
Multipong: a Multiplayer Ad-Hoc Version of Pong
Marco Begolo, Sebastiano Valle, Marco Zanella,
Armir Bujari, Ombretta Gaggi, Claudio E. Palazzi

University of Padua
Department of Mathematics

Via Trieste 63, 35123 Padua, Italy
{marco.begolo, sabastiano.valle, marco.zanella}@studenti.unipd.it

{abujari, gaggi, cpalazzi}@math.unipd.it

Abstract—Mobile games have come to revolutionize the mobile
handset and gaming industry, pushing chip vendors to compete in
order to provide better and better graphics capabilities by means
of dedicated processors. This capability coupled with the sensing
and communication ability offered by smartphones, provides
the developers with the building blocks for innovative gaming
solutions. In particular, multiplayer mobile games could exploit
context and proximity information, providing an added value to
the gaming experience. In this context, we present the design
and analysis of a modern mobile and multiplayer version of the
classic Pong game. In addition to the classic interaction model
through remote server(s), players could interact and play locally
by exploiting ad-hoc connectivity offered by the Wi-Fi Direct
technology.

Index Terms—Games, Multiplayer, Wi-Fi Direct, Proximity.

I. INTRODUCTION

Mobile games have seen a tremendous increase in adoption
and they are expected to gain further ground with respect to
traditional ones. Recent statistics show that the global game
market reached $99.6 billion and, for the first time, mobile
gaming took a larger share than the desktop counterpart with
$36.9 billion (up to 21.3% globally), reaching the 37% of
the game market [1]. Key factors contributing to this success
are surely the possibility to play anytime and anywhere,
the ease of use and the social-dimension they embody. Yet,
the widespread availability of mobile handheld devices and
their computing, sensing and communication capabilities have
created the means for building innovative gaming experiences
and at the same time have lowered the barrier of entry of
individual developers into the gaming market [2], [3].

On the other hand, mobile gaming also represents an
interesting challenge due to the resource-constrained nature of
their targeted environment [5], [6], [7]. While computational
capabilities of mobile devices are continuously increasing, the
battery is still lacking behind. Moreover, mobile data transfer
is cost-attributed, thus demanding for alternate networking
techniques making a parsimonious use of data exchange. Also,
the input mechanism mainly relies on the touch sensor (soft
keypad) which, if not properly considered, might hinder the
gaming experience [8], [9].

It is very interesting to note that, looking at the Google’s
Play Store, most of the top grossing games are multiplayer
online games, and many of them require real-time users

interaction. Furthermore, these games are limited to a client-
server approach demanding Internet access.

In this paper, we set on a trial to investigate the feasibil-
ity of multiplayer gaming exploiting ad-hoc communication.
Pursuing this goal, we designed and implemented Multipong,
a multiplayer version of the classic Pong game whereby
users could match against each other without the need of
Internet access. The game allows matches amongst two or
more players. To achieve this goal, we rely on the Wi-Fi
Direct technology capable of connecting user devices without
the need of an access point. While quality of experience (QoE)
is a broad term that is comprehensive of many factors [10],
we focus our aim on some technical aspects that affect the
gameplay quality. In particular, we focus on network-layer
metrics, leaving a user-experience study as a future work.

II. BACKGROUND

The Wi-Fi Direct standard also known as Wi-Fi P2P enables
devices to connect with each other without requiring the
presence a physical wireless access point [11]. Wi-Fi P2P
implements a software access point module, capable of host
configuration and management. In Wi-Fi Direct terminology
a network unit is referred to as a group and each group has a
group owner (GO) whose role is analogous to the one of an
access point in infrastructure-mode.

Usually, a device supporting Wi-Fi Direct, in order to create
or join a group, starts a discovery session in which it may
find other unconnected Wi-Fi Direct devices or GOs. A device
can autonomously decide to start the formation of a group, or
may ask to join one. During group formation, devices need to
negotiate their roles in order to find a peer that assumes the role
of a logical access point. While the GO negotiation protocol
is specified by the standard, applications can implement their
own logic of electing a suitable one. Legacy devices on the
other side, those that do not support Wi-Fi Direct, may later
on decide to connect to the GO and join the group.

More in detail, the standard outlines three different group
formation techniques, namely standard, persistent and au-
tonomous. The standard technique is the most generic group
formation technique while the others shortcut some of the
phases involved. The procedure starts with nodes first becom-
ing aware of each other either by passive or active scanning
of Wi-Fi channels. Once this phase is completed, the GO

negotiation phase takes place, where each device states its own
GroupOwnerIntent, consisting of a value ranging from 0
(not willing to become the GO) to 15 (highest inclination to
become a Group Owner). Successively to the GO negotiation
phase, the security and address configuration phases take place
in sequence and, if successful, the group is considered as estab-
lished and nodes can communicate without any infrastructure
mediation.

Support for Wi-Fi Direct in Android devices has been rolled
out since Android 4.0, enabling P2P connectivity amongst Wi-
Fi Direct capable devices. In these settings, a GO is connected
to multiple clients in a P2P fashion (hereafter NGOs). As
discussed, the GO is decided after a negotiation phase between
the devices; thus, the same hosts may create an ad-hoc network
with different GOs from time to time.

However, the implementation of Wi-Fi Direct in Android
presents some issues and limitations: first of all Android does
not have native support for multi-group formation and devices
must ask the user for the permission to join a group, hindering
the automatic creation of Wi-Fi Direct networks [12].

III. RELATED WORK

According to [13], main requirements for a gaming session
are: (i) good interactivity, i.e. the delay between the user inter-
action and the game response should be as short as possible,
(ii) consistency, i.e. different players should see coherent and
admissible game states, (iii) fairness, i.e. it should be possible
to win a match regardless of different network conditions, (iv)
scalability, i.e. being able to support a large number of players,
and (v) continuity, i.e. the present game session should not be
interrupted because of disconnections, handoffs, or any other
mobility-related issue. Fulfilling these requirements, a lot of
research effort has been devoted, spanning from architectural
solutions to efficient network-layer proposals [14], [15].

Mobile gaming further exacerbates the issues, also present-
ing its own challenges in the context of real-time applications:
e.g., multiplayer gaming requires Internet connectivity which
in the mobile world might be cost-attributed or at least not
available anytime, anywhere [16]. As a remedy, one might
resort to local gaming sessions whereby a coordinator node
hosts the session becoming a potential bottleneck [17]. Pure
P2P or hybrid solutions on the side represent an attractive
alternative but usually lack of protection from cheaters [18],
[19].

MultiPong belongs to the category of casual games, i.e,
video games which present a simple gameplay and targets a
mass audiences [20]. Casual games are designed to be played
by users with no special skills and without requiring too much
time for both understanding and playing them [21]. A well
known example of casual game is the Candy Crash Saga.

Despite being very common among mobile games, casual
games were originally played by users through a web browser
and a large number of users still play using the web platform,
e.g., through social networks: the idea of casual gaming has
been indeed mashed up with this recent phenomenon, allowing

casual gamers to play with their friends through different
platforms and network architectures [22], [23], [24].

Casual games experiments were also undertaken in [25],
[26] but, as these studies reported, this type of games has not
break through either the academic or the commercial world
yet.

IV. MULTIPONG

In this section we discuss some salient features of the
Multipong application. For more details regarding the imple-
mentation and related design choices we refer the reader to
the public repository available from [27].

A. Game Description

Multipong is a tribute to the Pong game, one of the first
arcade videogames, where the players need to prevent a
ball from falling out of the screen by using a paddle. The
application supports both a singleplayer and a multiplayer
mode.

In the singleplayer mode the player scores a point each
time the paddle hits the ball, making it bounce upwards until
it reaches the top edge and then the ball falls down again.
Clearly, the player loses the game when the paddle misses the
ball. Otherwise, if the paddle hits the ball, the bounce speed is
inversely proportional to the distance d from the center of the
paddle for its vertical component, whereas it is proportional
to d for its horizontal component. In order to make the game
play more enjoyable, we also introduce a random component
in the ball bounce speed by adding a random amplification.

In the multiplayer mode, several players connect their
devices forming an ad-hoc network. The device who created
the gaming session has to make the first move and when this
happens, the ball is transferred to the next player’s screen as
if their gameboards were joint. When a player misses the ball,
the player loses a life and the ball is thrown out randomly
to the next player’s screen. If a player runs out of lives, the
player will not be able to play for the rest of the game and
the game takes place between the remaining players. The last
standing player is the winner of the gaming session.

Through the rest of the paper we will focus on the mul-
tiplayer mode, namely network formation and the gameplay,
since the singleplayer mode does not rise any important issue.

B. Overall architecture

Multipong architecture (Figure 1) is mainly comprised of
two layers: (i) thenetworking-layer which handles group for-
mation and communication among peers and (ii) the game-
layer which handles the game application logic. This loose
coupling between layers was intentional, allowing for the
reuse of the network-layer for future potential scenarios e.g.,
in the context of geo-localized partecipatory sensing and
collaborative video annotation [28], [29], [4]. In specific, the
network-layer is able to figure out whether the device is acting
as the GO or not, retrieve the IPs of the other peers (through
the Discovery component), bind those addresses to logi-
cal, application-level identifiers (through NameResolution

Fig. 1. Multipong architecture

component) and the Communication component which
manages data exchanging amongst devices.

The game layer is accountable for the application logic
(GameLogic component) and for displaying that info to the
user as well as catching players interactions (through the
GameView component). Figure 1 depicts the overall archi-
tecture of the game: the two layers talk to each other through
the NetworkingInterface, which is a component that
provides a mid-level abstraction.

C. Game Initialization

Hereafter we assume that the players correctly configured
a Wi-Fi Direct ad-hoc network with their Android devices,
i.e. that they can communicate with each other within this
network.

Since in the initialization (game formation) phase there are
no strict requirements to meet in terms of real-time information
delivery, we decided to use TCP as a transport protocol. Also,
this choice will provide us an element of comparison to the
solution we adopted for the gameplay. Raw data sent over
sockets are formatted as JSON objects, giving us the ability to
distinguish more easily the requests from one peer to another.

Any device in the Wi-Fi Direct group is capable of and
allowed to host a gaming session, so even if the game
formation has one host and several participants, we can not
a priori assume that the host will coincide with the GO.
Moreover, during the association phase the NGOs will obtain
an address from the GO, whereas the GO will only be notified
about the presence of peers, without obtaining any concrete
reference to communicate with them. This means that the
networking logic present in our application has to take into
account the fact that the GO needs to retrieve somehow the
IPs addresses attributed to the NGOs.

Before describing the protocol we employed in the game
initialization phase, we want to briefly describe how data
exchange between peers is implemented: each peer has two
threads, respectively for receiving and sending data. The
communication is performed in an asynchronous fashion, so
that messages can be exchanged without blocking device
while waiting the response. However, we implemented also

Fig. 2. Communication between a GO-host and an NGO-participant

Fig. 3. Communication between an NGO-host, a GO-participant and an NGO-
participant

the semantics for synchronizing on certain operations and we
guarantee FIFO ordering for the data sent out of a device.

In order to create a match among several players, ap-
plications on different devices follow a common protocol.
First, at Wi-Fi P2P discovery time, new NGOs need to ask
the GO whether it is hosting a game or not by means of
a ARE_YOU_HOST message. If so, the host (also the GO)
replies with a GAME_CREATED message (refer to Figure 2),
otherwise this peer (which is therefore a participant) replies
with a ESTABLISHED_HOST message, in which it announces
the host (refer to Figure 3).

At this point, the participant(s) surely knows the host IP
address (if any) and it is able to send a SESSION_INFO_REQ
message to the host. This message causes the host to reply with
an SESSION_INFO_RES message in which currently joined
players and game attributes are listed. After this step, the
participant can join the game play by sending a JOIN_GAME
message to the host. Finally, a player can cancel a subscription
by sending a CANCEL_PARTICIPATION message and re-

Fig. 4. Singleplayer and multiplayer match

ceiving back an SESSION_INFO_RES serving a cancellation
confirmation.

If the conditions for starting the gaming session have
been satisfied, the host announces its creation by sending
a SESSION_STARTING message to all of the participants.
The trigger used to decide whether the session can start is
specified by the host player through a dedicated configuration
menu and the options are as follows: (i) maximum number of
players reached (ii) time required for joining the game expired.
This last interaction among the host and participant devices is
synchronous, the host is blocked until all the other peers sent
a confirmation reply. If some player, for any reason, does not
reply to the message, the player is excluded by the match as
described in the following subsection.

D. Gaming Session

In Figure IV-D) we show examples of gameplay. Differently
from the game formation phase, during the gameplay we
employ the UDP protocol given that messages have to be
delivered quickly. Increasing reliability, we decided to employ
application-level acked UDP transmission: after sending an
UDP packet, a peer waits for a short ACK packet to come
back within a short time frame; if it does not, the peer retries
the transmission up to four times in total (a configuration
parameter).

During the gameplay we want to ensure both consistency
and low latency of gaming events. For this reason, the two
layers of the architecture have different roles: one layer is
concerned with coordinating the peers and the other one deals
with the multiplayer game logic on top of the coordination
layer.

The multiplayer game logic layer has to manage the local
state of the game and part of the global state. Also, when the
player hits the ball with the paddle, it also has to compute the
ball exit point from the screen and send this information to
the GO as soon as it is available, so that it can spread this
message to all the active participants of the game. We chose
to compute and send the ball exit position in advance in order
to reduce the network latency perceived by the player.

We stated that a player sends the game event massage to
the GO: in fact, this entity serves as a global coordinator of
the game. We made this decision so that a reduced amount
of traffic has to flow through the network if only the GO

has to care about whether the currently active player is still
alive and reachable. Moreover, the GO is the main entity in
the group and therefore is the natural choice for such role of
acting coordinator.

Clearly, the GO represents a single point of failure during
the game phase, and a network failure such a crash of the
coordinator would make the whole ad-hoc network collapse.
Moreover, recreating the topology is an operation that, at the
moment, is quite difficult to carry out in a short amount of
time (and unfortunately things go even worse when done
programmatically). Therefore, we thought that the game of
an NGO should end if it is unable to reach the GO, because
restoring a coherent game state amongst all involved players
can require even more time than starting a new one from
scratch.

While GO failures are fatal for the game, the game is able
to cope with NGOs failures: in fact, if an NGO appears to be
non responsive the GO, it is removed from the game after the
GO asked a few times if it is alive or not without getting any
response. In that case, the game continues with the GO telling
the other players that a certain peer is not active anymore.

A game always starts from the host device and the queue
of players is decided before the beginning of the match. Even
if an NGO failure happens, the order of the players’ queue
does not change but the player that is experiencing networking
problems is simply removed from the queue.

V. EXPERIMENTAL EVALUATION

This section discusses the experimental testbed and the
evaluation strategy carried out. The testbed we employed is
comprised of: 5 Samsung S5, 2 Samsung S3, 1 Motorola Moto
G 2013, 1 Motorola Moto X+1 2014, 1 Huawei P8 Lite.

A. Network Traffic Measurements

As stated previously we employed TCP for message ex-
change during the game initialization phase. Hence, an in-
teresting metric lies in application packet’s RTT and payload
size.

We computed the RTT by measuring, each time a peer
sends a message, the delta elapsed between the start of sending
and an application-level confirmation of delivery. Even if this
measurement is done at the application level, we believe that
this approach yields a realistic approximation of the RTT.
However, this method is affected by the variability of the
network and interferences, so we decided to take several
measures and then average them. Also, there is an overhead
due to the time spent by the operating system to manage the
communication among devices.

For the TCP payload evaluation, we generated some logs in
the application to get the exact size of each type of message.
Messages always carry the same data structure and length, so
in this case it is not necessary to calculate a mean value.

We adopted a similar approach for the UDP-based ex-
change.

B. Adopted method

The application was designed to minimize message ex-
change among peers, so we were interested in measuring how
much traffic our application generates. To determine that, we
decided to sum up the sizes of the packets peers exchanged
among themselves. Though this approach works at the appli-
cation layer, it is able to provide interesting insights into the
amount of data exchanged by peers. While considering the
Wi-Fi frame size on-air would have yielded a more accurate
measurement, we were unable to perform this measurement
due to constraints posed by the Android operating system.
Indeed, we tried several solutions but they were not suitable
for our purposes for the following reasons:

• 3GWatchdog and similar applications do not provide
accurate measures compared to our solutions;

• tPacketCapture is an application that sets up a VPN to
monitor traffic; after setting up the VPN, we were not
able to make the devices communicate to each other even
during the match initialization phase;

• tcpdump requires rooting the smartphone in order to use
it, voiding the warranty as a consequence;

• despite we were able to form a Wi-Fi Direct network from
a computer and connect the smartphones to it, we did not
manage to sniff the communication by using Wireshark
since we were able to capture only the packets exchanged
between the PC and the GO;

• we did not have dedicated hardware (i.e. a wireless
network controller such as Alfa One) to sniff traffic
directly by the phone.

Multipong generates different amounts of traffic during the
initialization and the gameplay, hence we decided to measure
these two phases separately. To get better insights on the
performance of our solution, we performed measurements with
an increasing number of multiplayer sessions: 2-, 3- and 4-
players matches. The comparison among these groups reveals
the influence of the pairing phase to the traffic. Avoiding the
bias of the human player, we implemented an AI that plays a
match, losing exactly after ten turns.

VI. RESULTS

In this section we discuss the experimentation outcome
regarding network traffic analysis. To this end, we quantify
the amount of traffic exchanged among peers involved in the
gaming session with varying number of participants. We then
proceed by comparing the various phases, game formation and
game play, interactivity by measuring the average Round Trip
Time (RTT) of packets.

A. Traffic Analysis

In Table I we report the messages peers exchange during
Multipong’s gameplay along with their size. The message
flow exchanged among the devices follows the one detailed in
Figure 3. All of the above quantities refer to the application-
layer data packet and the actual (on air) frame size differs from

TABLE I
MESSAGES SIZE

Message Size [B]

TCP

ARE_YOU_HOST 60
SESSION_INFO_REQ 82
SESSION_INFO_RES 100

CANCEL_PARTICIPATION 56
JOIN_GAME 54

ESTABLISHED_HOST 90
SESSION_STARTING 187
GAME_CREATED 57

UDP
TURN_INFO 143

ARE_YOU_ALIVE 66
ACK 3

Fig. 5. GO/NGO comparison for traffic

those reported in Table I. While we consider only application-
layer quantities in our experiment, this does not impact the
trend of the experiment outcome.

Concerning the game formation phase, the extent to which
traffic grows with the number of players is striking (see
Figure 5). On the other hand, during the gameplay phase, the
amount of bytes per second is lower since there are significant
dead times (i.e. times where the ball is not in the player’s
screen) in which communication is almost null. It’s interesting
to notice how much the overhead the GO incurs is limited
as the number of players rises (see Figure 5); this fact leads
us to suppose that we were not able to play matches with a
high number of players due to the precariousness of Wi-Fi
direct, rather than the overhead caused by the communication
among the peers (which is indeed acceptable for a real-time
application).

B. TCP and UDP comparison

In Figure 6, we can see the difference between the mean
RTTs of TCP and acked UDP transmissions, which were
measured as described in section V-A.

As it can be seen, acked UDP is very efficient compared
to TCP and therefore we can acknowledge that acked UDP is
the most suitable choice (between the two) in the gameplay
phase, whilst TCP is fit for the game formation phase, when
we do not need low latency but more reliable packet delivery.

0

20

40

60

80

100

120

140

160

TCP UDP

M
e

a
n

 R
T

T
 [

m
s

]

Fig. 6. TCP vs. UDP

VII. CONCLUSION

Thanks to the wide-spread availability of smartphones and
their sensing and communication capabilities, the toolset avail-
able to game developers provides a wide range of opportu-
nities. In this paper, we presented Multipong, a multiplayer
version of the old arcade game Pong, whereby players could
match against one another when in proximity. Multipong
exploits the Wi-Fi Direct technology making the game play
available to users anytime, anywhere.

While standardized and available in the smartphone market
for sometime, Wi-Fi Direct is really cumbersome: in fact,
group formation setup is not user transparent and very often
it takes too much time. Yet, another problem is managing
the unreachability of the GO in a Wi-Fi Direct network: at
the current state-of-the-art, the best solution is the one we
undertook, i.e. interrupting the current match, because of the
impossibility to recreate the network in a short amount of time
and automatically.

As a future work we plan to address the automatic group
re-formation process, that is when the GO leaves the network
for some reason. Complementing the current assessment of the
solution, we plan to perform more accurate measurements of
network traffic and battery expenditure following an approach
similar to [30].

ACKNOWLEDGMENT

This work has been partially funded by the University of
Padua, through the projects PRAT CPDA137314 and PRAT
CPDA151221.

REFERENCES

[1] Newzoo Games, The Global Games Market Share. April 2016.
[2] M. Furini, “Mobile Games: What to Expect in the Near Future”, in Proc.

of GAMEON, 2007.
[3] C. Prandi, V. Nisi, P. Salomoni and N. J. Nunes, “From Gamification

to Pervasive Game in Mapping Urban Accessibility”, in Proc. of ACM
Italian SIGCHI Chapter, 2015, pp. 126-129.

[4] C. Prandi, S. Ferretti, S. Mirri and P. Salomoni, “Trustworthiness in
Crowd-sensed and Sourced Georeferenced Data”, in Proc. of IEEE
PerCom Workshops, 2015, pp. 402-407.

[5] M. Ciman, O. Gaggi and N. Gonzo, “Cross-platform mobile development:
A Study on Apps with Animations”, in Proc. of ACM SAC, 2014.

[6] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of Factors affecting Players’
Performance and Perception in Multiplayer Games”, in Proc. of ACM
SIGCOMM Workshop on Network and System Support for Games, 2005,
pp. 1-7.

[7] S. Möller, S. Schmidt, and J. Beyer, “Gaming Taxonomy: an Overview
of Concepts And Evaluation Methods for Computer Gaming QoE”, in
Proc. of IEEE QoMEX Workshop, 2013, pp. 236-241.

[8] K. Chu and C. Y. Wong, “Mobile Input Devices for Gaming Experience”,
in Proc. of IEEE i-USEr, Nov. 2011, pp. 83-88.

[9] S. Cacciaguerra, S. Mirri, P. Salomoni and M. Pracucci, “Wandering
About the City, Multi-Playing a Game”, in Proc. of IEEE CCNC, 2006,
pp. 1214-1218.

[10] A. Kaiser, D. Maggiorini, N. Achir and K. Boussetta, “On the Objective
Evaluation of Real-Time Networked Games”, in Proc. of IEEE GLOBE-
COM, 2009, pp. 1-5.

[11] Wi-Fi Alliance R©, Wi-Fi Peer-to-Peer (P2P) Technical Specification v1.7.
July 2016.

[12] C. Casetti, C. F. Chiasserini, L. C. Pelle, C. D. Valle, Y. Duan
and P. Giaccone, “Content-centric Routing in Wi-Fi Direct Multi-group
Networks”, in Proc. of IEEE WoWMoM, 2015, pp. 1-9.

[13] C. E. Palazzi, “Interactive Mobile Gaming over Heterogeneous Net-
works”, in Proc. of IEEE/ITI International Conference on Information
and Communications Technology, Cairo, Egypt, Dec. 2007.

[14] L. Pantel and L. C. Wolf, “On the Impact of Delay on Real-time
Multiplayer Games”, in Proc. of ACM International Workshop on Network
and Operating Systems Support for Digital Audio and Video, May 2002,
pp. 23-29.

[15] A. Bujari, M. Massaro and C. E. Palazzi, “Vegas over Access Point:
Making Room for Thin Client Game Systems in a Wireless Home”, IEEE
Transactions on Circuits and Systems for Video Technology, 25(12), 2015.

[16] C. E. Palazzi and A. Bujari and G. Marfia and M. Roccetti, “An
Overview of Opportunistic Ad hoc Communication in Urban Scenarios”,
in Proc. of IFIP MedHocNet, 2014.

[17] C. E. Palazzi, S. Ferretti, S. Cacciaguerra and M. Roccetti, “On
Maintaining Interactivity in Event Delivery Synchronization for Mirrored
Game Architectures”, in Proc. of GLOBECOM Workshops, 2004, pp. 157-
165.

[18] T. Fritsch, H. Ritter and J. Schiller, “CAN Mobile Gaming be Im-
proved?”, in Proc. of ACM SIGCOMM Workshop on Network and System
Support for Games, 2006.

[19] T. Fritsch, H. Ritter and J. Schiller, “User Case Study and Network
Evolution in the Mobile Phone Sector (A Study on Current Mobile Phone
Applications)”, in Proc. of ACM SIGCHI ACE, 2006.

[20] M. Furini, “An Architecture to Easily Produce Adventure and Movie
Games for the Mobile Scenario”, ACM Computers in Entertainment, 6(2),
2008.

[21] A. Grimes, V. Kantroo and R. E. Grinter, “Let’s play!: Mobile Health
Games for Adults”, in Proc. of ACM UbiComp, Sep. 2010, pp. 241-250.

[22] D. Maggiorini, C. Quadri, L. A. Ripamonti, “On the Feasibility of
Opportunistic Collaborative Mixed Reality Games in a Real Urban
Scenario”, in Proc. of ICCCN, 2012.

[23] D. Maggiorini, A. Nigro, L. A. Ripamonti, M. Trubian, “Loot Distribu-
tion in Massive Online Games: Foreseeing impacts on the players base”,
in Proc. of ICCCN, 2012.

[24] M. Gerla, D. Maggiorini, C. E. Palazzi and A. Bujari, “A Survey on
Interactive Games Over Mobile Networks”, Wireless Communications and
Mobile Computing, 13(3), 2013.

[25] J. Paavilainen, K. Annakaisa, K. Jussi, M. Frans, S. Hannamari and N.
Johannes, GameSpace: Methods and Evaluation for Casual Mobile Mul-
tiplayer Games. Available at: https://tampub.uta.fi/handle/10024/65773,
2009.

[26] K. Li, and S. Counts, “Exploring Social Interactions and Attributes of
Casual Multiplayer Mobile Gaming”, in Proc. of ACM Mobility, 2007,
pp. 696-703.

[27] Multipong Source Code. https://github.com/snate/multipong
[28] S. Ferretti and S. Mirri and M. Roccetti and P. Salomoni, “Notes for a

Collaboration: On the Design of a Wiki-type Educational Video Lecture
Annotation System”, in Proc. of IEEE ICSC, 2007.

[29] C. E. Palazzi, and L. Teodori and M. Roccetti, “Path 2.0: A Participatory
System for the Generation of Accessible Routes”, in Proc. of IEEE ICME,
2010.

[30] M. Ciman and O. Gaggi, “Evaluating the Impact of Cross-platform
Frameworks in Energy Consumption of Mobile Applications”, in Proc.
of WEBIST, 2014, pp. 423431

