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Sec. 1

Interpolation in the complex plane
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Classical Interpolation Problem

Q: Let E ⊂ C be a compact set, f : E → C be a continuous
function. Can we uniformly approximate f by polynomials on
E?

A: YES, provided E has infinitely many points and f ∈ hol(Ê)
(Runge Theorem).

Q: Can we do it by interpolation?

Q: How is the result depending on nodes?
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Lagrange interpolation I
Consider the monomial basis {z j}j=1,2,...,k of Pk and k + 1 distinct
points z = {z0, . . . , zk } in E, then the interpolation problem

p(zj) = f(zj), j = 0, . . . , k deg(p) = k

can be written in matrix form as

[z j
i ]i,jc = (f(z0), . . . , f(zk ))t ,

the matrix VDM(z) := [z j
i ]i,j is the Vandermonde matrix (has

non-zero determinant).
Using the Lagrange Basis we can write

`i,k (z) :=
det VDM(z0, . . . , zi−1, z, zi+1, . . . , zk )

det VDM(z0, . . . , zk )

p(z) :=
k∑

i=0

f(zi)`i,k (z).
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Lagrange interpolation II

The norm of the interpolation operator
Ik : (C (E), ‖ · ‖E)→

(
Pk , ‖ · ‖E

)
is the Lebesgue constant

Λk := max
z∈E

k∑
m=0

∣∣∣`m,k (z)
∣∣∣ .

Task: holding the Lebesgue constant growth rate; it will provide a
very good interpolant in terms of uniform norm distance from
f .

Lebesgue nodes are nearly impossible to compute, Fekete
are just very very hard. . .
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Fekete Points I

Fekete Points definition

Let E ⊂ C be a compact set and zk := (z0, . . . , zk ) ∈ Ek+1. If we
have det VDMk (zk ) = maxζ∈Ek+1 det VDMk (ζ), then zk is said to
be a Fekete array of order k , its elements are said Fekete points.

The relevance of Fekete points is easy to see: one has

Λk (Fk ) = max
z∈E

k∑
m=0

∣∣∣∣∣∣det VDM(z0, . . . , zi−1, z, zi+1, . . . , zk )

det VDM(z0, . . . , zk )

∣∣∣∣∣∣ ≤ k∑
j=0

1 = k + 1

for any Fekete array Fk ; moreover notice that in general Fk is not
unique.
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Fekete points on the unit disc

Let D be the unit circle and E := D. Take any set of distinct points
z = {z0, . . . , zk } and consider the Vandermonde determinant
V(z) := VDMk (z). We have

‖V:,j(z)‖2 =
∥∥∥∥ (

z j
0, z

j
1 . . . , z

j
k

) ∥∥∥∥
2

=
√

k + 1, for any j = 0, 1, . . . k .

Therefore Hadamard Inequality for determinants implies
|VDMk (z)| ≤

∏k
j=0 ‖V:,j(z)‖2 = (k + 1)

k+1
2 . This upper bound is

achieved by k -th roots of unity, therefore { 2iπj
k+1 }j=0,...,k is a Fekete

set for E.
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Transfinite diameter

for any set of points in E we have∣∣∣det VDMk (z0, . . . , zk )
∣∣∣ =

∏
0≤i<j≤k

|zi − zj |.

For any Fekete array Fk for E the sequence of k th diameters

dk (E) :=
∣∣∣det VDMk (Fk )

∣∣∣ 1

(
k+1

2 ) is decreasing.

Transfinite diameter definition

d(E) := lim
k

dk (E).
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Sec. 2

Logarithmic potential theory
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(sub-) harmonic function, potentials.

We recall that a C 2(Ω) function u is harmonic if ∆u = 0, while an
usc function v is subharmonic if for any open relatively compact
subset Ω1 ⊂ Ω and any harmonic function u on Ω such that v ≤ u
on ∂Ω1 it follows that v ≤ u on Ω1.

By Green’s Identity it follows that ∆ log |z| = δ0, i.e., log | · | is
the fundamental solution for the Laplacian.

For any given positive finite Borel measure we introduce its
logarithmic potential

Uµ(z) := −µ ∗ log | · |(z) =

∫
log

1
|z − ζ |

dµ(ζ).

By definition it follows that (up to a normalizing constant)
−∆Uµ = µ.

Uµ is Harmonic on C \ supp µ and globally superharmonic.
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Logarithmic Energy

Logarithmic Energy Minimization Problem

Let E be a compact subset of C, minimize

I[µ] :=

∫ ∫
log

1
|z − ζ |

dµ(ζ)dµ(z) =

∫
Uµ(z)dµ(z), (LEM)

among µ ∈ M1(E), the set of Borel probability measures on E
endowed with the weak∗ topology.

We notice that if we consider the electrostatic interaction between
k + 1 unitary charges in the plane, the force acting on the i-th
particle is

∑
j,i

(xi−xj ,yi−yj)

(|xi−xj |
2+|yi−yj |)1/2 = −∇Uµ, where µ denotes the

uniform probability measure associated to the charges distribution.

We will see that he limit problem is LEM...
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Solving LEM

I[·] is a lower semi-continuous functional

M(E) is a locally compact space.

We can use the Direct Methods of Calculus of Variation. Two
situations may occur.

1 Either I[µ] = +∞ for all µ ∈ M1(E), the set is too small (polar)
for log potential theory.

2 Either there exists a unique minimizer that is the equilibrium
measure of E and is usually denoted by µE .

In the latter case one has

UµE (z) = − log c(E) − gE(z), where

gE := GC∞\E Green function with logarithmic pole at ∞ for C \ E.
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Capacity

The number c(E), called logarithmic capacity of E, is defined
as

c(E) := inf
µ∈M1(E)

I[µ],

UµE (z) = − log c(E) quasi everywhere on E, that is outside
from a set of zero logarithmic capacity.

Sets of zero logarithmic capacity are polar, they are (locally) the
{−∞} set of a subharmonic function.

Sem. Dott. - 14 of 39



Let k → ∞...

Fundamental Theorem of Logarithmic Potential Theory

Let E ⊂ C be a compact non polar set, we have

c(E) = d(E).

Therefore, for any sequence of (asymptotically) Fekete arrays {Fk },
setting µk := 1

k+1
∑k

j=0 δF j
k
, we have

µk⇀
∗µE .

Moreover, locally uniformly on C \ E, we have

lim
k
−Uµk (z) := lim

k

1
k + 1

log
k+1∏
j=0

|z−F j
k | = gE(z)−log c(E) = −UµE .
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but not all that glitters is gold. . .

In the sense of the Theorem µE is the asymptotic of any
asymptotically Fekete array, in particular of very good
interpolation points, but...

this is only a necessary conditions, actually

There are arrays tending to µE with exponentially growing
Lebesgue constant.
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Polynomials and Green function

Bernstein Walsh results

Let E be a compact polynomially determining non polar set, then
we have

gE(z) = limζ→z

({
1

deg p
log+ |p(ζ)|, ‖p‖E ≤ 1

})
.

Moreover

|p(z)| ≤ ‖p‖E exp(deg p gE(z)) ∀p ∈P(C).
(Bernstein Walsh Ineq.)

If f : E → C is any continuous function, we set
dk (f ,E) := inf{‖f − p‖E : p ∈Pk }, then for any real number R > 1
the following are equivalent

1 limk dk (f ,E)1/k < 1/R

2 f is the restriction to E of f̃ ∈ hol(DR), where
DR := {gE < log R}.
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Sec. 3

L2 theory in the plane

We show that some analogues of results for Fekete points (that are
L∞ maximizers, in some sense) hold for particular measures in a
L2 fashion.
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Bernstein Markov measures I

BM definition

Let E ⊂ C be a compact set and µ be a Borel measure such that
supp µ ⊆ E, assume that

limk

 ‖pk ‖E

‖pk ‖L2
µ

1/ deg(pk )

≤ 1,

for any sequence of non zero polynomials {pk }. Then we say that
(E, µ) has the Bernstein Markov property, BMP for short, or
equivalently µ is a Bernstein Markov measure on E.
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Bernstein Markov measures II

Example: arclength on unit circle.

We have plenty of them. Sufficient condition is ∃t > 0 such
that

lim
r→0+

c
(
{z ∈ E : µ(B(z, r)) ≥ r t }

)
= c(supp µ).

Necessary conditions are not known. . .
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Bernstein Markov Property: applications

Upper bound on diagonal of reproducing kernel of(
Pk , 〈·, ·〉L2

µ

)
gives good behaviour of uniform polynomial

approximation by L2
µ projection f → Lµk [f ] :=

∑k
j=0〈f , qj〉qj(z).

Setting Kµ
k (z, ζ) :=

∑k
j=0 qj(z)q̄j(ζ), Bµ

k (z) := Kµ
k (z, z) for a

orthonormal basis {qj} we have

‖L
µ
k [f ]‖E ≤

 k∑
j=0

|〈f , qj 〉|
2


1/2

∥∥∥∥∥∥∥∥∥
 k∑
j=0

|qj (z)|
2


1/2

∥∥∥∥∥∥∥∥∥E

≤ ‖f‖
L2
µ

√
‖Bµ

k (z)‖E ≤ ‖f‖E
√
µ(E)‖Bµ

k (z)‖E .

L2 version of Bernstein Walsh lemma: it reads precisely as
the uniform one.

Asymptotic of random polynomials and matrices. . .

Approximation of potential theoretic objects.
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Rephrasing the asymptotic property
Up to constants depending on k and tending to 1 we have

| det VDM(Fk )|
2

(
k+1

2 )

'

(∫
. . .

∫
| det VDM(ζ0, . . . , ζk )|2dµk (ζ0) . . . dµk (ζk )

) 1

(
k+1

2 )
=: Zk (µ)

'(det Gµk
k )

1

(
k+1

2 ) , where Gµk
k = [〈z i z̄ j〉L2

µk
]i,j .

BM measure are asymptotically Fekete

Let E be a compact non polar set and µ a Borel probability
measure such that supp µ ⊂ E and satisfying the Bernstein Markov
property. We have

lim
k

Zk (µ) = lim
k

[
(k(k + 1))! det Gµ

k

] 1
k(k+1) = d(E).
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Recovering gE and µE

Theorem

Let E be a compact non polar set and µ a Borel probability
measure such that supp µ ⊂ E and satisfying the Bernstein Markov
property. We have

i) limk
1

2k(k+1) log Bµ
k (z) = gE(z) point-wise, locally uniformly if E

is regular.

ii) limk
Bµ

k
k(k+1)µ = µE in the weak∗ sense.
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Sec. 4

Several Complex Variables Case

Several of the previous results have a scv counterpart, but a
suitable translation is needed.
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some difficulties and solutions

No classical proof of limit of Vandermonde determinants
existence.

No correspondence between Vandermonde determinants and
product of distances.

The log (discrete) energy and Laplace operator are no more
related to Fekete points.

Therefore subharmonic functions are not the correct space to
look at.

So we change our setting.

subharmonic functions ; plurisubharmonic (psh) functions.

Laplace operator ; complex Monge Ampere operator.

Harmonic functions ; maximal psh functions.

Green function ; extremal psh function.

Equilibrium measure ; pluripotential equilibrium measure.
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psh functions

PSH functions

u : Cn → [−∞,+∞[ is plurisubharmonic, psh for short, if is upper
semicontinuous and subharmonic along each complex line.

We use operators d := ∂ + ∂̄ and dc := i(∂̄ − ∂), where

∂u :=
n∑

j=1

∂u
∂zj

dzj , ∂̄u :=
n∑

j=1

∂u
∂z̄j

dz̄j ∀u ∈ C 2.

The operator ddc = 2i∂∂̄ is strictly related to plurisubharmonic
functions:

for any u ∈ C 2, u ∈ psh if and only if ddc u is a positive (1, 1)
form. If u is just psh one can define ddc u as a (n − 1, n − 1)
positive current.
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Monge Ampere operator

For any u ∈ C 2 we set

(ddc u)n := ddc u ∧ · · · ∧ ddc u = det[
∂2

∂zi∂z̄j
u(z)]i,jdVn,

where dVn is the standard volume form on Cn.

Bedford and Taylor showed that (ddc ·)n extends to a fully non
linear differential operator on psh∩L∞loc, termed the generalized
complex Monge Ampere, being (ddc u)n a positive Borel mea-
sure.

Pluripotential theory is the study of M-A operator and psh
functions.
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Extremal psh Function
The role of the Green function is played by the solution of(ddc u)n = 0 in Cn \ E

u =q.e. 0 on E, u ∈ L(Cn) ∩ L∞loc

Extremal psh function

The function V∗E is locally bounded and solves the problem above

V∗E(z) := limζ→zVE(ζ)

VE(ζ) := sup{u(ζ), u ∈ L(Cn), u|E ≤ 1}.

Moreover we have (as for gE)

VE(ζ) = sup
{

1
deg p

log |p|(ζ), p ∈P(Cn), ‖p‖E ≤ 1
}
.

µE := (ddc V∗E)n is the pluripotential equilibrium measure.
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Maximal psh functions

Maximal psh functions are defined mimicking the property that sh
functions enjoy w.r.t. harmonic ones.

It turns out that they are characterized by (ddc u)n = 0, so in
particular V∗E is maximal on Cn \ E.
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Recovering scv results
Despite the theory (and proofs!) is extremely different we can
recover the most of the results holding in the (linear) univariate
case:

1 Bernstein Walsh L∞ and L2 version are exactly the same.
2 Fekete measures for E converge weakly∗ to µE .

3 The same remains true for any sequence of asymptotically
Fekete arrays.

4 For any Bernstein Markov measure µ we have

lim
k

Bµ
k

dim Pk (Cn)
µ = µE .

5 For any Bernstein Markov measure µ

lim
k

1
2 dim Pk (Cn)

log Bµ
k = V∗E ,

locally uniformly if E is L -regular.
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Another strong difference

In contrast with the Log potential theory in C these results can be
obtained only by using a weighted version of this theory, namely
weighted pluripotential theory, that is the scv counterpart of log
potential theory with external fields.
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Sec. 5

A discrete approach
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Admissible meshes

Definition

Admissible meshes, shortly AM, are sequences {Ak } of finite
subsets of a given compact set E such that

there exists a positive real constant C such that for any
p ∈Pk we have

max
E
|p| ≤ C max

Ak
|p|.

Card Ak increase at most polynomially.
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AM vs BM measures

We associate to Ak the uniform probability measure µk , so we can
consider Pk (Cn) with the scalar product of L2

µk
, we pick an

orthonormal basis {qj} and we have√√√√
‖

Nk∑
j=1

|qj |
2‖E =

√
‖Bµk

k ‖E ≤ C sup
p∈Pk

‖p‖Ak

‖p‖L2
µk

≤ C
√

Card Ak .

That is limk ‖B
µk
k ‖

1/k
E = 1 hence...

AM are discrete models of B-M measures.

Indeed, any weak∗ limit of µk is a BM measure.
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AM asymptotic properties

Let Nk := dim Pk (Cn).

‖f − Lµk
k [f ]‖E ≤ (1 + C

√
Card Ak )dk (f ,E).

limk
B
µk
k

Nk
µk = µE .

limk
1

2Nk
log Bµk

k = V∗E locally uniformly if E is L -regular.

Lastly, we can extract from an admissible mesh (a very reasonable
approximation of) its Fekete points Fk ⊂ Ak , it turns out that they
are asymptotically Fekete for E and thus

limk µFk = µE in the weak∗ sense.
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Further investigations. . .

I am working on the Bernstein Markov property on affine algebraic
subsets of Cn, they are very thin sets but a specific version of
pluripotential theory still works on them.
Aim: extending the sufficient condition for the Bernstein Markov
property to this more general setting.
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There is a party upstairs!!

Thank You!
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