
A State-Transition Model for Distributed Multimedia Documents

P. Bertolotti

Universit̀a di Torino

bertolot@di.unito.it

O. Gaggi

Universit̀a Ca’ Foscari di Venezia

ogaggi@dsi.unive.it

M.L. Sapino

Universit̀a di Torino

mlsapino@di.unito.it

Abstract

In this paper we present a state-transition model to de-
scribe a multimedia presentation evolution, i.e., its run-time
behavior. Each object is modelled as an independent entity
with its own behavior and resources allocation: a certain
amount of bandwidth, buffer and a display (or an audio
channel) for its playback. The evolution of a single me-
dia is modelled by means of a finite state machine, in which
states transitions are triggered when some specific events
occur, provided some conditions hold. The overall presen-
tation is modelled as parallel (or sequential) composition
of single media items’ executions. The model is well suited
for reasoning on multimedia documents dynamics, and to
prove properties about them.

1. Introduction

Multimedia presentations can be defined by a collection
of different types of media items and a set of spatial and
temporal constraints over them. If we consider a distributed
environment, media objects are dispersed over a computer
network and must be downloaded before playback. Their
retrieval from the server(s) is influenced by the network
throughput, and buffer resources on the client side must be
correctly sized to avoid jitters and stops in the presentation
playback.

In this paper we present a model to describe a multime-
dia presentation evolution, i.e., its run-time behavior. Each
object is modelled as an independent entity with its own be-
havior and resources allocation: a certain amount of band-
width, buffer and a display (or an audio channel) for its
playback. Each object can be considered as aprocesswhich
requires specificresources. A correct presentation playback
is the result of a correctschedulingof retrieval and display
of media items.

The purpose of the model presented in this paper is to
describe the run-time behavior of a multimedia presentation
as the parallel (or sequential) composition of single media
items’ executions. The model describes the buffers alloca-

tion and deallocation of each media components and can be
used as the basis for an algorithm to schedule the download
and the playback of complex dynamic elements.

2. A model for multimedia presentations

We refer to the synchronization model for multimedia
presentations defined in [3, 4], which we briefly describe
addressing the reader to the bibliography for the rationale
and the details.

A multimedia presentation is a 4–tuple P =
〈MI, CH, E ,SR〉whereMI is a set of media items which
build the presentation,CH is a set of channels, i.e., virtual
devices used to reproduce media components and mapped
to actual resources during their playback,E is a set of events
which will be detailed in Section 3, andSR is a set of tem-
poral relationships which describe the presentation behav-
ior. An author can design the presentation evolution by im-
posing a set of temporal constraints among the objects, by
means of five synchronization primitives:a plays with b
(a ⇔ b) models the parallel composition of objectsa and
b; both objects start when either of them is activated, and
when objecta ends, alsob does (if still active); the relation
is therefore asymmetric;a activates b(a ⇒ b) models the
sequential composition of objectsa andb; b starts whena
ends;a is replaced by b(a ⇀↽ b) models the replacement
of media itema by b in the same channel;a terminates b
(a ⇓ b) models the stop of media itemb, as a consequence of
the forced stop of media itema; a has priority over b with

behaviorα (a
α
>b) is used to design presentation behavior

during user interactions; media itemb is paused (α = p) or
stopped (α = s) when the user starts objecta, e.g., through
a hyperlink.

3. Description of the system

We consider distributed presentations in which the me-
dia to be displayed have to be previously downloaded. This
usually requires bufferization. Each channel is therefore as-
sociated to abuffer to be used by the media item currently
occupying that channel.

1

Buffer management is critical in distributed communi-
cation, since it affects the performance and, ultimately, the
feasibility of a distributed application, even if limited to me-
dia download and presentation. In order to abstract from
technical issues which do not limit the model power, we
make a number of simplifying assumptions which are plau-
sible in the framework of the multimedia presentations we
approach.

First, we assume that the resources provided by the net-
work are adequate, i.e., we face neither QoS problems
nor strict real-time constraints in media synchronization;
this assumption is acceptable for multimedia presentations,
since fine-grain synchronization is resolved by putting syn-
chronized media in the same file, such as multitrack video
and audio file. Then, we assume that the time to process a
media segment for display, once downloaded, is negligible
wrt download time. In the same way, there can be some tol-
erances, e.g., at the end of a group of objects, there can be a
little interval before the next one. Finally, since we assume
that the resources are adequate for the whole presentation,
we also assume that any parallel combination of media de-
fined in the presentation can be played independently from
the media download order, as long as all media are avail-
able in core memory when playback starts. In other words,
we are interested only in the mutuallogical relationships
among media, and not in performance constraints that can
be induced on them by the implementation.

We refer to a simplified double buffer schema over seg-
mented media streams: a media object is divided into seg-
ments of equal length, and equal to the length of the buffer.
Each time a new segment is required to start, the system
switches to the unused buffer and begins to fill it. When
the buffer is full, the application can begin media playback
(constrained by the synchronization relationships), while
the system retrieves from the network a new segment in the
other buffer. Other variants (e.g., copying the buffer content
into another location, or using a buffer pool) do not intro-
duce significant changes. We shall use the wordbuffer to
refer to a buffer area whose allocation policy is not detailed.

We call pre-fetch the activity of filling the first buffer
for a media item; it defines the minimum delay between
download and play in a streaming environment.

Therefore for the remainder of the paper we abstract
from any buffer details, and work under the hypothesis that
every media is associated with a specific buffer, and that the
relevant information about that buffer only concern its being
empty, partially filled, or full.

The association of distinct media items with the buffers
they are using, is expressed by means of the function
bf(m), shorthand forbuffer, wherem denotes the media.
Analogously, we assume that every mediam is associated
to a playback channel, and a stream of data. To denote this
association we use the functionsch(m) andst(m).

The relevant information to be checked, when a single
media is modelled, is the status of its buffer, its channel and
its stream. To check the status of buffers and streams we
use the predicatesisEm() andisFu(), for empty and full
respectively.

The channel occupation is given by the functionisUs(),
shortand forisUsed: CH → MI ∪ { } that returns, for
every channel, the media item that occupies it. The under-
score symbol denotes the absence of media item; it is the
value used to identify free channels.

In addition, it is possible to verify if the channel associ-
ated with a media is available. This control is done using
the isUs() function: the channel is available for the media
m if the channel is free (isUs(ch(m)) =) or it is occu-
pied by the media itself (isUs(ch(m)) = m). The predicate
isAv(), that has the media item as its argument, defines the
channel availability through these checks.

Each media exhibits its own behavior, which we model
in terms of a sequence of differentstatesof the media. Me-
dia objects are classified ascontinuousmedia, like video
and audio, that once started have their own behavior, and
staticmedia, like still images, that are simply displayed on
the user screen.

Media from the two classes have some states in com-
mon, while some other states are specific of continuous or
static media items. Both continuous and static media can
be idle, i.e., not active, waiting to be activated, as well as
init , that is, pre-fetching data to (dis)play. Continuous me-
dia can also beplaying, the state of media being delivered.
The corresponding state for static object isactive, i.e., actu-
ally rendered. Continuous media can bepaused. When the
last segment of a continuous media is playing, the item is in
stateterminating .

If we observe the presentation along time, it can be di-
vided into a number ofstates: these states are more complex
than the simple states in which a media is modelled, since
the state of a media is embedded in the general state of the
system, represented also by means of someconditions, that
are a set offacts, which list a number of atomic conditions
that are true in the state. These conditions concern the status
of buffer, stream and channel of the media involved in the
presentation: this status is checked by means of the predi-
cates and the functions previously introduced in this section.

Therefore, we model the behavior of every single me-
dia by means of afinite state machine, and the evolution
of a presentation, which is a complex dynamic system, as
the composition of the machines corresponding to the sin-
gle atomic components plus the conditions that describe the
actual situation of the system.

State transitions are triggered by specificexternalevents,
that have an effect immediately perceived by the user (re-
quests to start or stop the media) and byinternal, non ob-
servable events, that correspond to some modification in the

2

internal state of the system, that the user is not necessarily
aware of (modifications in buffer status, like the start or the
end of pre-fetching phase). In the presence of these events,
state transitions are fired, provided somepreconditions, ex-
pressed in terms of logical predicates, hold. The effects of
the events on a state of the system are captured bypostcon-
ditionsassociated to the events.

We denote the set of events that can cause a state tran-
sition with E . It includes: startm, when a media itemm
is activated;readym, when the pre-fetch of a media item
is terminated;pausem, whenm playout is temporally in-
terrupted; stopm, when a user forces the termination of
item m; FFm(p) (fast forward), when a user asks to play
an already active media itemm, jumping at positionp1;
RWm(p) (rewind), when a user asks to go back to position
p in the playout of media itemm; endingm, when the last
segment of the media is starting playing (the item is finish-
ing) andendm, when a media playout reaches its natural
termination.

The external events arestart, stop, pause, FF(p), RW(p)
andend. The internal events arereadyandending.

An event has a direct impact on the state of the media,
causing a state transition of the media, and, more in gen-
eral, on the state of the system: given an event, its effects
are recorded in the new state by (i) deleting, from the cur-
rent state, those predicate instances which appear negated in
the postcondition of the fired transition; (ii) for any positive
predicate instance appearing in the postcondition, inserting
it in the resulting state. If the predicate instancep(bf(mi))
is the inserted one, (that is, a fact stating something about
the buffer of media itemmi), any other predicateq(bf(mi))
appearing in the current state (and concerning the same me-
dia item) is then removed (this replacement captures the dy-
namic evolution of the buffer condition). Some predicates
become true (and then are inserted in the current state) as a
consequence of the interaction with the environment (these
predicates are:isFu(bf()), isEm(bf()) andisEm(st())).
That is, some changes that are captured in the state of the
system are not induced by any media state transition. They
are instead a reaction to some modification in the environ-
ment.

4. Single media item and composition of items

We introduce an independent finite state machine mod-
elling a single media item, that encapsulates the functional
and timing properties of the media object.

Definition 4.1 (Single Item Finite State Machine)The
finite state machine characterizing acontinuousmedia
item m is MSMm = 〈S, s0, F, next, T 〉, where (i)

1The positionp is determined by the user. Then the system selects the
correct segment number and begins to fill the buffer of the media item.

next(id, startm) = in next(in, readym) = pl
next(pl, RWm(p)) = in next(pl, FFm(p)) = in
next(pl, endingm) = tr next(tr , endm) = id
next(ps, startm) = pl
next(x, pausem) = ps, x ∈ { in, pl, tr }
next(x, stopm) = id, x ∈ { in, pl, tr, ps}

Table 1. The function next: id=idle, in=init,
pl=playing, s=paused, tr=terminating.

S = {idle, init,playing,paused, terminating}; (ii)
s0 = idle; (iii) F = {idle}; (iv) next is the function
defined in Table 1; (v)T is a set of 4-tuples〈s, e, C,P〉
describing transitions, wheres ∈ S is the initial state,
e ∈ E is an event,C is a set of enabling conditions for the
transition from states when the evente occurs andP is a
set of postconditions, that is, conditions holding after the
transition takes place.

A finite state machineMSMm modelling a static media
m is obtained by theMSMm previously defined removing
statespausedandterminating (and the transactions involv-
ing these states) and renaming stateplaying in stateactive.

In the following, to characterize state transitions we use
the following notation, wherestatei is the initial state and
stater is the resulting state:[C] statei

e→ stater [P].

State transitions take place when an event occurs, and
their enabling conditions are satisfied. Preconditions and
postconditions mentioned in our transitions only concern
local predicates, i.e., predicates whose truth value might be
affected by the firing transition. For not mentioned predi-
cates, persistency is assumed.

The set of transitions characterizing a media item is
shown in Table 2.

Given this representation, we can model a presentation
which contains several media objects, by composing the
corresponding finite state machines. Several unrelated me-
dia may exist in the presentation, therefore we first model
a system containing a number of independent media. Then,
we specialize some transition rules, to model synchroniza-
tion primitives.

In the following definition, we shall use footers to distin-
guish different media, and the footer corresponding to each
media also refers to its states and events, thus distinguishing
between analogous states and events for different media.

We will denote withCsi,ei the enabling condition for the
transition corresponding to eventei in the statesi, for the
media itemmi. Analogously for postconditionsPsi,ei .

Definition 4.2 Let m1, . . . , mn be n independent media
items, andMSM1, . . . ,MSMn be the corresponding fi-
nite state machines. LetMSMi = 〈Si, s

0
i , Fi, nexti, Ti〉,

for all i = 1, . . . , n. The overall behavior is modelled

3

[isAv(mi)] id
start→ in [¬isEm(bf(mi))∧

isUs(ch(mi)) = mi]

[isFu(bf(mi))] in
ready→ pl [¬isEm(st(mi))]

[true] in
pause→ ps [true]

[true] in
stop→ id [isEm(bf(mi))∧

isUs(ch(mi)) =]

[isEm(st(mi))] pl
ending→ tr [true]

[true] pl
FF (p)→ in [isEm(bf(mi)]

[true] pl
RW (p)→ in [isEm(bf(mi)]

[true] pl
pause→ ps [true]

[true] pl
stop→ id [isEm(bf(mi))∧

isUs(ch(mi)) =]

[isAv(mi)] ps
start→ pl [isUs(ch(mi)) = mi]

[true] ps
stop→ id [isEm(bf(mi))∧

isUs(ch(mi)) =]

[isEm(bf(mi))] tr
end→ id [isEm(bf(mi))∧

isUs(ch(mi)) =]

[true] tr
pause→ ps [true]

[true] tr
stop→ id [isEm(bf(mi))∧

isUs(ch(mi)) =]

[isFu(bf(mi))] in
ready→ ac [true]

[true] ac
stop→ id [isEm(bf(mi))∧

isUs(ch(mi)) =]

Table 2. Transition rules for independent
media items: id=idle, in=init, pl=playing,
ps=paused, tr=terminating, ac=active.

by the finite state machineMSM = 〈S, s0, F, next, T 〉,
where (i) S = {〈s1, . . . , sn〉 | si ∈ Si, i = 1, . . . , n};
(ii) s0 = 〈s0

1, . . . , s
0
n〉; (iii) F = {〈sf1 , . . . , sfn〉 | sfi ∈

Fi, i = 1, . . . , n}; (iv) next(〈s1, . . . , si, . . . , sn〉, emi) =
〈s1, . . . , nexti(si, emi), . . . , sn〉, for any si ∈ Si, and
any eventemi on the the mediami, i = 1, . . . , n;
(v) T contains the following transitions:∀t, if t =
〈si, emi , Csi,emi

,Psi,emi
〉 ∈ Ti for a given i then

〈〈s1, . . . , si, . . . , sn〉, emi , Csi,emi
,Psi,emi

〉 ∈ T .

In a presentation some media are related each other,
therefore we must consider objects which are temporally
related by the synchronization relationships described in
Section 2. We translate the temporal relations into differ-
ent composition of finite state machines, which are mostly
based on the one considered above.

Specifically, the finite state machine modelling media
items related by any temporal compositionmiθmj , θ ∈
{⇔,⇒,⇓,⇀↽,

s
>,

p
>} is defined by: (i) applying the def-

inition 4.2, to model the case of the general composition
of itemsmi andmj , and (ii) adding some transition rules
which will be described later in this section possibly over-
writing already existing transition rules. Given a transition

t ∈ T for an evente from 〈smi , smj 〉 to 〈s′mi
, s′mj

〉, if
t′ = 〈〈smi

, smj
〉, e, C〈smi

,smj
〉,e,P〈smi

,smj
〉,e〉 ∈ T reach-

ing the same state〈s′mi
, s′mj

〉 already exists,t replacest′,
otherwiset is added to the set of transitionsT .

In order to modify the transition rules described in Ta-
ble 2 for taking into account the effect of synchronization
relationships on the media finite state machines composi-
tion, we define the notion of closure of an item, with respect
to some synchronization relations, to capture the effects of
event propagation among media.

Definition 4.3 (SC⇔) The symmetric closure of a media
itema wrt. ⇔ is the setSC⇔(a) such that (i)a ∈ SC⇔(a),
and (ii) for any itemc ∈ MI, if ∃b ∈ SC⇔(a) such that
b ⇔ c ∈ SR or c ⇔ b ∈ SR, thenc ∈ SC⇔(a).

SC⇔(a) contains all media items related by a⇔ re-
lationship, that are required to start simultaneously, when
one of them is activated. From the definitionSC⇔(b) =
SC⇔(a) iff b ∈ SC⇔(a).

The setSC⇔(a) results from the closure of a transitive
chaining process. Basically, it includes all items which are
transitively connected toa, by means of⇔ relationship. As
it will be clearer in the following, there are cases in which
some of the connected items have to be discarded. In this
case, when computing the symmetric closure ofa wrt. ⇔,
items connected toa have to be included in the closure only
if the “connecting chain” does not include any discarded
item. This notion of restricted closure is formalized in the
following definition.

Definition 4.4 (SC⇔(a)M) The symmetric closure of item
a wrt. ⇔, limited by the set of itemsM , is the set
SC⇔(a)M such that (i) ifa ∈ M thenSC⇔(a)M = ∅,
else (ii)a ∈ SC⇔(a)M , and for any itemc ∈ MI \M , if
∃b ∈ SC⇔(a)M such thatb ⇔ c ∈ SR or c ⇔ b ∈ SR,
thenc ∈ SC⇔(a)M .

All the synchronization primitives of the model exhibit
an asymmetric behavior. For some of them, a notion of tran-
sitive (forward) closure is needed, to deal with the forward
propagation of the effects of an event. For the sake of space
we introduce aparameterizedasymmetric closure, in which
the parameterrel acts as a place holder for⇔ or⇓ synchro-
nization primitives.

Definition 4.5 (Crel) Let a be a media item inMI and
rel ∈ {⇔, ⇓}. The closure ofa wrt. rel is the setCrel(a)
such that (i)a ∈ Crel(a), and (ii) for any itemb ∈ MI, if
b ∈ Crel(a) andb rel c ∈ SR, thenc ∈ Crel(a).

Six new transition rules define the evolution of a com-
posite presentation in case of events which have a wider im-
pact on the document activating a cascade of simultaneous
media activations or stops. Such events arestart, ready,

4

stop, ending andend. When the system receives an event
startmi

, all media items which are related by a⇔ relation-
ship, i.e., all media items inSC⇔(mi), should begin to fill
the buffer. The system controls if their channels are avail-
able (media items inSC⇔(mi)NotAvailable) or if there are
some media objects to replace, and in this case changes their
states toinit (and consequently, the states of the replaced
objects becomeidle).

Event:readymi for anyi ∈ {1 . . . n}
Notation:

NotAv = {mk ∈MI|¬isAv(mk)}
TR = {mk ∈ NotAv|sk = trmk}
StartCl = SC⇔(mi)NotAv

IP = {mj ∈ StartCl|sj = inmj ∨ sj = psmj}
Ready = {mj ∈ StartCl|isFu(bf(mj))}
Free = {mj ∈ StartCl|sj = idmj ∨ sj = psmj

∧isAv(mj)}
Paused = {mk|(mp

k

p
> mk) ∈ SR such thatsk 6= idmk

for somemp
k ∈ SC⇔(mi)}

Precondition:
IP = Ready ∧ Free = ∅ ∧ TR = ∅ ∧ isFu(bf(mi))

Initial state:〈s1, . . . , sn〉
Final state:〈s′1, . . . , s′n〉, where
∀mj ∈ IP , s′j = plmj if mj continuous,
s′j = acmj if mj static;
∀mj ∈ Paused, s′j = psmj ;
∀mj 6∈ IP 6∈ Paused, s′j = sj

Postcondition:∀mj ∈ IP , ¬isEm(st(mj))

Table 3. Event: readymi
.

In case of eventreadymi the system controls if all media
items have their buffers full, and in this case the presentation
begins its playback (Table 3). Otherwise, the system waits
for media objects already buffering and controls if there are
other media items inSC⇔(mi) for which the channel is
now available and begins their bufferization.

If the user stops the playback of an itemmi, the sys-
tem looks for all media items which must be stopped at
the same time, i.e., all objects contained inC⇓(mi), frees
their channels and changes their states toidle again. Oth-
erwise, ifmi naturally ends, the system first notices that its
stream is empty (eventending) and then that also the buffer
is empty (eventend). When the system receives the event
endingmi , it checks what media objects must be started af-
ter its end, i.e., media items inSC⇔(m) such that a re-
lationshipmi ⇒ m exists and checks if their channels are
available2, or if some media items can be replaced. Then the
system changes the states of media objects whose channels
are available toinit and begins their bufferization (Table 4).

2Since the stream is already empty, channel ofmi is considered avail-
able for new items.

Event:endingmi for anyi ∈ {1 . . . n}
Notation:

Started = {mk|(mi ⇒ mk) ∈ SR}
NotAv = {mk ∈MI|¬isAv(mk)}
Repling = {mr

j |mr
j ∈ SC⇔(mk) for somemk ∈ Started

∧isUs(ch(mr
j)) = mj for some(mj ⇀↽ mr

j) ∈ SR
∨(mr

j

α
> mj) ∈ SR ∨mj = mi}

StartCl =
⋃

mk∈Started
SC⇔(mk)NotAv\Repling

IP = {mj ∈ StartCl|sj = idmj ∨ sj = psmj}
Repled = {mk|(mk ⇀↽ mr

k) ∈ SR ∨ (mr
k

α
> mk) ∈ SR

for somemr
k ∈ Repling}

StopCl =
⋃

mk∈Repled C⇓(mk)

I = {mj ∈ StopCl|sj 6= idmj}
Precondition:isEm(st(mi)) ∧ |IP | = |channel(IP)|
Initial state:〈s1, . . . ,plmi , . . . , sn〉
Final state:〈s′1, . . . , trmi , . . . , s

′
n〉, where

∀mj ∈ IP , s′j = inmj ;
∀mj ∈ I, s′j = idmj ;
∀mj 6∈ IP 6∈ I, s′j = sj

Postcondition:
∀mj ∈ I, isEm(bf(mj));
∀mj ∈ I \Repled, isUs(ch(mj)) = ;
∀mj ∈ IP , ¬isEm(bf(mj)) ∧ isUs(ch(mj)) = mj

Table 4. Event: endingmi
.

Whenmi naturally ends (Table 5), the system stops all
media items inC⇔(mi), i.e., media items currently playing
in parallel, and frees their channels. Then it checks if there
are some media objects that must be started after its end,
and whose channels are now available. In this case changes
their states toinit and begins their bufferization.

A complete description of these transition rules, which
are not detailed here due to lack of space, can be found in
[1]; Tables 3, 4 and 5 summarize the events which are used
in the example of Section 5.

5. An example

We introduce now an example to show how these rules
are used. Let us consider a multimedia presentation about
an artwork: an initial video (intro) introduces the history
period related to the artwork and the artist who made it.
At its end, activates another video clip (vclip) illustrat-
ing the artwork itself. This second clip plays in parallel
with a soundtrack (sound) and a comment page (caption).
At the end ofvclip, a text page (text) is displayed, with
information about the museum which contains the art-
work. The channels arevideo, audioandwindow, such that
ch(intro) = ch(vclip) = video, ch(sound) = audio and
ch(caption) = ch(text) = window.

Due to space constraints, we only comment a fragment

5

Event:endmi for anyi ∈ {1 . . . n}
Notation:

End = {mj ∈ C⇔(mi)|sj 6= idmj}
Started = {mk|(mi ⇒ mk) ∈ SR}
NotAv = {mk ∈MI|¬isAv(mk)}
Repling = {mr

j |mr
j ∈ SC⇔(mk) for somemk ∈ Started

∧isUs(ch(mr
j)) = mj for some(mj ⇀↽ mr

j) ∈ SR
∨(mr

j

α
> mj) ∈ SR ∨mj ∈ End}

StartCl =
⋃

mk∈Started
SC⇔(mk)NotAv\Repling

IP = {mj ∈ StartCl|sj = idmj ∨ sj = psmj}
Ready = {mj ∈ StartCl|isFu(bf(mj))}
Repled = {mk|(mk ⇀↽ mr

k) ∈ SR ∨ (mr
k

α
> mk) ∈ SR

for somemr
k ∈ Repling}

StopCl =
⋃

mk∈(Repled∪End\{mi}) C⇓(mk)

I = {mj ∈ StopCl|sj 6= idmj}
ChFree = {c|∃m ∈ (I ∪ End) ∧ c = ch(m)∧

isUs(c) = m} \{c|∃m c = ch(m) ∧m ∈ IP}
Precondition:isEm(bf(mi)) ∧ |IP | = |channel(IP)|
Initial state:〈s1, . . . , trmi , . . . , sn〉 >
Final state:〈s′1, . . . , s′n〉, where
∀mj ∈ End ∪ I, s′j = idmj ;
if StartCl = Ready ∀mj ∈ Ready, s′j = plmj

if mj continuous,s′j = acmj if mj static;
else∀mj ∈ IP , s′j = inmj ;
∀mj 6∈ End 6∈ Ready 6∈ IP 6∈ I, s′j = sj

Postcondition:
∀mj ∈ I ∪ End, isEm(bf(mj));
∀cj ∈ ChFree, isUs(cj) = ;
if StartCl = Ready ∀mj ∈ Ready, ¬isEm(bf(mj));
else∀mj ∈ IP , ¬isEm(bf(mj)) ∧ isUs(ch(mj)) = mj

Table 5. Event: endmi
.

of the presentation; a more detailed discussion on the ex-
ample is in [1]. Consider the presentation when only
the introduction video is playing, i.e., media items are in
the following states:playingintro, idlevclip, idlesound,
idlecaption, idletext and the following conditions hold:
isUs(video) = intro, isUs(audio) = , isUs(window) =

andisFu(bf(intro)).
Supposeendingintro occurs (i.e., the data stream

corresponding to the introduction became empty, i.e.,
isEm(st(intro))). The system then controls which items
should be activated at the end of videointro, i.e., vclip,
sound andcaption and checks if their channels are avail-
able as described in Table 4. Therefore, the current states of
media items are:termitatingintro, initvclip, initsound,
initcaption, idletext.

When the conditionisEm(bf(intro)) holds, event
endintro occurs. A state transition takes place (Table 5),
and the states of the media becomeidleintro, initvclip,
initsound, initcaption, idletext. When the buffers of the
video clip, the music and the caption page are full, the sys-

tem processes the lastready event as described in Table
3, activating these elements (i.e., moving presentation to
idleintro, playingvclip, playingsound, activecaption,
idletext).

When also the stream of the video about the art-
work vclip becomes empty, the system receives the event
endingvclip, and changes the states of media items be-
ginning the download of the final text pages according to
Table 4: idleintro, terminatingvclip, playingsound,
activecaption, idletext. Whenbf(vclip) is empty,vclip
ends. As described in Table 5, the states of the me-
dia becomeidleintro, idlevclip, idlesound, idlecaption,
inittext. Then, eventreadytext occurs when the buffer
bf(text) is full. Therefore, there is a transition toidleintro,
idlevclip, idlesound, idlecaption, activetext (see Table
3).

6. Conclusion

The abstract formal model introduced so far describes
the behavior of a multimedia presentation in terms of re-
sources allocation (buffers and network bandwidth) and
synchronization among the media objects.

For this reason it can be used to define and check a se-
quence of media items download: during the presentation
playback, the system calculatesa priori what happens at
the end of a component, i.e., which objects are activated
(see Table 4), and finds out a correct scheduling download
sequence for their bufferization.

The proposed model is also well suited for reasoning on
multimedia documents dynamics, and to prove properties
about them. For example, given a set of media itemsAct,
the model can check if it is possible that the presentation
reaches a state in which all of them are active. In this case,
we need the complete finite state machine associated with
the multimedia documents and a description of the initial
state of the overall system, expressed in terms of (positive)
predicates on media buffers and channels. Then, we can
look in the composite finite state machine for a presentation
state in which all mediam ∈ Act are in stateactive (if m
is a static media) orplaying (if m is a continuous item) and
return the shortest sequence of events to reach that state.

Another interesting property, is the correctness of a se-
quence of media items download with respect to the mod-
elled behavior of a presentation. The model can check if
a given sequence is correct since the finite state machine
completely describes the status of the buffers and channels
at each moment. Therefore, we can control if the sequence
of eventsready is compatible with the finite state machine
associated to the presentation. For example, ifn media
items must begin to playback in parallel, they change their
states from stateinit to playing when the last buffer (i.e.,
the buffer corresponding to the object with biggest delay)

6

is full (see Table 3). Therefore the set of possible correct
download sequences contains all sequences which respect
this property, no matter whether the system begins to fill
some buffers before the others.

Other works approach the problem of multimedia
scheduling. Candan et al [2] define a model to design and
play multimedia presentations. Differently from our ap-
proach, it does not describe all the possible run-time be-
haviors of a multimedia document, but only the dynamic
structure as designed by the author, through the use of a
graph in which media items are the nodes and the edges are
flexible temporal constraints among the objects. A possi-
ble presentation schedule (and the resources allocation) can
be derived by the graph, but the model is not well suited to
check other properties of the document.

In [7] the authors propose a new CPU scheduling tech-
nique to improve performance of multimedia and real-time
applications, in which the management of events delivery
is a critical point to avoid delays. The idea is to coordinate
event scheduling and task scheduling by making the multi-
media applicationsevent-aware. The domain here is little
different from the one addressed in this paper and includes
multimedia application like virtual worlds or multi-player
games.

Paulo et al. [6] describe an approach very similar to the
one addressed here. The paper presents a synchronization
model based on hypercharts, an extension of the finite state
machine formalism. A hyperchart contains timed transi-
tions to specify the temporal behavior of presentation ac-
tivities whose firing depends on the state of the system, and
the system performs a single step at each time unit, react-
ing to all external changes that happen in that time interval.
Hypercharts provide mechanisms for specifying hyperme-
dia requirements such as objects duration, delays, jitters and
user interactions, but require a explicit definition of the time
instant at which an event occurs, therefore our model allows
a easier management of further modifications of a multime-
dia document.

In [5] Layäıda et al. discuss the effect of uncertainty
in the duration of some media objects in multimedia sce-
narios. Media items can be distributed over the internet
and the access delay can be very different. Different from
our approach, users interactions with the document cause
de-synchronization. The model proposes a scheduling al-
gorithm based on flexibility to solve the problem of re-
synchronization.

Our model provides a more general framework that al-
lows to define a correct sequence of download for the media
items of a multimedia presentation, as well as to investigate
other properties of the real time behavior of the document.
This second feature is not considered in the models present
in literature.

In the future, we plan to develop a formal system to

reason within this model, by properly defining axioms and
proof rules, according to the methods usually adopted for
program verification and model checking.

Acknowledgements

The authors would like to thank prof. Augusto Celentano
for the helpful discussions and encouragements.

References

[1] P. Bertolotti, O. Gaggi, and M.L. Sapino. A State-
Transition Model for Distributed Multimedia Docu-
ments. Technical Report 77/04, Department of CS, Uni-
versity of Turin, http://www.di.unito.it/∼bertolot/tech-
report.pdf, March 2004.

[2] K.S. Candan, B. Prabhakaran, and V.S. Subrahmanian.
Retrieval Schedules Based on Resource Availability
and Flexible Presentation Specifications.Multimedia
Systems, 6(4):232–250, 1998.

[3] A. Celentano, O. Gaggi, and M.L. Sapino. Retrieval in
Multimedia Presentations.ACM Multimedia Systems
Journal, to appear.

[4] O. Gaggi and A. Celentano. Modelling Synchronized
Hypermedia Presentations.Multimedia Tools and Ap-
plications, to appear.

[5] N. Layäıda, L. Sabry-Ismail, and C. Roisin. Dealing
with Uncertain Durations in Synchronized Multime-
dia Presentations.Multimedia Tools and Applications,
18(3):213–231, december 2002.

[6] F.B. Paulo, P.C. Masiero, and M.C. Ferreira de Oliveira.
Hypercharts: Extended Statecharts to Support Hyper-
media Specification.IEEE Transactions on Software
Engineering, 25(1):33–49, January/February 1999.

[7] C. Poellabauer, K. Schwan, and R. West. Coordinated
CPU and Event Scheduling for Distributed Multimedia
Applications. InACM Multimedia Conference, pages
231–240, 2001.

7

