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Abstract

We construct polynomial norming meshes with optimal cardinal-
ity growth, on planar compact starlike domains that satisfy a uniform
interior ball condition. Moreover, we provide an algorithm that com-
putes such meshes on planar C2 convex domains by Blaschke’s rolling
ball theorem.
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1 Introduction

In the recent literature on multivariate polynomial approximation, the con-
cept of polynomial mesh (also called admissible mesh) has begun to play
an important role; cf., e.g., the seminal paper [11] and [7, 17]. Polynomial
meshes are sequences {An} of finite norming sets (in the uniform norm) on a
multidimensional polynomial determining compact K ⊂ R

d or K ⊂ C
d (i.e.,

a polynomial vanishing there vanishes everywhere), such that the following
polynomial inequality holds

‖p‖K ≤ C ‖p‖An , ∀p ∈ P
d
n , (1)

with a cardinality increasing at most like O(ns), s ≥ d (here and below,
‖f‖X denotes the sup-norm of a function f bounded on the set X). Among
their properties, we recall that admissible meshes are preserved by affine
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transformations, and can be easily extended by finite union and product
[11]. In the present paper, we restrict our attention to the real case, i.e.,
real polynomials and K ⊂ R

d.
Polynomial meshes provide a “good discrete model” of a compact set for

many practical purposes. For example, they are nearly optimal for uniform
least square approximation [11], and contain Fekete-like interpolation sub-
sets with the same asymptotic behavior of the continuous Fekete points of
K, that can be computed by numerical linear algebra techniques (cf., e.g.,
[5, 6]). Such approximate Fekete points have been used within spectral ele-
ment and collocation methods for PDEs (cf. [18, 25]). For a recent and deep
survey on polynomial approximation and interpolation in several variables,
we refer the reader to [2].

In [11, Thm.5], it has been shown that any (real) compact set which
satisfies a Markov polynomial inequality with exponent r

‖∇p(x)‖2 ≤ Mnr‖p‖K , ∀x ∈ K, p ∈ P
d
n , (2)

has an admissible mesh with O(nrd) cardinality (for example, r = 2 for
compact sets which satisfy a uniform interior cone condition).

On the other hand, in the applications it is important to control the
cardinality of such discrete models. Indeed, some attention has been devoted
to the construction of optimal and near optimal polynomial meshes, which
have cardinality O(nd) and O((n log n)d), respectively, in compact sets with
special geometries (observe that in (1) necessarily card(An) ≥ dim(Pd

n) ∼
nd/d!); cf., e.g., [9, 17, 19, 20, 22]. Moreover, the polynomial inequality (1)
can be relaxed, asking that it holds with C = Cn, a sequence of constants
increasing at most polynomially with n: in such a case, we speak of weakly
admissible meshes. Weakly admissible meshes with O(nd) cardinality and
constants Cn = O((log n)d) are known in several instances, cf., e.g., [5, 14].

In the present paper we prove constructively existence of optimal poly-
nomial meshes, i.e., with cardinality O(n2), on a planar compact starlike
domain (that is not restrictive to consider centered in the origin) assuming
that it satisfies a classical uniform interior ball condition (cf., e.g., [1] and
references therein). Special instances are C1,1 planar starlike domains, thus
generalizing in the planar case a recent result by A. Kroó on C2 starlike
domains [17].

Moreover, we provide an algorithm (implemented in Matlab) to compute
such meshes given a regular parametrization of the boundary of a C2 convex
domain, using Blaschke’s rolling ball theorem to determine the interior ball
condition [15].
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2 Constructing optimal polynomial meshes

In the sequel, the notion of tangential Markov inequality on a rectifiable curve
Γ with respect to a compact K will play a key role. Given a rectifiable curve
Γ ⊂ K ⊂ R

2 (i.e., it has a continuous parametrization and finite length), this
curve has a canonical Lipschitz continuous parametrization in the arclength,
which is almost everywhere differentiable. Given the tangent unit vector τ

at a regular point x ∈ Γ (a point where the canonical parametrization is
differentiable with nonzero derivative), a tangential Markov inequality with
exponent r for Γ w.r.t. K has the form

|〈∇p(x), τ 〉| ≤ Mnr‖p‖K , ∀p ∈ P
d
n , (3)

where 〈·, ·〉 denotes the euclidean scalar product and M, r are independent
of the (regular) point x.

The fulfillement of a tangential Markov inequality like (3) allows to con-
struct a suitable polynomial inequality on the curve.

Lemma 1 Let K ⊂ R
2 be a compact set, and be Γ ⊂ K be a rectifiable

curve that satisfies (3) at its regular points. Then, for any α ∈ (0, 1), there
exists a mesh of equally spaced points on Γ, say Xn = Xn(α), such that

‖p‖Γ ≤ ‖p‖Xn + α‖p‖K , (4)

and card(Xn) = O(nr).

Proof. Let us term ω(s), s ∈ [0, L] the canonical parametrization of Γ in
the arclength (which is Lipschitz continuous and thus almost everywhere
differentiable in [a, b]), where L denotes the total length of Γ. For any pair
x,y ∈ Γ = ω([0, L]), take two values of the parameter, say s1, s2 ∈ [0, L],
such that x = ω(s1), y = ω(s2) (the curve being not necessarily simple).
Then, we can write

|p(x)− p(y)| = |p(ω(s2))− p(ω(s1))| =
∣

∣

∣

∣

∫ s2

s1

d

ds
p(ω(s)) ds

∣

∣

∣

∣

≤
∫ s2

s1

∣

∣

∣

∣

d

ds
p(ω(s))

∣

∣

∣

∣

ds =

∫ s2

s1

|〈∇p(ω(s)),ω′(s)〉| ds ≤ Mnr ‖p‖K ℓ(x,y) ,

where ℓ(x,y) = s2 − s1 denotes the length of the corresponding arc of Γ
connecting x and y.

Fix α ∈ (0, 1). Taking N +1 equally spaced points on Γ in the arclength

Xn = {yk = ω(kL/N) , k = 0, . . . , N} , N =

⌈

MnrL

2α

⌉

, (5)
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and observing that for every x ∈ Γ there is a point yk(x) such that ℓ(x,yk(x)) ≤
1
2L/N , we can write the inequality

|p(x)| ≤ |p(yk(x))|+ |p((x)− p(yk(x))| ≤ |p(yk(x))|+ α‖p‖K ,

that implies (4). �

Observe that if the curve is open, then the cardinality of Xn is N + 1,
whereas it is N if the curve is closed, ω(0) = ω(L).

We can now state and prove the following:

Theorem 1 Let K ⊂ R
2 be a planar compact starlike domain. Assume that

K satisfies a uniform interior ball condition (UIBC), i.e., every point of ∂K
belongs to the boundary of a disk with radius ρ > 0, contained in K (geo-
metrically, there is a fixed disk that can roll along the boundary remaining
inside K; cf., e.g., [1]).

Then, for every fixed α ∈ (0, 1/
√
2), K possesses a sequence of finite

norming sets {An} such that

‖p‖K ≤
√
2

1− α
√
2
‖p‖An , ∀p ∈ P

2
n , (6)

with

card(An) ≤ 2n

⌈

n length(∂K)

2αρ

⌉

+ 1 = O(n2) , (7)

i.e., an optimal admissible mesh.

Proof. We recall that a compact set K ⊂ R
2 is termed starlike if there exists

x0 ∈ K (the “star center”) such that for every x ∈ K the segment [x0,x] is
contained in K. By no loss of generality, up to a translation we can assume
that the star center is the origin.

First, we show that K has a norming set formed by n+1 curves, that are
suitable scalings of the boundary. Being compact and starlike with respect
to the origin, K is the union of the rays [0,x], x ∈ ∂K. On each ray, a
polynomial p ∈ P

2
n becomes a univariate polynomial of degree not greater

than n, and thus by a well-known result of Ehlich and Zeller (cf. [12] and
[9]), there is an admissible mesh for the ray with constant

√
2, given by

2n+ 1 Chebyshev-Lobatto points of [0,x], namely

uj(x) = aj x , aj =
1 + ξj

2
, (8)

where ξj = cos(jπ/(2n)), j = 0, . . . , 2n, are the Chebyshev-Lobatto points
in [−1, 1]. Then, the 2n + 1 curves

Γj = {uj(x) , x ∈ ∂K} = aj∂K
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form a norming set for K, i.e.,

‖p‖K ≤
√
2 ‖p‖⋃Γj

≤
√
2 max

j
‖p‖Γj

, ∀p ∈ P
2
n . (9)

Notice that Γ2n degenerates into a singleton, Γ2n = {0}.
Second, we show that on each curve Γj an inequality like (4) is satisfied,

with r = 1. Now, observe that the UIBC condition implies the (weaker)
uniform interior cone condition, which in turn ensures that the boundary is
a rectifiable curve (cf. [13, Thm. 4.5.11]). Moreover, the UIBC condition
implies that a tangential Markov inequality w.r.t. K like (3) holds with
exponent r = 1, at the regular points of the boundary. Indeed, for any
x ∈ ∂K there is x∗ ∈ int(K) such x ∈ ∂D, D ⊂ K being the disk centered at
x∗ with radius ρ. If we take the parametrization of ∂D in polar coordinates
centered at x∗, say z(φ) = x∗ + (ρ cos(φ), ρ sin(φ)), φ ∈ [0, 2π], then every
p ∈ P

2
n restricted to ∂D becomes a univariate trigonometric polynomial

t(φ) = p(z(φ)) ∈ Tn.
Consider a regular point x ∈ ∂K, i.e., a point where the canonical

parametrization in the arclength is differentiable with nonzero derivative:
then, the disk D is tangent to ∂K at x. By the classical Markov inequality
for trigonometric polynomials (cf., e.g., [4])

|t′(φ)| ≤ n‖t‖[0,2π] ,

and the fact that |t′(φ)| = |〈∇p(z(φ)),z′(φ)〉|, |z′(φ))| = ρ, and x = z(φ∗)
for a certain φ∗, we get immediately

|〈∇p(x), τ 〉| = |〈∇p(z(φ∗)), τ 〉| ≤ n

ρ
‖p‖∂D ≤ n

ρ
‖p‖K , (10)

where τ = ±z′(φ∗)/ρ are the common unit tangent vectors to ∂K and ∂D
at x. This shows that (3) holds with M = 1/ρ.

By (10) and Lemma 1 with Γ = ∂K

‖p‖∂K ≤ ‖p‖Xn + α‖p‖K , ∀p ∈ P
2
n , (11)

from which follows setting q(x) = p(ajx)

‖p‖Γj
= ‖q‖∂K ≤ ‖q‖Xn + α‖q‖K

= ‖p‖ajXn + α‖p‖ajK ≤ ‖p‖ajXn + α‖p‖K , ∀p ∈ P
2
n , (12)

since each curve Γj = aj∂K is an affine transformation (scaling) of the
boundary.

Fix α such that 0 < α < 1/
√
2. By (12) and (9) we can write for every

p ∈ P
2
n

‖p‖K ≤
√
2 max

j

{

‖p‖ajXn

}

+ α
√
2‖p‖K
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=
√
2 ‖p‖An + α

√
2‖p‖K , An =

2n
⋃

j=0

ajXn = {0} ∪
2n−1
⋃

j=0

ajXn , (13)

from which we finally get

‖p‖K ≤
√
2

1− α
√
2
‖p‖An , ∀p ∈ P

2
n , (14)

where by (5) card(An) ≤ 2n card(Xn) + 1 = 2nN + 1 = O(n2). Observe, in
fact, that card(An) = 2n(N−1)+1 if 0 ∈ Xn, otherwise card(An) = 2nN+1.
�

The theorem above generalizes, in the planar case, a recent result proved
by A. Kroó in arbitrary dimension for C2 starlike domains; cf. [17]. Indeed,

Corollary 1 Let K ⊂ R
2 be the closure of an open, bounded, starlike, and

C1,1 subset. Then, K has an optimal admissible mesh.

Proof. We recall that a closed domain K ⊂ R
d (the closure of an open

connected subset) is termed C1,1 if there are a fixed radius, say R > 0,
and a constant L > 0 such that for each point ξ ∈ ∂K there exists a C1,1

function f : I → R (I compact interval) such that after a suitable rotation,
K ∩ B(ξ, R) = {x = (x1, x2) ∈ K : x2 ≤ f(x1)}, where ‖f ′‖I and the
Lipschitz constant of f ′ are uniformly bounded by L.

Now, it is known that a closed domain is C1,1 if and only if it satis-
fies a uniform two-sided (interior and exterior) ball condition; cf., e.g., [1,
Cor. 3.14]. Then, all the assumptions of Theorem 1 are satisfied, and the
conclusion follows. �

Remark 1 The assumptions of Theorem 1 are much weaker than those of
Corollary 1. In fact, the boundary of a C1,1 domain is a regular curve,
whereas Theorem 1 allows singular points, for example inward (but not
outward) corners and cusps (the domain does not even need to be Lipschitz).

Remark 2 In the special case of C2 convex domains, the maximal ρ in
Theorem 1 is equal to the minimal ray of curvature, in view of the so called
Blaschke’s rolling ball theorem, cf., e.g., [10, 15]. This fact will be used below
as the basis of an algorithm for the computation of optimal polynomial
meshes on C2 convex domains.

2.1 An algorithm for C
2 convex domains

We focus on the case of a C2 convex domain, assuming that we have at
hand a Lipschitz-continuous parametrization of the boundary, say σ(t) =
(σ1(t), σ2(t)), t ∈ [a, b], σ(a) = σ(b). In this case, an optimal polynomial
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mesh can be computed in a simple and completely automatic way using the
boundary parametrization.

In view of Remark 2, the minimal value of M = 1/ρ is nothing else
than the maximal curvature of the boundary. An approximate value of the
latter, along with an approximate value of the total length L (both to be
used in (5)), and then an optimal polynomial mesh, can be computed by
the following algorithm, which relies on a polygonal approximation of the
boundary.

Algorithm (computes an optimal polynomial mesh on a C2 convex compact
domain K ⊂ R

2)

• input: σ (Lipschitz-continuous boundary parametrization), a, b (pa-
rameter endpoints), c (star “center”), n (polynomial degree), ε (error
tolerance), α (scaling parameter), µ0 (starting number of subdivisions)

(i) set µ; = µ0; compute the polygonal vertices vi = vi(µ) = σ(ti), ti =
a + ih, i = 0, . . . , µ − 1 with h = (b − a)/µ, by iteratively doubling µ
until

|L2µ − Lµ| < ε , Lµ :=

µ−1
∑

i=0

‖∆vi‖2 ,

where ∆vi = vi+1 − vi and ε is the given tolerance; set L := L2µ

(ii) compute the approximate curvatures

κ̃i :=
‖τ̃ i+1 − τ̃ i‖2

‖∆vi‖2
≈ κi , τ̃ i =

δvi

‖δvi‖2
≈ τ i ,

where τ i is the unit tangent vector and κi the curvature at vi, and
δvi = vi+1 − vi−1; set M := max κ̃i and N := ⌈MnL/(2α)⌉ (cf. (5)
and (13)-(14))

(iii) compute N approximately equispaced points in the arclength on ∂K
with step L/N

yk := vmk
, mk = max{m > mk−1 :

m
∑

i=mk−1

‖∆vi‖2 ≤ L/N} ,

k = 0, . . . , N − 1, with m0 = 0

(iv) set z2n := c; for j = 0, . . . , 2n − 1 compute the mesh points

zj(k) :=
1 + ξj

2
(yk − c) , k = 0, . . . , N − 1

where ξj = cos(jπ/(2n)) are the Chebyshev-Lobatto points in (−1, 1]
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• output:

An = {c} ∪
2n−1
⋃

j=0

N−1
⋃

k=0

zj(k)

in an optimal polynomial mesh on K with card(An) = 2nN + 1 if
c ∈ {yk}, card(An) = 2n(N − 1) + 1 otherwise, and constant C =√
2/(1 − α

√
2)

A Matlab code that implements the algorithm above, computing and
plotting the optimal polynomial meshes, is provided in [21]. In Figure 1,
we show the optimal polynomial meshes computed by the code on a planar
compact, whose boundary is a convex limacon with polar representation
r = r(θ) = a2 + a1 cos(θ), a2 > 2a1, θ ∈ [0, 2π] (in this case, a2/a1 = 2.05;
an optimal mesh is clearly preserved by any scaling of r(θ)).

The input parameters are n = 3, ε = 10−8, α = 1/2, µ0 = 10, and
the star center c is chosen in two different positions, internal and on the
boundary (a convex domain being starlike with respect to any of its points).
The resulting mesh on the boundary has cardinality N = 23, and thus the
overall cardinality of the optimal mesh is 2nN + 1 = 139 with the internal
center, and 2n(N − 1) + 1 = 133 with the center on the boundary (since in
this instance it belongs to the boundary mesh).

To the purpose of illustration, we also display 10 = dim(P2
3) approximate

Fekete points, extracted from the optimal meshes by the QR algorithm with
column pivoting, applied to the corresponding transposed rectangular Van-
dermonde matrix in a suitable polynomial basis, as described in [23]. For the
good interpolation properties of approximate Fekete points, when they are
extracted from admissible polynomial meshes, we refer the reader to [5, 6];
a Matlab code that implements the extraction algorithm is provided in [24].

In Figure 2, we report the numerically evaluated Lebesgue constant of
the approximate Fekete points, at a sequence of interpolation degrees, along
with the infinity-norm of the discrete least square projection operator corre-
sponding to the whole mesh. Indeed, we recall that polynomial meshes are
near optimal for polynomial least square approximation [11]. Notice that
the least square operator norm, as already observed in [7] for the triangle,
turns out to be much smaller than the theoretical estimate provided in [11,
Thm.1].

Remark 3 The algorithm above is a basic version, that could be improved
along different lines. For example, it could be natural in applications to have
the boundary of the C2 convex compact in a discrete way, as a clockwise or
counterclockwise ordered sampling. In such a case, the parametrization σ(t)
can be constructed for example by shape preserving spline interpolation, cf.,
e.g., [16]. If K is a strictly convex C4 domain, using cubic splines one can
ensure that, for sufficiently small sampling steps, the approximate boundary
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remains a simple curve [8], and that the signed curvature remains of constant
sign, since uniform convergence of first and second derivatives occurs (cf.,
e.g., [3]).

Moreover, notice that the mesh construction corresponds, in practice, to
use the same (suitably scaled) uniform interior ball condition on the internal
curves Γj = aj∂K, j > 0 (cf. (8)). This entails that the cardinality of the
meshes on the internal curves is driven by the minimal ray of curvature
along ∂K, say ρ, scaled by aj , which could led to a large cardinality on
every curve, for example when the boundary has some (smooth) narrow tip.

On the other hand, one can observe that a C2 compact domain satisfies
also a uniform exterior ball condition, with an arbitrary radius in the convex
case. Such a property holds for the compact convex subsets bounded by the
internal curves, say Kj = ajK, where ∂Kj = Γj. This suggests that, in
order to reduce the overall cardinality, one could use on Kj the exterior
ball condition to obtain a tangential Markov inequality w.r.t. K, whenever
dist(∂K,Γj) is greater than the scaled interior ball diameter 2ajρ. Indeed,
for such values of j and for every x ∈ Γj, the external tangent ball with
radius 1

2 dist(∂K,Γj) is contained in K. Notice that this can happen only
if the center c belongs to the interior of K; a suitable choice is to take as c
the barycenter of K.

These and other improvements, for example the extension of the method
to general C2 starlike compacts, finding a suitable way to estimate the max-
imal radius in the uniform interior ball condition, may be object of further
research.
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Figure 1: Optimal polynomial meshes for degree n = 3 and the correspond-
ing set of norming curves on the compact whose boundary is a convex li-
macon, as a starlike domain centered at an interior point (left) and at a
boundary point (right); in evidence (small circles) 10 = dim(P2

3) approxi-
mate Fekete interpolation points extracted from the optimal meshes.
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Figure 2: Lebesgue constant of the approximate Fekete points (◦) and
infinity-norm of the discrete least-squares operator on the whole mesh (∗),
for the optimal meshes of the convex limacon (as in Figure 1-left) at a se-
quence of degrees.
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