International Journal of Software Engineering and Knowledge Engineering
Vol. 13, No. 4 (2003) 419-445
(© World Scientific Publishing Company

TEMPLATE-BASED GENERATION OF MULTIMEDIA PRESENTATIONS

AUGUSTO CELENTANO and OMBRETTA GAGGI
Dipartimento di Informatica, Universita Ca’ Foscart
Via Torino 155, 30172 Mestre (VE), Italia
{auce,o0gaggi} Qdsi.unive.it

Data-centered approaches to multimedia presentation design and implementation can be
developed by extending methodologies and technologies common in text-based applica-
tions. A multimedia report is a multimedia presentation built on a set of data returned
by one or more queries to multimedia repositories, integrated according to a template
with appropriate spatial layout and temporal synchronization, and coherently delivered
to a user for browsing. We discuss the problem of defining templates for such mul-
timedia reports with a focus on media coordination and synchronization. Multimedia
presentations can be automatically generated according to the template by instantiat-
ing it on actual data instances. An XML language describes the spatial layout and the
temporal constraints of the media objects. An authoring system and a player have been
implemented.

Keywords: Multimedia presentation, schema modelling, XML, data integration, auto-
matic generation.

1. Introduction

Data-centered approaches to multimedia application design and development are
growing and broadening due to the rapid progress in technology for display, creation,
storage and transfer of multimedia documents, which gives the user new possibilities
to access and retrieve information of different kinds.

Often the user interface to information is based on web clients, a standard
and platform independent solution for displaying dynamically assembled documents
with data selected and retrieved from databases and framed in templates. Web-
based applications receive increasing attention, and models, methodologies and tools
exist to support designers and programmers in defining, prototyping, testing and
deploying such applications.

When shifting from mostly static to mostly dynamic media the term presenta-
tion better describes the type of application which integrates and displays infor-
mation. A broad range of applications like distance learning, web advertising and
e-business, virtual tourism, cultural heritage, news delivery and entertainment are
based on multimedia presentations where continuous media like audio and video
play a fundamental role.

Continuous media add a time dimension to the integration of different infor-
mation items, and introduce coordination and synchronization constraints in the
design of data-centered applications.

2 A. Celentano and O. Gaggi

The authors of multimedia presentations must design the coordinated playback
of different media and the consistent interpretation of user interactions. If informa-
tion that is displayed comes from a data repository, its identification and extraction
requires additional care. Re-use of media for different purposes, or adaption to user
profile and history, are requirements asking for the design of presentations according
to well defined models and schemas.

In such a scenario the automatic generation of standard multimedia presenta-
tions with data extracted from a repository is a valuable goal that allows authors
to build with limited effort several variants on one template schema without re-
designing the whole application from scratch.

We aim at automatically generating multimedia presentations by defining tem-
plates based on recurring patterns, focusing the discussion on coordination and
synchronization of continuous media. In previous works we have defined a syn-
chronization model and developed an authoring tool for multimedia presentations
[7, 8]. In this paper we extend both the model and the authoring tool in order to
model template schemas for automatically building multimedia presentations. With
a schema authoring system we aim at giving the author the possibility to define the
layout and the behavior of the presentation, the characteristics and attributes of
the objects involved without knowing the instances that will be used to fill the
template.

The paper is organized as follows: Section 2 introduces multimedia reports as a
class of multimedia presentations. Section 3 reviews the relevant literature. Section
4 discusses authoring of multimedia presentations in terms of synchronization among
the media objects. Section 5 defines the structure and the components of a report
template definition, while in Section 6 an XML language suitable to describe the
spatial layout and the temporal constraints of multimedia presentations and report
templates is presented. Section 7 presents the algorithms for integrating data into a
report template, in order to generate a complete presentation. Section 8 presents an
authoring environment based on the model. Section 9 discusses handling of missing
data, and Section 10 comments about consistency issues and draws the concluding
remarks.

2. Automatic generation of multimedia presentations

The automatic generation of multimedia presentations is based on two phases.

In the first phase the template of a presentation is defined, in which the multi-
media items can be placed in a coordinated way according to the desired dynamics.
The template describes the general synchronization structure of the presentation
by defining temporal and synchronization constraints among media items. One or
more queries are also defined which intensionally describe the presentation contents,
i.e., the media items such as video and audio files, images and text files. This design
phase is executed once for each presentation type.

In the second phase, which is executed for each new presentation, data is re-
trieved from a data repository according to the queries defined in the template

Template-Based Generation of Multimedia Presentations 3

design phase, the template is filled with the retrieved data, the spatial and dynamic
relationships are instantiated, and the presentation is played.

The two phases are tightly interconnected during early development stages. The
template instantiation on a data sample could suggest changes in the template in
order to improve the final presentation. In some cases such automatic generation
can be a first prototyping step of a more refined presentation, especially if the data
repository is quite stable.

Globally, the two phases build a continuous presentation in which data extracted
from a multimedia data repository is located, connected, synchronized and coher-
ently presented to the user. We call this activity multimedia reporting, i.e, the
automatic generation of multimedia documents modelled with respect to a tem-
plate, whose content is retrieved according to selection parameters.

In the most general case multimedia reporting would require the designer to
approach and solve many problems about data selection, e.g., how to coherently
integrate data coming from one or several databases. In Section 10 we shall briefly
discuss some issues about this problem, we note here that too much generality
prevents from satisfactory solutions and is in some way in contrast with the idea
of “reporting”, an activity based on standardization. Therefore we assume the
following scenario for our work:

1. The presentation collects data into groups, like in a text report, such that in
each group data of different types exists (video, audio, text, image), whose
instances are related like in a relational table. More precisely, we assume
that each group is structurally equivalent to a relational table where columns
identify the media types and rows are instances. Some values can be NULL
values, denoting that in some instances some media can be missing.

2. Apart from groups, “background” data exists which are associated to the
presentation as a whole, or to parts of it identified by a group or a sequence
of groups, such as a continuous soundtrack, a permanent title, a background
image, and so on.

3. The whole presentation consists of the coordinated (e.g., sequential) playback
of the groups, taking care of user actions like pause, stop, rewind, and so on.

4. No a priori constraint is put on the time properties of continuous data items,
but the system should be able to coordinate the execution by synchronizing
the beginning and end of the data group components.

Conceptually, defining multimedia reports is not different from building text-
only reports or dynamic web pages: the author must define the structure of the
report or of the web page, i.e., the data layout, and the query to select and retrieve
relevant data. In the case of multimedia reporting, data items collected have a
temporal behavior, which increases the complexity of the structure definition by
adding a new dimension to the task: the author should deal with synchronization

4 A. Celentano and O. Gaggi

problems and temporal sequencing of objects. If the spatial layout definition could
be trivial, this is not true for the temporal dimension.

As an example, an author could design a news-on-demand service based on a
database of articles stored as related multimedia document items: video documen-
taries, audio and text comments, images, and so on. A multimedia report is built
from the selection of the appropriate news, by presenting them as in a synchronized
sequence. Each article has a video story, an audio comment, and a text, which must
be synchronized. The articles are normally played one after the other, but the user
can interact with the presentation, thus changing its linear behavior, e.g., the user
could skip forward or backward, or could stop or pause the playback of a medium
item. In such case the whole presentation must be re-synchronized, therefore the
report definition must be supported by a model of media synchronization which
handles events generated by user interaction.

3. Related work

The problem of automatic generation of synchronized multimedia presentations with
variable data has been approached in recent years. There are two main approaches,
which represent two different points of views of the problem:

1. the author defines a template which intensionally describes the structure and
the behavior of a presentation which contains multiple instances of a repetitive
pattern, selected from a data repository;

2. a multimedia presentation is defined as a collection of constraints on media
items. The generated presentation is a solution of the constraints set which
can also consider some additional parameters imposed by the user.

The first approach allows the re-use of the template of the presentation for other
multimedia reports, and does not require the author to set the same synchroniza-
tion relationships for all the instances. The second approach is less suitable for
generating reports, but can be better used to adapt one presentation to different
user profiles or to different contents. The use of a template-based approach is more
suitable to deal with a set of multimedia data of unknown cardinality, following a
constant schema.

The first approach is used by SQL+D [4, 5], an extension to SQL which allows
users to retrieve multimedia documents as result of querying a multimedia database.
An SQL+D query specifies all presentation properties, from screen layout to its
temporal behavior. In addition to SELECT-FROM clauses, the user can define
DISPLAY-WITH clauses to describe screen areas (called panels), in which groups of
retrieved media items are placed with specified relative positions. A SHOW clause
defines the temporal behavior in terms of timed sequences of returned instances
display. SQL+D requires the authors to have specific skills. Even if a user interface
helps to build the query, they must know the structure of the database from which
they retrieve multimedia data. Moreover, queries on multiple databases are not

Template-Based Generation of Multimedia Presentations 5

allowed. Differently from our approach, which is based on synchronization events,
temporal constraints are defined by arranging multimedia objects along a timeline.
This solution is less flexible, and can require to know in advance the data contained
in the database in order to obtain a complex dynamic behavior. Moreover, SQL+D
does not allow the author to include in the presentation media items which do not
depend on the query performed.

A high level specification based on constraints is proposed within the project
Dynamo, Semi-automatic Hypermedia Presentation Generation project, aimed at
“increasing the level of automated adaptation of varying user and system character-
istics during the process of creating hypermedia presentations” [15]. A presentation
can be configured to adapt to a number of user-related parameters such as the cur-
rent state of knowledge of the user, the task he/she is involved with, his/her pref-
erences, and environment-related parameters concerning the available resources. In
the framework of the Dynamo project, Geurts et al. [9] present a formalism to con-
struct multimedia documents by defining semantic relations between media objects.
Differently from the model presented here, spatial layout and temporal dynamics
can be described through the use of both quantitative and qualitative constraints.
Qualitative constraints facilitate high-level reasoning, but they are often not suffi-
cient because they do not define a precise design (e.g., the author states that figure
A is on the left of another object, but is not interested in specifying the number of
pixels between them). The author does not design the template of the presentation
with specific layout and behavior, but defines a set of constraints; the system builds
a multimedia presentation which obeys the constraints. A prototype is developed
called Cuypers [16, 17], which is a transformation environment supporting semi-
automated assembling of multimedia documents according to a rich structural and
semantic annotation based on XML. The annotation allows for the specification
of different processing steps concerning semantic structure, constraints satisfaction
and final form presentation, which occur in multimedia authoring, to be integrated
in a single execution stream.

Delaunay™™ [6] is a framework for querying data stored in distributed data
repositories, including the Web. Delaunay™™ does not allow an author to build
a new multimedia document containing retrieved data, but it offers a number of
functionalities for presenting multimedia data retrieved by a query to a multimedia
repository. Query answers are organized into presentations, and profiles are used
to generate user-defined layout of a document and ad hoc querying capabilities to
search each type of media item. Delaunay™™ addresses the specification of spatial
layout, but it does not address the problem of the temporal synchronization of
media objects.

In [1] Adali et al. present a process algebra for querying multimedia presentation
databases. The algebra can be used to locate presentations with specific properties
but also for combining portion of different presentations by retrieving objects from
them. A multimedia document is represented by a tree, whose branches describe
all the possible presentation sequences. Differently from our approach, the authors

6 A. Celentano and O. Gaggi

cannot create a presentation from scratch, but can only select a path in the tree of
an existing presentation and derive from it a new document. In our approach the
author queries a database of media and combines the retrieved media into a new
presentation defined by a schema.

In [3], André presents a completely different approach to the problem of auto-
matic generation of multimedia documents, based on concepts already developed in
the context of natural language processing. The author considers the generation of
multimedia presentations as a goal-directed activity. The input is a communicative
goal with a set of parameters, like target audience and language, resource limitations
and so on. The planning component of the system selects a multimedia presentation
structure on the base of some communicative rules, and retrieves elementary objects
like text, graphics or animations. The temporal behavior is expressed by temporal
relations similar to the ones defined by Allen [2] and by metric (in)equalities.

4. Dynamics definition in multimedia presentations

A graph is a visual representation commonly used for describing the temporal be-
havior of a multimedia presentation. In [7] we have defined an event-based syn-
chronization model among continuous and non continuous media in a multimedia
presentation. The model is oriented to designing and prototyping multimedia pre-
sentations rather than to providing an execution language like, e.g., SMIL [14]. It
is a good trade-off between expressiveness and simplicity, and is targeted to a class
of multimedia presentations we have called “video-centered” presentations, where
one or more continuous media set the time base for synchronizing other static and
dynamic media.

The reader is referred to the cited work for a discussion of motivations and
details about the model, whose main properties only will be recalled in this paper.

A multimedia presentation is a collection of media objects whose behaviors are
described by a set of synchronization relationships established by the author. Each
medium requires some device to be rendered or played, such as a window, a frame,
an audio channel, or a combination of audio and video resources (as required by
a video file with integrated audio). Such a virtual device is called channel in the
model. It is used by the medium for the whole duration of its playback.

Five synchronization primitives define object reactions to events, both internal
(e.g., the natural end of a media item) and external, like user interactions.

The relation “a plays with b”, written a < b, models the parallel composition
of media objects a and b: it states that if one of the two objects is activated by
the user or by some other event, the two objects play together. Relation “plays
with” (a < b) is asymmetric, object a acts as a “master”: when it ends, object b is
terminated too, if it is still active.

The relation “a activates b”, written a = b, models the sequential composition
of two objects: when object a naturally ends, object b begins its playback. These
two relations are similar to the tags <par> and <seq> of SMIL but some differences
exist that are detailed in [7]. In particular, we distinguish between internal events

Template-Based Generation of Multimedia Presentations 7

which are generated by components of the presentation and external events, which
are generated by the user, separating the natural termination of an object, occurring
when it reaches its ending point, from its forced end, occurring when the user stops
it. In the relation a = b, if the user stops object a, object b is not activated. In
the same situation, if the relation a < b holds, the object b is not terminated.

The relation “a is replaced by b”, denoted by a = b, is mainly used with static
objects whose time duration is potentially infinite. It states that starting object b
forces a to end, so its channel is released and can be used by b.

Two other relations model object reactions to user interactions. The relation
“a terminates b”, written a | b, terminates two objects at the same time as a
consequence of the forced termination of object a. The relation “a has priority over
b with behavior o, symbolically written a S b, means that object b is paused (if
a = p) or stopped (if @ = s) when object a is activated; a is supposed to be the
target of a hyperlink that moves the user focus from the current document (b) to
another document or to another presentation.

Besides stopping a medium item or following hyperlinks, the user can interact
with a multimedia presentation in other ways. If the user moves back or forward
along the presentation timeline, the model handles two separate events: a stop
event at the current point of the presentation playback and a start event in the new
position. All the synchronization relationships involved with stopping the current
medium and starting the target one are activated. A pause event simply “freezes”
the running media (therefore pauses the presentation playback) until the user issues
a resume event.

It must be noted that our model describes media synchronization based on dis-
crete events; fine-grain synchronization (like lip-synchronization) cannot be defined
in such a way, bust must be built into a compound media stream which is then
handled as a single medium item. For the same reason intra-medium events are
generally not supported, but a continuous media stream can be divided in sequen-
tial fragments (called scenes) in order to define intermediate synchronization points
during playback.

A visual authoring tool supports the author in defining the temporal relation-
ships between media by drawing a graph where the nodes are the media objects
and the edges the synchronization relationships [8]. A player interprets the syn-
chronization schema and runs the presentation.

A comparison with other multimedia synchronization models would go beyond
the goal of this paper, and can be found in [7]. We comment briefly here about
two popular and standard models, Allen’s relations and SMIL, to give the reader a
glance of the main differences which justify our approach.

Allen [2] defines a set of thirteen relationships between temporal intervals of
known length. In our model the length of a media object is the time span from
its beginning to its natural end, but its actual duration is known only at run-time,
since synchronization relationships can modify the object behavior with respect to
its natural playback. Allen’s model captures the relationships between two media

8 A. Celentano and O. Gaggi

credits

Y
— 7
ﬂ |soundtrack s ﬂ | jingle

| T
< =3
‘?‘NL <Tr>¢b <Tr>ib

ﬂ| newsl - —q ﬂ| news2 = 4 ﬂ| news3

INY) S U
3_|| captionl 3_|| caption2 3_|| caption3

Fig. 1. A simplified synchronization graph for a news-on-demand presentation.

items when their execution is known, therefore cannot be used as a design aid.

The main difference between SMIL [14] and our model concerns the lack of a
reference model for the data structure in SMIL. Our model organizes media objects
into a hierarchical structure, which is useful to design complex presentation. The
XML language which will be presented in Section 6, clearly separates spatial and
temporal relations from references to media objects in three separate sections. A
media item can be referenced several times without redundancy by addressing its
id. Thus, an author can easily reuse the structure of another presentation, a single
media item, an entire document or a part if it. In SMIL, instead, the two types of
information are interleaved in the document, possibly generating redundancy.

Other differences between SMIL and our model concern the way actions directed
to end media executions are managed. Like Allen’s relationships, SMIL native
features do not distinguish between natural and forced termination of a media,
therefore the effects of a user interaction on a single media component cannot in
general be described.

Figure 1 illustrates a graph showing the synchronization schema of a simplified
news-on-demand cover made of three articles, in a graphic style very close to the
one used by the authoring system® A background soundtrack plays continuously
(when it ends it is activated again by virtue of relation soundtrack = soundtrack).
The articles are played in sequence, and each article is made of a spoken narration
(news;), a video (video;) and a text caption (caption;). All the components of an
article play in parallel as described by relationships news; < wvideo; and news; <
caption; (the dot at the end of the edge connecting two media denotes the dependent
medium). The length of each article is controlled by the length of the narration,
which is the master medium ruling the parallel play of the other two media. At the

%Small differences are introduced to enhance the readability, and concern mainly the composites
which will be discussed in the next Section

Template-Based Generation of Multimedia Presentations 9

|

EL;]:I] |soundtrack

12

ﬂ | jingle

& h

L. D| articlel =4 D‘ article2 = |:|| article3 J

T~

Q| article2 @‘)

-
‘ | video? rg:i | "= Kg}j g cvtion

Fig. 2. A modular news-on-demand presentation.

end of each spoken narration, the relation news; = news; 1 activates the next one.

If the user stops the news playback, he or she stops the master medium, i.e.,
news;, which also stops the video and text caption due to the relations news; | video;
and news; || caption;. When the last article ends, the soundtrack is replaced by a
jingle (soundtrack = jingle) and a credits screen is displayed (jingle < credits).

Each media object is associated to a channel represented with a distinctive color
in the graph.

5. Defining multimedia reports

In the graph of Figure 1 a recurring pattern is immediately perceivable: each article
has the same components, i.e., a spoken comment, a video and a text caption, and
the three articles have a common behavior. Figure 2 makes the recurrence more
visible by introducing a compound media item for each article, which we call a
composite, whose details can be hidden at a high level of specification. A composite,
drawn with a thick border in order to distinguish it from atomic media items, is a
kind of envelope enclosing several media items mutually synchronized which behaves
at a high level of observation as a compound media item, starting and ending
according to the same synchronization rules which hold for atomic media items.
In particular, the composite ends when all the media items enclosed are no longer
active. More formally, if Media is the set of media items contained in a composite
and Active is the set of active media, the composite is ended if Media N Active = 0.
If the last event occurred is end(m) where m is an atomic media item, m € Media,
the composite ends naturally, otherwise it is assumed to be stopped.

From the synchronization schema of Figures 1 and 2 a template for a multimedia

10 A. Celentano and O. Gaggi

report which displays selected news in sequence can be derived straightforwardly?

The template of a multimedia report can therefore be defined by linking nodes of a
graph (the object placeholders) with labelled edges (the temporal relations).

The template gives an intensional definition of the presentation. It does not
detail the retrieved objects involved in the presentation, since the cardinality of the
media set returned by querying the repository is unknown till execution. There-
fore some nodes of the graph are placeholders for a collection of concrete media
items with the same characteristics, while other nodes denote media items which
do not depend on queried data. The drawing notation must make evident which
are the items which build up the repeated media groups, and the schema editor
must provide the author a means to draw the structure of a report specifying which
part of the structure is a replicated group, the relations inside a group and between
different instances of the replication. The concept of composite is used to specify
such repeated groups: to distinguish between report templates and synchronization
schemas describing presentations, a composite denoting a repeated group in a report
template is called a stencil.

Figure 3a shows a report template for the news-on-demand example of Figure
2. The stencil encloses the media placeholders which make up a repeated element
(i.e., an article), specifying which events are generated and which synchronization
relationships are obeyed. A stencil may contain also media items which do not
depend on query results, but are simply replicated once for each tuple returned:
such items are denoted with a star in the upper right corner. In Figure 3b a richer
article structure is shown: while retaining the synchronization between the voice
comment, the video and the text of Figure 3a, each article instance is preceded by
the article headline together with the TV channel logo and musical tune, and is
followed by a “next” button which allows the user to step through the news. The
button is a dynamic media item which ends when the user clicks on it (see [7] for
details). The logo, the musical tune and the button are repeated for all the news
but do not change their content.

The stencil is used to instantiate replicated groups. Relations which involve the
stencil can be labelled with a value denoting which tuple of the result is affected by
the relation: the first, the last, the next, or all the tuples if the relation is unlabelled.

The execution of the replicated instances of a stencil is subjected to the following
rules:

1. The first instance is executed according to the synchronization relationship
labelled with the label first (in Figure 3a, the plays with(<) relation with the
soundtrack, which means that the media items enclosed in the stencil start
playing with the soundtrack), and the composed media are synchronized as
described by the stencil details.

®From now on we shall use consistently the term schema for denoting synchronization schemas of
presentations, and the term template for denoting synchronization schemas for report templates.
Even if both represent the synchronization among media items (or placeholders), such a distinction
in the terminology will help the reader to focus the proper context.

Template-Based Generation of Multimedia Presentations 11

—1 credits
- ©
g| article ;@]H e
& - — E ‘ article
first Q‘ video /' o

9 I?)st logo ¥ E‘ video
=] L v =
& <l
I:L])] news | * ‘
<:> {ﬂ| tune ©+ﬂ| news ﬁ{g button *
I I

<A
Y z 3
2 M‘ headline L” caption

(a) (b)

Fig. 3. (a) A visual template for a news report, (b) An article with placeholders and media items.

2. The instance execution ends according to the synchronization schema de-
scribed in the stencil, and the end event is propagated out of the stencil
according to the relationship which links the stencil instance to the next one,
labelled with the label next. Then the next instance is started according to the
same synchronization schema; in Figure 3a each of the following narrations
starts with the related video and caption.

3. When the last instance of the stencil ends, the end event is propagated as
described by the relationship labelled with the label last. In the example of
Figure 3a, the soundtrack is replaced by a jingle, the credits screen is displayed,
and the presentation ends.

Since a stencil (as well as a composite) masks the details of the internal me-
dia and placeholders, synchronization relationships cannot be established between
media items outside the stencil and media items and placeholders inside.

Such a representation is used by the visual authoring system and is supported
by an XML-based language for defining the data structure and relationships in a
more suited machine processable representation.

6. An XML-based schema definition for multimedia reports

The structure and the temporal behavior of a multimedia presentation are described
by an XML schema, based on the same synchronization model underlying the graph
representation.

In order to support content independent processing of the presentation struc-
ture the schema, besides keeping multimedia data separated from the structure
definition (which is quite obvious), also divides structure related information from
spatio-temporal information. In other models such information is often mixed. For

12 A. Celentano and O. Gaggi

example, in SMIL spatial information is declared separately in the head section,
but the synchronization definition includes the declaration of the media objects.
Such integrated definition does not encourage object re-use, mainly in complex
documents where it would be especially useful. Redundancy is generated, which
requires cross-checking between different document sections.

Multimedia presentations and report templates have many features in common,
they only differ for the presence of stencils and placeholders. Therefore, the XML
schema supports both types of documents. An XML source document contains three
types of specifications: the spatial layout of the document, the media involved in the
presentation and their temporal behavior. Data is organized in three sections: the
layout section, the components section and the relationships section. This solution
enables the definition of spatio-temporal relationships among media objects without
knowing any information about their location or duration, and makes it simpler to
draw a report template which can be instantiated with minimal modifications of
the XML file.

The author defines the temporal behavior by addressing abstract media object
identifiers (i.e., placeholders of actual data) rather than actual instances. The
system will bind object identifiers, defined in the component section, to actual media
objects after retrieving the data. The final presentation is rendered by processing
the XML file and accessing media objects which are located elsewhere.

6.1. The Layout section

The layout section contains the definition of the spatial layout of media in the
presentation window. The presentation layout is organized in channels, which are a
combination of a portion of the user screen, hosting some media, and audio devices
to play soundtracks or other audio files.

Figure 4 shows the XML template (i.e. the XML specification describing a
template) of a news-on-demand multimedia report modelled according to Figure 3a.
The channels video and caption are rectangular areas of the user screen delimited
by the corner coordinates SupX, SupY, InfX and InfY. The captions contain textual
information about the news report. Voice and sound are audio channels, therefore
they have no layout. Each channel has a unique name.

6.2. The Components section

The components section contains the description of the media objects involved in
the presentation, their types, links to media files, channels used, etc. Continuous
media objects, i.e., videos, animations and audio files, are called clips; static media
objects, i.e., text pages and images, are called pages.

Each element has a unique identifier id, which is used to reference the object
from the other sections of the document, a type and a channel in which it is played.

If the XML specification describes a presentation, the clips and the pages have an
attribute file whose value is the path of the media files. If the XML specification

Template-Based Generation of Multimedia Presentations 13

<presentation xmins="report.xsd">
<layout width="500" height="400" >
<channel name="video" SupX="19" SupY="13" InfX="471" Infy="321"/>
<channel name="caption" SupX="19" SupY="324" InfX="471" InfY="391"/>
<channel name= "voice"/>
<channel name= "sound"/>
</layout>

<components>
<module id="news_report">
<clip id="soundtrack" file="sound.wav" channel="sound" type="audio"/>
<stencil id="article">
<clip id="video" channel="video" type="video" />
<clip id="news" channel="voice" type="audio" />
<page id="caption" channel="caption" type="text" />
</stencil>
<clip id="jingle" file="jingle.wav" channel="sound" type="audio"/>
<page id="credits" file="credits.txt" channel="video" type="image"/>
</module>
</components>

<relationships>
<play>
<master><cont_object id="soundtrack"/></master>
<slave><ref_stencil id="article" num="first"/></slave>
<master><ref_stencil id="article"/></master>
<slave><cont_object id="news"/></slave>
<master><cont_object id="news"/></master>
<slave><object id="video"/></slave>
<master><cont_object id="news"/></master>
<slave><object id="caption"/></slave>
<master><cont_object id="jingle"/></master>
<slave><object id="credits"/></slave>
</play>
<act>
<ended><cont_object id="soundtrack"/></ended>
<activated><cont_object id="soundtrack"/></activated>
<ended><ref_stencil id="article"/></ended>
<activated> <ref_stencil id="article" num="next"/> </activated>
<ended> <ref_stencil id="article" num="Ilast"/> </ended>
<activated> <object id="jingle"/> </activated>
</act>
<repl>
<before> <object id="soundtrack"> </before>
<after> <object id="jingle"> </after>
</repl>
<stop>
<first><object id="news"/></first>
<second><object id="video"/></second>
<first><object id="news"/></first>
<second><object id="caption"/></second>
</stop>
</relationships>
</presentation>

Fig. 4. XML schema for a news report

14 A. Celentano and O. Gaggi

<presentation xmIns="model.xsd">
<layout width="500" height="400" >
<channel name="video" SupX="19" SupY="13" InfX="471" Infy="321"/>
<channel name="caption" SupX="19" SupY="324" InfX="471" InfY="391"/>
<channel name= "voice"/>
<channel name= "sound"/>
</layout>

<components>
<module id="news_report">
<clip id="soundtrack" file="sound.wav" channel="sound" type="audio"/>
<composite id="article1">
<clip id="video1" channel="video" type="video" />
<clip id="news1" channel="voice" type="audio" />
<page id="caption1" channel="caption" type="text" />
</composite>
<composite id = "article2"></composite>
<composite id = "article3"></composite>
<clip id="jingle" file="jingle.wav" channel="sound" type="audio"/>
<page id="credits" file="credits.txt" channel="video" type="image"/>
</module>
</components>

<relationships>

<play>
<master><cont_object id="soundtrack"/></master>
<slave><cont_object id="article1" num="first"/></slave>
<master><cont_object id="article1"/></master>
<slave><cont_object id="news1"/></slave>

<master><cont_object id="news1"/></master>
<slave><object id="caption1"/></slave>

<master><cont_object id="jingle"/></master>
<slave><object id="credits"/></slave>

</play>

<act>
<ended><cont_object id="soundtrack"/></ended>
<activated><cont_object id="soundtrack"/></activated>
<ended><cont_object id="article1"/></ended>
<activated> <cont_object id="article2"/></ended>

</act>

<stop>
<first><object id="news1"/></first>
<second><object id="video1"/></second>
<first><object id="news1"/></first>
<second><object id="caption1"/></second>

</stop>
<repl>
<before> <object id="soundtrack"> </before>
<after> <object id="jingle"> </after>
</repl>
</relationships>
</presentation>

Fig. 5. The generated presentation in XML

Template-Based Generation of Multimedia Presentations 15

describes a report template, pages and clips definitions are placeholders for retrieved
items, therefore the attribute file will be added at presentation instantiation time.

The media can be defined inside a tag stencil, which represents a stencil which
builds up a report repeated item. In Figure 4, the clips soundtrack and jingle,
and the page credits refer to media objects which do not depend on the report
instantiation (therefore the attribute file is defined), while the stencil section
represents the thick rectangle of Figure 3a, which will be instantiated on the results
of the query execution. In Figure 4, the clip video represents the set of videos
returned for the selected news, news is the set of voice comments and caption is
the set of text pages related to the same news.

6.3. The Relationships section

The relationships section describes the temporal behavior of objects through a
list of synchronization primitives needed for the correct playback of the presentation.

The tags play and act define the basic relationships of parallel and sequential
synchronization of media objects that in the visual representation are denoted by the
symbols < (“plays with”) and = (“activates”). The tag play defines the parallel
execution of a master and a slave object. The tag act defines the sequential
composition of objects ended and activated. Both the master and the ended
objects of the relationships play and act must be continuous media, since static
media have no defined duration.

The relationship “is replaced by” (=) is encoded with tag repl which defines
sharing of a same channel between two objects which are active at different times in
cases different from simple sequencing. The tags before and after define respec-
tively the replaced and the replacing objects in the channel usage. In the example
the jingle replaces the soundtrack in the same audio channel.

Relationships “terminates” () and “has priority with behavior o (g) are re-
spectively translated with tags stop and link. Tag stop models the synchronous
stop of the second object in the relation (second) when the other object (first) is
forced to end. Tag 1link defines the behavior (coded in the attribute behaviour) of
the source object (tag from) when the destination object (tag to) starts playing.

In an XML template, relationships can be established between media objects and
stencils. In a such case, the tag ref_stencil is used. Relationships between stencil
instances must be carefully evaluated during the template and data integration
phase. The attribute num identifies which instance of the stencil is referred: the
next instance, the first or the last instance.

7. Template and data integration

Once media objects are collected from query results, the template is instantiated
on the objects retrieved in order to generate the actual multimedia report. Figure
5 shows the XML description of the presentation described in Figure 1. The trans-
formation of a report template into a presentation is performed by the procedure
FILL which reads the XML file of the report template and writes the resulting

16 A. Celentano and O. Gaggi

presentation into report. For simplicity the code assumes a correct XML template
of the report, therefore it lacks any error checking and diagnosing feature.

FILL(template, report: file, RS: mapping function)

// template: file which contains the XML template of the report,

// report: XML file which will contain the presentation computed from the template,
// RS: function which returns V stencil the set of data returned by the query

begin
line = template.readline(); // first line is namespace
line = replace(line, “report.xds”, “model.xds”);
while line # “</layout>" do // first section is layout
begin // copy without changes

copy(line, report);
line = template.readline()

end;
copy(line, report); // copy “</layout>"
line = template.readline(); // read next line
while line # “</components>” do // next section is components
begin // process components section
if line.contains(“stencil”) then
begin

idstencit = attribute(line,“id”);
// replicate a stencil for all data tuples
FILLSTENCIL(template, report, line, RS (idstenci), num, stencil)

end
else copy(line, report); // copy data item outside the stencil
line = template.readline()
end;
copy(line, report); // copy “</components>"
line = template.readline(); // read next line
while line # “</relationships>” do // last section is relationships
begin // process relationships section
if beginRelation(line) then // copy or replicate the relationships
FILLRELATIONS (template, report, line, num, stencil)
else copy(line, report); // copy the lines with the relation type
line = template.readline()
end;
...copy to end of template

end

The layout section of the XML document is not affected by report instantiation,
which involves the objects and their relationships, but does not modify the layout.
Only the reference to the namespace needs to be modified, since the XML template
refers to the namespace defined for report templates, while the XML presentation
addresses the one defined for multimedia presentations.

The components section must be extended to address the objects retrieved.
Media outside the stencils remain unchanged, while each stencil is replaced by a
composite which contains the concrete media objects returned by the query. In our
example the returned set is

Template-Based Generation of Multimedia Presentations 17

RS (idarticle) = {(video;, news;, caption;) | 0 < i < |RS(idarticie)| }

The components section is completed by replacing the stencils with a composite
which contains such objects. The composite is replicated |RS (idgrticie)| times, and
the instances are distinguished by systematically changing the object name place-
holders in the template. The attribute id is instantiated by appending a sequence
number 7, and the attribute file (if missing) is added to each object, referring the
actual media locations. This behavior is described by the procedure FILLSTEN-
CIL.

FILLSTENCIL(template, report: file, line: string, RS: set of tuples,
num, stencil: mapping function)
// template: file which contains the XML template of the report,
// report: XML file which will contain the presentation computed from the template,
// line: string which contains the last line read from file template,
// RS: the set of returned media for this stencil,
// num: function returning for each stencil the number of replications,
// stencil: function returning for each element the containing stencil

begin
elem = 0; num. = 1; id = attribute(line,“id”);
composite ="
line = readStencil(template, line); // read the whole stencil
while RS # () do // while the query returns some data
begin
pick next tuple from RS; // each stencil becomes a composite

composite = replace(line, “stencil”, “composite”);
// append to attribute “id” a sequence number
composite = append(composite,“id”, num.);
for all element in composite do // insert attribute “file” if missing
// if element depends on query results
if attribute(element,“file”) = null then
composite = add(element,“file”, tuple(elem + +));

copy(composite, report);
elem = 0; num. + +

end;
for all element in line do
stencil(element) = id; // element is contained in stencil d
stencil(id) = id; // id is itself a stencil
num(id) = |RS]| // num(id) is the number of replications
end

The relationships section is processed similarly to the components section.
Each single relationship is processed by the procedure FILLRELATIONS which
controls if the media involved are stencils, media placeholders or actual media items.
Relationships between objects outside the stencil are copied unchanged in the new
file, while relationships between objects inside a stencil are replicated by the proce-
dure SAME.

18 A. Celentano and O. Gaggi

SAME(report: file, relation: string, iter: integer)
// report: file which contains the XML report,

// relation: string containing the whole relation,
// iter: number of iteration

begin
for i =1 to iter
begin
line = append(relation,“id”, 1); // append sequence number to attribute “id”
copy(relation, report) // copy line with correct indexes
end
end

The management of relationships which involve stencils and other objects is a
bit more complex. With reference to Figure 3a, a stencil can be both the origin and
the end of a dynamic synchronization relation with a media item of a placeholder.
The attribute num of the template definition points out which tuple of the resulting
set is affected by the relationship. If num = next the relationship must be defined
between each resulting composite and its successor as described by the procedure
NEXT. If it is not present, the relationship must be replicated for any tuple of the
set, otherwise it involves only the selected tuple.

NEXT(report: file, relation: string, iter: integer)
// report: file which contains the XML report,

// relation: string containing the whole relation,
// iter: number of iteration

begin
for i =1 to iter — 1 // for each instance
begin // instantiate relation with next instance

relation = appendN (relation,“id”, i,1);
relation = appendN (relation,“id”, i + 1, 2);
copy(relation, report)
end
end

FILLRELATIONS((template, report: file, line: string,
num, stencil: mapping function)
// template: file which contains the XML template of the report,
// report: XML file which will contain the report after the computation,
// line: string which contains the last line read from file template,
// num: function which returns for each stencil the number of replications,
// stencil: function which returns for each element the containing stencil
begin
relation = readRelation(template, line); // read the whole relation
ida = attributeN (line,“id”, 1); // attribute “id” of the first object
idp = attributeN (line,“id”, 2); // attribute “id” of the second object
// replace all occurrences of “ref_stencil” with “cont_object”
relation = replace(relation,“ref_stencil”, “cont_object”);

Template-Based Generation of Multimedia Presentations 19

if stencil(ida) = null then // A is not in a stencil
begin
if stencil(idg) = null then // B is not in a stencil
copy(relation, report)
else // B is a stencil, stencil(idg) = idp
begin // remove attribute “num”

attrpum = attribute(relation, “num”);
relation = remove(relation, “num”);
case attrypym = “first”:
begin // append 1 to 2nd attribute “id”
relation = append, (relation,“id”, 1, 2);
copy(relation, report)
end;
case attrpum =“last”:
begin // append # of iterations to 2nd attribute “id”
relation = append, (relation,“id” , num(stencil(idg)), 2);
copy(relation, report)

end;
// attrpum # null here
end // end B is a stencil
end; // end A is not in a stencil

if stencil(ida) # null and stencil(ida) # ida then
begin // A is a placeholder in a stencil
if stencil(idp) # null and stencil(idp) # ida then // B is in a stencil
// copy relation for all stencil instances

SAME(report, relation, num(stencil(ida)))

else // B is a stencil, stencil(idg) = idp

begin // remove attribute “num”

attrpum = attribute(relation, “num’);
relation = remove(relation, “‘num’);

case attrpum = “next”: // copy relation for all stencil instances
NEXT((report, relation, num(stencil(ida)));
case attrpum = null: // copy relation for all stencil instances
SAME(report, relation, num(stencil(ida)))
end // end B is a stencil
end; // end A is a placeholder in a stencil
if stencil(ida) = ida then // A is a stencil
begin
if stencil(idg) = null then // B is not in a stencil
. symmetric to A not in a stencil and B stencil
else // B is a stencil or inside a stencyl
begin // attribute “num” of the 1st object

attrnum, = attribute(relation, “num”, 1);
// attribute “num” of the 2nd object
altrnumg = attribute(relation, “num”,2);

if attrpum, # null and attryum,; 7 null then
begin // instantiate attribute “id” as above
relation = remove(relation, “num”);

20 A. Celentano and O. Gaggi

case attrpum, =“first”:
relation = append, (relation,“id”,1,1);
case attrpum, = last”:
relation = append, (relation,“id”, num(stencil(ida)), 1);
case attrpumy = “first”:
relation = append,, (relation,“id”, 1, 2);
case attrpumy = ‘last”:
relation = append, (relation,“id”, num(stencil(ida)), 2);
copy(relation, report)
end

else /] attrpum, Or atlrpumg; = “next”,
// or both A and B are stencils
...equal to A in a stencil and B is a stencil
end // end B is a stencil or in a stencil
end
end

In the example described in Section 4, the soundtrack play starts the execution
of the first stencil instance. Since the attribute num is present with value first,
the relationship must be evaluated only once, and refers to the first instance of the
stencil, therefore to the first composite article;. Each stencil instance starts playing
the audio file instantiated for the news item, since the attribute num is not defined
in the relation play between article and news. The object news plays the role of
a master, since it starts the video and the caption, and stops their playback when
ending. Its ending coincides also with the ending of the composite.

Relationships between the objects inside the stencil are replicated for all the
instances.

At the end of the last stencil instance, the relation act between article and
jingle is translated only once between article3 and jingle, according to the
value of the num attribute.

An act relationship exists between the two stencil instances, specifying at both
ends a stencil article. The relation must be replicated for all the tuples of the
resulting set, i.e., for all composites, since the attribute num is not defined in the
first element of the presentation, but assumes the value next in the second element.
The relations instantiated are therefore

article; = article; 41,1 <1 <2

making the generated presentation to play sequentially all the articles.

8. The authoring environment

Presentations defined using the model addressed in this paper are supported by
an authoring environment called LAMP (LAboratory for Multimedia presentations
Prototyping) which allows an author to set up, test and execute a complex multi-
media presentation by specifying the media items involved and the synchronization
relationships among them.

The authoring system components are a visual editor, an execution simulator to
test the presentation behavior on different media-related and user-related events, a

Template-Based Generation of Multimedia Presentations 21

@porf TemplaE—» Generator
Synchronization . . .
Visual editor — XML File
schema
Simulator Player
Channel Schema Presentation
use animation execution

Figure 6: The LAMP authoring environment

generator for integrating variable data in a report template, and a player for the
execution of the final presentation (Figure 6). The generator of multimedia reports
implements the algorithms presented in Section 7. A detailed description of the
other components of LAMP is in [8].

The editor allows the authors to build both multimedia presentation schemas
and report templates by adding media objects (nodes) and synchronization relations
(edges) to a graph. Screen layout and playback channels are visually arranged by
drawing rectangles inside the presentation window.

An execution simulator is very useful to test a synchronization schema, since
it allows the author to check the temporal behavior of the presentation without
requiring the actual media file to be available (e.g., in case of report templates):
placeholders are allocated into the channels the corresponding media would use in
the real execution. Then, without being compelled to follow a real time scale, the
author can generate all media related events, both internal (e.g., the end of an object
play), and external (e.g., a user-executed stop or a hyperlink activation) to see how
the synchronization relationships are fired and how the presentation evolves.

In order to help the author to understand the relationships between events and
media, the simulator animates also the synchronization graph: when the user acti-
vates an object, the corresponding node in the graph is highlighted. The relations
triggered by the activation of the object are also highlighted, and their effect is prop-
agated to the related objects, giving the author, in a short animation, the visual
perception of how media are synchronized.

Figure 7 shows the interface of the authoring tool when executing a simulation
step during the development of the example presentation illustrated in Section 4.
In Figure 7a the presentation is playing the first news news;, with the associated
media video; and caption;. Active objects are highlighted with thick borders, and
in the preview window a static view of the media is displayed, with their names.
The author can simulate the occurrence of a media-related event by selecting it in
a list. In Figure 7a the end of medium news; is fired, and Figure 7b shows the
result: the graph highlights the second instance of the news, and the preview panel

22 A. Celentano and O. Gaggi

ations - News-on- =101]| ations - News-on-der =loix]
WTJ LSS 1B] [)
(I P ovortotion| @Wmnn\
| Add Media = = Add Media
[[roumaract [Remove Media o [soundtrack Remave Meia
e s
[Retationships | = vide & [Retationstips |
S N [removear |
MMMMM T i
e U < U

; %
! caption2
nows? || soundractc

(a) (b)

Figure 7: The visual interface of the LAMP authoring tool

is updated.

With such a visual representation the author can always check which part of the
presentation he/she is simulating, which are the active media, why the presentation
behaves as observed, and how the end-user interface is organized.

The visual editor generates the XML-based description which is used by the
player for the presentation playback. This representation can be translated into
a SMIL file even if this translation is not always possible (details are described
in [8]). SMIL does not cover all the temporal constraints imposed by the five
synchronization primitives defined in our model. In particular, SMIL does not deal
with the forced termination of an object; most commonly used SMIL players allow
the user to start, stop, pause and resume a presentation, and not the component
media items alone. Even if the translation of a single primitive is quite easy, it is
not trivial to define a general rule for the translation of a complex presentation.
For example, the relationship soundtrack = soundtrack cannot be translated using
the SMIL tag seq (which naturally maps the relationship act) since the soundtrack
should repeat continuously, and not only twice. The translation rule must consider
the context in which the relationship is set, discover that it defines a media loop,
and generate consequently a different SMIL code. Due to the nested structure of a
generic presentation (and of a report template) such a context can be very broad;
a step by step translation based on nesting could unfeasible in the general case.

If the author defines a report template, the corresponding XML file can be
elaborated by a generator to produce the final presentation. We assume, at the
current stage of implementation of our system, that the retrieval system stores the
URLs of the media objects returned by the query in a text file. The generator
integrates the report template with the query results according to the algorithm
described in Section 7, producing the XML file of the report.

LAMP also provides a player which is able to read the XML file of a presentation
and to deliver it to final users. It can be used as a stand-alone application or during
the authoring phase, since it can interact with the simulator by visually relating
the execution evolution with an animation of the synchronization schema.

Template-Based Generation of Multimedia Presentations 23

The LAMP environment is implemented in Java. Two libraries supported the
development of specific components:

e the Java Media Framework API (JMF) [12] was used for implementing the
player. JMF enables audio, video and other time-based media to be added to
Java applications, providing a simple architecture to synchronize and control
several media objects.

e the Swing library [13], a fully-featured library to implement windowing func-
tionalities, was used to implement the graphical user interface.

9. Handling incomplete results

As discussed in Section 2, the ordered set of tuples retrieved by the query
RS (idarticle) = {(video;, news;, caption;) | 0 < i < |RS(idarticie)|} can contain
NULL values, denoting that in some tuple some media item can be missing. This
value requires attention, particularly if the missing media item is an object which
rules the behavior of the whole presentation. As an example, if the media object
captions is missing in the second tuple returned by the query, the presentation can
continue its playback, simply, the channel assigned to captiony remains empty. How-
ever, if the missing object is newss, the presentation cannot continue after news;
ends.

Recalling a concept we have introduced in Section 4 we call master objects of a
presentation the items which rule the behavior of the presentation, i.e., the items
whose time properties define the presentation timing and advancing. The absence or
unavailability of a master object stops the presentation playback. In an automatic
generation framework such a behavior is not admissible, therefore master objects
must be clearly identified, and their unavailability in a stencil instance must be
overcome. Such a problem can be solved in two ways.

First of all, we could modify the XML language for report templates to allow the
author to define which media items are required and which are optional, therefore
can be missing. Otherwise, we could recognize this type of object by analyzing the
synchronization relationships.

If we call C' the set of media placeholders defined inside a stencil ¢, the media
placeholder m is the stencil master object iff m € C, the synchronization rule ¢ < m
exists, and Ja € C|m < a. The master objects of a presentation are all the media
items which instantiate a master object of a stencil.

Once we have identified the master objects, either by looking into the XML
file or analyzing the synchronization relationships, we can filter the set of tuples
returned by a query according to the following rules:

1. if the tuple does not contain any NULL value or the media item corresponding
to the NULL value is not a master object, then the tuple is accepted;

2. if the NULL value corresponds to a master object the tuple is discarded.

A more conservative approach could be to present to the user all data returned by
the query. In this case, the NULL value could be replaced by a timer, a continuous
object with a constant duration [7]. Such a solution plays the available media

24 A. Celentano and O. Gaggi

objects for a defined time interval, during which the channel associated to the
NULL instance is empty, but the presentation runs. Variants of this schema can be
implemented, e.g., if the tuple contains other continuous media, the timer duration
can be set equal to the longest duration by the player, or a default value can be
provided at template design time.

10. Conclusion

We have not discussed in this paper issues related to the query formulation and
execution. This is of course a problem of crucial importance, and we do not claim it
is easy to formulate formally and to solve. However, effective solutions can be found
in the database area where models and technology for dealing with multimedia data
exist.

A number of questions must be answered, which however do not interfere with
the schema model we have discussed here. We have assumed that data comes from
one multimedia database, therefore media instances are naturally related to each
other much as in a relational table. What if several data repositories are accessed?
This situation seems desirable due to the large number of available media sources.
However the problem may become hard to approach for several reasons:

1. Different data repositories can hold data items which are semantically close
but very far in their physical properties, e.g., different in video size, or in image
resolution, or in audio fidelity. A coherent presentation including elements
from all the repositories can be very hard or even impossible.

2. Different repositories can require different query languages, or queries with
different parameters, due to the differences in DB schemas. What about
result integration?

3. We assume that different types of media be returned. How are different ele-
ments related if they come from different databases, so that in principle only
the interpretation of content can relate them? How can we “link”, say, a video
instance to an instance of a text related to the same article but coming from
a different repository?

Current technology can help us in approaching some of the points above. Wrap-
pers and mediators [11] can be used to approach the problem of querying and
integrating several data repositories with different schemas. Semantic attributes
and metadata can be used to identify relevant information in multimedia objects,
e.g., according to the MPEG-7 standard [10]. In a multimedia report, however, it
is plausible to assume a high degree of homogeneity in the returned data, due to
the iterated nature of the media presented to the user.

In approaching automatic generation of presentations therefore we are bound to
a set of constraints which make our initial assumptions realistic and effective.

1. We must be able to select coherent data, i.e., data that is semantically related
and that can be put in a presentation which is recognizable by the reader
as a meaningful document. This problem is present in all the automatic
presentation construction systems, and is assumed implicitly.

Template-Based Generation of Multimedia Presentations 25

2. Data can be linked by external keys or equivalent cross-reference information
which assure that we can identify related data by testing such information.

3. Data is coherent with respect to physical playback properties.

These requirements are satisfied if we have only one multimedia database. They
can be guaranteed to some extent by filtering data coming from different databases
using wrappers and mediators, even if it could be hard to assure the needed physical
homogeneity in the resulting presentation. We should in this case assume that the
report produces a presentation prototype that has to be refined by hand in its visual
aspects.

Applications that can be satisfied with these requirements are wide: news-on-
demand, that we have used as a scenario in a very simplified view, is a good case,
since the assumption that the same database holds news video with associated texts
and audio is realistic. Advertisement is another good case, since it is plausible that a
set of advertised items can be described each by a picture or a video, a spoken text, a
jingle, and so on, related by well identifiable keys. In all cases the multimedia report
can be completed with purely aesthetic media such as a background soundtrack,
decorative frames, contour images, and so on, which can be described in the report
template or added in a subsequent refinement phase.

Acknowledgements

An anonymous referee has made many comments which helped us to improve no-
ticeably this paper. This work has been partially supported by Italian Ministry
of Education, University and Research (MIUR) in the framework of the National
Project Specification, Design and Development of Visual Interactive Systems, and
of grants for young researchers.

References

1. S. Adali, M. L. Sapino, and V. S. Subrahmanian. An algebra for creating and querying
multimedia presentations. Multimedia Systems, 8(3):212-230, 2000.

2. J. F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM,
26(11):832-843, November 1983.

3. E. Andre. A Handbook of Natural Language Processing: Techniques and Applica-
tions for the Processing of Language as Text, chapter The Generation of Multimedia
Documents, pages 305-327. Marcel Dekker Inc., 2000.

4. C. Baral, G. Gonzalez, and A. Nandigam. SQL~+D: extended display capabilities for
multimedia database queries. In ACM Multimedia 1998, pages 109-114, Bristol, UK,
September 1998.

5. C. Baral, G. Gonzalez, and T. Son. A Multimedia display extension to SQL: Lan-
guage and Design Architecture. In International Conference in Data Engineering,
Orlando, FL, USA, February 1998.

6. I.F. Cruz and W.T. Lucas. A Visual Approach to Multimedia Querying and Presen-
tation. In The Fifth ACM International Conference on Multimedia 97, pages
109-120, Seattle, WA, USA, November 1997.

7. O. Gaggi and A. Celentano. Modeling Synchronized Hypermedia Presentations. To
appear in Multimedia Tools and Applications, Kluwer Academic Publ., 2003.

26 A. Celentano and O. Gaggi

8.

10.

11.

12.

13.

14.

15.

16.

17.

O. Gaggi and A. Celentano. A Visual Authoring Environment for Multimedia Presen-
tations on the World Wide Web. In IEFE International Symposium on Multimedia
Software Engineering (MSE2002), pages 206-213, Newport Beach, California, De-
cember 2002.

J. Geurts, J. van Ossenbruggen, and L. Hardman. Application-Specific Constraints
for Multimedia Presentation Generation. In International Conference on Multime-
dia Modeling 2001 (MMMO01), pages 247-266, CWI, Amsterdam, The Netherlands,
November 5-7 2001.

ISO/MPEG. MPEG-7 Standard Overview. ISO/IEC JTC1/5C29/WG11, N4980,
2002. http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm.
Project MIX. The MIX (Mediation of Information using XML) Home Page.
http://www.db.ucsd.edu/Projects/MIX/.

Java Media API. Java Media Framework API.
http://java.sun.com/products/java-media/jmf/.

Java 2 Platform, Standard Edition (J2SE). J2SE Technology.
http://java.sun.com/j2se/.

Synchronized Multimedia Working Group of W3C. Synchronized Multimedia Integra-
tion Language (SMIL) 2.0 Specification, August 2001.

Dynamo Project. Semi-automatic Hypermedia Presentation Generation (Dynamo)
http://db.cwi.nl/projecten/project.phpd?prjnr=74.

L. Rutledge, B. Bailey, J. van Ossenbruggen, L. Hardman, and J. Geurts. Generating
Presentation Constraints from Rethorical Structure. In 11th ACM Conference on
Hypertext and Hypermedia, San Antonio, Texas, USA, May 30-June 3 2000.

J. van Ossenbruggen, J. Geurts, F. Cornelissen, L.. Hardman, and L. Rutledge. Towards
Second and Third Generation Web-based Multimedia. In The Tenth International
World Wide Web Conference, pages 479488, Toulouse, France, May 1-5 2001.

