ C, since F j ⊂ F.

Therefore we have

gF j (z,∞) − ε ≤ gF(z,∞) ≤ gF j (z,∞),∀ j > jε, z ∈ C.

That is gF j (z,∞)→ gF(z,∞) uniformly in C.

It follows by this uniform convergence that µF j ⇀
∗ µF (note that µF = ∆gF(z,∞) and the

distributional Laplacian, by linearity, is continuous under the local uniform convergence)

and thus UµF = lim j UµF j uniformly on compact sets of C\F (by the uniform continuity of

the log kernel away from 0), thus in particular UµF (ẑ) = lim j UµF j (ẑ) for any given ẑ ∈ C\F.

Now we have, for any ẑ ∈ C \ F

− log cap(F j)

=gF j (ẑ,∞) + UµF j (ẑ)→ gF(ẑ,∞) + UµF (ẑ)

= − log cap(F).

So far we proved i)⇒ii)⇒iii)⇒iv), to prove the converse implications we can use the

same steps above interchanging K,K j by F, F j, D by Ω and f by f −1. Precisely we use

i)⇒ii) to prove iv)⇒iii), ii)⇒iii) to prove iii)⇒ii), and iii)⇒iv) to prove ii)⇒i). Note in

particular that Ω is still simply connected and we can show that F is regular by part of the

argument above.

�

Proof of Theorem 4.1. Let us pick D as in the hypothesis of Theorem 4.1, note that K̂ ⊂ D

being D simply connected.

We introduce a more concise notation for the Green functions involved in the proof: we

denote by g(z, a) the Green function with pole at a for the set ΩK , we omit the pole when

a = ∞, we add a subscript j if K is replaced by K j and a superscript b if K or K j are

replaced by ηb(K) or ηb(K j), where ηb(z) := 1/(z − b). In symbols

g(z) := gK(z,∞) , g j(z, a) := gK j (z, a),

g j(z) := gK j (z,∞) , gb(z, a) := gηbK(z, a),

g(z, a) := gK(z, a) , gb
j (z, a) := gηbK j (z, a).

Moreover we set E j := ηa j (K j) and E := ηâ(K). Proof of (i)⇒ (ii). In order to prove the

local uniform convergence of g j(·, a) to g(·, a), uniformly with respect to a ∈ P, we pick
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any converging sequence P 3 a j → â, we set D̃ := ηâ(D) and we prove

(41) ga j

j → ga loc. unif. in D̃.

Finally we notice that g j(·, a j) = ga j

j ◦ η
−1
a j
→ ga ◦ η−1

â = g(·, â) loc. unif. in D hence the

result follows.

We proceed along the following steps:

lim
j

cap(E j) = cap(E).(S1)

µE j ⇀
∗ µE .(S2)

lim
j

gE j (z,∞) = gE(z,∞), loc. unif. in C.(S3)

Here we used the standard notation (see (22)) µE for the equilibrium measure of the

compact non-polar set E.

To prove (S1) we use [19, Th. 5.3.1] applied to the set of maps ϕ j := ηa j ◦η
−1
â and ψ j :=

ϕ−1
j together with the assumption (i). Each map is bi-holomorphic on a neighbourhood of

D̃, moreover we have

‖ϕ′j‖ηâ(K) = max
ζ∈ηâ(K)

1∣∣∣1 + (â − a j)ζ
∣∣∣2

≤ max
K

|z − â|2

|z − a j|
2 ≤ 1 +

|â − a j|
2

| dist(K, P)|2
=: L j.

(42)

‖ψ′j‖ηâ j (K j) =

 min
ζ∈ηa j (K j)

∣∣∣1 + (a j − â)ζ
∣∣∣−2

≤ max
K j

|z − a j|
2

|z − â|2
≤ 1 +

|â − a j|
2

| dist(K, P)|2
= L j.

(43)

We denoted by dist(K,H) := inf{ε > 0 : Kε ⊇ H , Hε ⊇ K} the Hausdorff distance of K

and H. Notice that L j → 1 as j→ ∞.

We recall that cap( f (E)) ≤ LipE( f ) cap(E), where LipE( f ) := inf{L : | f (x) − f (y)| <

L|x − y| ∀x, y ∈ E} for any Lipschitz mapping f : E → C; [19][Th. 5.3.1]. Therefore, due

to (42) and (43), we have the following upper bounds.

cap(E j) = cap(ϕ j(ηâ(K j))) ≤ L j cap(ηâ(K j)),

cap(ηâ(K j)) = cap(ηâ ◦ η
−1
a j

(E j)) = cap(ψ j(E j)) ≤ L j cap(E j).

Thus, using lim j L j = 1, we have

lim inf
j

cap(E j) ≥ lim inf
j

1
L j

cap(ηâ(K j)) = lim inf
j

cap(ηâ(K j)),(44)

lim sup
j

cap(E j) ≤ lim sup
j

L j cap(ηâ(K j)) ≤ lim sup
j

cap(ηâ(K j)).(45)
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Now we use Proposition 4.1 (note that D is an open bounded set containing K̂) with f := ηâ

to get lim j cap(ηâ(K j)) = cap(ηâ(K)) and thus

lim inf
j

cap(E j) ≥ cap(ηâ(K)) ≥ lim sup
j

cap(E j),

hence all inequalities are equalities and lim j cap(E j) = cap(E); this concludes the proof of

(S1).

The proof of (S2) is by the Direct Method of Calculus of Variation. More explicitly, let

µ j := µE j be the sequence of equilibrium measures, i.e., the minimizers of I[·] as defined

in (21) among the classes µ ∈ M1(E j). From (S1) it follows that lim inf j I[µ j] = I[µE].

Therefore, if µ is any weak∗ closure point of the sequence, by lower semi-continuity of I,

we get I[µ] ≤ I[µE].

Notice that without loss of generality we can assume K j, and thus E j, to be not polar,

since cap(K j) > 0 for j large enough.

If supp µ ⊆ E, by the strict convexity of the energy functional, we have that µ = µE

and the whole sequence is converging to µE ; see [22, Part I, Th. 1.3]. Then we are left to

prove supp µ ⊆ E, this follows by the uniform convergence of ηa j to ηâ and by properties

of weak∗ convergence of measures.

To this aim, we suppose by contradiction supp µ ∩ (C \ E) , ∅. It follows that there

exists a Borel set B ⊂ C \ E with µ(B) > 0. Since µ is Borel we can find a closed set

C ⊂ B still having positive measure. Being C a metric space and we can find an open

neighbourhood A of C disjoint by E with µ(A) > 0.

Due to the Portemanteau Theorem (see for instance [5, Th. 2.1]) we have

0 < µ(A) ≤ lim inf
j

µ j(A).

Therefore C ⊆ A ⊂ E jm for an increasing subsequence jm.

By the uniform convergence ηa jm
→ ηâ it follows that C ⊆ A ⊆ E, a contradiction since

we assumed C ∩ E = ∅.

Let us prove (S3).

First, we recall (see for instance [22, pg. 53]) that for any compact set M ⊂ C we have

gM(z,∞) = − log cap(M) − UµM (z). Hence it follows that

(46) gE j (ζ,∞) = − log cap(E j) − Uµ j (ζ).

Due to (S2) and by the Principle of Descent [22, I.6, Th. 6.8] for any ζ ∈ C we have

(47) lim sup
j
−Uµ j (ζ) ≤ −UµE (ζ).

It follows by (S1),(46) and (47) that

lim sup
j

gE j (ζ,∞) ≤ gE(ζ,∞), ∀ζ ∈ C.



RATIONAL BMP 29

The sequence of subharmonic functions {gE j (ζ,∞)} is locally uniformly bounded above

and non negative, therefore we can apply the Hartog’s Lemma. For each ε > 0 there exists

j(ε) ∈ N such that

‖gE j (ζ,∞)‖E ≤ ‖gE(ζ,∞)‖E + ε = ε.

Here the last equality is due to the regularity of K and thus of E (e.g. gE(ζ,∞) ≡ 0 ∀ζ ∈ E).

Therefore we have

(48) gE j (ζ,∞) − ε ≤ gE(ζ,∞) , ∀ζ ∈ E.

By the extremal property of the Green function (see (34) and lines below) and the upper

bound (48) it follows that

(49) gE j (ζ,∞) − ε ≤ gE(ζ,∞) , ∀ζ ∈ C, j ≥ j(ε).

Since gE(·,∞) is continuous (hence uniformly continuous on a compact neighbourhood

M of E containing all E j) for any ε > 0 we can pick δ > 0 such that gE(ζ,∞) ≤ ε for any

ζ ∈ Eδ.

Let us set j′(ε) := min{ j̄ : E j ⊆ Eδ∀ j ≥ j̄}, notice that j′(ε) ∈ N for any (sufficiently

small) ε > 0 since

E j ⊂ ηa j (K) ⊆ L jηâ(K) = L jE ⊆ E(L j−1)‖z‖E ,

where L j is defined in equations (42) (43) and L j → 1.

It follows by this choice that

‖gE(ζ,∞)‖E j ≤ ε, ∀ j ≥ j′(ε).

Therefore, again by the extremal property of gE j (ζ,∞), we have

(50) gE(ζ,∞) − ε ≤ gE j (ζ,∞), ∀ζ ∈ C, j ≥ j′(ε).

Now simply observe that (50) and (49) imply

gE(ζ,∞) − ε ≤ gE j (ζ,∞) ≤ gE(ζ,∞) + ε , ∀ j ≥ max{ j(ε), j′(ε)}.

Therefore gE j (·,∞) converges locally uniformly to gE(·,∞).

To conclude the proof of (i)⇒ (ii) let us pick any compact subset L of D.

‖ga j

j − gâ‖L = ‖gE j (ηa j (z),∞) − gE(ηâ(z),∞)‖L ≤

‖gE j (ηa j (z),∞) − gE(ηa j (z),∞)‖L + ‖gE(ηa j (z),∞) − gE(ηâ(z),∞)‖L → 0

Here we used the continuity of gE(z,∞) and the local uniform convergence of ηa j to ηâ. By

the arbitrariness of the sequence of poles {a j} (ii) follows.

Proof of (ii)⇒ (i). Fix any pole a ∈ P and set ηa(z) := 1
z−a , E := ηa(K), E j := ηa(K j),

by our assumption we have ga
j → ga locally uniformly in C thus

gE j (·,∞)→ gE(·,∞),
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uniformly on some neighbourhood D of E (where η−1
a is a biholomorphism on its image).

It follows that µE j ⇀
∗ µE . Let us pick a point ẑ ∈ D\E, by uniform continuity of the log

kernel away from 0 we have UµE j (ẑ) → UµE (ẑ). On the other hand gE j (ẑ,∞) → gE(ẑ,∞),

therefore we have

lim
j
− log cap(E j) = lim

j

(
gE j (ẑ,∞) + UµE j (ẑ)

)
=gE(ẑ,∞) + lim

j
UµE j (ẑ) = − log cap(E),

where existence of the limit is part of the statement and follows by the existence of the

limits of the two terms of the sum.

We apply Proposition 4.1 with f := η−1
a to get − log cap(K j)→ − log cap(K). �

4.1. A direct proof of the mass density sufficient condition by convergence of Green
functions. Theorem 4.1 can be used to prove directly Theorem 3.1, that is, for measures

having regular compact support, the classical sufficient mass density condition in [10] or

Λ∗ condition [23] implies a rational Bernstein Markov Property, provided P ⊂ ΩK .

Direct proof of Theorem 3.1. The proof follows the idea of [23, Th. 4.2.3], except for the

lack of the Bernstein Walsh Inequality (35) which is not available for rational functions.

In place of it we use the following variant due to Blatt [6, eqn. 2.2] which holds for any

rational function rk of the form rk(ζ) =
pk(ζ)
qk(ζ) =

ck

mk∏
j=0

(ζ−z(k)
j )

nk∏
j=0

(ζ−a(k)
j )

. For ζ < {a1, . . . , ank } we have

(51) |rk(ζ)| ≤ ‖rk‖K exp

 nk∑
j=1

gK(ζ, a j) + (mk − nk)gK(ζ,∞)

 .
Thus in particular we have

|rk(ζ)| ≤ ‖rk‖K j exp
(
nk max

a∈P
gK j (ζ, a) + (mk − nk)gK j (ζ,∞)

)
∀ζ ∈ C \ P.

Notice that, for any sequence K j ⊂ K such that cap K j → cap K, from Theorem 4.1 it

follows that

max
a∈P

gK j (ζ, a)→ max
a∈P

gK(ζ, a) locally uniformly in C \ P.

Moreover, it is well known that under the same condition we have

gK j (ζ,∞)→ gK(ζ,∞) locally uniformly in C.

Pick any {rk} ∈ R(P). By the regularity of K and the compactness of P for any ε > 0

there exists δ > 0 such that

gK(ζ, a) ≤ ε ∀ζ : dist(ζ,K) ≤ δ, ∀a ∈ P

gK(ζ,∞) ≤ ε ∀ζ : dist(ζ,K) ≤ δ.
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Let us pick ε > 0, it follows by (51) that there exists δ > 0 such that ∀ζ : dist(ζ,K) ≤ δ we

have

(52) |rk(ζ)| ≤ ‖rk‖Ke(nk maxa∈P gK (ζ,a)+(mk−nk)gK (ζ,∞)) ≤ e(kε)‖rk‖K .

By Theorem 4.1 (possibly shrinking δ) we have, for any A ⊂ K, with cap(A) > cap(K)−

δ and locally uniformly in C \ P,

max
w∈P

gA(ζ,w) ≤ max
w∈P

gK(ζ,w) + ε ,(53)

gA(ζ,∞) ≤ gK(ζ,∞) + ε .(54)

Using (52) and (54) we have

(55) |rk(ζ)| ≤ e(2εk)‖rk‖A ∀ζ ∈ Kδ, ∀A ⊂ K with cap(A) > cap(K) − δ.

Let ζ0 ∈ A be such that ‖rk‖A = |rk(ζ0)|, we show that a lower bound for |rk | holds in

a ball centred at ζ0. By the Cauchy Inequality we have |r′k(ζ)| <
‖rk‖B(ζ0 ,s)

s ≤
e(2εk)‖rk‖A

s , for

any |ζ − ζ0| < s, s < δ. Taking s = δ/2 we can integrate such an estimates as follows

∀z ∈ B(ζ0, δ/2)

‖rk‖A = |rk(ζ0)| =

∣∣∣∣∣∣rk(z) +

∫
[z,ζ0]

r′k(ζ)dζ

∣∣∣∣∣∣ ≤ |rk(z)| + |z − ζ0|
e(2εk)‖rk‖A

δ/2
.

It follows by the above estimate that

(56) min
z∈B(ζ0,

δe(−2εk)
4 )

|rk(z)| ≥
‖rk‖A

2
∀A ⊂ K with cap(A) > cap(K) − δ.

Now we provide a lower bound for L2
µ norms of rk by integrating the last inequality on a

(possibly smaller ball) and picking A ⊂ K according to the mass density condition (28).

Precisely, set ρk := e(−3kε), by the hypothesis we can pick t > 0 and Ak ⊂ K with

cap(Ak) > cap(K)− δ such that µ(Bk) := µ(B(η, ρk)) ≥ ρt
k ∀η ∈ Ak. We pick k ≥ k̄ such that

ρk <
δe(−2εk)

4 , thus using (56) we get

‖rk‖
2
L2
µ
≥

∫
Bk

|rk |
2dµ ≥ min

z∈Bk
|rk(z)|2µ(Bk) ≥

‖rk‖
2
Ak

4
ρt

k

≥
e(−3tkε)

4
‖rk‖

2
Ak
≥

e(−(4+3t)kε)

4
‖rk‖

2
K .

It follows that
(
‖rk‖K
‖rk‖L2

µ

)1/k

≤ 41/ke((4+3t)ε), by arbitrariness of ε > 0 we can conclude that

lim sup
k

 ‖rk‖K

‖rk‖L2
µ

1/k

≤ 1

�
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5. Application: a L2 meromorphic BernsteinWalsh Lemma

For a given compact set K ⊂ C we denote by Dr the set {z ∈ C : gK(z,∞) < log r}

and by Mn(Dr) the class of meromorphic functions having precisely n poles (counted with

their multiplicities) in Dr. Let us denote by Rk,n the class of rational functions having at

most k zeroes and at most n poles (each of them counted with its multiplicity).

It follows by the work of Walsh [24], Saff [20] and Gonchar [13] that, given a function

f ∈ C (K), where K is a compact regular set, f admits a meromorphic extension f̃ ∈

Mn(Dr) if and only if one has the overconvergence of the best uniform norm approximation

by rational functions with n poles, that is

(57) lim sup
k

dn,k( f ,K)1/k := lim sup
k

inf
r∈Rk,n

‖ f − r‖1/kK ≤ 1/r.

In the case of a finite measure µ having compact support K and such that (K, µ, P) has the

rational Bernstein Markov property for any compact set P, P∩K = ∅, one can rewrite such

a theorem checking the overconvergence of best L2
µ rational approximations instead of best

uniform ones. Notice that if K = K̂ any Bernstein Markov measure supported on K has

such a property. More precisely, we can prove the following in the spirit of [17, Prop. 9.4

], where we use the notation Poles( f ) to denote the set of poles of the function f .

Theorem 5.1 (L2 Meromorphic Bernstein Walsh Lemma). Let K be a compact regular

subset of C, let f ∈ C (K) and let r > 1. The following are equivalent.

i) There exists f̃ ∈Mn(Dr) such that f̃ |K ≡ f .

ii) lim supk d1/k
k,n ( f ,K) ≤ 1/r.

iii) For any finite Borel measure µ such that supp µ = K and (K, µ, P) has the rational

Bernstein Markov property for any compact set P such that P ∩ K = ∅, denoting by

rµk,n a best L2
µ approximation to f in Rk,n, one has

lim sup
k

(
‖ f − rµk,n‖K

)1/k
≤ 1/r,

provided that {Poles(rk,n)}k ∩ K = ∅.

iv) With the same hypothesis and notations as in iii) we have

lim sup
k

(
‖ f − rµk,n‖L2

µ

)1/k
≤ 1/r,

provided that {Poles(rk,n)}k ∩ K = ∅.

Proof. (i⇔ ii.) The theorem has been proven in [13], see also [14].

(ii⇒ iii.) Let us pick ρ > r, we find C > 0 such that

d1/k
k,n ( f ,K) ≤ C/ρk, ∀k.
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Let us pick sk,n ∈ Rk,n such that ‖ f − sk,n‖K = dk,n( f ,K) and set P∞ = {Poles(sk,n)}k. Notice

that

‖ f − rµk,n‖L2
µ
≤ ‖ f − sk,n‖L2

µ
≤ µ(K)−1/2‖ f − sk,n‖K(58)

=µ(K)−1/2dk,n( f ,K) ≤ µ(K)−1/2C/ρk.

In particular it follows that

‖rµk,n − rµk−1,n‖L2
µ
≤ ‖ f − rµk,n‖L2

µ
+ ‖ f − rµk−1,n‖L2

µ
≤
µ(K)−1/2C(1 + ρ)

ρk .

We apply the rational Bernstein Markov property to (K, µ, P), with P := P∞ ∪ P2, P2 =

{Poles(rk,n)}k, in the following equivalent formulation, for any ε > 0 there exists M =

M(ε,K, µ, P) such that ‖s‖K ≤ M(1 + ε)k‖s‖L2
µ

for any s ∈ Rk,n, Poles s ⊂ P, n ≤ k, ∀k.

Notice that P∞ ∩ K = ∅ follows by the assumption lim supk d1/k
k,n ( f ,K) ≤ 1/r; [24]. We get

(59) ‖rµk,n − rµk−1,n‖K ≤ Mµ(K)−1/2C(1 + ρ)
(

1 + ε

ρ

)k

.

By equation (58) rµk,n → f in L2
µ, therefore some subsequence converges almost everywhere

with respect to µ. By equation (59) we can show that the sequence of functions {rk,n} is a

Cauchy sequence in C (K) thus it has a uniform continuous limit g. Therefore f ≡ g and

the whole sequence is uniformly converging to f on K. Notice that f ≡ g on a carrier of µ,

thus on a dense subset of the support K of µ.

Now notice that

‖ f − rk,n‖K ≤

∥∥∥∥∥∥∥∥
∞∑

j=k+1

rµj,n − rµj−1,n

∥∥∥∥∥∥∥∥
K

≤

∞∑
j=k+1

‖rµj,n − rµj−1,n‖K

≤Mµ(K)−1/2C(1 + ρ)
∞∑

j=k+1

(
1 + ε

ρ

) j

= Mµ(K)−1/2C(1 + ε)
1 + ρ

ρ − 1

(
1 + ε

ρ

)k

.

Therefore we have

lim sup
k
‖ f − rk,n‖

1/k
K ≤ lim sup

k

(
Mµ(K)−1/2C(1 + ε)(1 + ρ)

ρ − 1

)1/k 1 + ε

ρ
=

1 + ε

ρ
.

The thesis follows letting ε→ 0+ and ρ→ r+.

(iii⇒ ii.) By definition one has

1/r ≥ lim sup
k

(
‖ f − rµk,n‖K

)1/k
≥ lim sup

k

(
inf

r∈Rk,n

‖ f − r‖K

)1/k

= lim sup
k

d1/k
k,n ( f ,K).
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(iii⇒ iv.) Simply notice that

1/r ≥ lim sup
k

(
‖ f − rµk,n‖K

)1/k
≥ lim sup

k

(
µ(K)1/2‖ f − rµk,n‖L2

)1/k

= lim sup
k

(
‖ f − rµk,n‖L2

)1/k
.

(iv⇒ iii.) This implication can be proven using a similar reasoning to the one of (ii⇒

iii).

The sequence rk,n is converging to f in L2
µ by assumption, then there exists a subse-

quence converging to f almost everywhere.

Due to the rational Bernstein Markov property of µ with respect to K and P2 we have

‖rk,n − rk−1,n‖K ≤ M(1 + ε)k‖rk,n − rk−1,n‖L2
µ

and we can estimate the right hand side as follows

‖rk,n − rk−1,n‖L2
µ
≤ ‖rk,n − f ‖L2

µ
+ ‖ f − rk−1,n‖L2

µ
≤ C/ρk(1 + ρ)

for a suitable C > 0 and ρ > r. Thus the sequence rk,n has a uniform limit coinciding µ-a.e.

with the continuous function f and hence the whole sequence is uniformly converging to

f , being the two continuous function equal on a carrier of µ which needs to be dense in

K = supp µ.

Now notice, as above, that

‖ f − rk,n‖K ≤

∥∥∥∥∥∥∥∥
∞∑

j=k+1

rµj,n − rµj−1,n

∥∥∥∥∥∥∥∥
K

≤

∞∑
j=k+1

‖rµj,n − rµj−1,n‖K

≤Mµ(K)1/2C(1 + ρ)
∞∑

j=k+1

(
1 + ε

ρ

) j

= Mµ(K)1/2C(1 + ε)
1 + ρ

ρ − 1

(
1 + ε

ρ

)k

.

Therefore we have

lim sup
k
‖ f − rk,n‖

1/k
K ≤ lim sup

k

(
Mµ(K)1/2C(1 + ε)(1 + ρ)

ρ − 1

)1/k 1 + ε

ρ
=

1 + ε

ρ
.

The thesis follows letting ε→ 0+ and ρ→ r+. �
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