
A SMIL player for any web browser

Ombretta Gaggi and Luca Danese
Dept. of Pure and Applied Mathematics, University of Padua

via Trieste, 63, 35121 Padua, Italy

gaggi@math.unipd.it, ldanese@studenti.math.unipd.it

Abstract—SMIL, Synchonized Multimedia Integration Lan-
guage, is a W3C markup language for the definition of complex
multimedia presentations. SMIL documents need a specific player
for its playback and cannot be rendered by modern browsers. In
this paper we present SmilingWeb, a first tentative to implement
a cross-platform player for SMIL presentations contained in
web pages. We implement a JavaScript library, based on the
web standards, which allows to solve the synchronization of
media items contained in multimedia presentations through the
use of any available browser. The proposed solution is cross-
platform and cross-browser, therefore it can be potentially used
by any user. The player has been tested with the SMIL Testsuite,
provided by W3C and with a set of very complex multimedia
presentations in order to check its support to the standard and
its scalability. All the tests reported positive results.

I. INTRODUCTION

SMIL [1], Synchonized Multimedia Integration Language,

is a W3C standard that allows to create hypermedia presen-

tations. SMIL describes both the temporal behavior of media

items contained in a multimedia presentation and their spatial

layout. Moreover, the playback of the media objects may be

completely changed by the user, who can follow a link, click

on an image, or even simply move the mouse over or out of

an item.

Even if SMIL was not intended as a substitute for Adobe

Flash R©, it can be a valid alternative for simple animations

or other synchronization of multimedia objects contained into

web pages. However, more than ten years have passed after

the first definition of this language in 1998, SMIL is used,

as examples, to describe interaction in brazilian digital TV, as

language to describe the MMS, Multimedia Message System,

and in the Daisy digital talking books, i.e., book accessible to

visually impaired users [2], but its diffusion in the web pages is

still lower than expected. One of the key problems of this low

diffusion is due to the complexity of the authoring activity [3],

but also to the lack of a fully-featured SMIL player is a strong

obstacle to its adoption. In fact, a SMIL document cannot

be rendered by web browsers but needs a suitable player. At

the moment, the only available player for the third version of

the standard is Ambulant Player [4]. Unfortunately, Ambulat

player is a stand alone-application, therefore it cannot be used

to render SMIL presentation inside a web page. There exists a

plug-in, but it is available only for a limited subset of browsers.

Therefore at the moment, the multimedia presentations created

with the standard SMIL cannot be rendered on web pages,

but only as stand-alone applications. Moreover, the available

players are often platform-dependent, therefore it does not

exist a solution which works on all operating systems. Since

web users are very heterogeneous in terms of used device,

operating system and browser, this is a big problem.

In this paper we present SmilingWeb, a first tentative to

implement a cross-platform player for SMIL presentations

contained in web pages. We implement a JavaScript engine,

based on the web standards, to allow the playback of multi-

media presentations through the use of any available browser.

The proposed solution is cross-platform and cross-browser,

therefore it can be potentially used by any user.

The possibility to use SMIL in web pages is very important

since, differently from Adobe Flash R©, this standard can be

used to improve accessibility of web pages. As an example,

SMIL is suggested to create accessible subtitles for audio

or video files. Moreover, SMIL allows to consider different

alternative inside a presentation in order to better match users

profile.

Our player does not fully support the third version of the

standard, since a limited subset of features are not currently

implemented, but the state of the implementation allows to

render complex, interactive, multimedia presentations. The

player has been tested using the SMIL 3.0 Testsuite with

positive results.

The paper is organized as follows: Section II discusses

background and related work. The implementation of the

player is described in Section III and Section IV describes

the tests made on the player. Finally, we concluded in Section

V.

II. BACKGROUND AND RELATED WORK

A. The SMIL language

A SMIL file is divided in two sections: the layout
section defines the regions, i.e., rectangular areas on the

user screen in which media items are visualized, and the

body section contains the definitions of media items involved

in the presentation, and the temporal relationships among

them. The language SMIL also allows to define transitions,

i.e., visual effects between two objects, and animations, i.e.,

modifications to the value of some attributes (e.g., the color,

the size, the position, etc.) of a media item.

SMIL does not define a reference model for the data

structure, but only tags for describing media objects behavior.

Synchronization is achieved essentially through two tags: seq
to render two or more objects sequentially, one after the other,

and par to play them in parallel.



Using attributes begin, end, and dur it is possible to

fix the start and the end time of a media item. Consider

a media item inside a par block. If its attributes begin,

end or dur are undefined, the media item starts at the

beginning of the par block and ends with its natural termi-

nation. Otherwise it begins (ends) a certain amount of time

after the beginning of the par block, given by the corre-

sponding attribute value. In script 1, the attribute begin =
‘‘intro.activateEvent’’ makes audio artwork start

when the user clicks on video item intro. Therefore, the

beginning and the end of a media item can be defined with

reference to the tag in which it is contained, or according to

a particular event, even completely changing the semantics of

tags par and seq, as in the case of script 1. The attribute

dur defines the duration of an object.

〈par id=“par1” dur=“60s”〉
〈video id=“intro” end=“20s”/〉 (1)

〈audio id=“artwork” begin=“intro.activateEvent” dur=“30s”/〉
〈img id=“picture” begin=“artwork.begin+5”/〉

〈/par〉

The tag excl is used to model some user interactions. It

provides a list of children elements, and only one of them may

play at any given time. We refer to [1], [2] for more details

about this standard.

B. Related work

Since SMIL’s first appearance, many authoring tools have

been implemented [2] offering their users different facilities

like visual editors or preview windows and some players.

The first available player was RealNetworks RealPlayer R© [5].

RealPlayer, and its successor RealOne, implements the SMIL

standard up to version 2.1. It was a commercial product, avail-

able both freeware and as a paid version (RealPlayer Plus). It

is a stand alone application available both for Microsoft and

Apple operating systems, even if in the second case, the users

reported a longer list of bugs. Unfortunately, RealPlayer does

not support the third version of the standard.

The only player that support SMIL 3.0 is Ambulant [4]. This

player is available freeware for all operating systems as a stand

alone application, or as a plug-in for the Mozilla FireFox and

Apple Safari1. Tests made has shown that, despite the large

support of the numerous features of the language, the appli-

cation often does not work as soon as the complexity of the

synchronization of media items involved in the presentations

increased, therefore, the player is often unusable.

Valente et al [6] consider the problem of finding out tem-

poral conflicts into SMIL documents and implement a player,

based on a formal description of SMIL elements through

automata, which enables the generation of a valid scheduling

for rendering, considering QoS problem. The authors compare

1A plug-in for Internet Explorer is currently available in the Ambulant web
pages, but at the time of writing it cannot be installed on all available versions
of Internet Explorer.

different players’ behaviors in case of temporal inconsisten-

cies and denote that they are implementation-dependent. This

approach is not extensible: the automaton which describes the

obtained behavior needs to be re-built after any changes.

Microsoft Internet Explorer R© supported a selection of

SMIL Boston2 components till version 6.

Unfourtunately, the implementation of SMIL was aban-

doned in Internet Explorer 7 in favor of SAMI, Synchronized
Accessible Media Interchange [7], a technology to provide

closed captioning to a wide range of multimedia products,

which works with Microsoft software only.

Some tentative approaches to create a cross-browsers SMIL

player are documented in [8], but the proposed solutions, Soja

and S2M2, are limited to the first version of the standard,

therefore of no practical use.

Therefore at the moment, SMIL multimedia presentation

can be played as a stand alone application with Ambulant

player in any operating system, but it cannot be incorporated

into web page, even if, both XHTML and SMIL are XML

languages and therefore can be used inside the same document.

This limitation is due to the state of software, i.e., browsers,

implementation and not to the SMIL specification, therefore

we think that future implementations of the standard will

overcome this limitation.

We must note here that supporting SMIL is a very complex

task, since this language provides a good expressivity, i.e. it

allows to define rich and interactive multimedia documents,

thus mastering its timing relations is not easy. To the best

of our knowledge, no browsers support SMIL natively (only

versions 5.5 and 6 of Microsoft Internet Explorer partially

did in the past), but some of them declare to plan to support

this standard in the future. Moreover, there exist JavaScript

implementations of few SMIL modules (e. g. JavaScript im-

plementation of smilText is available in the web page of the

Ambulant Player) which make documents, using that modules,

accessible with any browser.

III. SMILINGWEB

SmilingWeb is a web player for multimedia presentations

designed with the SMIL standard implemented as a JavaScript

library. We aim at developing a solution suitable for all

available browsers, therefore we paid particular attention to

their differences in terms of support to HTML5 and other

solutions like CSS3 and AJAX. The first problem that we

have to consider was the possibility to play a video or an

audio file without the need for a plug-in. HTML5 [9] offers

the ability to easily embed media into HTML documents,

using <audio> and <video> elements, but it is still a

W3C working draft, and its support is still limited. Moreover,

modern browsers provide support for these tags, but for a very

limited subset of audio and video codec. For this reason, our

player uses Modernizr [10], a small and simple JavaScript

library that helps to take advantage of the emerging web

2SMIL Boston was a preliminary version of SMIL 2.0, supported by
Microsoft, which aims at introducing transition effects and animations that
are not included in the first version of this standard.



technologies (CSS3, HTML5) while still maintaining a fine

level of control over older browsers that may not yet support

these new technologies. Modernizr allows SmilingWeb to play

a video or an audio file natively, thanks to HTML5 features,

or to require a plug-in only if the browser does not support it.

Modernizr also allows to avoid code forking and to design an

application compatible with future development of browsers,

since it does not test the browser name and version, but it tests

its capability. This means that, when all browsers will support

HTML5 features, SmilingWeb will not need any redesign.

A similar consideration can be done with the support for

CSS3, which should be very useful to implement some transi-

tion effects. Differently from HTML5, new browsers begin to

support CSS3 properties, but not using the standard notation,

but adding a particular prefix related to the specific rendering

engine3. Moreover, the set of transition effected supported

deeply varies from browser to browser. This means that, the

use of CSS3 implies that the transition effects applied to media

objects can be present or not according to the browser. For

this reason we decide to use another solution, the well-known

JavaScript library jQuery [11], since the browsers support

to CSS3 is still inadequate. Future versions of SmilingWeb
will probably adopt the CSS3 standard as soon as browsers

support will be sufficient. Moreover, jQuery simplifies HTML

document traversing, event handling, animating, and Ajax

interactions, therefore it also used to implement SMIL ani-

mations.

The SmilingWeb player has been designed to support SMIL

3.0. It does not implement all the tags of the language, but the

subset of unsupported tags is limited. In particular, it supports:

• all tags and attributes of the Layout Module, with the

only exception of the tag regPoint and the attribute

soundLevel4;

• all tags and attributes of the Linking Module, with the

only exception of attributes used to control the volume;

• tags img, video, audio, brush, text and ref for

definition of media items;

• all tags of the Timing Module, with the only exception

of priorityClass;

• all tags of the Animation Module and

• the tag transition for the transition effects.

The complete set of supported tags and attributes is detailed

in Table I.

Moreover, the player supports events handling and the

temporal synchronization of text through smilText. We must

note here that the player does not support all video and audio

codecs, but this limitation is due to the set of codecs supported

by the browsers and the plug-in. In fact, if the browser does

not support HTML5, the flowplayer plug-in [12] is used, an

Open Source (GPL 3) video player for the web.

3E.g. the property border-radius becomes -moz-border-radius
for Mozilla FireFox while Apple Safari and Google Chrome have recently
replaced their -webkit-border-radius with the standard property.

4We must note here that this attribute does not work even in commercial
products like RealPlayer.

Supported SMIL elements
LEGEND: LM = Layout Module, MM = Media Module, LkM =
Linking Module, TM = Timing Module, AM = Animation Module,
TrM = Transition Module, ST = SmilText Module, *= partial support

Tags

LM root-layout, region
MM text, img, video, audio, animation, brush, ref
LkM a, area
TM par, seq, excl
AM animate, animateMotion, animateColor, set
TrM transition*
ST smilText, tev, br, clear, div, p, span

Attributes

LM height, width, backgroundColor, top, left, bottom,
right, z-index, backgroundOpacity*, backgroundIm-
age, backgroundRepeat, fit, showBackground

MM src, id, region, fill*, color, transition

LkM shape, coords*, sourcePlaystate, href, alt, tabindex,
accesskey, show*

TM begin, end, dur, repeatCount*

AM targetElement, attributeName, from ,to, values

TrM transIn*, direction, dur, subtype, type

ST next, textAlign, textBackgroundColor, textColor,
textFontFamily, textFontSize, textFontStyle,
textFontWeight

Admitted
Values

MM fill: transition

LkM coords: a list of positive integer

TM begin: a positive time value t, an event ev, ev+t
end: a positive time value t, an event ev, ev+t,
indefinite
dur: a positive time value t, indefinite

TABLE I
SMIL TAGS, ATTRIBUTES AND VALUES, SUPPORTED BY SmilingWeb

A. The scheduler

The most important module of SmilingWeb is the scheduler,

i.e., the engine that solves the synchronization constraints of

the presentation to find out the correct begin and end time of

each element to be scheduled. By element we mean all SMIL

objects which can be synchronized, i. e., media items, smilText

tags, animations or transition effects. A task is therefore the

set of operations needed to start an element.

The scheduler must be correct and efficient to avoid the user

lies in wait for long time. Moreover, efficiency is particularly

important in case of synchronization due to user interactions:

it may happen that the scheduler had to re-calculate the entire

scheduling after an event like the user clicking on an image. In

this case, the playback could be paused or be subject to delays

if the computation does not end in time. While the user is used

to wait the beginning of playback of multimedia presentations,

long response times after interactions are poorly tolerated.

The scheduler engine loads the SMIL file only once and

saves all the information about media, transitions and anima-

tions into a tree structure. For each element, the collected

information are the id, a pointer to the tag in which it is

contained, if available, and the start and end time. If the

element begin and end attributes contain a time value, they

are simply saved in the tree structure, otherwise, they will be

calculated according to their definitions.

SMIL language allows to synchronize elements according



to two kinds of events, internal events, i.e., the begin or

end time of another element, and external events, i.e., user’s

interactions, e.g., the user clicking on an image or keying a

key on the keyboard. The first kind requires the scheduler to

search the tree for the id of the referred object and simply

retrieve the time value of its start (or end). The second kind is

very different since, if the definition of a SMIL tag is bound to

a user event for its start or end time, they must be solved on-
the-fly during playback, therefore the scheduler does not return

a point in time but the event contained in the definition.

Before the calculation of the start and end time of each

element, the player pre-loads the images and other media

files contained in the presentation, so to avoid pause during

presentation rendering to wait for distributed media items5.

Synchronization constraints are solved by the function

findRendering() which recursively considers all the tags

of the presentation. Initially, it receives as input the entire

SMIL file, and creates the tree structure. Then it calculates the

start/end times of elements, starting by the first synchroniza-

tion tag contained in body and current time instant equal to

0. More precisely, if the element el does not contain any refer-

ences to external events, findRendering(el, currentT ime):

1) calculates el start time,

2) calculates el end time,

3) recursively applies findRendering(ci, timei) to all the

element’s children ci, with current time instant

• equal to the one received as input in two cases,

if el is a par or an excl tag, i.e., ∀i timei =
currentT ime, or the current child is the first child

of a seq, i.e., c1 = currentT ime;

• equal to the time instant in which the previous child

ends otherwise,

4) adjusts, if necessary, the end time of el6.

Calculating the start and the end time of a SMIL tag is a

complex task, since both values may depend on offset, internal

and external events. A detailed description of different possible

combinations of attributes’ values are reported in [13]. We

report here only a brief, and not complete, description of

the algorithm chosen to solve the synchronization constraints

introduced by SMIL tags.

The start time of the element is obtained by adding the

offset contained in the attribute begin to the current time

instant received as input. If the attribute begin refers to an

internal event, the schedule retrieves the time instant in which

that event occurs and calculate the start time of the element.

The end time of an element is calculated as follows:

1) it is equal to the current time instant plus the value of

the attribute end,

2) it is equal to the start time plus the value of the attribute

dur,

5We must note here that while this operation is trivial in case of images,
the situation is more complicated for continuous media file, especially for
videos which can be streamed over the network. We plan to better consider
this issue in future works.

6Consider the case in which a seq, or a par tag, ends together with its
last child.

3) it is obtained resolving the time instant in which the

referred event occurs and adding the offset (if present).

4) if both the attributes end and dur are undefined, the

element ends together with its father, or if not possible,

when all its children have terminated their rendering, if

the element is a time container, i.e., a tag par, seq or

excl.

The scheduler engine creates a hash table, named the

scheduledTasks, to insert all the start and end times that are

calculated. The scheduledTasks is chronologically sorted and

contains, for each time instant returned from the scheduler, the

list of tasks, i.e., the elements to start in that point in time.

Once the computation of the scheduledTasks is finished, for

each time instant, the player:

1) performs the tasks which must be executed at that

particular time instant;

2) if an external event has occurred, checks if it affects

the synchronization of other elements and, if so, it

runs the scheduler engine again to calculate the new

scheduledTasks;

3) searches for the next point in time in which a synchro-

nization takes place and sets up a timer to notify the

scheduler once that point has been reached;

4) suspends waiting.

Every time the scheduler starts an element, if its end time

is available, it also creates a timer to stop it. Therefore many

timer can apply to the same media once started, e.g., a timer

to stop the media itself and a timer to start the transition effect

at the end of the media playback.

The timer used to end elements does not affect the main

scheduler, but are managed by the element itself, which acts

like a sub-scheduler, in order to improve efficiency. This

is particularly useful in case of the tag smilText, which

can handle the timed text defined inside it, through its inner

schedule, thus simplifying the solution of their synchronization

constraints even in case of events. We follow the rule “divide
et impera”: the tag smilText is considered like any other

element by the main scheduler, and the inner schedule applies

a set of simplified rules to its children to find out their start

and end times.

Even events bound to user interaction are managed through

the use of a secondary scheduler. Each time an event occurs,

the player calculates the start and end times of the set of

elements affected by that interaction, and creates a secondary

scheduler which managed the tasks related to those elements.

This choice has been made since a second interaction of the

same kind (e.g., a user who clicks twice on the same image)

causes a second start of the same set of elements. The use of

a separated scheduler allows to easily stop the first instance of

the scheduler, and analogously the nth instance, and to create

a new one with the new value of the time instant in which the

event has occurred. All these operations are performed without

affecting the main scheduler which can continue working,

without delays.

For efficiency purpose, when the scheduledTask must be re-



Fig. 1. Comparative analysis of the players with the SMIL 3.0 Testsuite

calculate due to a user interaction, the scheduler does not re-

calculate the entire hash table, but only from the current time

instant, i.e., the time instant in which the user interacts with

the presentation. In this way, elements which are rendered in

the past, no longer useful, are not considered again, preserving

CPU resources.

IV. SYSTEM TESTS

SmilingWeb has been tested in two different ways. First

of all, it was tested using the SMIL 3.0 Testsuite [14] with

positive results. We test all the scripts of the testsuite with

RealPlayer, Ambulant (both in the stand-alone application and

in the plug-in version) and SmilingWeb. For each test, we

rate the result with 0, 1 or 2 points depending on whether

each player does not support tags or attributes contained in

the script, experiments some problems, i.e., it provides only

a partial support, or passes the test without errors. The result

is shown in Figure 1, where the vertical axis represents the

percentage of passed tests, and the horizontal axis divides tests

according to the SMIL modules.

Figure 1 shows that, although RealPlayer’s support to SMIL

2.0 features is very high, e.g. it passes 100% of tests on

Layout 2.0, and 83% of tests on Linking module, its support to

new features of the third version of the standard is very low

or absent (e.g., it does not support SmilText). On the hand,

SmilingWeb provides a good support to SmilText and Layout

3.0 Module (respectively 63% and 50% of passed tests). Also

the support to the Timing, Linking and Animation Modules

is rather good. We must note here, that, the score obtained

by SmilingWeb is deeply influenced from how the scripts

are designed. In particular, many tests regarding the Media

Module used the attributes clipBegin and clipEnd which

are not supported by our player. This means that SmilingWeb
does not passed the tests, even if the particular element which

the script wants to test is supported. Therefore the testsuite

does not completely shows the level of support to SMIL of

SmilingWeb.

Another consideration must be done: RealPlayer and Am-

bulant player are stand-alone applications, while SmilingWeb
can be used to insert multimedia presentation into web pages.

Although the authors of Ambulant player claim that a plug-in

version of the player is provided, at the time of writing, it

works only for Mozilla FireFox, therefore it is of no practical

use on the web, where it is not possible to foresee the user

browser.

Summing up, SmilingWeb passed about 40% of tests made.

Despite this percentage is lower than other player, our player

has been tested with Microsoft Internet Explorer (version 8

and 9), Mozilla Firefox (version 3.6 and 4), Google Chrome

(version 10), and Opera (version 11), and works well with all

browsers. All the performed tests are reported in [15].

A second series of tests consists in the execution of more

complex multimedia presentations. In fact, the SMIL Testsuite

allows to test what features of the standard are implemented,

but each test is very simple and usually consists on few rows

of code, without any nesting of tags. Our experience, made in

more than 5 years of teaching and use of the standard SMIL,

shows that, even if Ambulant Player obtained the higher score

evaluating it with the testsuite, it is often unusable for complex

multimedia presentations.

We test the player with five multimedia presentations, with

different degrees of complexity. The presentations used as

tests can be viewed at [15]. On average, the SMIL documents

used contain about 200 lines of code (with a maximum of

443 lines) and the maximum level of nesting is 4. As an

example, “Focus on Elisa” is a multimedia presentation about

an italian singer. It begins with 36 colored blocks which move

on the screen to compose the writing “Focus on Elisa” (see

Figure 2), while the audio of a song of the singer plays in

background. This intro was created with about 150 animations,

50 in parallel at the same time. Moreover, the documents also

contain some menus or buttons with which the user can modify

the normal behavior of the presentation. Other documents

contain a karaoke with text animations synchronized with

audio and images with transition effects. Another example

describes the trip of the Fellowship of the Ring in the ’Lord
of the Rings’ motion picture, through the use of text, images

and animation of the path in a map.

Fig. 2. Screenshot from the multimedia presentation “Focus on Elisa”



Even this second group of tests gives good results since the

player is able to schedule and synchronize all the elements

without any delay during rendering, even in case of user

interactions. The user experiences a little delay before the

presentation starts, but it is comparable to the loading time

of common web pages. We test the presentations also with

other available player, and we note that, when the presentation

complexity increases, the Ambulant player begins to introduce

delays or even errors in the synchronization of elements. As an

example, the playback of “Focus on Elisa” described above,

often experiences pauses and delays.

V. CONCLUSION

In this paper we have presented SmilingWeb, a JavaScript

player which allows to reproduce SMIL scripts contained

in web pages. The player has been tested with the SMIL

Testsuite, provided by W3C and with a set of very complex

multimedia presentations in order to check its support to the

standard and its scalability.

All the tests reported positive results. However, we must

note here that, even if SmilingWeb meets all the requirements

in terms of scheduling of elements, in case of low network

bandwidth, it is not always able to effectively calculate the

correct interval of time needed to pre-load the elements. This

is particulary true for continuous media like audio and video

files. Therefore, in this case, it may happen that the user

experiences some pauses during playback. This situation never

happens for local document, or with an adequate network

bandwidth. Therefore, the scheduling algorithm is correct, but

we need to improve the analysis of the state of the network

in order to calculate the correct time to start the presentation

to have a good chance that all media items involved will be

received on time. We plan to better analyze this issue in future

works.

Another consideration must be done: although the other

available players may have a more complete support to SMIL

features, SmilingWeb is the first tentative to create a player

for SMIL documents which can be used with all available

browsers. Moreover, the technology used to implement the

player have been chosen to ensure its compatibility also with

future versions of the player, since we used web standards

promoted by W3C.

The possibility to insert SMIL tags into web pages is par-

ticularly important, since it allows to apply synchronization to

HTML tags, e.g., it allows to create a text moving around the

screen, or to apply animations and transition effects without

knowing JavaScript or Flash. Moreover, SmilingWeb allows to

create accessible animations, or text description for audio and

video files.

Concluding, we think that the possibility to use together

XHTML and SMIL language allows the author to overcome

some limitations typical of the two languages: in fact, SMIL

allows the introduction of synchronization between media,

but impose a fixed layout. XHTML and CSS on the other

hand, define richer mechanism for layout definition, e.g.,

the definition of fluid layouts, i. e. web pages which adapt

themselves to the size and resolution of the window on the

user’s screen.

REFERENCES

[1] Bulterman et al, “Synchronized Multimedia Integration Language
(SMIL) 3.0 Recommendation,” December 2008. [Online]. Available:
http://www.w3.org/TR/SMIL3/

[2] D. Bulterman and L. Rutledge, SMIL 3.0, Flexible Multimedia for Web,
Mobile Devices and Daisy Talking Books, 2nd ed. Springer, 2009.

[3] D. Bulterman and L. Hardman, “Structured Multimedia Authoring,”
ACM Trans. Multimedia Comput. Commun. Appl., vol. 1, no. 1, pp.
89–109, 2005.

[4] Ambulant Open SMIL Player, “http://www.ambulantplayer.org/,” 2009.
[5] RealNetworks, “RealPlayer 10.5,” http://www.real.com/.
[6] P. Valente and P. Sampaio, “TLSA Player: A tool for presenting

consistent SMIL 2.0 documents.” in Proc. of ICEIS2007, Madeira,
Portugal, June 2007.

[7] Microsoft Corporation, “Understanding SAMI 1.0,”
http://msdn.microsoft.com/en-us/library/ms971327.aspx, February 2003.

[8] SYMM Working Group, “Synchronized Multimedia - Players,”
http://www.w3.org/AudioVideo/�SMIL.

[9] Ian Hickson, “HTML5, W3C Working Draft,”
http://www.w3.org/TR/html5/, April 2011.

[10] Faruk Ates, Paul Irish and Alex Sexton, “Modernizr,”
http://www.modernizr.com/.

[11] The jQuery Project, “jQuery,” http://jquery.com/.
[12] Flowpalyer Ltd., “flowplayer,” http://flowplayer.org/.
[13] A. Bossi and O. Gaggi, “Enriching SMIL with assertions for temporal

validation,” in Proc. of ACM MM, September 2007, pp. 107–116.
[14] W. Chang and T. Michel, “SMIL 3.0 Testsuite.” [Online]. Available:

http://www.w3.org/2007/SMIL30/testsuite/
[15] Ombretta Gaggi and Luca Danese, “SmilingWeb,”

http://docenti.math.unipd.it/gaggi/smilingweb/.


