Why should people in Approximation Theory care about (pluri-)Potential Theory?

> Seminario Dottorato Padova, June 24th 2014

F. Piazzon

Department of Mathematics. Doctoral School in Mathematical Sciences, Applied Mathematics Area

Università degli Studi di Padova

1 Interpolation in the complex plane

- 2 Logarithmic potential theory
- 3 L^2 theory in the plane
- 4 Several Complex Variables Case
- 5 A discrete approach

Interpolation in the complex plane

- **Q**: Let $E \subset \mathbb{C}$ be a compact set, $f : E \to \mathbb{C}$ be a continuous function. Can we uniformly approximate *f* by polynomials on *E*?
- A: YES, provided *E* has infinitely many points and $f \in hol(\hat{E})$ (Runge Theorem).
- Q: Can we do it by interpolation?
- Q: How is the result depending on nodes?

Lagrange interpolation I

Consider the monomial basis $\{z^j\}_{j=1,2,\dots,k}$ of \mathscr{P}^k and k+1 distinct points $\mathbf{z} = \{z_0,\dots,z_k\}$ in E, then the interpolation problem

$$p(z_j) = f(z_j), \ j = 0, ..., k \ \deg(p) = k$$

can be written in matrix form as

$$[z_i^j]_{i,j}c = (f(z_0),\ldots,f(z_k))^t,$$

the matrix $VDM(\mathbf{z}) := [z_i^j]_{i,j}$ is the Vandermonde matrix (has non-zero determinant).

Using the Lagrange Basis we can write

$$\ell_{i,k}(z) := rac{\det \mathsf{VDM}(z_0, \dots, z_{i-1}, z, z_{i+1}, \dots, z_k)}{\det \mathsf{VDM}(z_0, \dots, z_k)}$$
 $p(z) := \sum_{i=0}^k f(z_i)\ell_{i,k}(z).$

Sem. Dott. - 5 of 39

The norm of the interpolation operator $I_k : (\mathscr{C}(E), \|\cdot\|_E) \to (\mathscr{P}^k, \|\cdot\|_E)$ is the Lebesgue constant

$$\Lambda_k := \max_{z \in E} \sum_{m=0}^k \left| \ell_{m,k}(z) \right|.$$

- Task: holding the Lebesgue constant growth rate; it will provide a very good interpolant in terms of uniform norm distance from *f*.
 - Lebesgue nodes are nearly impossible to compute, Fekete are just very very hard...

Fekete Points definition

Let $E \subset \mathbb{C}$ be a compact set and $\mathbf{z}_k := (z_0, \ldots, z_k) \in E^{k+1}$. If we have det $VDM_k(\mathbf{z}_k) = \max_{\zeta \in E^{k+1}} \det VDM_k(\zeta)$, then \mathbf{z}_k is said to be a Fekete array of order k, its elements are said Fekete points.

The relevance of Fekete points is easy to see: one has

$$\Lambda_k(\boldsymbol{F}_k) = \max_{z \in E} \sum_{m=0}^k \left| \frac{\det \text{VDM}(z_0, \dots, z_{i-1}, z, z_{i+1}, \dots, z_k)}{\det \text{VDM}(z_0, \dots, z_k)} \right| \le \sum_{j=0}^k 1 = k+1$$

for any Fekete array F_k ; moreover notice that in general F_k is not unique.

Fekete points on the unit disc

Let \mathbb{D} be the unit circle and $E := \overline{\mathbb{D}}$. Take any set of distinct points $z = \{z_0, \ldots, z_k\}$ and consider the Vandermonde determinant $V(z) := \text{VDM}_k(z)$. We have

$$\|V_{:,j}(\boldsymbol{z})\|_2 = \left\| \left(z_0^j, z_1^j \dots, z_k^j \right) \right\|_2 = \sqrt{k+1}, \text{ for any } j = 0, 1, \dots k.$$

Therefore Hadamard Inequality for determinants implies $|VDM_k(\mathbf{z})| \leq \prod_{j=0}^{k} ||V_{:,j}(\mathbf{z})||_2 = (k+1)^{\frac{k+1}{2}}$. This upper bound is achieved by *k*-th roots of unity, therefore $\{\frac{2i\pi j}{k+1}\}_{j=0,...,k}$ is a Fekete set for *E*.

■ for any set of points in *E* we have

$$\left|\det \mathsf{VDM}_k(z_0,\ldots,z_k)\right| = \prod_{0 \le i < j \le k} |z_i - z_j|.$$

For any Fekete array F_k for E the sequence of kth diameters $d_k(E) := \left| \det VDM_k(F_k) \right|^{\frac{1}{\binom{k+1}{2}}}$ is decreasing.

Transfinite diameter definition

$$d(E):=\lim_k d_k(E).$$

Logarithmic potential theory

We recall that a $\mathscr{C}^2(\Omega)$ function *u* is harmonic if $\Delta u = 0$, while an usc function *v* is subharmonic if for any open relatively compact subset $\Omega_1 \subset \Omega$ and any harmonic function *u* on Ω such that $v \leq u$ on $\partial \Omega_1$ it follows that $v \leq u$ on Ω_1 .

- By Green's Identity it follows that Δ log |z| = δ₀, i.e., log | · | is the *fundamental solution* for the Laplacian.
- For any given positive finite Borel measure we introduce its logarithmic potential

$$U^{\mu}(z):=-\mu*\log|\cdot|(z)=\int\log\frac{1}{|z-\zeta|}d\mu(\zeta).$$

- By definition it follows that (up to a normalizing constant) $-\Delta U^{\mu} = \mu$.
- U^{μ} is Harmonic on $\mathbb{C} \setminus \operatorname{supp} \mu$ and globally superharmonic.

Logarithmic Energy

Logarithmic Energy Minimization Problem

Let E be a compact subset of \mathbb{C} , minimize

$$I[\mu] := \int \int \log rac{1}{|z-\zeta|} d\mu(\zeta) d\mu(z) = \int U^{\mu}(z) d\mu(z), \quad \ (\mathsf{LEM})$$

among $\mu \in \mathcal{M}_1(E)$, the set of Borel probability measures on *E* endowed with the weak^{*} topology.

We notice that if we consider the electrostatic interaction between k + 1 unitary charges in the plane, the force acting on the *i*-th particle is $\sum_{j \neq i} \frac{(x_i - x_j, y_i - y_j)}{(|x_i - x_j|^2 + |y_i - y_j|)^{1/2}} = -\nabla U^{\mu}$, where μ denotes the uniform probability measure associated to the charges distribution.

We will see that he limit problem is LEM...

Solving LEM

- *I*[·] is a lower semi-continuous functional
- $\mathcal{M}(E)$ is a locally compact space.

We can use the Direct Methods of Calculus of Variation. Two situations may occur.

- **1** Either $I[\mu] = +\infty$ for all $\mu \in \mathcal{M}_1(E)$, the set is *too small* (polar) for log potential theory.
- 2 Either there exists a unique minimizer that is the equilibrium measure of *E* and is usually denoted by μ_E .

In the latter case one has

$$U^{\mu_E}(z) = -\log c(E) - g_E(z)$$
, where
 $g_E := G_{\mathbb{C}_{\infty} \setminus E}$ Green function with logarithmic pole at ∞ for $\mathbb{C} \setminus E$.

The number c(E), called *logarithmic capacity* of E, is defined as

$$c(E):=\inf_{\mu\in\mathcal{M}_1(E)}I[\mu],$$

U^µ_E(z) = − log c(E) quasi everywhere on E, that is outside from a set of zero logarithmic capacity.

Sets of zero logarithmic capacity are polar, they are (locally) the $\{-\infty\}$ set of a subharmonic function.

Fundamental Theorem of Logarithmic Potential Theory

Let $E \subset \mathbb{C}$ be a compact non polar set, we have

$$c(E)=d(E).$$

Therefore, for any sequence of (asymptotically) Fekete arrays $\{F_k\}$, setting $\mu_k := \frac{1}{k+1} \sum_{j=0}^k \delta_{F_k^j}$, we have

$$\mu_k \xrightarrow{}^* \mu_E.$$

Moreover, locally uniformly on $\mathbb{C} \setminus E$, we have

$$\lim_{k} -U^{\mu_{k}}(z) := \lim_{k} \frac{1}{k+1} \log \prod_{j=0}^{k+1} |z - F_{k}^{j}| = g_{E}(z) - \log c(E) = -U^{\mu_{E}}.$$

- In the sense of the Theorem µ_E is the asymptotic of any asymptotically Fekete array, in particular of very good interpolation points, but...
- this is only a necessary conditions, actually

There are arrays tending to μ_E with exponentially growing Lebesgue constant.

.)

Bernstein Walsh results

Let E be a compact polynomially determining non polar set, then we have

$$g_E(z) = \overline{\lim}_{\zeta \to z} \left(\left\{ \frac{1}{\deg p} \log^+ |p(\zeta)|, ||p||_E \le 1 \right\} \right).$$

Moreover

$$|p(z)| \le ||p||_E \exp(\deg p g_E(z)) \quad \forall p \in \mathscr{P}(\mathbb{C}).$$

(Bernstein Walsh Ineq

If $f : E \to \mathbb{C}$ is any continuous function, we set $d_k(f, E) := \inf\{||f - p||_E : p \in \mathscr{P}^k\}$, then for any real number R > 1 the following are equivalent

1
$$\lim_k d_k(f, E)^{1/k} < 1/R$$

2 *f* is the restriction to *E* of $\tilde{f} \in hol(D_R)$, where $D_R := \{g_E < \log R\}.$

 L^2 theory in the plane

We show that some analogues of results for Fekete points (that are L^{∞} maximizers, in some sense) hold for particular measures in a L^2 fashion.

BM definition

Let $E \subset \mathbb{C}$ be a compact set and μ be a Borel measure such that supp $\mu \subseteq E$, assume that

$$\overline{\lim}_{k} \left(\frac{\|\boldsymbol{p}_{k}\|_{E}}{\|\boldsymbol{p}_{k}\|_{L^{2}_{\mu}}} \right)^{1/\deg(\boldsymbol{p}_{k})} \leq 1,$$

for any sequence of non zero polynomials $\{p_k\}$. Then we say that (E, μ) has the Bernstein Markov property, BMP for short, or equivalently μ is a Bernstein Markov measure on *E*.

- Example: arclength on unit circle.
- We have plenty of them. Sufficient condition is ∃*t* > 0 such that

$$\lim_{r\to 0^+} c\left(\{z\in E: \mu(B(z,r))\geq r^t\}\right)=c(\operatorname{supp} \mu).$$

Necessary conditions are not known...

Bernstein Markov Property: applications

■ Upper bound on diagonal of *reproducing kernel* of $(\mathscr{P}^k, \langle \cdot, \cdot \rangle_{L^2_{\mu}})$ gives good behaviour of uniform polynomial approximation by L^2_{μ} projection $f \to \mathcal{L}^{\mu}_k[f] := \sum_{j=0}^k \langle f, q_j \rangle q_j(z)$. Setting $\mathcal{K}^{\mu}_k(z, \zeta) := \sum_{j=0}^k q_j(z) \bar{q}_j(\zeta)$, $\mathcal{B}^{\mu}_k(z) := \mathcal{K}^{\mu}_k(z, z)$ for a orthonormal basis $\{q_j\}$ we have

$$\|\mathcal{L}_{k}^{\mu}[f]\|_{E} \leq \left(\sum_{j=0}^{k}|\langle f,q_{j}\rangle|^{2}\right)^{1/2} \left\|\left(\sum_{j=0}^{k}|q_{j}(z)|^{2}\right)^{1/2}\right\|_{E} \leq \|f\|_{L^{2}_{\mu}}\sqrt{\|B_{k}^{\mu}(z)\|_{E}} \leq \|f\|_{E}\sqrt{\mu(E)}\|B_{k}^{\mu}(z)\|_{E}.$$

- L² version of Bernstein Walsh lemma: it reads precisely as the uniform one.
- Asymptotic of random polynomials and matrices...
- Approximation of potential theoretic objects.

Rephrasing the asymptotic property

Up to constants depending on *k* and tending to 1 we have $|\det VDM(F_k)|^{\frac{2}{\binom{k+1}{2}}}$

$$\simeq \left(\int \dots \int |\det \mathsf{VDM}(\zeta_0, \dots, \zeta_k)|^2 d\mu_k(\zeta_0) \dots d\mu_k(\zeta_k)\right)^{\frac{1}{\binom{k+1}{2}}} =: Z_k(\mu)$$
$$\simeq (\det G_k^{\mu_k})^{\frac{1}{\binom{k+1}{2}}}, \text{ where } G_k^{\mu_k} = [\langle z^i \bar{z}^j \rangle_{L^2_{\mu_k}}]_{i,j}.$$

BM measure are asymptotically Fekete

Let *E* be a compact non polar set and μ a Borel probability measure such that supp $\mu \subset E$ and satisfying the Bernstein Markov property. We have

$$\lim_{k} Z_{k}(\mu) = \lim_{k} \left[(k(k+1))! \det G_{k}^{\mu} \right]^{\frac{1}{k(k+1)}} = d(E).$$

Theorem

Let *E* be a compact non polar set and μ a Borel probability measure such that supp $\mu \subset E$ and satisfying the Bernstein Markov property. We have

i) $\lim_k \frac{1}{2k(k+1)} \log B_k^{\mu}(z) = g_E(z)$ point-wise, locally uniformly if *E* is regular.

ii)
$$\lim_k \frac{B_k^{\mu}}{k(k+1)}\mu = \mu_E$$
 in the weak* sense.

Several Complex Variables Case

Several of the previous results have a scv counterpart, but a suitable translation is needed.

some difficulties and solutions

- No classical proof of limit of Vandermonde determinants existence.
- No correspondence between Vandermonde determinants and product of distances.
- The log (discrete) energy and Laplace operator are no more related to Fekete points.
- Therefore subharmonic functions are not the correct space to look at.
- So we change our setting.
 - subharmonic functions ~> plurisubharmonic (psh) functions.
 - Laplace operator ~> complex Monge Ampere operator.
 - Harmonic functions \sim maximal psh functions.
 - Green function \sim extremal psh function.
 - Equilibrium measure ~> pluripotential equilibrium measure.

psh functions

PSH functions

 $u : \mathbb{C}^n \to [-\infty, +\infty[$ is plurisubharmonic, psh for short, if is upper semicontinuous and subharmonic along each complex line.

We use operators $d := \partial + \overline{\partial}$ and $d^c := i(\overline{\partial} - \partial)$, where

$$\partial u := \sum_{j=1}^{n} \frac{\partial u}{\partial z_{j}} dz_{j} , \ \overline{\partial} u := \sum_{j=1}^{n} \frac{\partial u}{\partial \overline{z}_{j}} d\overline{z}_{j} \forall u \in \mathscr{C}^{2}.$$

The operator $dd^c = 2i\partial\bar{\partial}$ is strictly related to plurisubharmonic functions:

for any $u \in C^2$, $u \in psh$ if and only if $dd^c u$ is a positive (1, 1) form. If u is just psh one can define $dd^c u$ as a (n - 1, n - 1) positive *current*.

For any $u \in \mathscr{C}^2$ we set

$$(\mathrm{dd}^{\mathrm{c}} u)^n := \mathrm{dd}^{\mathrm{c}} u \wedge \cdots \wedge \mathrm{dd}^{\mathrm{c}} u = \mathrm{det}[\frac{\partial^2}{\partial z_i \partial \bar{z}_j} u(z)]_{i,j} dV_n,$$

where dV_n is the standard volume form on \mathbb{C}^n .

Bedford and Taylor showed that $(dd^c \cdot)^n$ extends to a *fully non linear* differential operator on psh $\cap L^{\infty}_{loc}$, termed the generalized complex Monge Ampere, being $(dd^c u)^n$ a positive Borel measure.

Pluripotential theory is the study of M-A operator and psh functions.

Extremal psh Function

The role of the Green function is played by the solution of

$$\begin{cases} (\mathrm{dd}^{\mathrm{c}} u)^n = 0 & \text{ in } \mathbb{C}^n \setminus E \\ u =_{\mathrm{q.e.}} 0 & \text{ on } E, u \in L(\mathbb{C}^n) \cap L^{\infty}_{\mathrm{loc}} \end{cases}$$

Extremal psh function

The function V_{F}^{*} is locally bounded and solves the problem above

$$V_E^*(z) := \overline{\lim}_{\zeta \to z} V_E(\zeta)$$

$$V_E(\zeta) := \sup\{u(\zeta), \ u \in L(\mathbb{C}^n), \ u|_E \le 1\}.$$

Moreover we have (as for g_E)

$$V_E(\zeta) = \sup\left\{\frac{1}{\deg p} \log |p|(\zeta), \ p \in \mathscr{P}(\mathbb{C}^n), \ ||p||_E \le 1\right\}.$$

 $\mu_E := (dd^c V_E^*)^n$ is the pluripotential equilibrium measure.

Maximal psh functions are defined mimicking the property that sh functions enjoy w.r.t. harmonic ones.

It turns out that they are characterized by $(dd^c u)^n = 0$, so in particular V_F^* is maximal on $\mathbb{C}^n \setminus E$.

Recovering scv results

Despite the theory (and proofs!) is extremely different we can recover the most of the results holding in the (linear) univariate case:

- **1** Bernstein Walsh L^{∞} and L^2 version are exactly the same.
- **2** Fekete measures for *E* converge weakly^{*} to μ_E .
- 3 The same remains true for any sequence of asymptotically Fekete arrays.
- 4 For any Bernstein Markov measure μ we have

$$\lim_{k} \frac{B_{k}^{\mu}}{\dim \mathscr{P}^{k}(\mathbb{C}^{n})} \mu = \mu_{E}.$$

5 For any Bernstein Markov measure μ

$$\lim_k \frac{1}{2\dim \mathscr{P}^k(\mathbb{C}^n)}\log B_k^{\mu}=V_E^*,$$

locally uniformly if *E* is *L*-regular.

In contrast with the Log potential theory in \mathbb{C} these results can be obtained only by using a weighted version of this theory, namely weighted pluripotential theory, that is the scv counterpart of log potential theory with external fields.

A discrete approach

Definition

Admissible meshes, shortly AM, are sequences $\{A_k\}$ of finite subsets of a given compact set *E* such that

• there exists a positive real constant *C* such that for any $p \in \mathscr{P}^k$ we have

$$\max_{E} |p| \le C \max_{A_k} |p|.$$

• Card A_k increase at most polynomially.

We associate to A_k the uniform probability measure μ_k , so we can consider $\mathscr{P}^k(\mathbb{C}^n)$ with the scalar product of $L^2_{\mu_k}$, we pick an orthonormal basis $\{q_j\}$ and we have

$$\sqrt{\|\sum_{j=1}^{N_k} |q_j|^2\|_E} = \sqrt{\|B_k^{\mu_k}\|_E} \le C \sup_{p \in \mathscr{P}^k} \frac{\|p\|_{A_k}}{\|p\|_{L^2_{\mu_k}}} \le C \sqrt{\operatorname{Card} A_k}.$$

That is $\overline{\lim}_{k} ||B_{k}^{\mu_{k}}||_{E}^{1/k} = 1$ hence...

AM are discrete models of B-M measures.

Indeed, any weak^{*} limit of μ_k is a BM measure.

Let
$$N_k := \dim \mathscr{P}^k(\mathbb{C}^n)$$
.

$$\|f - \mathcal{L}_k^{\mu_k}[f]\|_E \le (1 + C \sqrt{\operatorname{Card} A_k}) d_k(f, E).$$

$$\lim_k \frac{B_k^{\mu_k}}{N_k} \mu_k = \mu_E.$$

Im_k $\frac{1}{2N_k} \log B_k^{\mu_k} = V_E^*$ locally uniformly if *E* is *L*-regular.

Lastly, we can extract from an admissible mesh (a very reasonable approximation of) its Fekete points $F_k \subset A_k$, it turns out that they are asymptotically Fekete for *E* and thus

■ $\lim_k \mu_{F_k} = \mu_E$ in the weak^{*} sense.

I am working on the Bernstein Markov property on affine algebraic subsets of \mathbb{C}^n , they are very thin sets but a specific version of pluripotential theory still works on them. Aim: extending the sufficient condition for the Bernstein Markov property to this more general setting.

References I

E. BEDFORD AND B. A. TAYLOR.

A new capacity for plurisubharmonic functions. *Acta Mathematica*, **149**[1]:1–40, 1982.

Т. ВLOOM.

Orthogonal polynomials in \mathbb{C}^n .

Indiana University Mathematical Journal, 46[2]:427-451, 1997.

L. Bos, J.P. Calvi, N.Levenberg, A. Sommariva, and M. Vianello.

Geometric weakly admissible meshes, discrete least squares approximation and approximate Fekete points.

Math Comp, 80(275):1623-1638, 2011.

Uniform approximation by discrete least squares polynomials.

JAT, 152:82-100, 2008.

M. KLIMEK.

Pluripotential Theory.

Oxford Univ. Press, 1991.

N. Levenberg.

Ten lectures on weighted pluripotential theory. *Dolomites Notes on Approximation*, **5**:1–59, 2012.

E. B SAFF AND V. TOTIK.

Logarithmic potentials with external fields. Springer-Verlag Berlin, 1997.

H. STAHL AND V. TOTIK.

General Orthogonal Polynomials. Cambridge Univ. Press, 1992.

Thank You!

Sem. Dott. - 39 of 39