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Abstract—Cloud-based interactive multimedia applications
such as virtual games and video streaming are gaining high
popularity. However, giving the high bandwidth consumption,
the remote execution can negatively impact the quality of
the multimedia traffic. In such a realm, data travel different
communication networks from the cloud to the final users
crossing the last meters the home’s access point (AP). In such
a scenario, the quality-of-service (QoS) support is a challenging
task, particularly in the home network environment, with hetero-
geneous applications simultaneously running and consuming the
available bandwidth. To address this issue, we propose ReiLeCS,
a Reinforcement Learning-based Controller and Scheduler for
interactive multimedia traffic in Home Area Networks (HAN).
Through reinforcement learning and the maximization of a
reward function, it enables the AP to schedule the arriving
multimedia traffic from the cloud according to their required
QoS. Simulation results using real multimedia traffic conditions
demonstrate that ReiLeCS achieves better performances com-
pared with existing packet scheduling policies.

Index Terms—interactive multimedia, QoS, Reinforcement
Learning (RL), wireless

I. INTRODUCTION

Cloud technologies represent a game changer in how we
enjoy multimedia contents [1]. The possibility to transfer the
storage and the computational power to remote servers allows
users to have access to services and experiences that, until
a few years ago, would have required dedicated multimedia
supports (e.g., DVDs) or dedicated hardware (e.g, game con-
soles). Instead, to enjoy them, tiny clients or any other device
already present at home suffice.

The plethora of services that can be offered through the
cloud is vast, but the most challenging are the interactive mul-
timedia services (e.g., cloud gaming), which have to guarantee
a reactive interaction with the users. For this reason, this new
category of services requires both high amount of bandwidth
and low end-to-end latency [2], [3]. This is not a simple task
but some solutions are already being studied.

Figure 1 depicts a typical scenario for the remote fruition
of multimedia contents. Relaying on remote execution, the
data is usually generated and transmitted from the cloud-
server to an access point (AP) of a home area network
(HAN) which sends the data to the user’s device. The data
are transmitted from the cloud-server to the AP through data
connections, e.g., fast optical connections or even mobile 4G
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Fig. 1. Architecture for remote multimedia run.

or 5G connections. However, when the data reach the HAN,
smart home appliances and multiple users could be connected
to the AP and intensively using the network to enjoy either
high quality or interactive multimedia services [4]. A scenario
that is more and more frequent, especially during these days
where the COVID-19 pandemic drastically transformed the
global network usage [5], [6]. Therefore, the HAN available
bandwidth could become crowded and the provision of the
required QoS for multimedia applications challenging.

Therefore the AP must smartly deliver the multimedia traffic
to the final users in order to guarantee a proper quality of
experience (QoE), taking ito account the QoS requirements
of each application and the available network resources. In
this paper, we propose the Reinforcement Learning-based
Controller and Scheduler (ReiLeCS) for interactive multi-
media traffic in HANs. ReiLeCS enables the AP to adapt
its multimedia traffic control and scheduling to the available
bandwidth in the HAN in such a way to deliver the traffic flows
according to their required QoS. We identify the QoS of the
different services in terms of data-rate, latency and reliability.

We exploit the heterogeneous QoS requirements of the
multimedia traffic and we classify them into multiple classes
of traffic. Then, we formulate the scheduling problem as a
Markov decision-based framework to which we associate a
carefully designed reward function by considering the QoS
requirements of every traffic class. ReiLeCS deploys Rein-
forcement Learning (RL) techniques to enable the AP to learn
the policy that best and adequately delivers the traffic purely
through experience [7]. Our goal is to achieve a stable and
balanced traffic scheduling with QoS support for a long time
horizon by maximizing the expected cumulative discounted
reward. Simulation results demonstrate that ReiLeCS consid-



erably improves the system performance.
The paper is organized as follows. Section II overviews

the related works. In Section III, we present the system
model, then we describe our proposed solution, ReiLeCS, in
Section IV. In Section V we provide and discuss our evaluation
results. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

As mentioned, the QoS and QoE requirements to properly
enjoy interactive multimedia and high quality video streaming
are not easy to reach; researchers have hence already focused
their attention on this problem.

For instance, in Bujari et al. [8], the authors chose to
deploy a TCP-Vegas like algorithm on the top of the home
gateway in order to make different network flows coexist.
The designed algorithm exploits the type of protocol that the
different network flows uses to prioritize some packets. In
Corbillon et al. [9] instead, the authors use a different approach
based on statistics. Basically, it exploits the peculiarities of
360-degree virtual reality videos to design a statistical model
able to reduce the bandwidth consumption and, at the same
time, to maintain the video quality. The model performs a
prediction of the user’s head movements and transmits only
the packets related to the portions of the 360 video that is most
plausible that will be displayed. To prioritize packets only on
the basis of the service’s protocol could be a weak strategy
in the presence of multiple interactive services running on the
HAN. However, even if we are not considering 360 videos,
the idea to exploit the specific peculiarities of the considered
services is a good starting point to formulate our solution.

Among the various techniques under consideration, one of
the most promising regards acting directly on the scheduling
algorithm that manages the packet transmission. In [10] the
authors try to manage multiple video streaming services in
the same AP through the use of a scheduling policy called
Earliest Positive-Debt Deadline First (EPDF). In this policy,
the AP schedules first the packet with the earliest deadline
from those whose associated clients possess strictly positive
truncated time debts. A similar approach comes from [11]
where an algorithm called Delay-Prioritized Scheduling (DPS)
is proposed for the management of real time traffic in 3GPP
LTE systems. This strategy aims to maximize the throughput
while satisfying the QoS requirements of the real time user’s
applications. To do that, the algorithm uses the instantaneous
downlink signal-to-noise ratio values and the packet delay
information of each user. These solutions cannot be directly
applied to our scenario; yet, we agree that the focusing on the
packet scheduling algorithm is an effective approach.

The scheduling algorithms can be enhanced with the aid
of RL techniques. The authors of [12] use RL to design
a cellular network scheduler that dynamically adapts to the
traffic variation and to different reward functions to optimally
schedule Internet of Things traffic. In [13] RL is used to
schedule the packets on the basis of specific QoS parameters of
diverse smart grid applications that operate in cognitive radio
sensor networks. The objective is to mitigate problems such as

electromagnetic interference, equipment noise or obstructions.
The objective of our research is clearly different; yet, the
adopted QoS parameters are well suited for the interactive
multimedia and the problem that we address.

The aforementioned approaches are not adequate for a
dynamic scenario with multiple cloud-based interactive multi-
media services running in the same HAN; nevertheless, the
use of RL has been proven as a good decision maker in
dynamic environments. This leads us to opt for a scheduling
algorithm based on RL to take into account the specific QoS
characteristics of the running services. The final objective is
to help the AP to manage heterogeneous network flows and
to guarantee the related QoS requirements.

III. SYSTEM MODEL

A. System Overview

We consider the HAN scenario where different users take
advantage of the cloud computing technology and enjoy multi-
ple multimedia applications (services). The users’ devices are
connected to the Internet through a local AP. They exploit
the wireless HAN, e.g., Wi-Fi, to communicate with the AP
which ensures the two way communication between the users’
devices and the cloud-server. From one side, it transmits the
users’ computational requests to the cloud. Then, from the
other side, it sends back the cloud responses to the final
devices. In this contribution, we focus on the communication
from the AP to the final users (downlink) as this has the
highest requirements in terms of bandwidth resources. Our
aim is to achieve an efficient data packet scheduling on
the downlink. In Table I, we overview the most important
multimedia applications, their packet inter-arrival times (λ)
and their QoS specifications attributed in terms of data rate (β),
delay (τ ), and packet-error-rate (α). As shown in the table, the
considered applications have heterogeneous QoS requirements.
Thus, to fulfill our objective, we exploit this aspect and classify
the received data packets into multiple classes of services.

In the rest of this section, we present the AP model for
the traffic control into multiple classes of services. Then, we
describe the mathematical formulation of our problem.

B. Access Point Model for Multiple Classes of Traffic

We consider m the number of interactive multimedia ap-
plications that the users enjoy at home. The AP classifies
the data flows that arrive from the cloud into m classes
according to the QoS requirements of each application. As

TABLE I
MULTIMEDIA APPLICATIONS AND THEIR QOS SPECIFICATIONS.

Service β
(Mbps)

τ
(ms)

α
(%)

λ
(ms)

Cloud Gaming
(1080p)

10 to 15 (DWN)
0.5 to 1 (UP) ≤ 160 1 0.92

4K Video
Streaming 20 to 25 (DWN) Preload is

possible 1 0.76

Online Gaming 1.5 to 3 (DWN)
0.5 to 1 (UP) ≤ 160 5 17.06
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Fig. 2. Queuing model for multimedia traffic in the AP.

depicted in Figure 2, the AP uses the set Q = {q1, . . . , qm}
of m queues to store the different data flows before being
scheduled to their final receiver. When a data packet of class
i arrives to the AP, it is stored in the queue qi. Then, the AP
proceeds to its scheduling and transmission. We characterize
the QoS attributes (βi, τi, αi) of every class of traffic i by
adequately chosen minimum and maximum threshold values
{(βmini , βmaxi ), (τmini , τmaxi ), (αmini , αmaxi )}. The threshold
interval of each attribute defines its tolerance in a class i in
terms of data rate, latency and packet-error-rate.

To achieve an efficient scheduling of the data packets with
the same QoS requirements, the AP schedules the packets
stored in the same queue qi, according to the First Come First
Served (FCFS) policy. We assume that time is divided into
continuous scheduling periods (SP). During every SP, the AP
aims at exploiting the available bandwidth and schedules the
multiple classes of the data packets according to their QoS
requirements. Therefore, at the beginning of every SP, the AP
makes multiple consecutive scheduling decisions to transmit
or not the first packet q1i from the head of every queue qi
(i ∈ {1, . . . ,m}). Then, as far as the AP senses available
bandwidth, it continues to make new decisions. In this context,
we denote by n the scheduling decision number n that AP
makes during time and by bn the available bandwidth at the
time this scheduling decision was taken.

Based on the described model, we present in the following
the mathematical formulation of our scheduling problem.

C. Mathematical Formulation

Throughout the different scheduling decisions, the AP has
to maximize the utility to send multimedia packets in the HAN
subject to the data rate, latency and reliability constraints of
the different classes of traffic. Therefore, we formulate the
problem as:

Maximize
∞∑
n=1

m∑
i=1

un,i(β
1
i , τ

1
i , α

1
i ) (1a)

subject to β1
i ≤ bn, (1b)

τ1i ≤ τmaxi , (1c)

α1
i < αmaxi , ∀i ∈ {1, . . . ,m}. (1d)

The objective function (1a) that the AP wants to maximize
will be presented and designed in Section IV-B. Constraint
(1b) ensures that during the scheduling decision n, a packet

q1i is admitted only when its data rate requirement can be
satisfied through the available bandwidth bn while the previ-
ously scheduled and transmitted packets continue to be served.
Constraint (1c) makes sure that q1i can be delivered within the
given flow delay. Similarly, constraint (1d) ensures that the
packet error rate of q1i is under αmaxi .

Formulation (1) presents a sequential decision making prob-
lem. Considering the dynamic arrival of packets, the variable
bandwidth and the heterogeneous QoS requirements of the
different traffic classes, the problem is difficult to solve. Thus,
we opt for the use of a reinforcement learning (RL) approach.
In essence, using such an approach, the AP learns the optimal
policy via successive interactions with the environment and
updates its knowledge through the reward feedback.

Our RL-based scheduler is presented in the next section.

IV. OUR REINFORCEMENT LEARNING APPROACH FOR
MULTIMEDIA TRAFFIC SCHEDULING

Reinforcement Learning (RL) is a set of techniques that al-
lows an agent to take actions and interact with an environment
so as to maximize a total reward. RL is always paired with
a Markov Decision Process (MDP). Thus, in this paper, we
need to first transform our packet scheduling problem into a
MDP. Then, we can design our RL approach.

In this section, we first design the MDP and the reward
function associated to our problem. Then, we present the
learning mechanisms that we use in our solution.

A. Markov Decision Process Model Design

A typical MDP consists of the set (agent, state, action,
reward) as shown in Figure 3.

In our approach, we present the MDP as:

• Agent: an agent is an entity that performs the learning
task. In our Reinforcement Learning-based Controller and
Scheduler (ReiLeCS), the smart home’s AP is responsible
for scheduling the sets of packets in the different queues
and transmitting them over the available bandwidth.

• State: a state of the system is the information that the
agent can obtain when observing its surrounding envi-
ronment. Before making the scheduling decision n, we
define the system’s state sn as:

sn = (bn, sn,1, sn,2, . . . , sn,m) (2)

Environment

action

observation,

reward

Agent

Fig. 3. MDP model.



sn is composed of the available bandwidth (bn) and the
set {sn,1, . . . , sn,m} where sn,i is the state of the queue
qi (i ∈ {1, . . . ,m}). We design sn,i as:

sn,i =

(
β1
i ,

z1i
τmaxi

,
dn,i
αmaxi

)
(3)

In Formulation (3), β1
i presents the data rate of q1i . If

qi is empty then β1
i equals 0. Instead, z1i presents the

waiting time of the packet q1i in qi. Therefore, the quotient
z1i

τmax
i

measures whether the waiting time of q1i is below
the maximum allowed delay τmaxi . Similarly, the third
element evaluates whether the AP exceeds the maximum
threshold αmaxi in terms of packet error rate and dn,i
presents the number of packets that have been dropped
before making the scheduling decision n.

• Action: an action an indicates how the agent responds
to the observed state sn. In our system, an action an
is the set (an,1, . . . , an,m) where an,i presents the AP
scheduling decisions, to transmit the packet q1i or to keep
it waiting till the next decision making.

• Reward: a reward represents an evaluation of the decision
made by the agent. In our system, the AP uses the reward
to evaluate the long-term performance of its scheduling
decision. The design of the reward function is discussed
in more details in the next section.

B. Reward Function

After every scheduling decision, the AP assesses the per-
formance of the action an on the state sn. It uses the reward
function un(an, sn) that transforms the QoS performance of
the multiple scheduled classes of traffic into a utility value.
Specifically, un(an, sn) can be expressed as:

un(an, sn) =

m∑
i=1

un,i(β
1
i , τ

1
i , α

1
i ) (4)

It is the sum of un,i (i ∈ {1, . . . ,m}) where un,i measures
the impact of the action an,i on the state sn,i of the queue qi.
We design un,i as:

un,i(β
1
i , τ

1
i , α

1
i ) = usend

n,i (β
1
i )− u

dropped
n,i (α1

i )− ustored
n,i (τ1i ) (5)

usend
n,i , udropped

n,i and ustored
n,i are expressed in the equations (6),

(7) and (8), respectively. More in detail, usend
n,i expresses the

bandwidth used to transmit packets from the queue qi. Instead,
udropped
n,i presents an evaluation of the number of packets that

have been dropped. In this study, a packet is considered to be
lost if it is not scheduled and transmitted before its expiration
time. The third value, ustored

n,i , provides an evaluation of the
scheduling decision on the delay of the head-of-queue packet
q1i . It is involved in the utility function un,i only if the AP
decides to not transmit q1i , i.e., an,i = 0. As the AP keeps q1i
waiting for the following scheduling decisions, both its waiting
time and ustored

n,i increase.

usent
n,i (β

1
i ) = β1

i an,i (6)

udropped
n,i (α1

i ) =
di(t)

αi
(7)

ustored
n,i (τ1i ) =

z1i
τmax
i

(1− an,i) (8)

During a scheduling period, the AP aims at maximizing un.
Its goal is to maximize the bandwidth usage, minimize the
waiting time of the different stored data packets in the m
queues and minimize the number of dropped data packets. By
using RL, the objective is to consider the different decisions
made sequentially over time. As a consequence, our goal is to
maximize the expected cumulative discounted reward r:

r = E[
∞∑
t=0

γtun(an, sn)] (9)

where γ ∈ (0, 1] is a factor discounting future rewards.

C. ReiLeCS

In this section, we present the Reinforcement Learning (RL)
solution for our multimedia packet scheduling.

One of the dominant RL approach is the value function
approach. For each state or state-action pair the value function,
i.e., reward, is calculated. Thus, the agent takes advantages of
its training period to discover possible state-action pairs and
save their associated value functions in a table. As a conse-
quence, the value function approach has several limitations,
especially with models that require a large state space; it is
limited to tasks with small numbers of states and actions.

In our case, during the scheduling decisions, a very large
number of the encountered states may have never been expe-
rienced before (during the training phase). In fact, new users
may join the network and use different multimedia services.
Also, the available bandwidth can change due to interference
or the deployment of new smart home appliances such as smart
meters or smart surveillance camera. For these reasons, we use
the linear gradient descent to get a compact and generalized
representation of an estimated reward function [7]. We express
the reward function estimator as follows:

f̂(sn, θ) = θTφ(sn) = θT ν (10)

In Equation (10), ν is the set of features of the state sn.
The set of parameters θ presents the key of f̂(sn, θ) since this
function faithfully approximates the reward function un. Thus,
the AP exploits the training phase and updates the weights θ
in a way to minimize the error between un and f̂ . The set θ
is updated as:

θ = θ + α(un − f̂(sn, θ))ν (11)

where α is the learning rate (α ∈ [0, 1]).
The approximator f̂(sn, θ) is differentiable. The derivative of
f̂(sn, θ) with respect to θ is ν.

∂f̂(sn, θ)

∂θ
= ν (12)



In Algorithm 1, we present in details the ReiLeCS training
algorithm. During every episode, i.e. a number (Max) of
sequential decisions, the AP discovers new states sn and
at the same time updates the weight θ. The objective here
is to enable the AP to make the optimal packet scheduling
decision. Therefore, the AP needs to not only focuses on the
immediate rewards but also the cumulative rewards on the long
term. Thus, it has to avoid local optimal rewards and explore
new actions that may yield higher rewards in the future. To
this end, the AP uses the ε-Greedy algorithm to balance the
exploitation-exploration trade-off (line9 - line13).

Algorithm 1 ReiLeCS training algorithm.
1: Input: learning rate α, exploration probability ε
2: Initialization: Randomly initialize θ
3: for each episode do
4: n = 1
5: for n ∈ [1, . . . ,Max] do
6: while the bandwidth is available do
7: Observe the state sn
8: Choose a random probability p (ε-greedy)
9: if p < ε then

10: randomly select an action an
11: else
12: an = arg Max

an

f̂(sn, θ)

13: end if
14: Calculate un
15: θ = θ + α(un − f̂(sn, θ))ν
16: n = n+ 1
17: end while
18: end for
19: end for

V. PERFORMANCE EVALUATION

In this section, we present some numerical evidences to
demonstrate the effectiveness of ReiLeCS. We first consider
the scenario of a HAN where different users are enjoying the
multimedia applications reported in Table I (m = 3). Then,
in order to emulate realistic network traffic, we recorded real
traffic measurement from Wireshark, the open-source packet
analyzer, to generate the data sets that we have used to train
and test our solution. Every data set is characterized by a
number of users (from 1 to 5) per multimedia application.

First, we investigate the performance of the training algo-
rithm, i.e., Algorithm 1. When the learning-rate α equals 0.01,
we measure the convergence of the mean squared error (mse)
between the reward un and the estimated reward function
f̂ . Figure 4 shows the variation of mse according to the
episode number. As can be observed, at the beginning of the
training process, the achievable mse fluctuates widely. Then,
after a sufficient number of episodes, this fluctuation becomes
negligible and the mse converges to its optimal value. This is
due to the fact that the AP continuously updates the weights θ
based on the feedback error it receives (un − f̂ ). As a result,

Fig. 4. Convergence of the mean squared error of ReiLeCS.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
c
c
u
m

u
la

te
d
 d

a
ta

-r
a
te

 (
1
0

3
) 

/M
b
p
s

epsilon

Fig. 5. Exploitation-exploration trade-off.

after a sufficient number of episodes, the AP acquires a good
knowledge of the reward un.

In Figure 5, we focus on the exploitation-exploration trade-
off. Thus, when the available network bandwidth equals
1300 Mbps and varying the values of ε, we measure the ac-
cumulated exploited data-rate. The chart shows that exploring
new actions and states that do not result in the best reward can
improve future scheduling decisions. For our approach the best
usage of the bandwidth is achieved when ε equals 0.01. Then,
as we increase ε, i.e., explore more random action and states,
the performance degrades.

In Figure 6, we depict the variation of the accumulated data-
rate with the total available bandwidth and we compare the
performance of ReiLeCS with the greedy scheduling policy
and the random policy. When using the greedy scheduling
policy, the AP focuses on maximizing the reward during
the current scheduling decision n without considering its
impact on future rewards. With the random policy, while
the AP senses available bandwidth, it chooses the packet to
transmit randomly, without taking into account any of the QoS
requirements of the considered multimedia applications. As
a result, the chart shows that our approach outperforms the
greedy and the random policies. The greedy policy maximizes
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the instantaneous reward un and does not explore new actions
that may provide better scheduling decisions in the future. The
random policy takes the decision even more blindly. ReiLeCS
takes advantage of the ε-greedy algorithm; it explores new
states and actions to avoid local optima with the hope of
finding a global optimum.

Finally, in Figure 7 we evaluate the capacity of ReiLeCS to
satisfy the delay requirements of the considered applications.
Since cloud gaming possesses the most challenging combina-
tion of small inter-arrival time λi and stringent delay require-
ments (previously shown in Table I), we focus on the mean
queuing time of the cloud gaming packets while varying the
data sets (i.e., the number of users enjoying the applications).
As reported in the chart, the measured delay increases with the
number of users per application since the channel becomes
more and more crowded. ReiLeCS and the greedy policy
achieves an almost identical waiting time even if the former
was able to exploit more bandwidth as shown in Figure 6.
They both consider the QoS delay requirement during their
scheduling decisions; thereby, they prioritize the scheduling of
packet with the highest delay requirements. As foreseeable, for
the various data sets, ReiLeCS outperforms the random policy
since the latter completely ignores the QoS requirements. We
can hence conclude that the estimated reward function f̂(sn, θ)
succeeds in considering the heterogeneous QoS requirements
of the applications and prioritizing the packet flows with with
the most stringent requirements.

VI. CONCLUSION

In this paper, we proposed ReiLeCS, the Reinforcement
Learning-based Controller and Scheduler for interactive multi-
media traffic in HANs. In the context of cloud based multime-
dia content delivery, ReiLeCS enables a smart home’s AP to
schedule the cloud-generated multimedia packets according to
their QoS requirements. To this aim, before being scheduled,
the data packets are classified into multiple classes of ser-
vices. Then, RL is employed to allow the AP to take proper
scheduling decisions in order to maximize a reward function
we designed to consider the QoS requirements. ReiLeCS aims
at maximizing the expected cumulative reward. It exploits
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the ε-greedy algorithm to avoid local optima and improve
future scheduling decisions. We evaluated ReiLeCS using real
multimedia traffic conditions. The simulation results show that
ReiLeCS is effectively trained to optimize multimedia traffic
scheduling. Moreover, it demonstrates its capacity to consider
the variant QoS requirements and to prioritize the scheduling
of traffic with the most stringent QoS requirements.
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