
January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations

OMBRETTA GAGGI and AUGUSTO CELENTANO

Dipartimento di Informatica, Università Ca’ Foscari di Venezia,
Via Torino 155, 30172 Mestre (VE), Italia

{gaggi,auce}@dsi.unive.it

In this article we describe a prototyping environment, which allows an author to set
up and test a complex hypermedia presentation. It contains a visual editor, based on a
graph notation, in which the nodes are media objects and the edges are the synchro-
nization relations between them; an execution simulator, which helps the author to test
the presentation dynamics by manually triggering media related events; and a player,
which allows the author to preview the presentation and to visually relate the execution
evolution with the interpretation of the synchronization schema.

Keywords: Hypermedia authoring and prototyping; media synchronization; multimedia
presentation; execution simulation

1. Introduction

The integration of multimedia material into hypermedia documents on the World

Wide Web is widely used in many applications like distance learning, web advertis-

ing and e-business, virtual tourism, cultural heritage, news delivery, entertainment,

and so on. The improvements in CD and DVD technology, the price decrease and the

growth of network bandwidth for home connections bring hypermedia documents

and applications to the consumer market with great acceleration.

Authoring multimedia documents (often called multimedia presentations to

highlight their active, dynamic behavior) is a complex task, since the author must

deal not only with the structure and the layout of the document, but also with

its temporal behavior. The task is more difficult when dealing with interactive

documents, since unanticipated user interaction can alter the expected timing rela-

tionships between media. In this situation the integration and verification of a mul-

timedia presentation is a critical activity which cannot rely on repeatedly checking

the execution under all possible circumstances. Rather, a structured model should

support the document design, and simulation of media related events and user in-

teraction should be possible in the prototyping phase, in order to test the synchro-

nization and coordination among media under many event combinations, besides

their unattended execution.

In this article we illustrate LAMP, an authoring system oriented to fast pro-

totyping and testing of interactive multimedia presentations. The acronym stands

for LAboratory for Multimedia presentations Prototyping; it is based on a tempo-

ral synchronization model for multimedia presentations we have developed in past

1

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

2 O. Gaggi and A. Celentano

Visual

editor

Simulator Player

Views

Synchronization

schema
XML file

Presentation

execution

Schema

animation
Channel use

Fig. 1. The architecture of the LAMP environment

years and presented in Ref. 13. It allows the author to set up and test the dynamic

behavior of a complex multimedia presentation by defining the synchronization re-

lationships among media in an event-driven way. The model was designed with a

focus on the World Wide Web, where the media coordination can be suitably de-

fined by events triggering media download and activation, but can be used as well

for synchronizing locally stored media collections, as in a CD-ROM or in a DVD.

The prototyping system (Fig. 1) contains a visual editor for authoring the pre-

sentation, an execution simulator to test the presentation behavior on different

media-related and user-related events, and a player for the preview and the actual

execution of the complete presentation. In Fig. 1 rectangles are system components,

and ovals are data structures and visual results. Dotted arrows connecting the three

components mean execution integration, while solid arrows show the flow of data

among them.

The main component of the authoring environment is a visual editor based on a

graph notation in which the nodes are media objects and the edges are synchroniza-

tion relations between them, defined upon the occurrence of events like begin and

end of the media components. Visual layout and playback channels can be defined.

An execution simulator interprets the presentation synchronization graph and

the layout specification. It does not require the actual media file to be available,

using placeholders if they are missing. Its goal is to help the author to test the

presentation behavior not only during a normal continuous play, but also in presence

of user interaction, like pausing and resuming a presentation, stopping a media

playback, or following a link in a hypermedia document. Simulating the behavior

of a presentation with media placeholders rather than executing it with actual

media files speeds up the test phase, since the media events can be issued on an

arbitrary time scale, without waiting for long playbacks in each test case. It allows

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 3

also the designer to test the presentation under different relationships among the

mutual time properties of media, e.g., by changing the order in which related media

end, immediately observing the synchronization behavior for each case. In such a

way, the number of cases which can be checked is increased without the need of

supplying alternate media files. This possibility is valuable when designing not a

single presentation, but a generic presentation schema which can be instantiated

with several media files, generating different presentation instances derived from the

same template. The design of a schema instantiated with variable data is common

practice in dynamic Web sites, and is a practice emerging also in the multimedia

domain8: the example that will be discussed in Section 3.4 is very close to this case.

The visual editor generates an XML external representation, suitable for further

processing. It is used by the player, and supports also other applications (not shown

in Fig. 1) devoted to multimedia presentation retrieval9 and automatic generation

of standard presentations from templates and variable data8. Many different views

are supported by the editor, giving the author a complete control of the presentation

layout, synchronization and media relationships.

The authored presentation can be translated into other models and languages

for use outside the LAMP environment, e.g., in SMIL29, the W3C standard for

multimedia document integration. However, differences with SMIL exist which affect

the translation, as it will be discussed later.

A player supports the presentation delivery to final users. It can be used also

during the authoring phase as a previewer, showing the actual execution evolution

according to the synchronization schema designed.

This article is organized as follows. After presenting the relevant literature on

multimedia and hypermedia authoring in Section 2, in Section 3 we review the

media synchronization model on which the prototyping system is built. The visual

authoring system is illustrated in Section 4. Section 5 and 6 discuss the features

and the use of the execution simulator and of the player. Section 7 discusses the

presentation translation into SMIL, pointing out the relevant differences between

the two models. Section 8 draws the concluding remarks.

2. Related Work

2.1. Commercial tools

Many metaphors are proposed by existing authoring tools. The simplest is the

timed-based metaphor, used by Adobe Premiere1 and Apple iMovie3: multime-

dia elements are presented and organized in tracks along a time line. Macromedia

Director23 implements a theatrical metaphor in which text, audio and other media

objects are cast members on a stage, and the score is a sequencer which animates

the actors. These metaphors are simple and intuitive, but are not easy to manage

and maintain, since a modification to the time of an event can require to adjust the

time relationships between several objects.

Macromedia Authorware22 uses a flowchart-based paradigm where media objects

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

4 O. Gaggi and A. Celentano

are placed in sequence and grouped into sub-routines, like commands in procedural

programming. With this metaphor the author needs not to explicitly define the time

intervals ruling the multimedia presentation, which are computed according to the

execution order of the media components.

Microsoft Producer24 and Accordent’s PresenterOne26 are simple but effective

tools for creating presentations for the Web which synchronize an audio or a video

file with a set of slides, i.e., images or HTML pages. Video and audio files are divided

into scenes and synchronized to images on a timeline by automatically calculating

their download time. Transition effects can be added to enrich the presentation.

The MPEG-4 standard15 has solicited a number of authoring tools for producing

coded media streams and scene descriptions. Envivio Broadcast Studio12 supports

both spatial composition and temporal composition of media objects. iVAST Studio

Author16 is a visual environment dedicated to the creation of interactive MPEG-4

content that provides fine-grain control over audio, video, 2D graphics, animation

and interactivity. It allows the user to build rich media presentations using familiar

graphical user interface paradigms. A critical review of the issues related to the

specific aspects of MPEG-4 standard is in Ref. 31.

2.2. Research works

Besides commercial products, many research works have designed multimedia au-

thoring models based on different paradigms, able to create and manage temporal

scenarios.

Many works are based on the SMIL language29. GRiNS7, a GRaphical INterface

for creating SMIL documents29, provides three views, the logical structure view

to define the temporal structure, the virtual timeline view to define and adjust

fine-grain temporal interaction and the playout view to preview the presentation

behavior and to define the spatial layout.

SMILAuthor32 is an authoring tool for SMIL-based multimedia presentations

implementing the timeline metaphor. It is a flexible tool which helps authors to

generate reusable multimedia presentations. Since the editing functions are very

difficult to perform in the language domain, the system includes an algorithm to

calculate the playback duration of each object, based on the Real-Time Synchro-

nization Model, (RTSM), a model to represent the temporal relationships between

media objects.

Madeus21 is an authoring and presentation tool which uses graphs to represent

both temporal and spatial constraints of a multimedia document. Graphs are used

also for scheduling and time-based navigation.

The Hypermedia Presentation and Authoring System (HPAS) is based on the

Media Relation Graph, a simple and intuitive hypermedia synchronization model34.

A hypermedia presentation is modeled by a direct acyclic graph, where vertices

represent media objects and directed edges represent the flow of time.

HyperProp28 offers three graphical views of the document: the structural view,

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 5

Table 1. Comparison of the most relevant authoring tools

Tool Metaphor Re-use Testing Layout

Adobe Premiere timeline no partial1 n/a
Macromedia Director theatre partial2 no yes
Macromedia Authorware flow-chart yes no yes
iVast Studio Author icon-based partial2 yes yes
GRiNS icon-based yes partial1 yes
SMILAuthor timeline yes partial1 yes
Madeus graph-based yes no yes
HPAS graph-based yes no no
HyperProp timeline yes no yes
MICE graph-based yes partial1 yes

Mdefi timeline yes no yes

LAMP graph-based yes yes yes

1Preview only.
2Objects can be re-used only in the same presentation.

the temporal view and the spatial view. The author can use the structural view

to browse and edit the logical structure of the document, the temporal view to

represent the objects along a timeline and the spatial view to preview objects layout.

MICE14, a visual software engineering tool, implements the graph-based

metaphor, where nodes represent media objects (TAO) and directed edges represent

both spatial and temporal relationships. The result is described using TAOML, an

extension of HTML which allows authors to rapidly prototype multimedia applica-

tions using a standard web browser.

In Ref. 30, Tran-Thuong et al. integrate MPEG-7 tools for content modeling in a

SMIL-like multimedia model, to make the authoring process easier. Mdefi provides

three views: the timeline view for editing the temporal structure, the execution view

to lay out media items in the user interface, and the hierarchical view, i.e., a tree

view of the structure of the document.

2.3. A comparison of authoring approaches

Table 1 summarizes the differences among the most relevant systems reviewed with

respect to the authoring metaphor used, the re-use of presentation modules and

fragments, the presence of integrated testing, debugging and preview tools, and the

layout design.

With respect to a timeline approach1,3,24,28,30, a description based on

graphs14,21,34, flow-charts22 and virtual timelines7 is more flexible, since it does not

depend on the actual length of the media items. On the other hand, the timeline

description is more intuitive, since it is not always easy to capture the real presenta-

tion evolution from an event based description like a graph. But an event-based de-

scription, while less intuitive, provides a better specification of relationships among

objects, mainly for presentations designed to be delivered on the World Wide Web.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

6 O. Gaggi and A. Celentano

In the WWW media are delivered independently, and timing is subject to delays due

to server and network load. For the applications we address, the synchronization of

separate media needs not to be fine-grained (e.g., lip synchronization is achieved by

merging into the same file the video and the audio tracks), while it is important to

address issues like the user interaction, that can modify the temporal behavior of

a presentation with stops, reloads, VCR commands provided by players, hyperlink

jumps, and so on.

Moreover, while continuous media have a duration defined by their playing time,

for static media the concept of duration is fuzzy, since they do not evolve in time,

but their life depends on the timing of other media (in our model it depends also

on explicit timers). Therefore a time line specification for hypermedia presentations

that integrate continuous and non continuous media with user interaction can only

be an approximation of the real behavior. An event-based description is simpler to

draw and to adapt, since it allows the designer to concentrate on the relationships

between media without anticipating the actual behavior of each media items.

A user friendly authoring tool must allow the author to easily design and main-

tain multimedia presentations, but also to understand their final execution. Such

different features can be provided by an event based approach (e.g., a flow-chart

or a graph notation) integrated with tools to test the real presentation evolution,

with particular attention to the changes in presentation behavior such as the ones

produced by user interaction.

2.4. Multimedia presentation testing

Most approaches described in this section lack tools to test the multimedia pre-

sentation during design, before producing the final version. GRiNS, SMILAuthor,

MICE, and also some commercial products like Adobe Premiere, provide tools to

preview the presentation, but the user control during the preview is poor. In gen-

eral, none of the examined systems is provided with true testing functionalities,

through which the designer can exercise the presentation behavior under different

execution conditions, with the goal of finding errors in the design or in the execution

configuration5,25.

Chan et al.10 point out two major difficulties of multimedia software testing: the

size and variability of media objects, and the environmental settings. At one side,

in today’s multimedia presentations, designed to be delivered in different environ-

mental conditions, each media object is in effect a placeholder that can be mapped

to several instances with different properties and behaviors. Checking a presenta-

tion with specific instances could not exercise the behaviors induced by different

albeit compatible instances, and the extension in time of continuous media limits

the number of executions that can be run.

At the other side, the uncertainty in the environment of a typical multimedia

application prevents one of the fundamental requirements of traditional software

testing, the predictability of the results. Therefore, real-time testing models are

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 7

employed, related to resource management, quality of service and performance35.

In such a way, the author can check if the expected behavior of the presentation can

be obtained under the constraints and the variability of the delivery environment.

The testing of the conceptual design, however, is a different testing activity.

It is crucial whenever the multimedia presentations deviate from simple schemas

based on sequential and parallel execution of synchronized media: i.e., whenever

the possible unexpected behaviors do not come from resource failures, but from

wrong assumptions about the design of the presentation dynamics and of the media

relations.

As in traditional software verification, formal approaches can be used4,27,33, but

they are difficult to apply when hypermedia concepts are introduced which multiply

the execution paths to account for user interaction. They are also hard to apply

to presentations based on a fixed template enriched with varying media instances

taken from a repository and instantiated at run-time. As anticipated in Section 1,

this scenario, drawn from the technology of dynamic Web sites, is becoming popular

also in the multimedia domain.

In our authoring environment we aim at providing specific testing features to

help the designer to prototype a multimedia presentation by checking its behav-

ior under different media relationships, during all the design process. The testing

activity can be performed in a simulated environment, abstracting the relevant syn-

chronization properties of the media without using actual file instances, or using a

previewer, thus obtaining the same view of the final user.

According to software testing techniques, our approach belongs to the category

of structural or white box testing25, based on the solicitation of the presentation

control elements, i.e., the synchronization relations and the channel allocations.

As we shall discuss in Section 5, our system provides a clear connection between

the media synchronization schema defined and the behavior obtained. The author

can test the presentation or a part of it by triggering media related events, viewing

which relationships are activated and possibly changing those relations which induce

an unexpected behavior. In this way, LAMP provides a good trade-off between a

flexible presentation description and a user friendly interface.

3. The Hypermedia Presentation Model

The authoring environment we present is based on an underlying model for mul-

timedia presentations we have defined and discussed in Ref. 13. In this section we

briefly review the components of the model that are necessary for understanding

the LAMP overall philosophy.

The temporal behavior of a multimedia presentation is based on reactions of

media items to events. Start and end of continuous media are the basic events which

can trigger changes in the state of other media. The user can interact by pausing and

resuming the media, by skipping forward or backward, and by following hyperlinks

leading to a different location or time in the same document, or to a different

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

8 O. Gaggi and A. Celentano

document. At each user action the media must be resynchronized in order to keep

the presentation coherent.

Due to the event-based style of the synchronization relationships, a graph no-

tation is suitable for visually representing a dynamic multimedia document: media

are represented as nodes, and synchronization relationships are represented as typed

edges.

Compared to other approaches, discussed in Section 2, this model is simpler

because it does not require the knowledge of actual media timing; it is more flexible,

e.g., than a timeline-based model, since a change in a temporal property of an object

does not propagate to the definition of other objects’ behavior.

3.1. Media and events

A hypermedia presentation is modeled as a set of media and media containers (called

composites), hierarchically organized; the outermost composites are called modules.

Continuous media like video and audio, called clips, are the units to which

synchronization events are associated. Static media objects like texts and images,

are called pages, and are synchronized by the continuous media behavior.

Two special media control user interaction and timing: a user interaction object

is a continuous media object rendered as a button or as an active area, whose end

is ruled by the user clicking on it; a timer is an invisible continuous media object

whose length in time is set statically.

Each medium (except a timer) requires a device or a set of resources to be

rendered or played. A channel is a virtual device which is used by one media item

at a time, for all the duration of its playback. A channel can be a window browser

on the user screen, a frame in a window, an audio channel, or a combination of

video and audio resources like those required to play a movie with an integrated

soundtrack.

3.2. Synchronization relations

Table 2 shows the five basic synchronization relations. The “plays with” (⇔) and

the “activates” (⇒) relations roughly correspond to the par and seq tags of SMIL,

but differences exista. They behave as described in Table 2 only if media objects

evolve naturally: in the relation a ⇔ b, object b is not terminated if object a is

stopped before its end, e.g., by a user action; in the relation a ⇒ b, if object a is

stopped before its end, object b is not activated.

The synchronization relations ⇓, ⇋ and
α
> are mostly used with user interaction,

which involve not only the control of media execution but also the activation of

hyperlinks. For example, the relation a ⇓ b is used to propagate a “stop” from an

object to other objects, and can model skipping forward or backward inside a timed

aSection 7 discusses the problems of translating the presentation designed with LAMP into SMIL.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 9

Table 2. The synchronization relations

Relation Editor’s label Behavior

a ⇔ b play
a plays with b: when a or b is activated, a and b play in
parallel; object a is master, when it ends b is forced to
terminate, if still active.

a ⇒ b act a activates b: when a ends, b is activated.

a ⇓ b stop a terminates b: a forced end of a is propagated to b.

a ⇋ b repl
a is replaced by b: when b starts, a is forced to terminate
and to release the channel, which is used by b.

a
α

> b pri α

a has priority over b with behavior α: when a is activated,
b is paused (α = p) or stopped (α = s). If α = p, b is
resumed on a’s end.

presentation. In the relation a
α
> b, a may be the target of a hyperlink that moves

the user focus from the current document to another document, thus requiring the

suspension or the stop of the one currently playing.

Other synchronization effects can be obtained by combining media into com-

posites, which have an observable behavior as a whole. Finally, timers and user

interaction objects can be used for obtaining behaviors not directly supported by

the five basic synchronization relations: e.g., the overlap between two media a and

b (as defined by Allen2) can be obtained by introducing a timer t setting the delay

between a and b (a executes first), and the synchronization relations a ⇔ t, t ⇒ b.

The reader is referred to the cited work13 for a complete discussion of details

and motivations about this synchronization model.

3.3. Execution specification

If we observe a hypermedia presentation along time, its playout can be split into

phases corresponding to the time intervals between two events. It can therefore

be formally described by an automaton, whose states contain, among other in-

formation, the set of media active during the time span which corresponds to that

state and the association between channels and media objects currently using them.

Given an event, the transition function of the automaton moves the presentation to

another state, thus describing how the presentation is affected by that event9.

The automaton completely describes all the possible evolution of the corre-

sponding presentation, under all conditions about triggering of events related both

to unattended play and to user interaction. Therefore it can be used to compute

the presentation reactions during the testing phase of the authoring process.

3.4. A sample presentation

As an example, we describe the summary of a news-on-demand presentation. The

presentation is modeled following the introductory presentation of the highlights of

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

10 O. Gaggi and A. Celentano

Fig. 2. A sequence of screenshots of a television news summary

the television news broadcast (named TG1, TG2 and TG3) of the public Italian

network, which follow a common schema illustrated by the sequence of images of

Fig. 2, taken from TG1.

After the opening titles (first image in Fig. 2), which are accompanied by a

theme tune, a short summary of each story is read by a speaker and illustrated by

a video (images 2, 4 and 6); a title superimposed on the video appears immediately

(in TG2) or after a short delay (in TG1 and TG3). A short break between the

stories shows an animation, which is a loop with the logo image in TG2, a fragment

of the opening title in TG1 and TG3 (images 3 and 5). A background tune is played

during the summary.

In our example we follow a mix of features of the three television news, and

assume that after the last story an index of the articles is displayed, from which the

user can select the ones to be delivered.

Figure 3 pictorially shows the synchronization structure of such a presentation.

The media items are represented by symbolic icons which recall their type: video,

audio, text, etc.. The voice of the speaker, the video and the title of each story

are played in parallel, with a 2 seconds delay, set by a timer, between the video

start and the title. When the speaker ends reading a story, an animated break is

activated by the relation ⇒ between the story audio and the animation timer, and

by the relation ⇔ between the timer and the animation; the animation loops, if it

is shorter than the time set by timer, due to the relation animation ⇒ animation.

The start of the break also removes the title of the previous story; this action has

to be defined explicitly because the title is a static medium (a text) which has no

dynamic behavior by its own.

When the delay set by the break timer has elapsed, the break ends and activates

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 11

op-title

fi

fi

¤

theme

¤

¤

video

fi

2 sec title

audio

fi

tune

animation

fi

¤

fi fi

index

fi

opening 1st story break other stories selection

>
s

. . .
2 sec

>
s

.

.

.

.

.

.

>
s

Fig. 3. The synchronization structure of a news-on-demand presentation

the following story. The background tune is activated after the opening title, as

modeled by the relation op-title ⇒ tune, and loops continuously, as modeled by

the relation tune ⇒ tune. In the last story, the end of the audio activates an index

of the articles, stopping the background tune. The index is a list of hyperlinks to

other presentations each of which features a complete article. The synchronization

between the summary and the articles is defined through
α
> relations, but are not

discussed in the example.

It is worth to note that the synchronization structure, while giving no informa-

tion about the time length of the media involved, states that the duration of each

story is equal to the duration of the audio comment, which is the master medium in

the relation audio ⇔ video, causing the video to stop its playback when the audio

ends.

This consideration shows that the use of events to represent the synchronization

among the media items is more flexible than representations based on media tempo-

ral properties such as, e.g., a timeline. In fact, the graph shown in Fig. 3 represents

a family of executions, where the exact duration of each medium (hence the exact

sequence of media related events) is not defined, but the mutual occurrences are

visible.

For example, assuming that the video and the audio are longer than two seconds

(the delay for the title display), hence that the title is displayed while the video

and audio are still playing, two different sequences of media related events can be

observed for each story: (1) the video ends before the audio, and (2) the audio ends

before the video. In the first case when the video ends, its last frame is displayed

until the end of the audio, while in the second case the video is stopped when the

audio ends. A strict interpretation of the synchronization schema in Fig. 3 would

require also to analyze the case in which the audio or video end before the title

display, but this situation is not meaningful from the television news point of view,

even if it is considered in the presentation schema.

Generally speaking, the different behaviors subsumed by the synchronization

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

12 O. Gaggi and A. Celentano

schema of Fig. 3 depend on the order of the media items natural end, and can be

deduced from the number of permutations of end events associated to the dynamic

media.

The number of different reactions to synchronization events can also be deduced

from the number of different paths in the automaton that formally describes the

presentation evolution (ignoring the different executions of the tune loop), which is

illustrated in Fig. 7, in Section 5.1.

4. A Visual Environment for Authoring Multimedia Presentations

We have developed a complete visual authoring environment for prototyping mul-

timedia presentations using the Java language. The choice of Java, despite of per-

formance problems, comes from the availability of platform-independent GUI and

media player packages which allowed us to speed-up the prototype implementation.

Authoring consists mainly in drawing the synchronization graph of the presen-

tation; all the temporal aspects of the presentation are defined by manipulating the

graph. The visual editor provides also facilities to design the screen layout and to de-

fine the playback channels, to simulate the presentation dynamics, and to generate

the XML description for the player.

The authoring environment does not provide functions for editing the media

components, but only to assemble the corresponding files; this is not a limitation,

since a wide choice of good programs for digital media manipulation is available.

The LAMP environment has been tested on MS-Windows, Linux and Mac OS

X environments. It uses the Abstract Windows Toolkit (AWT) for the graphical

user interface, which relies on the native GUI toolkit, thus preserving the look and

feel of each platform. The figures included in this article show the interface of the

Mac OS X environment.

Three other libraries supported the development of the visual interface:

• the Swing library17, a fully-featured library implementing windowing func-

tionalities,

• the JGraph library20, a library for graphs visualization and manipulation,

used to implement the synchronization graph, and

• the EZD library11, a generic graphics drawing library used in the simulator

interface.

The Java Media Framework (JMF) API19 was used for implementing the player.

JMF enables audio, video and other time-based media to be added to Java appli-

cations, providing a simple architecture to synchronize and control several media

objects. Even if a platform-independent version of the JMF libraries is delivered

by Sun Microsystems, which should guarantee media compatibility, we experienced

some differences in media support on different platforms, and different video and

audio codecs are supported by optimized, platform-dedicated versions, such as the

one for MS-Windows. For example, Quicktime MOV videos are fully supported,

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 13

while MPEG-1 files are supported by the Windows optimized version, not by the

platform-independent version on Mac OS X. The configuration of codecs installed

on the machine also influences the JMF behavior.

The authoring system exports an XML description of the presentation, that can

be further processed, through the JAXB library18 (Java API for XML processing).

The XML description is structured in three sections: the layout section contains

the description of the channels used by the media items, which are defined in the

components section; in the relationships section, the synchronization relation-

ships of the presentation are defined. The components section contains both the

description of the hierarchical structure of the document, in terms of composites,

and the information about the media items, like the channel used and the location

of the corresponding resource (attributes channel and file). Details about the

XML description are given in Refs. 8 and 13.

A second XML file is maintained by the editor to store all the information needed

to manage the visual properties of the presentation schema, such as the position of

the media items on the screen, the coordinates of the connecting edges, the channel

colors, and so on, describing the presentation in terms of the design user interface,

discussed in the next section.

4.1. The user interface

The visual editor provides two views: one to define the channels and the layout of

the presentation, and one to define the temporal behavior.

Channels can be of two types: regions, i.e., screen areas, and audio channels. The

user defines the size of the multimedia presentation window, and creates the regions

by drawing rectangles on it; each region has a unique name. The audio channels are

defined only by assigning them a name as illustrated in Fig. 4. Colors distinguish

the different regions, and are used consistently in the authoring processb. Regions

can be moved and resized by direct manipulation.

With reference to the example, two regions are defined: videotrack for the video

component of each story, and headline for the story title. The opening titles, the

break animation and the index of articles are also displayed in the videotrack region.

Two audio channels are defined, audiotrack for the tunes and news for the speaker’s

voice reading the stories.

The temporal behavior view provides the author with a panel on which to draw

the graph which describes the presentation dynamics in terms of synchronization

among media. Each media object is drawn as a rectangle with an icon which iden-

tifies the type. The rectangle is colored like the associated region (hollow for audio

objects) to show the channel used. Consistency between channel definition and us-

age is checked by the editor.

New media objects and composites are inserted by selecting the corresponding

bIn the figures distinguishable shades of grey are used to convey color information.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

14 O. Gaggi and A. Celentano

Fig. 4. The layout and channel definition of a news-on-demand presentation

icon from the media toolbox, and placing them in the drawing area. Properties

are set or changed trough a panel which specifies the media name, its type, the

associated resource (file name or URL) and the channel used for its playback. The

resource can be specified at a later time without preventing the author from testing

the presentation, as discussed in Section 5.

Synchronization relations are established by selecting a relation type from the

relation toolbox and by drawing a connecting edge from the first to the second

object, which is then labeled with the name of the relation type.

Figure 5 shows the appearance in the visual editor of the synchronization struc-

ture depicted in Fig. 3. Additional synchronization relations have been added to

manage the situation in which the user stops a story. Assuming that the user can

control the video region with VCR-style controls, stopping the video must also stop

the audio, which in turn stops the timer and the title; since the time at which the

stop command is not known, it must be directed to both media, and will be effective

for the one active at that time.

In Fig. 5, the presentation is limited to two stories for simplicity. Indeed, it is a

typical case of instance of a more general schema, identified by a recurrent pattern,

easy to recognize, that contains a single news highlight (i.e., the video and the

audio files and the associated timer and title) together with the animation and the

timer which compose the break between the stories. The definition of presentation

templates which can be instantiated with different data at run-time is an extension

of this model, which is discussed at length in Ref. 8.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 15

Fig. 5. The synchronization graph of a news-on-demand presentation

5. Testing the Presentation Execution

An execution simulator allows the author to test the temporal behavior of the

presentation. The simulator uses media placeholders to show the channels’ usage.

The author, without being compelled to follow a real time scale, can trigger all

possible events, both internal (e.g., the end of an object play) and external (e.g., a

user-executed stop, a hyperlink activation or the start of a dynamic medium under

direct user control) to see how the events are propagated and how the presentation

evolves. The simulator checks the triggered events against the current presentation

state, detecting inconsistent situations such as the stop of a non-active medium,

or the start of a medium whose playback channel is not free, and issuing proper

diagnostic messages.

The simulator provides two interfaces for two different simulation styles. Accord-

ing to the first style, the simulation of channel use, media placeholders are used to

show the presentation dynamics as perceived by the final user; a second simulation

style, the animation of the synchronization graph, shows how the synchronization

relations affect the presentation execution.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

16 O. Gaggi and A. Celentano

Fig. 6. The simulation of channel use

5.1. Simulation of channel use

The simulator opens a new window which lists the media components of the pre-

sentation and displays the channels as designed by the author in the layout view.

Audio channels, which do not have a layout, are represented as small rectangular

areas out of the presentation window (Fig. 6).

The author can select a medium from the list and can send events to it: start,

stop and end, thus simulating its beginning, its forced stop or its natural end. Oth-

erwise, the author can select a file of pre-generated events, and see the presentation

evolution step by step.

The simulator execution follows step by step the evolution of the automaton

which formally describes the presentation dynamics. Figure 7 shows the automaton

of the sample presentation: each state Si contains the set of active media, while the

transitions are labeled with the media related events.

At each step, the simulator window contains all the information about the state

of the presentation. The user selects the event to simulate and the simulator executes

the transition function of the automaton, displaying the new state. The mapping

between the channels and the media items currently using them is represented by

the content of the regions in the simulator window, while the sets of active media

objects contains all the objects which are using a channel.

At the beginning of the simulation all the channels are free, therefore they are

drawn as empty, uncolored areas. Each channel is marked with its name. When the

author starts a media item, the channel it would use in the real execution is filled

with a media placeholder which is an image or a text taken from the media file, or

is colored with the color set in the layout view for that channel if the media file

is not available (audio channels are in white); the media item name is displayed in

the channel area. A number of incoherencies are checked and reported, e.g., if the

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 17

end timer()1

end tune()

tune, story ,
title , video

1

1 1
s4

op-title,
themes1

tune, story ,
title

1

1
s6

op-titles2

s0

s7
tune,anim,

timer

tune, story ,
timer , video

2

2 2
s8

tune, story ,
timer

1

1

s5

tune, story ,
timer , video

1

1 1
s3

end tune()

end tune()

end(tune)

end tune()

end tune
end(anim)

()

end video()1

end op-title()

start op-title()

end video()1

end timer()1

end theme()

end story()1

end op-title()
end story()1

end story()1

end story()1

end timer()

Fig. 7. A fragment of the television news presentation automaton

channel is busy because it was used by another media item and not released, an

error message is displayed.

The simulator checks the relationships defined by the author looking for the

ones which involve the selected media item (let us call it a):

• if a is a paused media, it is restarted;

• for each object b such that the relation a ⇔ b or the relation b ⇔ a exists,

the simulator starts object b, i.e., it fills the corresponding channel with the

media placeholder or with the channel color, and with its name;

• for each object b such that the relation a ⇋ b exists, the simulator first

stops object b, releasing the channel, then activates object a;

• for each object b such that the relation a
α
> b exists, the simulator first

stops (if α = s) or pauses (if α = p) object b and then activates object a.

A trace of the events triggered and media activated is logged for tuning and

debugging purposes.

The author can end or stop an active media. In both cases, the simulator re-

leases the corresponding channel by removing the media placeholder and replacing

the object name with the channel name. Then, as for media start, it analyzes the

relationships between the ended and stopped media item and the other media items.

If the author ends media item a:

• for each object b such that the relation a ⇔ b exists, the simulator stops

object b;

• for each object b such that the relation a ⇒ b exists, the simulator activates

object b;

• for each object b such that the relation a
p

> b exists, the simulator resumes

object b.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

18 O. Gaggi and A. Celentano

If the author stops a media object a, the simulator forces the termination of all

objects b for which the relation a ⇓ b holds. If the author pauses a media object a,

the simulator pauses also all media objects b if a relation a ⇔ b exists. In such a

way the author can see in every moment which channels are busy and which media

are using them.

The simulator can also load a list of pre-recorded events, giving the author a

complete unassisted animation of specific and different presentation behaviors in a

simulated time scale.

5.2. Animation of the synchronization graph

The interface described above is a simulation of media layout and dynamics during

the presentation playback. However, understanding the reasons for the observed

behavior, i.e., which part of the synchronization graph is currently involved in the

execution, is not simple. Except for the name of the media active in the channels, no

other information is visible. In order to improve the user perception of the events

and their relationships with the media, the simulation animates also the graph

of the presentation: when an object is activated, the corresponding node in the

synchronization graph is highlighted. Then the relations triggered by the activation

of the object are also highlighted, and their effect is propagated to the related

objects, giving the author the visual perception of how media synchronization is

achieved.

For checking the natural evolution of the presentation, the user sends end events

to the dynamic media, experiencing different combinations of relative timing; for

checking the behavior in presence of user interaction, the user can send start, stop,

pause and resume events. After any event, the graph is animated by showing how

this event is propagated to the target medium and to other media objects through

the synchronization relations. Therefore, the simulator allows the author to spot

(and possibly remove or change) the relations which induce an unexpected behavior.

Figure 8 shows some steps of the simulation of the presentation illustrated in

Fig. 5c. Active media objects and relations are highlighted with thick lines. In

step (a) the presentation is playing the opening titles: the user has started the

presentation by sending the start event to the op-title medium. The theme tune is

also activated due to the relation op-title ⇔ theme.

The transition from step (a) to step (b) is caused by the end of the theme tune;

op-title is still playing because it is the master medium in the op-title ⇔ theme

relation, therefore it is not affected by the other medium’s end. In step (c) the user

sends an end event to op-title, and the first story is activated due to the relation

op-title ⇒ story1, which plays together with video1 and timer1. The soundtrack

tune is also activated. The simulation continues as illustrated in steps (d)–(e) of

cThe graphical aspect is different from that of the visual editor because a different graphic library
has been used, but the representation of the synchronization graph is conceptually the same.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 19

(a) (b)

(c) (d)

(e) (f)

Fig. 8. The simulation of a news-on-demand presentation

Fig. 8 due to the following sequence of events: end(timer1), end(story1), end(timer).

The soundtrack tune continues playing since no end event has been directed to it.

Figure 9 shows the state of the channel occupation after triggering the end of the

title timer delay during the play of the first story; it corresponds to the step (d) in

Fig. 8.

Since the simulation is independent from the actual media file duration, the

author can simulate any combination of object duration. For example, in any of the

situations illustrated in steps (c)–(f) of Fig. 8, the author can trigger the end of

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

20 O. Gaggi and A. Celentano

Fig. 9. The channel occupation corresponding to step (d) of Fig. 8

the background tune, but since it loops the presentation state does not change, as

justified by the self loops in the automaton of Fig. 7; the tune ⇒ tune relation in

the synchronization graph is highlighted to show the reason for such a behavior.

5.3. Test data selection

The simulator can be used in two ways: the user can interactively select the events

to simulate, triggering them one by one, or import a file which contains a sequence

of events, running the simulator in automatic playback mode. In the latter case,

the simulator shows the evolution of the presentation step by step triggering on

a conventional time scale the events in the sequence. In both cases, the sequence

of events is test data, and the animation of the graph, shown by the simulator,

constitutes, together with the input data, a test case of the presentation.

The main problem of running the simulator with predefined data is the choice

of event sequences which are coherent with the presentation execution: e.g., the

events in the test data should not try to trigger the stop of a non active media, and

should not activate media out of their natural ordering, unless explicit hyperlinks

are provided in the presentation schema.

The solution to this problem relies on the automaton itself, which allows test

data to be validated. From each automaton’s state an edge starts for any event

that may occur during that state, and brings to a new state which captures all the

consequences of that particular event. Therefore, test data can be checked against

the automaton by following the events along a path from the initial to the final

state.

The automaton can also be used to generate test data for a complete and sys-

tematic test of a presentation according to coverage testing techniques. As discussed

in the literature on software testing, different perspectives on what is “covered” by a

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 21

Table 3. A set of test data for path coverage testing

Event sequence State sequence

1 start(op-title), end(theme), end(op-title), end(timer1),
end(video1), end(story1), end(timer)

S0, S1, S2, S3, S4, S6, S7, S8

2 start(op-title), end(theme), end(op-title), end(timer1),
end(story1), end(timer)

S0, S1, S2, S3, S4, S7, S8

3 start(op-title), end(theme), end(op-title), end(video1),
end(timer1), end(story1), end(timer)

S0, S1, S2, S3, S5, S6, S7, S8

4 start(op-title), end(theme), end(op-title), end(video1),
end(story1), end(timer)

S0, S1, S2, S3, S5, S7, S8

5 start(op-title), end(theme), end(op-title), end(story1),
end(timer)

S0, S1, S2, S3, S7, S8

6 start(op-title), end(op-title), end(timer1), end(video1),
end(story1), end(timer)

S0, S1, S3, S4, S6, S7, S8

7 start(op-title), end(op-title), end(video1), end(timer1),
end(story1), end(timer)

S0, S1, S3, S5, S6, S7, S8

8 start(op-title), end(op-title), end(story1), end(timer) S0, S1, S3, S7, S8

9 start(op-title), end(op-title), end(timer1), end(story1),
end(timer)

S0, S1, S3, S4, S7, S8

10 start(op-title), end(op-title), end(video1), end(story1),
end(timer)

S0, S1, S3, S5, S7, S8

set of test data can be taken. In our scenario, path coverage seems the most suitable

technique; in fact, the execution of all the media without considering their depen-

dencies, which roughly corresponds to the so called instruction coverage in software

testing, is not meaningful since we need to test the mutual relationships between

media. Branch coverage is also suitable; it means to execute the presentation by

reaching each state from every possible previous state; or, in other words, executing

the presentation by leaving each state under every possible event occurring in that

state. However, branch testing does not test all the different combinations of events

along time, leading to a weaker way to exercise the presentation.

According to path coverage, test data can be automatically generated by fol-

lowing all the distinct paths (all the distinct edges for branch coverage) in the

automaton. In principle there are paths of infinite length due to looping media, but

in practice loop traversal can be limited to a finite number of iterations without

affecting the significance of test.

With reference to the automaton of Fig. 7, a set of test data covering all the

paths from state S0 to state S8, without considering the loops induced by the

repeating tune, contains 10 different event sequences, shown in Table 3. To cover

all the edges of the automaton (still ignoring the tune loops), only 5 sequences are

needed, numbered 1 and 7–10 in Table 3.

6. The Player

Besides the authoring tool and the simulator, LAMP contains also a player of the

complete presentation designed. The player reads the XML file produced by the

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

22 O. Gaggi and A. Celentano

authoring tool and displays the channels according to the layout section. Then,

like the simulator, it builds step by step the automaton of the presentation from

the relationships section and finds the media item which starts the presentation.

As the user starts playback, the player starts the first media object and computes

the transition function of the automaton to find out which media items are active

in the next state. Media objects are located through the file attribute in the

components section.

The player could work jointly with the simulator to improve the prototyping

activity of multimedia presentationsd. If the author feels uncomfortable with the

simulator schematic interface, he or she could play the presentation with actual files

on a true time scale, viewing the synchronization evolution in real time according

to the relations triggered. The coordination of all the components of the LAMP

environment could then ensure that the author has a clear perception of presentation

playback and easy tracing of any design error of the authored presentation.

Although the visualization offered by the simulator is limited, it has, however,

some advantages with respect to the player. Simulation allows the author to pro-

totype the presentation in a “what if” style, and is also worth when the media

components are long-lasting files, since the author can trigger the end of a long

video sequence without waiting for the actual duration, to see the subsequent evo-

lution. In the same way, the absence of media embedded timing allows the author

to model and check the behavior of sections of the presentation whose structure

is repeated several times along the presentation time span, possibly with different

media instances.

7. Multimedia Presentation Translation in SMIL

The presentation designed and tested can be played as a stand-alone presentation in

the LAMP player, that interprets the XML file generated by the editor. The presen-

tation can also be translated into another language, more widely available or more

suitable for delivery over a network with full resource control mechanisms.We discuss

here the translation into SMIL 2.0, the W3C standard for multimedia documents29.

The presentation layout raises no problems: each visual channel can be trans-

lated into a SMIL region, a screen area hosting media to be played, with the same

spatial arrangement. Audio files do not require a specific channel in SMIL, therefore

audio channels are ignored.

The main differences between the two models concern the lack of a reference

model for the data structure in SMIL, and the type of media synchronization def-

inition. Our model organizes media objects into a hierarchical structure useful to

design complex presentation with recurring patterns. It can be used to infer some

temporal relationships between media without defining them explicitly: e.g., all

dWork is in progress for fully integrating the two components, which are subject to separate version
and library updates.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 23

the media objects contained in a composite structure must be stopped when the

structure itself is stopped.

As far as media synchronization is concerned, our model is fully event-based,

while SMIL adopts a timeline metaphor on which events can be defined to alter the

linear flow of media. We must note that SMIL does not cover all the synchronization

constraints defined in our model. In particular the two models differ in the way

actions directed to end the media execution affect the subsequent execution of the

presentation. Like Allen’s relationships, SMIL’s native features do not distinguish

between the natural and the forced termination of a medium; therefore, the effects

induced on a presentation component by a user act or by the behavior of another

component cannot be easily distinguished by the effects induced by the natural

evolution of the presentation. This limitation narrows the set of behaviors defined

in our model, which can be represented using SMIL. Other differences concern the

ability of the user to interact directly with the single media components to change

the presentation behavior.

As a consequence, even if it is sometimes possible to provide rules for translating

the synchronization relations into SMIL tags, they do not consider the overall syn-

chronization schema of the presentation, failing to generate the correct behavior.

As an example, the a ⇒ b relation can in most cases be translated with the seq tag,

but applying this correspondence with a local view can lead to wrong translation:

e.g., the relation a ⇒ a does not map into a sequence but plays media a in a loop,

and must be translated with the SMIL attribute repeat="indefinitely". A more

subtle example is the set of relations a ⇒ b, b ⇒ c, c ⇒ a, which interpreted sepa-

rately define media sequencing, but taken as a whole define a loop spanning three

media objects.

Therefore, a systematic translation of the multimedia presentation into SMIL

cannot be provided by a general algorithm working only at the level of the individual

synchronization relations. However, it is possible to design an algorithm for defining

with SMIL’s tags and attributes a set of presentation behaviors expressed with our

model, by analyzing the behavior of the presentation at a higher level, as defined by

its automaton. The algorithm covers most cases of practical interest, and is based

on the results of a work co-authored by one of the authors of this article6.

In that work the authors propose an algorithm to extract a SMIL script from

an automaton describing the behavior of a continuous multimedia presentation in a

context very similar to the one discussed in this article. Given the automaton derived

from a presentation designed with LAMP, such as the one depicted in Fig. 7, the

shortest path among the paths whose states cumulatively contain all the media

of the presentation contains all the information needed to build a corresponding

SMIL scripte. Along the path, each state represents the media items playing in

parallel, and two consecutive states define the sets of media items which are played

in sequence. The algorithm is indeed more complex, and considers not only the

eThis property is justified in Ref. 6.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

24 O. Gaggi and A. Celentano

set of active media in the automaton states, but also the events which step the

automaton to the next state. Without entering into details here, from the sample

presentation depicted in Fig. 5, whose automaton is partially illustrated in Fig. 7,

the algorithm finds the path traversing the states S0, S1, S3, S4, S7, S8, and extracts

the following SMIL code, which correctly translates the presentation behaviorf :

<seq>

<par end="op-title.end">

<video id="op-title" />

<audio id="theme" />

</par>

<par end="seq1.end">

<audio id="tune" repeat="indefinite"/>

<seq id="seq1">

<par end="story1.end">

<video id="video1" />

<audio id="story1" />

<text id="title" begin="2s" />

</par>

<anim id="anim1" repeatdur="2s"/>

<par end="story2.end">...</par>

</seq>

</par>

<text id="index" />

</seq>

However, even if a general translation scheme can be derived from the analysis of

the presentation behavior described by the automaton, the scheme does not apply

consistently to all types of synchronization structures. The reader is referred to

the cited article6 for a discussion about this algorithm and of its limitations. In

particular, our model can define presentations composed of independent flow paths,

selected by the events occurring to the continuous media. In the automaton, such

paths share an initial sequence of states, but then split in distinct states, in which

new different media items start their playback. In such cases, the translation into

SMIL must follow a different way.

Consider for example, the parallel playback of two continuous media, a and b.

When one of the two objects terminates its execution without interruption, the

other one is stopped, and one out of two images is displayed: c if a ends first (i.e., b

is stopped by a’s end), d if b ends first. Figure 10 shows the synchronization schema

and the automaton of this presentation fragment according to our model.

This synchronization schema must be represented in SMIL with an excl struc-

ture selecting one of the two media, c or d, according to the mutual time length of

media a and b, as illustrated by the following fragment:

fNon relevant parameters are omitted

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 25

a, bs1

s3

end a()

d

s
2 c

end b()

a

b d

c

¤

fi

¤

fi

Fig. 10. A presentation requiring specific SMIL translation

<par>

<par end="a.end;b.end">

<video id="a" .../>

<audio id="b" .../>

</par>

<excl>

<priorityClass peers="never">

</priorityClass>

</excl>

</par>

This example fails to fit the general translation schema; in this case, the reason

for such a difference is the inability of SMIL to individually handle the natural end

of a media item and the premature termination due to a synchronization act.

Generally speaking, the presentations designed with LAMP can be translated

straightforwardly into SMIL only in some cases, characterized by a substantial lin-

earity of media execution. Complex presentations, that trigger different behaviors

according to more sophisticated media execution control, require more complex

translation schemas that, as far as we have investigated the problem, do not fall

into a homogeneous processing schema.

8. Conclusion

In this article we have described the LAMP system, a laboratory for rapid prototyp-

ing of multimedia presentations. Its components are a visual authoring environment

based on a graph representation of a multimedia synchronization model, an execu-

tion simulator and a player to play the authored presentation to the final users.

LAMP provides facilities to define the layout of a hypermedia presentation, to

set up the synchronization relationships, to examine the parallel and sequential exe-

cution of media, and to save an XML description of the presentation. The simulator

allows the author to test the presentation dynamic behavior by triggering events re-

lated to media start and end, and to user interactions like pause, stop and hyperlink

activation. The possibility to generate test data in a systematic way for coverage

testing, archiving them in a file for later reuse, greatly improves the presentation’s

test phase.

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

26 O. Gaggi and A. Celentano

The authoring environment and the underlying multimedia presentation model

were proposed to the students of the “Hypermedia Systems” course at the Ca’ Fos-

cari University of Venice in Fall 2004. The students were asked, as part of their ex-

amination task, to design a multimedia presentation using different models, among

which the model presented here and the SMIL language. This experiment revealed

that, approaching the problem directly with the SMIL language, the students had

some difficulties in translating the desired behavior into a correct set of synchroniza-

tion tags, mainly when dealing with user interaction or media of unknown length.

Moreover, they were often not able to relate the SMIL tags used to the actual media

visualization in a cause/effect relationship.

A frequent misleading situation was the need to distinguish between a natural

end of a media item play and its forced stop as a reaction to another event, as-

sociating different presentation behaviors to the two cases, a situation common in

interactive presentations. The students found difficult to understand and implement

such a distinction using models in which there is no conceptual difference between

the two situations. They were thus applying the same synchronization constraints

to both cases, leading to a discrepancy between the expected and the obtained

behavior, without finding in an evident way the reasons for such a mistake.

Such problems were better approached using the LAMP authoring environment,

since the underlying synchronization model clearly distinguishes the reactions to dif-

ferent events, and the simulator execution highlights which synchronization relation

is responsible for the observed behavior.

9. Acknowledgments

The authors acknowledge the contribution of Diego Medici to the development of

the authoring tool, and Daniele Dal Mas and Alessandro De Faveri for the player

implementation. One reviewer made many detailed comments that helped us to

improve the article.

References

1. Adobe Systems Inc. Adobe Premiere. http://www.adobe.com/premiere.
2. J. F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM,

26(11):832–843, November 1983.
3. Apple Computer Inc. Apple iMovie 3. http://www.apple.com/imovie/.
4. A. F. Ates, M. Bilgic, S. Saito, and B. Sarikaya. Using timed CSP for specification,

verification and simulation of multimedia synchronization. IEEE Journal on Selected
Areas in Communications, 14(1):126–137, 1996.

5. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990.
6. P. Bertolotti and O. Gaggi. A study on multimedia documents behavior: a notion

of equivalence. Multimedia Tools and Applications, to appear, preliminary version:
Techn. Rep. 82/05, Dipartimento di Informatica, Università di Torino, January 2005,
http://www.di.unito.it/˜bertolot/tech-report-mtap04.pdf.

7. D.C.A. Bulterman, L. Hardman, J. Jansen, K.S. Mullender, and L. Rutledge. GRiNS:
A GRaphical INterface for creating and playing SMIL documents. In WWW7 Con-

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

A Laboratory for Prototyping and Testing Multimedia Presentations 27

ference, Computer Networks and ISDN Systems, volume 30(1-7), pages 519–529, Bris-
bane, Australia, April 1998.

8. A. Celentano and O. Gaggi. Template-based generation of multimedia presentations.
International Journal of Software Engineering and Knowledge Engineering.

9. A. Celentano, O. Gaggi, and M. L. Sapino. Retrieval in multimedia presentations.
Multimedia Systems Journal, 10(1):72–82, 2004.

10. W. K. Chan, M. Y. Cheng, S. C. Cheung, and T. H. Tse. Automatic goal-oriented
classification of failure behaviors for testing XML-based multimedia software applica-
tions: an experimental case study. Technical report, HKU CS Tech. Report TR-2005-
04, 2005.

11. Compaq Research. The Ezd library.
http://www.research.compaq.com/wrl/projects/Ezd.

12. Envivio Inc. Envivio Broadcast Studio. http://www.envivio.com/products/ebs.html.
13. O. Gaggi and A. Celentano. Modelling synchronized hypermedia presentations. Mul-

timedia Tools and Applications, 27:53–78, 2005.
14. A. Guercio, T. Arndt, and S.-K. Chang. A visual editor for multimedia application

development. In International Conference on Distributed Computing Systems Work-
shops (ICDCSW ’02), pages 296–304, 2002.

15. ISO/MPEG. Overview of the MPEG-4 Standard, ISO/IEC JTC1/SC29/WG11
N2725. mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm, 1999.

16. iVAST Inc. iVAST Studio Author.
http://www.ivast.com/products/studioauthor.html.

17. Java 2 Platform, Standard Edition (J2SE). J2SE Technology.
http://java.sun.com/j2se/.

18. Java Architecture for XML Binding (JAXB). The JAXB library.
http://java.sun.com/xml/jaxb/.

19. Java Media API. Java Media Framework API. http://java.sun.com/products/java-
media/jmf/.

20. JGraph.com site. The Java Graph Visualization Library. http://www.jgraph.com/.
21. M. Jourdan, N. Layäıda, C. Roisin, L. Sabry-Ismail, and L. Tardif. Madeus, an au-

thoring environment for interactive multimedia documents. In ACM Multimedia 1998,
pages 267–272, Bristol, UK, September 1998.

22. Macromedia Inc. Macromedia Authorware.
http://www.macromedia.com/authorware.

23. Macromedia Inc. Macromedia Director. http://www.macromedia.com/director.
24. Microsoft. Microsof Producer for PowerPoint 2002.

http://www.microsoft.com/office/powerpoint/producer/.
25. G. J. Myers. The Art of Software Testing. John Wiley & Sons, 2004.
26. RealNetworks, Inc. Accordent’s PresenterOne.

http://www.realnetworks.com/products/presenterone/index.html.
27. C. A. S. Santos, L. F. G. Soares, G. L. de Souza, and J.-P. Courtiat. Design method-

ology and formal validation of hypermedia documents. In Proceedings of the 6th ACM
International Conference on Multimedia, pages 39–48. ACM Press, 1998.

28. L. F. G. Soares, R. F. Rodrigues, and D. C. Muchaluat Saade. Modeling, authoring
and formatting hypermedia documents in the HyperProp system. Multimedia Systems,
8(2):118–134, 2000.

29. Synchronized Multimedia Working Group of W3C. Synchronized Multimedia Integra-
tion Language (SMIL) 2.0 Specification, August 2001.

30. T. Tran-Thuong and C. Roisin. Multimedia modeling using MPEG-7 for authoring
multimedia integration. In ACM SIGMM International Workshop on Multimedia In-

January 27, 2006 18:28 WSPC/Guidelines gaggicelentano

28 O. Gaggi and A. Celentano

formation Retrieval, pages 171–178. ACM Press, 2003.
31. Workshop on MPEG-4 Authoring, 14th ACTS Concertation Meeting, Bruxelles,

May 1999. http://www.cordis.lu/infowin/acts/analysys/concertation/multimedia/
reports/mpeg.htm.

32. C. Yang and Y.Yang. SMILAuthor: An authoring system for SMIL-based multimedia
presentations. Multimedia Tools and Applications, Kluwer Publ. Co., 21(3):243–260,
2003.

33. Chun-Chuan Yang. Detection of the time conflicts for SMIL-based multimedia presen-
tations. In Proc. of 2000 International Computer Symposium (ICS2000) - Workshop
on Computer Networks, Internet, and Multimedia, pages 57–63, 2000.

34. J. Yu. A simple, intuitive hypermedia synchronization model and its realization in the
Browser/Java environment. In Asia Pacific Web Conference, pages 209–218, Septem-
ber 1998.

35. J. Zhang and S. C. Cheung. Automated test case generation for the stress testing of
multimedia systems. Software: Practice and Experience, 32(15):1411–1435, 2002.

