An Environment for Fast
Development of Tabletop

Applications

Ombretta Gaggi
Department of Mathematics
University of Padua, ltaly
gaggi@math.unipd.it

Marco Regazzo

Anytime S.r.L.

via Siemens 19, Bolzano, ltaly
marco.regazzo@anytime.com

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
Copyright is held by the author/owner(s).

ITS’13, October 6-9, 2013, St. Andrews, United Kingdom.

ACM 978-1-4503-2271-3/13/10.

http://dx.doi.org/10.1145/2512349.2514917

Abstract

In this paper we present Xplane, a software layer for
fast development of applications running in separate,
independent windows in multi-touch interactive
tabletops. Our framework supports gestures
recognition and communication between different
windows or applications. Moreover, it is based on web
technologies to abstract from hardware and software
configuration.

Author Keywords
Tabletop applications; touch interfaces; webkit engine.

ACM Classification Keywords
H.5.2. [User Interfaces]: User interface management
systems (UIMS)

Introduction

The number of applications developed for multi-touch
tabletops is dramatically increased in the last years.
Interactive tabletop surfaces are used to improve
learning activities, inside museums, where the diversity
of visitors create a natural laboratory for testing this
kind of interface, to help the management of
emergency, and in many other collaborative activities
like, e. g., photoware, etc.

SWooJsse|d 10} 3|ge) ,1eas, INo4

Figure 1: Screenshot from an
application developed,using our
framework, for doctors training.
Four medicians cooperate to find
out the correct diagnosis using
four different windows, which are
affected by the interaction of all
the partecipants.

Tabletops provide an important set of new features in
terms of user interface: the users are placed around
the table, they can collaborate using the same space
and objects or can compete for them. Despite this
difference, many applications are still developed and
designed as single or even full-screen applications,
thus using a tabletop as a big tablet. But tabletops size
allows the contemporary presence of different
applications in stand alone windows which can
communicate each other (see Figure 1).

In this paper we present Xplane, a software layer which
is able to abstract from hardware and software
constraints of the device in which it is installed (screen
size, operating system, etc), allows the developer to
create applications running in separate windows and
handles communication between them. Moreover, our
solution provides a Javascript API which allows a
developer to build an entire tabletop application only
using web technologies, in particular HTML5, CSS3
and Javascript, without the need to know a particular
language bound to the sw/hw configuration.

Related Works

There are a lot of applications for interactive tabletops
and surfaces available on the market. They have many
common features: they are highly visual systems,
mainly controlled by touches and some common
gestures performed on the surface of the system, e. g.,
browsing a collection of items, selecting a particular
item, accessing a documents, and so on. All these
applications can interact with several users at the same
time, and each user requires a different orientation of
the interface, according to his/her position. Despite
many common requirements, the developers of all
these applications need to implement the majority of

these features from scratch and the available
frameworks provide only very low level features.

A solution for this problem is represented by
frameworks, like Microsoft Surface 2.0 SDK and
Runtime [4], Windows Presentation Foundation +
Native Touch recognition by Microsoft Windows 8 [5]
and Smart Table SDK [6], which help to develop
multitouch applications but require a particular
hardware/software configuration.

GestureWorks [2] and Arena [8] are frameworks which
provide generic and cross platform functionalities, like
gestures recognition, to develop touch applications, but
they are not able to manage more than one application
being launched at the same time or multiple application
enclosed in different windows.

Glassomium [7] is a project which aims to go beyond
these limitations using web technologies. Glassomium
provides multiple windows management, (limited)
gestures recognition usig TUIO , allows for rotations,
scaling and dragging of windows/apps but the project is
currently at beta, developed by a single person (0
contributors and only 2 forks on github), that do not
seem to be enough robust and frequently updated to
be used for commercial solution. Moreover,
applications developed with Glassomium are limited
inside a browser window, and cross-windows
communication is not supported. Xplane overcomes
these limitations.

Description of the framework

Xplane is a framework, which allows to speed up the
development of applications for multi-touch surface
providing a set of features common to multi-touch
applications like windows disposition, gestures

Customer
. System

? integrator,
“ agencies,

devs

A=—1%
SDK / framework ‘?) A
selection *
Content

= y ‘ -ﬁ)
P z’L —
s > Application /
La development
Application
running on a

muti-touch table |

Figure 2: Traditional process to
design and developed a
multi-touch application.

2

Customer

? System agencies,
) integrator Web devs

24
SDK/framework
selection
Reusable e, "g‘
Business app, @
j

Application
development
Multiple applications

running on a Multitouch table
Middleware framework

Figure 3: Process to design and
developed a multi-touch
application using Xplane.

recognition and interface orientation and windows
management.

Xplane changes the process of designing a tabletop
applications. As discussed in Section “Related Works”,
many software frameworks are bound to a particular
hardware solution (see Figure 2). Our solution works
with any operating system, therefore, the choice of
hardware and software configuration are completely
independent and can be moved further in the process
since the developed applications can run on different
surfaces (see Figure 3). Moreover, Xplane allows to
encapsulate web applications into widgets suitable for
multi-touch surfaces, therefore already developed web
applications can be easily adapted and re-used to
multi-touch interactive surfaces. Moreover, we do not
ask the developer to know any particular language or
technology bound to the particular hw/sw equipment,
he or she only needs to know how to use the Javascript
API provided by our framework.

Xplane uses WebViews to separate contents from the
interaction widgets. A WebView is a component, in
particular a view, that displays web pages. Using a
WebView it is possible to embedded HTML pages
inside an application. This component uses the WebKit
rendering engine to display web pages and
encapsulates all the functionality needed to interact
with the user and with other components within the
table (e. g., gesture management and recognition,
window orientation, button to close the window, the
stack of visible objects, etc.) and widgets for the
visualization of media items like videos and images.
Therefore, the developer only need to specify which is
the web page to render.

Contents can be arranged and personalized using the

CSS standard language. But the provided interaction is
very poor since the user can touch the interface, but
the touch is interpreted like the movement of a mouse
pointer. To manage portability of touches and gesture
recognition, we use the TUIO protocol [3] which allows
the transmission of an abstract description of
interactive surfaces, including touch events and
tangible object states. This protocol encodes control
data from a tracker application and sends it to any
client application that is capable of decoding the
protocol.

The recognition of the gestures is managed extending
gTUIO [1], a library which implements a TUIO listener
on a local UDP socket and recognizes gestures made
with one finger. Since the user usually move windows
and objects with the whole hand, we extended this
library to recognize and manage also gestures which
involve more one fingers or both the hands.

Communication between different windows
Concurrent interactions by more than one users is
another important issue to be considered. As an
example, the users can compete for space on the
surface. For these reason, when a new window is
opened (even by a new user or not), this operation can
require the resize of all the other windows already
present on the table. Otherwise, actions from a
particular user may affect the behavior of the windows
of other users. To allow the easily implementation of
applications with this kind of features, Xplane
implements a communication protocol between the
different WebViews which managed the windows.

Let us consider as example, an application with a map,
e. g., a map of a city with the list of its museums,

rendered with HTML5 on a WebView. When the user
touches a museum the application opens a new
window, with the web site of the museum, and the user
can interact with this window, resize it, or move across
the table. If the user touches the “go to the map” button
on the new windows, the initial window with the map is
moved over the current window of the user.

To implement this behavior, we developed a
communication protocol between the WebViews
implementing the windows, which allows the developer,
using our Javascript API, to change the content or the
behavior of a window on the base of the behavior/user
interaction on another windows. The software layer
Xplane, implemented using the C language to address
performance issues, acts as a windows manager and
carries the messages. The Javascript API allows to
enlarge, resize, minimize, close, rotate or move a
window, in response to a user interaction, also on other
windows.

Discussion and conclusion

In this paper we present Xplane, a software layer for
fast development of applications running in separate
windows, handling communication between them. The
framework is based on modern web technologies to
adress portability.

The novelty of our approach consists on different
issues, first of all the possibility to use (and possible
re-use) web pages to decrease the time spent to
develop the multi-touch applications and to learn a
particular language bound to the chosen hardware.
Using Xplane a content editor can create simple
applications for tabletop. Moreover, our framework
create applications that can run in all tabletops, i. e.,

they are independent from the hw/sw configuration of
the tabletop. Finally, no other software framework
provides the possibility to run more than one
application into independent windows and supports
communication between them.

Future works will be dedicated to the implementation of
an API to manage Near Field Communication
(NFC).The idea is to save the state of the user, in term
of opened documents and windows, and which is the
window currently active, and to re-create the entire
workspace at the correct state, every time that user
approaches the system.

References

[1] Belleh, W., and Blankenburgs, M. qTUIO Library.
http://gtuio.sirbabyface.net/.

[2] Ideum. Gestureworks Core.
http://gestureworks.com/pages/core-home.

[3] Kaltenbrunner, M., Bovermann, T., Bencina, R.,
and Costanza, E. TUIO Framework.
http://www.tuio.org/.

[4] Microsoft. Surface 2.0 SDK.
http://msdn.microsoft.com/en-
us/library/ff727815.aspx.

[5] Microsoft. Walkthrough: Creating Your First Touch
Application. http://msdn.microsoft.com/en-
us/library/ee649090.aspx.

[6] SMART Technologies. SMART Table SDK.
http://downloads01.smarttech.com/media/products/
sdk/smart-table-sdk-summary.pdf.

[7] Toffanin, P. Glassomium Project.
http://www.glassomium.org/.

[8] Unedged. Arena Multitouch Platform.
http://arena.unedged.com/.

	Introduction
	Related Works
	Description of the framework
	Communication between different windows
	Discussion and conclusion
	References

