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Abstract

We present the software package WAM, written in Matlab, that generates Weakly
Admissible Meshes and Discrete Extremal Sets of Fekete and Leja type, for 2d and 3d
polynomial least squares and interpolation on compact sets with various geometries.
Possible applications range from data fitting to high-order methods for PDEs.
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1 Polynomial meshes

In the field of multivariate polynomial approximation, the notion of polynomial mesh has
recently emerged as a significant concept. Originally introduced in the seminal paper [6], it
has been studied in several subsequent papers, from both the theoretical and the computa-
tional point of view; cf., e.g., [1, 2, 3, 5, 9, 11, 13, 15, 18, 19, 20, 22, 24, 25, 26]. Moreover,
approximate Fekete-like points extracted from polynomial meshes have begun to play a role
in the framework of high-order methods for PDEs, cf., e.g., [7, 28].

We recall that a polynomial Weakly Admissible Mesh (WAM) is a sequence of dis-
crete subsets of a polynomial determining (polynomial vanishing there vanish everywhere)
compact set K ⊂ Rd (or more generally K ⊂ Cd) such that the polynomial inequality

‖p‖K ≤ C(An)‖p‖An , ∀p ∈ Pdn (1)

is satisfied, where both card(An) ≥ dim(Pd
n) =

(
n+d

d

)
and C(An) grow at most like a power

of n. Here and below, Pdn denotes the space of d-variate polynomials of total degree not
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exceeding n, and ‖f‖X the sup-norm of a function f bounded on the (discrete or continuous)
set X. The quantity C(An) is often called “constant” of the WAM. When C(An) is bounded
we speak of an Admissible Mesh (AM), which is termed “optimal” if card(An) = O(nd).

Among their properties, it is worth recalling the following ones (cf. [6]), which give also
recipes to construct new from known WAMs:

• any affine transformation of a WAM is still a WAM, C(An) being invariant;

• any sequence of unisolvent interpolation sets whose Lebesgue constant Λn grows at
most polynomially with n is a WAM, with constant C(An) = Λn;

• a finite product of WAMs is a WAM on the corresponding product of compacts, C(An)
being the product of the corresponding constants;

• a finite union of WAMs is a WAM on the corresponding union of compacts, C(An)
being the maximum of the corresponding constants.

A special constructive role is played by some univariate interpolation sets, namely
the Chebyshev-Lobatto nodes of an interval [a, b] (via the affine transformation τ(s) =
b−a

2 s+ b+a
2 ),

Xn(a, b) = {τ(ξj)} ⊂ [a, b] , ξj = cos (jπ/n) , 0 ≤ j ≤ n , (2)

the classical Chebyshev nodes

Zn(a, b) = {τ(ηj)} ⊂ (a, b) , ηj = cos

(
(2j + 1)π

2(n+ 1)

)
, 0 ≤ j ≤ n , (3)

and the Chebyshev-like “subperiodic” angular nodes

Θn(α, β) = φω(Z2n(−1, 1)) +
α+ β

2
⊂ (α, β) , ω =

β − α
2
≤ π , (4)

obtained by the nonlinear tranformation φω(s) = 2 arcsin
(
sin
(
ω
2

)
s
)
, s ∈ [−1, 1]. These

nodal sets satisfy the following fundamental inequalities (the first and second are well-
known results of polynomial interpolation theory, the third has been recently proved in the
framework of trigonometric interpolation, cf. [8] and the references therein).

Lemma 1 Let p ∈ P1
n be a univariate algebraic polynomial, and Xn, Zn the Chebyshev

nodal sets (2), (3). Let be t ∈ T1
n be a univariate trigonometric polynomial, and Θn the

angular nodal set (4). Then the following inequalities hold

‖p‖[a,b] ≤ cn‖p‖Xn , ‖p‖[a,b] ≤ cn‖p‖Zn , ‖t‖[α,β] ≤ c2n‖t‖Θn , cn =
2

π
log(n+ 1) + 1 . (5)

Below, we recall some recent results on WAMs in R2 and R3, privileging the constructive
approaches that are at the base of the software package [10] (the case of surface meshes,
in particular on algebraic surfaces, is under development). In all the constructions, Zn can
replace Xn (with the possible consequent small increase of the resulting mesh cardinality).
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1.1 Planar meshes

1.1.1 Polygons

Any convex quadrangle with vertices v1,v2,v3,v4, is the image of a bilinear transformation
of the square, namely x = σ(s1, s2) = 1

4 ((1− s1)(1− s2)v1 + (1 + s1)(1− s2)v2 + (1 + s1)
(1 + s2)v3 + (1− s1)(1 + s2)v4), where (s1, s2) ∈ [−1, 1]2, with a triangle, e.g. v3 = v4, as
a special degenerate case. Using the fact that p ◦ σ ∈ P1

n ⊗ P1
n for every p ∈ P2

n, by Lemma
1 we can easily prove the following

Proposition 1 The sequence of “oblique” Chebyshev grids An = σ(Xn(−1, 1)×Xn(−1, 1))
is a WAM of the convex quadrangle Q = σ([−1, 1]2), with constant C(An) = c2

n = O(log2 n)
and card(An) ≤ (n+ 1)2.

Concerning general polygons, in view of a well-known result of computational geometry
and the finite union property of WAMs, we have then immediately the following

Proposition 2 Let K be a simple polygon (convex or concave) with ` sides. Then K has
a WAM given by the union of the WAMs of `− 2 triangles of a minimal triangulation, with
constant C(An) = c2

n = O(log2 n) and card(An) ∼ (`− 2)n2.

The geometric constructions of Proposition 1 and 2, studied in [5, 13], are implemented
by the Matlab functions wamquadrangle and wampolygon of [10] (where minimal polygon
triangulation is generated by a Matlab version of the “Ear Clipping” algorithm).

1.1.2 Circular sections

Several circular sections, such as circular sectors, segments, zones and lenses, can be
described by linear blending of arcs, cf. [25]. Let u(θ) = a1 cos(θ) + b1 sin(θ) + c1,
v(θ) = a2 cos(θ) + b2 sin(θ) + c2, θ ∈ [α, β], be two trigonometric planar curves of de-
gree one, ai = (ai1, ai2), bi = (bi1, bi2), ci = (ci1, ci2), i = 1, 2, being suitable bidimensional
vectors (with ai, bi not all zero), with the important property that the curves are both
parametrized on the same angular interval [α, β], 0 < β − α ≤ 2π. Consider the blending
transformation x = σ(s, θ) = su(θ) + (1 − s)v(θ), (s, θ) ∈ [0, 1] × [α, β]}. Now, for every
p ∈ P2

n we have that p ◦ σ ∈ P1
n ⊗ T1

n, and we can prove the following

Proposition 3 The sequence of “blended” grids An = σ(Xn(0, 1) × Θn(α, β)) is a WAM
of K = σ([0, 1]× [α, β]), with C(An) = cn c2n = O(log2 n) and card(An) ≤ (n+ 1)(2n+ 1).

Relevant arc related domains that do not fall in the previous class are circular lunes
(difference of two overlapping disks). A lune, whose boundary is given by two circular arcs,
a longer one with semiangle say ω2, a shorter one with semiangle say ω1, can be described by
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different bilinear trigonometric transformations of rectangles (in angular variables), of the
form x = σ(φ, θ) = a1+a2 cos(θ)+a3 sin(θ)+a4 cos(φ)+a5 cos(φ) cos(θ)+a6 cos(φ) sin(θ)+
a7 sin(φ) sin(θ), (θ, φ) ∈ R = [−ω1, ω1] × [−ω2, ω2], where the ai = (ai,1, ai,2) are suitable
2-dimensional vectors depending on ω1 and ω2, i.e., each component of σ is in the trigono-
metric space T1

1 ⊗ T1
1; cf. [25] and the references therein. Hence for every p ∈ P2

n we have
that p ◦ σ ∈ T1

n ⊗ T1
n, and by Lemma 1 one can prove the following

Proposition 4 The sequence of curvilinear grids An = σ(Θn(−ω1, ω1) × Θn(−ω2, ω2)) is
a WAM of the lune K = σ(R), with C(An) = c2

2n = O(log2 n) and card(An) ≤ (2n+ 1)2.

WAMs on arc blending domains and on circular lunes can be computed by the Matlab
functions wamblend and wamlune of [10].

1.1.3 Convex and starlike C2-domains

In [20], a constructive approach has been studied for the generation of optimal Admissible
Meshes on smooth starlike planar domains, based on the fulfillment of a tangential-like
Markov polynomial inequality.

Proposition 5 Let K ⊂ R2 be a planar compact starlike domain. Assume that K satisfies
a Uniform Interior Ball Condition (UIBC), i.e., every point of ∂K belongs to the boundary
of a disk with radius ρ > 0, contained in K (geometrically, there is a fixed disk that can roll
along the boundary remaining inside K). Then, for every fixed α ∈ (0, 1/

√
2), K possesses

an optimal admissible mesh {An} such that C(An) ≡
√

2
1−α
√

2
, card(An) ∼ n2 length(∂K)

αρ .

When K is convex with C2 boundary, ρ can be easily computed, being the minimal
radius of curvature of the boundary, by the well-known “Rolling Ball Theorem”. The con-
struction of optimal polynomial meshes on convex compact sets, defined by a level set of a
smooth convex bivariate function, is implemented by the Matlab function convomesh [10].

1.2 Solid meshes

1.2.1 Cones, pyramids, cylinders and solids of rotation

The following geometric constructions have been studied in [11], and implemented by the
Matlab functions wamcone and wamrot of [10]. In both the propositions below, Ω ⊂ R3 is a
planar compact set where a 2-dimensional WAM, say An, is known.

Proposition 6 Let v∗ be a point in R3 not belonging to the plane of Ω. Then the generalized
cone C with base Ω and vertex v∗, has a WAM, say Bn, with C(Bn) = cnC(An) and
card(Bn) = 1 +n card(An), given by the union of the n+ 1 Chebyshev-Lobatto points of the
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segments joining v∗ with each of the points of An. If we consider the truncated cone obtained
by cutting the cone with a plane parallel to the base, then the WAM Bn is given by the union
of the Chebyshev-Lobatto points of the cut segments, and card(Bn) = (n+ 1)card(An).

Proposition 7 Let α be a line in R3 lying on the plane of Ω and not intersecting Ω (or
intersecting Ω only at the boundary), and let θ∗ ∈ (0, 2π] a given angle. Then the solid of
rotation R obtained by rotating Ω around the axis α by an angle θ∗ has a WAM, say Bn,
with C(Bn) = c2nC(An) and card(Bn) = (2n+1)card(An), given by the union of the 2n+1
copies of An corresponding to rotating An by the angles Θn(0, θ∗).

The proofs resort to Lemma 1, together with the relevant affine transformations (in
particular, to the classical Thales intercept theorem for the generalized cone case). Ob-
serve that generalized pyramids (and thus tetrahedra) are special cases of cones, Ω being a
polygon. By tetrahedralization and finite union, any simple polyhedron has a WAM with
constant O(log3 n) and cardinality O(n3). Moreover, generalized cylinders (up to a rotation
compact sets of the form Ω×[a, b]) by the product property have a WAM Bn = An×Xn(a, b)
with the same constant and cardinality of that of a truncated cone. A different WAM for a
standard cylinder with circular base can be generated by rotation of the Padua interpolation
points of a rectangle [9].

1.2.2 Lissajous meshes on the 3-cube

By the product property, (Xn(−1, 1))3 is a natural grid-type WAM for the reference cube
[−1, 1]3, with constant c3

n = O(log3 n). Recently, a new approach for trivariate polynomial
approximation has been explored, based on curves instead of grids. Indeed, it has been
proved that∫

[−1,1]3
p(x)

dx√
(1− x2

1)(1− x2
2)(1− x2

3)
= π2

∫ π

0
p(`n(θ)) dθ , ∀p ∈ P3

2n ,

where `n(θ) = (cos(αnθ), cos(βnθ), cos(γnθ)), θ ∈ [0, π], is the Lissajous curve with integer
frequency parameters (αn, βn, γn) =

(
3
4n

2 + 1
2n,

3
4n

2 + n, 3
4n

2 + 3
2n+ 1

)
for even n, and

(αn, βn, γn) =
(

3
4n

2 + 1
4 ,

3
4n

2 + 3
2n−

1
4 ,

3
4n

2 + 3
2n+ 3

4

)
for odd n. This entails, via algebraic

cubature and hyperinterpolation (discretized expansion in series of orthogonal polynomials)
with respect to the product Chebyshev measure, that

Proposition 8 The rank-1 Chebyshev cubature lattice An = {`n(sπ/ν)}, s = 0, . . . , ν =
nγn + 1, is a WAM for the cube, with C(An) = O(log3 n) and card(An) ∼ 3

4 n
3.

The interest for trivariate function approximation by sampling along Lissajous curves
arises, for example, in the emerging field of MPI (Magnetic Particle Imaging, cf. [12] and
the references therein). The construction of 3d Lissajous WAMs is studied in [4], and is
implemented by the Matlab function wamlissa of [10].
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2 Interpolation and fitting

We recall here some basic results and algorithms concerning polynomial fitting on WAMs,
and polynomial interpolation at discrete extremal sets extracted from WAMs. Let us term
LAn the projection operator C(K) → Pdn defined by polynomial least squares on a WAM,
and LFn the projection operator defined by interpolation on Fekete points of degree n,
say Fn, extracted from a WAM (these are points that maximize the absolute value of the
Vandermonde determinant). Concerning their operator norms with respect to ‖ · ‖K ,

‖LAn‖ . C(An)
√

card(An) , ‖LFn‖ ≤ NC(An) , N = Nn = dim(Pdn) =

(
n+ d

d

)
, (6)

for polynomial least squares and for polynomial interpolation, respectively, which show that
WAMs with slowly increasing constants C(An) and cardinalities are relevant structures for
multivariate polynomial approximation, cf. [6]. In practice, however, (6) turn out to be large
overestimates of the actual operator norm growth (see Figure 1). A standard calculation
for projection operators provides the estimate ‖f − Lf‖K ≤ (1 + ‖L‖) infp∈Pd

n
‖f − p‖K ,

∀f ∈ C(K), from which together with (6) we get convergence, whenever K is a Jackson
compact and f a sufficiently regular function (cf. [21]).

2.1 Discrete Orthogonal Polynomials and Least Squares

The approximation algorithms start from Vandermonde-like matrices in suitable total-
degree polynomial bases. The choice of the standard monomial basis is unappropriate
already at small degrees, due to its severe ill-conditioning. A general and more suitable
choice is the product Chebyshev basis of the smallest Cartesian rectangle containing the

domain (say ×ds=1[as, bs] ⊇ K, d = 2, 3), namely T(k1,...,kd)(x) =
∏d
s=1 Tks

(
2xs−bs−as
bs−as

)
,

0 ≤
∑d

s=1 ks ≤ n, where Tk(·) = cos(k arccos(·)) are the classical Chebyshev polynomials
of the first kind. By a suitable ordering (in [10] we adopted the graded lexicographical or-
dering), we obtain a polynomial basis that we call p(x) = (p1(x), . . . , pN (x)), and we can
compute the corresponding Vandermonde-like matrix on a WAM of K

V (An,p) = (pj(ξi)) , 1 ≤ i ≤M , 1 ≤ j ≤ N , (7)

where An = {ξ1, . . . , ξM} . Notice that M ≥ N and V (An,p) is full-rank by (1), cf. [6].
The core of the fitting and interpolation procedures is a two-step discrete orthogonalization
of the polynomial basis by the QR algorithm, namely V (An,p) = Q1R1, Q1 = QR2, where

Q = V (An,ϕ) = V (An,p)R−1
1 R−1

2 (8)

is the (numerically) orthogonal Vandermonde-like matrix corresponding to the discrete or-
thonormal polynomial basis ϕ = (ϕ1, . . . , ϕN ) = (p1, . . . , pN )R−1

1 R−1
2 ; cf. [5, 24]. The
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reason for iterating the QR factorization is to cope with the strong ill-conditioning, which is
typical of Vandermonde-like matrices and increases with the degree. Two orthogonalization
iterations generally suffice, unless the original matrix V (An,p) is so severely ill-conditioned
(rule of thumb: condition number greater than the reciprocal of machine precision) that the
algorithm may fail. In practice, the change of polynomial basis is conveniently implemented
by the Matlab matrix right division operator [16], as ϕ = (p/R1)/R2, in view of the ill-
conditioning inherited by the triangular matrices R1 and R2. We can compute least squares
polynomial projection of f ∈ C(K) on an array of target points X = {x1, . . . ,xS} ⊂ K,
and estimate the norm of the least squares projection operator, that we call its “Lebesgue
constant” by analogy with interpolation, on an array of control points Y , as

LAnf(X) = V (X,ϕ)Qtf , f = (f(x1), . . . , f(xS))t ; ‖LAn‖ ≈ ‖Q(V (Y,ϕ))t‖1 , (9)

cf. [5]. In the package [10], computation of Discrete Orthogonal Polynomials ϕ and evalu-
ation of V (X,ϕ) are implemented by the Matlab functions wamdop and wamdopeval, least
squares fitting by wamfit, and estimation of the Lebesgue constant by wamleb.

2.1.1 Mesh compression

In many situations, WAMs can be very large sets and thus the fitting procedure becomes
computationally heavy. This happens, for example, already in 2d with many-sided polygons
(cf. Proposition 2), or with Admissible Meshes of smooth convex domains (cf. Proposition
5). Moreover, when the sampling process is difficult or costly, it could be convenient to
reduce in any case the WAM cardinality, resorting to the following “compression” result.

Proposition 9 Let An be a WAM of a compact set K ⊂ Rd with card(An) > N2n =
dim(P2n). Then there exist a WAM A∗n ⊂ An with card(A∗n) ≤ N2n and C(A∗n) =
C(An)

√
card(An).

The proof of Proposition 9 rests on a generalized version of the well-known Tchakaloff’s
theorem (cf. [23]), on the existence of low cardinality algebraic cubature formulas for com-
pactly supported measures, in particular for discrete measures (we consider here the discrete
measure with unit mass at each WAM point). Indeed, by such a theorem there exist a sub-
set A∗n = {ξi1 , . . . , ξiV} ⊂ An, V ≤ N2n, and positive weights w = {wi1 , . . . , wiV}, such that∑M

i=1 q(ξi) =
∑V

k=1wikq(ξik) for every q ∈ P2n. Then for every p ∈ Pn, with q = p2 we get

‖p‖K
C(An)

≤ ‖p‖An ≤ ‖p‖`2(An) = ‖p‖`2w(A∗n) ≤
√
‖w‖1 ‖p‖A∗n =

√
card(An) ‖p‖A∗n .

The computation of the nodes {ξik} and weights {wik} can be formulated as the problem
of finding a sparse (nonnegative) solution to the underdetermined Vandermonde-like linear
system (consider column vectors)

V tz = m , V = V (An;p) , m = V te , e = (1, . . . , 1)t , (10)
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cf. (7), where m = (m1, . . . ,mN )t is the vector of discrete moments of the polynomial basis.

Sparsity can be achieved by reformulating (10) as NonNegative Least Squares (NNLS)
problem minu≥0 ‖V tu−m‖2, and solving it by the Matlab function lsqnonneg which
uses a variant of the active set method by Lawson and Hanson (cf. [16]). Alternatively,
since lsqnonneg can be very slow on large problems, we can solve (10) by QR with col-
umn pivoting, implemented by the Matlab mldivide (or backslash) operator. The latter
approach does not guarantee positivity, but it turns out in practice that in the consid-
ered degree ranges the negative weights are few and small, hence the stability parameter
ρn =

∑V
k=1 |wik |/|

∑V
k=1wik | is not far from 1, and C(A∗n) = C(An)

√
ρn card(An) has a

size comparable to that appearing in Proposition 9. Both methods are implemented in the
Matlab function wamcomprex of [10], where one preliminary orthogonalization step is made
to pull down the conditioning of V (see Figure 1 for an example of compression).
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Figure 1: Left: WAM for degree n = 15 (·, about 2800 points) by triangulation on a
polygon with 14 sides, and its compression into 496 = dim(P2

2n) points (◦); Right: Lebesgue
constants of the LS operator on the original (∗) and the compressed WAM (◦), n = 1, . . . , 20.

2.2 Discrete Extremal Sets

The search for good sets for multivariate polynomial interpolation has received renewed at-
tention in recent years; cf., e.g., [3, 14, 17, 27]. We consider here the approximate versions
of Fekete points of K (points that maximize the absolute value of the Vandermonde deter-
minant) studied in [2, 3, 24]. Indeed, the continuum Fekete points are explicitly known only
in two univariate instances (interval and complex circle), and are very difficult to compute.
By (6), it makes sense to start from a WAM, that is from the corresponding orthogonal
Vandermonde-like matrix Q = V (An,ϕ) in (8) (which is preferable for conditioning issues).
The problem of selecting a N×N square submatrix with maximal determinant from a given
M ×N rectangular matrix is known to be NP-hard, but can be solved in an approximate
way by two simple greedy algorithms, that are fully described and analyzed in [3]. These
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algorithms produce two interpolation nodal sets, called Discrete Extremal Sets.
The first algorithm, that computes the so-called Approximate Fekete Points (AFP),

tries to maximize iteratively submatrix volumes until a maximal volume N ×N submatrix
of Q is obtained, and can be based on QR factorization with column pivoting, applied to
Qt (that in Matlab is implemented by the mldivide or backslash operator, cf. [16]). The
notion of volume generated by a set of vectors generalizes the geometric concept related
to parallelograms and parallelepipeds (the volume and determinant notions coincide on a
square matrix). The second algorithm, that computes the so-called Discrete Leja Points
(DLP), tries to maximize iteratively submatrix determinants, and is based simply on Gaus-
sian elimination with row pivoting applied to Q. Denoting by A the M × 2 matrix of the
WAM nodal coordinates, the corresponding computational steps, in a Matlab-like style, are

w = Q\v; i = find(w 6= 0); FAFPn = A(i, :); (11)

for AFP, where v is any nonzero N -dimensional vector, and

[L,U,π] = LU(Q, “vector”); i = π(1 : N); FDLPn = A(i, :); (12)

for DLP. In (12), we refer to the Matlab version of the LU factorization that produces
a row permutation vector π. In both algorithms, we eventually select an index subset
i = (i1, . . . , iN ), that extracts an approximate discrete extremal set Fn of the region K
from the WAM An. Algorithms (11) and (12) are implementd by the Matlab function
dexsets of [10]. Once one of the discrete extremal sets has been computed, we can simply
apply (8)-(9) with the N ×N matrix V (Fn,p) substituting V (An,p), in order to compute
the interpolation polynomial LFn and to estimate the Lebesgue constant ‖LFn‖, by the
Matlab functions wamfit and wamleb in [10]. The two families of discrete extremal sets
share the same asymptotic behavior which, by a recent deep result in pluripotential theory,
is exactly that of the discrete uniform probability measures associated with the continuum
Fekete points; cf. [1, 2, 3] and the references therein.

Proposition 10 Let Fn = {ξi1 , . . . , ξiN } the AFP or DLP extracted from a WAM of a

compact set K ⊂ Rd (or K ⊂ Cd). Then limn→∞
1
N

∑N
k=1 f(ξik) =

∫
K f(x) dµK for every

f ∈ C(K), where µK is the equilibrium measure of K.

Moreover, in all our numerical experiments both AFP and DLP have shown good
computational features, with a Lebesgue constant growing more slowly than NC(An), the
theoretical upper bound in (6) for Fekete points extracted from a WAM (usually with a
better behavior of AFP with respect to DLP); cf., e.g., [2, 3, 4, 9, 11, 25]. See Figures 2
and 3 for some examples of Discrete Extremal Sets on different 2d and 3d geometries.

It is also worth recalling that (differently from AFP) DLP are a sequence, i.e., the first
Ns = dim(Pds) points of a set of DLP for degree n > s are unisolvent for interpolation in
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Pds . Exploiting this feature, in [10] we provide a file of precomputed DLP for trivariate
polynomial interpolation up to degree n = 30, on the Lissajous curve of the cube described
in Subsection 1.2.2 (by affine transformation these points can be used in any parallelepiped).
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Figure 2: 66 Approximate Fekete Points (◦) and Discrete Leja Points (∗) extracted from a
WAM (·) for degree n = 10 on a symmetric lens (left) and on a lune (right).
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Figure 3: 56 Approximate Fekete Points (◦) for degree n = 5 extracted from a WAM (∗)
on a solid torus section and on the Lissajous curve of the cube.
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