
Enriching SMIL with Assertions for Temporal Validation

Annalisa Bossi
Dept. of Computer Science

University Ca’ Foscari of Venice
via Torino, 155

30172 Mestre (Venice) Italy
bossi@dsi.unive.it

Ombretta Gaggi
Dept. of Pure and Applied Mathematics

University of Padua
via Trieste, 63

35121 Padua, Italy
gaggi@math.unipd.it

ABSTRACT
In this paper we define a formal semantics for the language
SMIL which can be used in a number of applications. First
of all, we propose a computer-aided authoring system which
include a Semantic Validator Module for the evaluation of
the temporal consistency of the resulting multimedia presen-
tation. If any temporal conflict is found, the system returns
to the user a message pointing out the tag which contains
the error and its motivation. This helps the user to cor-
rect the error. We also introduce a notion of equivalence for
SMIL tags which is useful to find a candidate for substitu-
tion in the development of complex multimedia structure,
for example in the context adaptation process.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia—Theory ; I.7.2 [Document and Text
Processing]: Document Preparation—Standards, Markup
Languages

General Terms
Theory, Verification

Keywords
SMIL, authoring, consistency checking

1. INTRODUCTION
A multimedia presentation is the best way to convey in-

formation to the user in many advanced applications like
distance learning, virtual tourism, news delivery, entertain-
ment and so on. A multimedia presentation is a collection
of continuous media, like video or audio files, and static ob-
jects, like text pages and images, which can be distributed
across the network and rendered to the user according to
the author specifications. To be played, media objects must
be disposed in the user screen and synchronized according

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’07, September 23–28, 2007, Ausburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-701-8/07/0009 ...$5.00.

to a time scale; therefore, the author of a presentation must
define both the spatial layout and the temporal behavior of
the document.

Multimedia authoring and design is a complex and error-
prone activity, especially when the complexity of the tem-
poral structure of multimedia documents increases together
with the chance of including a temporal conflict in the syn-
chronization constraints. Many researches address the prob-
lem of the specification of a multimedia presentation defining
models ([1], [7], [14]), languages and tools ([2], [11], [18]). All
the proposed solutions can be divided into two main classes
(see [4]): the operational approach, which defines system-
dependent structures to model the multimedia presentation,
and the constraint-based approach. This second approach is
more flexible but it requires the author to have in mind the
overall structure of the final presentation which is not repre-
sented explicitly. This problem has found a partial solution
with the structure of the tags proposed by the Synchronized
Multimedia Integration Language, SMIL [9]. In fact, the
most part of both the operational and the constraint-based
systems use SMIL for building the final presentation.

Since SMIL’s first appearance, many authoring tools and
players have been implemented, offering to their users dif-
ferent facilities like visual editors or preview windows, and
sometimes, tools to check the correctness of the work-in-
progress multimedia presentation. Unfortunately, most of
the tools developed for SMIL check only the syntactic cor-
rectness of the document before playback, and are not able
to find out semantic errors.

Motivating Scenario
A semantic error is a conflict in the temporal definition of
the presentation: there are almost two conflicting values
in the definition of the temporal attributes of the docu-
ment. Usually, syntactic errors can be automatically cor-
rect, whereas a semantic conflict points out a contradiction
in the definition of the behavior of media items and requires
a decision for its solution, which can be built-in in the sys-
tem [16] or asked to the author. Unfortunately, as described
in [10] and [17, 19], in presence of temporal conflicts, even
simple multimedia documents may have different behaviors
according to the chosen player, therefore the final behavior
is almost unpredictable, as reported also by Eidenberger [5].

Let us consider two very common semantic errors: (1)
wrong definition of attributes of the same object, e. g., the
tag <text id="txt01" begin="3s" end="5s" dur="5s"/>

defines a text message txt01 displayed at time instant 3
and removed after 2 time units, but the duration defined

by the attribute dur is equal to 5 seconds, and (2) wrong
definition of the temporal structure of the document, e. g.,
when the conflicting values involve more than one tag. As
an example, the tag

<seq dur="5s">

</seq>

describes a sequence of two images, each one visualized for 5
seconds. The conflict is between the overall duration of the
sequence, i. e., 5 seconds according to its attribute dur, and
the sum of the durations of the single images it contains.

More common players, e.g. GRiNS [12] or RealPlayer [15],
(but not all) do not point out the temporal conflict to the
user but the playback goes on and the duration of an object
is equal to the minimum duration defined.

This means that, in the first case, text txt01 lasts for
two seconds, and in the second case, image img02 is not dis-
played at all and the presentation ends immediately after
the first image. Possibly, this is exactly what the author ex-
pects but, if not, it is important to individuate the existence
of the semantic conflict. Moreover, many players have prob-
lems in the resolution of the start and end time of media
items, especially when the complexity of the presentation
structure increases. Therefore, errors of the second kind are
very difficult to find out and fixed, when the complexity of
the presentation increases, because it is not always clear if
the misbehavior is due to a semantic conflict or to a bug in
the player [5].

Some authors, even identifying in the lack of a formal se-
mantics one of the key problems of SMIL language (e. g.
Jourdan in [10]), do not consider the example above as tem-
poral conflicts, but define a formal semantics which describes
the behavior adopted by the majority of the existing play-
ers. Others, (e.g. Sampaio et al in [17]) use formal methods
to find out temporal conflicts like the ones described in this
paper. We agree with this second group of authors thus
considering a double inconsistent definition as a semantic
error since it points out a contradiction in the description
of the result the author of the multimedia presentation tries
to obtain. In the examples above, we are not sure that the
short interval time of 2 seconds is sufficient to read message
txt01 and the author would not have included img02 in the
presentation if her/his real intention is not to display it.

Summing up, consistency checking is an important issue
for multimedia documents and all their applications and any
authoring system should consider this aspect to guarantee
the generation of a renderable multimedia presentation. We
must note here that this paper does not aim at augmenting
or correcting the standard SMIL, but at offering a formal
semantics which can help guide SMIL developers, thus im-
proving the standard specification: as reported in [10] by
Muriel Jourdan, one of the editors of the SMIL 2.0 Timing
and Synchronization Module [13], “. . . SMIL 2.0 complexity
is so great that rejecting the use of formal supports gives rise
to a difficult-to-read specification that cannot be free from in-
consistency”.

Our proposal and its practical applications
In this paper we define a formal semantics for the language
SMIL 2.1 which is the basis for a Semantic Validator Mod-
ule included into the authoring system depicted in Figure
1. Since an uncorrect multimedia presentation cannot be

Visual Editor

Player

SMIL doc
Sematic Validator

Module

Figure 1: The system architecture

rendered properly, consistency is checked during all the au-
thoring phase, each time the author asks it or when she/he
saves her/his work. We prefer this solution instead of a dy-
namic checking since we allow temporary inconsistencies due
to the work-in-progress but we guarantee the correctness of
the final result. This choice is also cost-effective. The Se-
mantic Validator Module supports the multimedia author-
ing process since, if any temporal inconsistency is found, it
returns to the user a message containing the tag which con-
tains the error and its motivation; e.g., the tool’s message
for (1) is “the text txt01 contains two conflicting values for
the attributes end and dur”, and for (2) “img02 ends at time
instant 10 but its father ends at time instant 5”. These mes-
sages allow the user to easily detect and correct the errors.

Our semantics is defined by means of a set of inference
rules inspired by Hoare logic ([8]). The central feature of
Hoare logic is the Hoare triple which describes how the ex-
ecution of a piece of code changes the state of the com-
putation. This choice brings the advantage that the SMIL
structure can be enriched by assertions, expressing the tem-
poral properties, which can be used during the authoring
phase, when media items are collected in more complex con-
structs. As an example, our tool can verify the consistency
of a multimedia presentation resulting from a context adap-
tation process. In this case, the document is dynamically
build up by selecting media items compatible with the great
number of different situations in which a multimedia presen-
tation can be played, in term of resources availability (e.g.,
network bandwidth, CPU time), device type (e.g., desktop,
laptop, cell-phone) and properties (e.g., screen size, number
of colors). This process may often generate conflicts which
must be solved in order to guarantee the playback.

Another application of our semantic approach derives from
the introduction of a formal notion of equivalence which
guarantees that two sets of tags can be substituted each
other without changing the behavior of the overall presen-
tation, or generating temporal conflicts. This notion can
be used in the context adaptation problem to choose the
candidate for a substitution.

As we compose a multimedia presentation by nesting a
SMIL tag into another, our rules allow us to compose the
semantics by evaluating a single tag inside a more complex
nesting. In other words, the proposed semantics is composi-
tional and helps the author to modularize her/his work thus
mastering the complexity of the verification of a multimedia
presentation consistency.

Despite SMIL 2 specification was first released in 2001,
most available players are often unstable or not free of charge
as reported in [5]. The major problem is a robust resolution
of start and end time of tags. Therefore, another application

SMIL tags text, img, video, audio, animation,
brush
par, seq, excl

Attributes begin, end, dur

Admitted begin: t, accesskey(’c’)+t, begin(m)+t,
Values end(m)+t

end: t, accesskey(’c’)+t, begin(m)+t,
end(m)+t, indefinite

dur: t, indefinite

Table 1: List of SMIL tags and attributes used in
this work

of our Sematic Validator Module is as the basis for the de-
velopment of an efficient player for SMIL documents, since it
can detect presentations containing conflicts, thus avoiding
to start their playback, moreover, if the document is consis-
tent, it generates as output the correct begin and end time
of every media item, which can be used for playback.

2. PRELIMINARIES
This paper presents a tentative approach to the formu-

lation of a semantics for the verification of SMIL 2.1 tags
using a formal system based on Hoare logic. In this section
we start by introducing the basic elements and notations
used through the paper.

We note here that our framework currently does not con-
sider the whole SMIL language, even if the values for at-
tributes which are missing is a very limited subset of the
one allowed by the standard. Table 1 describes the set of
tags, attributes and their possible values addressed in this
paper. Note that we do not consider some user interaction
like following a link to another document, or stopping the
current playback. We plan to fill this gap in our future work.

2.1 The assertion language
In the next section we introduce a set of inference rules

which describe how the execution of a piece of SMIL code
changes the state of the playback. The rules provide an
axiomatic semantics for the temporal aspects of SMIL tags
in the spirit of Hoare logic. Therefore they allow us to derive
judgements in the form of triplets:

{P} t {Q}
where P and Q are assertions, respectively the precondi-
tion and the postcondition, and t is a SMIL tag. The triple
{P} t {Q} can be read as: whenever the evaluation of the
tag t starts in a state which satisfies the assertion P then it
terminates in a state which satisfies the assertion Q.

Since we are interested in describing only those aspects
that might influence temporal consistency, a state describes
only significant time instants : the start and end time in-
stants of all SMIL tags contained in the presentation as well
as the duration of each continuous object. Hence the asser-
tion language used to express pre/post conditions includes
a set of basic functions representing the significant tempo-
ral aspects of the media. Assertions are formed by sets of
constraints on values returned by these functions. We say
that P holds in a state σ or, equivalently, that σ satisfies
P , if all the constraints contained in P are true in σ and we
write P ⇒ Q if Q holds in any state which satisfies P .

Function Where Description

tcr : Id → N Pre returns the current time in-
stant in which the SMIL tag
id is evaluated

dur : Id → N Pre returns the number of time
instants for which a contin-
uous media item plays

begin : Id → N Post denotes the time instant me-
dia item id starts

end : Id → N Post denotes the time instant me-
dia item id ends

Notation Description

beginB(c) returns t if {begin(c) = t} ⊆ B
endB(c) returns t if {end(c) = t} ⊆ B

Table 2: List of functions and notations used in the
definition of the proof rules

Table 2 lists all the functions used in the assertions. This
set includes functions whose values can be obtained by an-
alyzing the SMIL document which implicitly holds all the
information about the temporal disposition of the objects
they contain, i.e. the begin and end time instants of each
item. They are begin : Id → N and end : Id → N, which
denote respectively, the time instant the tag denoted by the
identifier id ∈ Id starts or ends. For instance the constraint
begin(id) = 3 states that SMIL tag id starts its rendering
at time instant 3. Given an assertion B which contains the
equality begin(c) = t (or end(c) = t) we use also the no-
tation beginB(c) (or endB(c)) to denote the time instant t
occurring in the corresponding equality.

The only piece of useful information which is not con-
tained in the SMIL document is the natural duration of each
continuous media. We define the function dur : Id → N
which takes as input an identifier of a continuous media
(id ∈ Id) and returns the number of time instants for which
the continuous media item plays in absence of user interac-
tion or other temporal specification.

Our assertions also contain the function tcr : Id → N that
returns the current time instant in which the SMIL tag id
is evaluated. By current time instant of a tag id we mean
the time instant in which, considering a player executing
the presentation, the player evaluates that command. As
an example, if more than one media is defined inside a tag
par, they are evaluated at the same time instant, because
they will be played in parallel (unless other attributes spec-
ification). Otherwise, in case of sequential composition, the
player considers each media item one after the other, there-
fore the current time instant of each media is the end time of
the previous one. This function is used to indicate which is
the first tag of the document, i. e. the tag t with tcr(t) = 0,
or to evaluate a single tag if we want to check the correctness
of only a portion of a presentation.

As a general remark, in the triple {P}t{Q} the precondi-
tion P contains, among others, the current time instant of
the tag t and the natural duration of media items which it
defines (if applicable). The postcondition Q contains, among

Abbreviations

media ::= cont | static;

cont ::= video | audio | animation;

static ::= text | img | brush;

cmd ::= media | par | seq | excl;

m ::= id=“m”
acsk(‘c’) = accesskey(‘c’)

Table 3: List of abbreviations used in the definition
of the proof rules

Name Description

finite(k) holds if k is a real value
indefinite(k) holds if k is equal to ‘‘indefinite’’

defined(k) holds if k is not equal to ‘‘void’’, i. e.,
finite(k) ∨ indefinite(k) holds

NotDur contains all the statements that have
their attributes dur and end equal to
void

Closure(c) contains all the statements defined inside
the tag c, at any level of nesting

Indef(c) holds if in Closure(c) there are tags
with attribute end (or dur) equal to
‘‘indefinite’’

Table 4: List of predicates and sets used in the def-
inition of the proof rules

others, the definition of the time instants in which the tags
defined in t begin and/or end. Media items definitions are
evaluated through axioms, while for par and seq composi-
tion more complex rules are needed.

2.2 Notational conventions
In the following section we use a number of special no-

tational conventions to introduce the set of inference rules
describing the semantics of the SMIL tags.

Table 3 lists a set of abbreviations used for the repre-
sentation of the SMIL tags. For instance <cmd c> stands
for any tag SMIL with the attribute id = ‘‘c’’. More-
over, we use the general form end=‘‘k’’ and dur=‘‘k’’ to
represent the attributes of a tag where the meta-variable
k is either any of the admitted values for the particular at-
tribute, or the special value void. The value void represents
the absence of that attribute and allows us to define only
one rule for each compound tag. As regards the attribute
begin we assume it is always defined since its absence can
be represented by the value k=‘‘0’’. For instance, <video
id=‘‘v’’begin=‘‘0’’dur=‘‘5’’end=‘‘void’’/> is consid-
ered as a synonymous of <video id=‘‘v’’dur=‘‘5’’/>.

The advantage of this representation is that of avoiding
repetition of very similar rules, but we need a set of pred-
icates to check the existence of an attribute’s value before
using it. We need also to classify the tags which occur in a
SMIL document with respect to the values of their attributes
dur and end. Hence we introduce some auxiliary predicates
and sets whose description can be found in Table 4.

static+begin
{A ∪ Pre} <static m begin=‘‘k1’’/> {A ∪ Post}
where Pre = {tcr(m) = start− k1}

Post = {begin(m) = start}
cont+begin
{A ∪ Pre} <cont m begin=‘‘k1’’/> {A ∪ Post}
where Pre = {tcr(m) = start− k1,

dur(m) = stop− start}
Post = {begin(m) = start, end(m) = stop}

media+begin+end+dur

{A ∪ Pre}

<media m begin=‘k1’ end=‘k2’ dur=‘k3’/>

{A ∪ Post}
where
Pre = {tcr(m) = start− k1}
Post = {begin(m) = start} ∪ End

End =

{end(m) = start− k1 + k2} if finite(k2)

{end(m) = start + k3} if finite(k3)

∅ otherwise

applicability condition:
(defined(k2) ∨ defined(k3))

∧ (indefinite(k2) ⇐⇒ indefinite(k3))
∧ ((finite(k2) ∧ finite(k3)) =⇒ k3 = k2− k1)

Table 5: Proof rules for media items definitions

3. A SEMANTICS FOR SMIL TAGS
SMIL language definition provided by [9] does not con-

tain a formal specification of tags and attributes semantics.
The recommendation is divided into sections, some of which
are defined “normative”. Sometimes, an algorithm is pro-
vided to better explain how significant time instants are
computed, but neither a formal definition nor verification
tools have been implemented by Synchronized Multimedia
Working group of W3C to check the sematic correctness of
SMIL tags.

In this section, we define a formal system which is able
to find out temporal conflicts of a multimedia presentation
defined using SMIL. The system provides a Hoare logic for
SMIL by a set of inference rules describing how the execution
of a piece of code changes the state of the playback.

We start by considering self contained tags, i. e., SMIL
commands whose synchronization do not refer to other me-
dia items or tags. Axioms to verify the correctness of state-
ments which define media items are listed in Table 5. The
use of events is discussed in Section 3.2.

Assume we want to verify the triple:

{P}<video id=‘‘v’’ begin=‘‘2’’/>{Q}
where the precondition P is {dur(v) = 5, tcr(v) = 0} and
the postcondition Q is {begin(v) = 2, end(v) = 7}. The
system verifies its correctness since, by applying the axiom
cont+begin, it obtains the set of constraints {tcr(v) =
2−2, dur(v) = 7−2} which is equivalent to the precondition.

The system can also be used as the basis for the imple-
mentation of a player. In this case, it applies the axiom

cont+begin starting from the precondition, obtaining the
postcondition that can be used to start and stop the video.

The situation is a little more complicated if the media
definition contains also an end, or dur, attribute. The rule
media+begin+end+dur defines the end time of a media
item m only if both k2 and k3 are finite (if defined), i. e.,
they are not equal to “indefinite”. As an example, we can
apply the rule to verify that the triple

{P}<video id=‘‘v’’ begin=‘‘2’’ end=‘‘3’’/>{Q}
where {Q} = {begin(v) = 2, end(v) = 3} is valid. As dis-
cussed in Section 2.2, <video id=‘v’begin=‘2’end=‘3’/>

is a synonymous of <video id=‘v’begin=‘2’dur=‘void’

end=‘3’/>. For readability sake, we will use always this
form in the following.

Media items definition does not lead to temporal con-
flicts unless the author defines both the dur and the end

attributes. The applicability condition disallows the appli-
cation of the rule in presence of uncorrect values of these
attributes; e. g. when both the attributes dur and end are
finite, the relation k3 = k2−k1 must hold. The applicability
conditions also point out a temporal conflict to the user.

3.1 Rules for more complex constructs
When media definitions are nested into parallel and se-

quential composition, the evaluation of these structures re-
quires the definition of more complex rules.

Since the flexibility of SMIL tags allows us to describe the
same temporal behavior using both a par or a seq tag, we
base the discussion of this section mainly on the description
of the rules for the parallel composition. The sequential
composition is discussed at the end of this section.

par+begin+end

{Ai ∪ {tcr(ci) = initci}} ci {B′
i} ∀i 1 ≤ i ≤ n

{A′} <par c attribute-list> c1 . . . cn </par> {B}
where
attribute-list ≡ begin=‘k1’ end=‘k2’ dur=‘void’

and
A′ =

⋃n
i=1 Ai ∪ {tcr(c) = init}

initci = init + k1

B =
⋃n

i=1 Bi ∪ {begin(c) = init + k1} ∪ End

stop =

{
init + k2 if finite(k2)

maxci {endBi(ci)} if ¬defined(k2)

End =

{ {end(c) = stop} if ¬Indef(c)

∅ otherwise

B′
i =

Bi \ {end(ci) = stop} if ci ∈ NotDur
∧ finite(k2)

Bi otherwise
applicability condition:

finite(k2) =⇒ ¬Indef(c)
∧ Indef(c) =⇒ (¬defined(k2) ∨ indefinite(k2))
∧ finite(k2) =⇒ ∀ci endB(ci) ≤ stop ∨ ci ∈ NotDur
∧ ∀ci beginB(ci) ≥ init + k1

Table 6: Proof rule for the parallel composition
when the attribute dur is equal to void

We start our analysis by considering the parallel compo-
sition expressed by the tag par when the attribute dur is

not present (i. e. dur=‘‘void’’), the attribute begin is al-
ways present (possibly equal to zero) and the attribute end is
void, indefinite or a real number. The par+begin+end
rule described in Table 6 defines the semantics of the parallel
composition in these cases. In the postcondition we make
the components B1 . . . Bn evident to make it explicit that
the postcondition should contain information about each ci,
be it a media object or a synchronization structure.

To prove the correctness of the tag <par c> c1 . . . cn

</par>, each ci must be proven to be correct by assum-
ing as its current time instant the current time instant of
the parallel tag plus the offset given by the attribute begin,
i. e., if (tcr(c) = init) is contained into the precondition
of the tag c, the precondition of each tag ci must contain
(tcr(ci) = init+k1) where k1 ≥ 0 is the value of the attribute
begin and init is the time instant at which the statement
par is evaluated.

The evaluation of the end time instant of a par tag is
a little more complicated, and not always possible. As a
general remark, it is not possible to calculate the end time
of a media item in two cases: if it is a static object and it
does not have an attribute end or dur defined, or if it has an
attribute end or dur equal to ‘‘indefinite’’. In the same
way, the ending time of a par statement cannot be calculated
if its attribute end (or dur) is equal to ‘‘indefinite’’, or
it is not defined and one of it its children has the attribute
end (or dur) equal to ‘‘indefinite’’.

Once we are able to decide whether a parallel composition
terminates, we must calculate the time instant stop. The
semantics which describes the evaluation of stop is complex
since different cases have to be considered. We discuss here
what happens when an end attribute is defined: the case re-
lating the dur attribute is very similar and will be discussed
in the following.

We have to study four possible situations:

1. the tag c does not contain the definition of attribute
end (i. e. end = ‘‘void’’: in this case, the statement
c ends when all its children (which are not static ob-
jects in NotDur) have finished their playbacks, i.e. at
time instant stop = maxci {endBi(ci)};

2. all statements contained in the par tag end up before
the par statement’s end, more precisely before time
instant init + k2;

3. some continuous media items defined inside c have a
natural duration wider than the duration of c;

4. some items defined inside c have a duration, defined
with an attribute dur or end, wider than the duration
of c.

Cases 1, 2 and 3 are all correct. In the first two cases,
each media object or statement within c lasts for a period
of time equal or shorter than the duration of c. If a static
media item has not a duration defined, its duration is equal
to the duration of c. In case 3, if a continuous media ci has a
natural duration longer than the duration of c, its playback
will be truncated at c’s end.

Case 4 is not correct since the author gives a double, and
contradictory, definition of the duration of media items in-
volved, thus generating a temporal conflict. Note that case
4 includes also the case in which the parallel composition
has a finite duration, but contains some children with an

indefinite duration, which is, by definition, longer than any
other finite value.

We can apply the par+begin+end rule in cases 1, 2 and
3, since the applicability conditions are satisfied. In case 1,
all media items end before time instant stop because it is
chosen as the maximum value. In case 2, all media items
end before init + k2 = stop from the hypothesis. In case
3 all media items ending after the time instant stop be-
long to NotDur, therefore finite(k2) =⇒ ∀ci endB(ci) ≤
stop∨ci ∈ NotDur, hence the applicability condition is sat-
isfied and the rule can be applied. The same applicability
condition prevents us to apply the par+begin+end rule in
case 4 when a statement ci has a finite duration longer than
c.

The statement finite(k2) =⇒ ¬Indef(c) states that in
presence of a finite value of k2, the rule can be applied to
the statement c only if it ends, i.e., it does not contain, at
any level of nesting, an item with an indefinite duration.

Otherwise, the applicability condition Indef(c) =⇒
(¬defined(k2) ∨ indefinite(k2)) states that if the state-
ment does not end and the attribute end is defined, then
it must be equal to ‘‘indefinite’’. Finally the condition
∀ci beginB(ci) ≥ init+k1 expresses the fact that all children
of c must start together with c or after it.

Let us illustrate how our rules find out temporal conflicts
like the one described in case 4, due to an author’s error
which can happen when the structure becomes more com-
plex, including a lot of tags nested one into the other. Let
us consider the following tag:

<par id="p" begin="0" end="5s">

<text id="tx" begin="0" end="7s" />

</par>

Even if the temporal conflict is evident since the tag is sim-
ple, (text page tx lasts more then the tag in which it is
contained), we try to check the semantic correctness of this
statement to show how the system works.

We would like to prove that

{tcr(p) = 0}<par p ...>{Q}
where Q ≡ {begin(i) = 0, end(i) ≤ 5, begin(tx) = 0, end(tx)
≤ 5, begin(p) = 0, end(p) = 5} but statement p is not cor-
rect since rule par+begin+end (see Table 6) cannot be
applied. In fact, since both tx and i do not belong to the
set NotDur, in order to apply the rule we would have to
prove the premises:

Si ≡ {tcr(i) = 0} i {begin(i) = 0, end(i) = 5}
Stx ≡ {tcr(tx) = 0} tx {begin(tx) = 0, end(tx) = 5}

The first triple Si is valid and we can prove it by the axiom
media+begin+end+dur, but we cannot prove the triple
Stx which is not valid. Therefore the par+begin+end rule
cannot be applied since the premise Stx cannot be verified.
In this case, the answer of our tool is that the presentation
contains a semantic conflict since media item tx ends at time
instant 7 while its father ends at time instant 5.

The rule which describes the semantics of the sequential
composition is very similar to the par+begin+end rule
since the two tags can express the same synchronization if
the values of the attributes are properly defined. It is pre-
sented in Table 7. Also in this case, we consider the attribute
dur equal to void.

seq+begin+end

{Ai ∪ {tcr(ci) = initci}} ci {B′
i} ∀i 1 ≤ i ≤ n

{A′} <seq c attribute-list> c1 . . . cn </seq> {B}
where
attribute-list ≡ begin=‘k1’ end=‘k2’ dur=‘void’

and
A′ =

⋃n
i=1 Ai ∪ {tcr(c) = init}

initci =

{
init + k1 if i = 1

endB(ci−1) if i > 1

B =
⋃n

i=1 Bi ∪ {begin(c) = init + k1} ∪ End

stop =

{
init + k2 if finite(k2)

maxci{endBi(ci)} if ¬defined(k2)

End =

{ {end(c) = stop} if ¬Indef(c)

∅ otherwise

B′
i =

{
Bi \ {end(ci) = h} if (beginB(ci) = h)
Bi otherwise

applicability condition:
finite(k2) =⇒ ¬Indef(c)

∧ Indef(c) =⇒ (¬defined(k2) ∨ indefinite(k2))
∧ finite(k2) =⇒ ∀ci endB(ci) ≤ stop ∨ ci ∈ NotDur
∧ ∀ci beginB(ci) ≥ init + k1

Table 7: Proof rule for the sequential composition
when the attribute dur is equal to void

With respect to the parallel composition there are only
two differences: first, the current time instant of each child
is equal to the end time instant of the previous child, and not
to the current time instant of the seq tag. Second, the seq

statement imposes a duration equal to zero to static media
items which have not a defined duration, i. e., beginB(ci) =
h and endB(ci) = h if ci is a static media contained in
NotDur. This means that they are never played in the user
screen.

So far we consider only the use of the attribute end, but,
as already discussed for media item definition, statements
can also contain an attribute dur whose semantics is very
similar to the end attribute and therefore, an easily transla-
tion can be obtained with the rule cmd+begin+end+dur
illustrated in Table 8.

cmd+begin+end+dur

{A} <cmd c attribute-list> c1 . . . cn </cmd> {B}
{A} <cmd c attribute-list2> c1 . . . cn </cmd> {B}

where
attribute-list ≡ begin=‘k1’ end=‘k2’ dur=‘void’

and
attribute-list2 ≡ begin=‘k1’ end=‘k4’ dur =‘k3’

applicability condition:
defined(k3)

∧ (indefinite(k2) ⇐⇒ indefinite(k3))
∧ finite(k3) =⇒ (finite(k2) ∧ k3 = k2− k1)
∧ defined(k4) =⇒ k4 = k2

Table 8: Proof rules for a general composition of
tags when the attribute dur is defined

3.2 Particular values for begin and end

The discussion so far consider only a time value (e.g. a
number of seconds) as possible value for the attribute begin

and end. SMIL language permits also other ways to define
the starting or the ending time of tags using events (see
Table 1). Let us consider the case in which the start (or the
end) of a media, or a group of media items, occurs when the
user keys in a character, say ‘s’, in the keyboard as described
by the following tag:

<cmd c begin=‘‘accesskey(s)+k’’/>

where accesskey(s) means that the user has to key in the
character ‘s’ and k ≥ 0 represents a number of seconds.

The correctness of this statement can be proven only if
we already know the instant in which the event accesskey(s)
takes place. Therefore, to define a rule for this kind of state-
ments, we need a function t : A → N which takes as input
an event accesskey(s) ∈ A and returns the time instant in
which this event takes place; this function can be used in
the preconditions of the statement to constraint the input
event.

begin+accesskey

{A}<cmd c begin=‘keyin+k’ end=‘value’/>{B}
{A′}<cmd c begin=‘acsk(s)+k’ end=‘value’/>{B}

where A′ = A ∪ {t(acsk(s)) = keyin}
applicability condition:
A′ =⇒ {t(acsk(s)) ≥ tcr(c)}
end+accesskey

{A}<cmd c begin=‘value’ end=‘keyin+k’/>{B}
{A′}<cmd c begin=‘value’end=‘acsk(s)+k’/>{B}

where A′ = A ∪ {t(acsk(s)) = keyin}
applicability condition:
A′ ∪B =⇒ {t(acsk(s)) ≥ begin(c)}

Table 9: Proof rules for SMIL statements with an
accesskey in the definition of the begin or the end

attribute

Table 9 shows the rules to deal with statements with a
begin or an end attribute which is bound to an input from
the keyboard. Due to space constraints, acsk(s) is used in-
stead of accesskey(s). Moreover, we write begin=‘‘value’’
or end=‘‘value’’ where value can assume any of the ad-
mitted values listed in Table 1.

These rules simply state that the input from the keyboard
must occur after the evaluation of the statement, repre-
sented by tcr(c), or after its beginning if accesskey is de-
fined in the end attribute of a statement for which also a
begin attribute is defined. Once this hypothesis is verified,
since (t(accesskey(s)) = keyin) ∈ A′, the triple

{A′}<cmd c end=‘‘accesskey(s)+k’’/>{B}
holds whenever we can prove that

{A}<cmd c end=‘‘keyin+k’’/>{B}.
Note that almost all other events could be addressed in

the same way as soon as we assume the existence of a suit-
able function recording the time instant in which the event
occurs. As an example, the activateEvent represents the

time instant in which an user clicks on a media items, and
therefore, from our point of view, it is not different from the
user clicking on the keyboard.

Another possibility offered by the SMIL standard is to
bind the begin (or end) event of a (group of) media item m
with the begin (or end) event of another (group of) media
item n. As an example, consider the tags

<par id="p" end="au.end">
<audio id="au" />
<text id="tx" />

</par>

(1)

<cmd id="m" begin="n.begin+5"/> (2)
in case (1), the whole par statement ends when media

item au ends; in case (2) media item m begins 5 seconds
after the beginning of n.

Tag (1) can be considered similarly to the accesskey case:
if we already know (from the premise) the end point of au,
i. e. end(au) = stop, we can then analyze the tag <par

id="p" end="stop">. . . </par>.
Therefore the following rule can be applied to tag (1).

par+end+event

{A}<par c end=‘stop+k’>c1..cn</par>{B}
{A}<par c end=‘ci.end+k’>c1..cn</par>{B}
applicability condition:
endB(ci) = stop
As we have already said, situation is more complex in case

(2), which cannot be analyzed singularly since its evaluation
needs information about the begin of media item n. For this
reason we must consider a set of media items as shown by
the following rule:
begin+event

{A}<cmd c> . . . ci . . . c′j . . . </cmd>{B}
{A}<cmd c> . . . ci . . . cj . . . </cmd>{B}

where n ∈ Closure(ci), d ≡ <cmd id="m" begin="n.begin

+k"/> ∈ Closure(cj), and c′j is obtained from cj by replacing
d with d′ ≡ <cmd m begin="beginB(n)+k" />.

In this paper we consider a limited set of combinations of
attributes and events, but the approach is easily generaliz-
able to cover all the possibilities offered by the standard.

3.3 The excl tag
SMIL language provides also a tag for the exclusive com-

position of media items, i. e., the tag excl, whose semantics
states that only one of its children is active at any given time
instant. Therefore, this tag is very similar to the sequential
composition, even in this case only one child is active at a
time, but excl does not impose any order in the visualiza-
tion of the children. This means that each child may contain
the attribute begin in the definition, or may be activated by
the user, e.g. following a link. Let us consider the following
example:

<par>

<excl id="e" dur="10">

<video id = "video_a" begin="a.activateEvent"/>
<video id = "video_b" begin="b.activateEvent"/>
<video id = "video_c" begin="c.activateEvent"/>

</excl>
</par>

in this case, the user chooses a video clip by clicking on
an image button chosen between media items a, b and c.

The corresponding video is activated by the proper activa-
teEvent. The excl tag simply states that only one video
clip plays at a time: in fact, the video currently playing is
stopped when the user clicks on another image, choosing
another video clip.

The example shows how the excl command does not deal
with the activation of its children but with their deactiva-
tion; in fact, the playback order of the video clips completely
depends on the user choices and not on the tags’ definitions.

The semantics of the excl tag is described in Table 10 by
rule excl+begin+end. Like tags par and seq, the excl

tag begins at its current time instant, or after k1 time in-
stants if the attribute begin is finite, and ends, when there
are no children playing. This means that, it can have an
instantaneous duration if no child starts together with it.
For this reason, the attribute end of this statement usually
does not contain the special value ‘‘void’’.

The excl+begin+end rule is very similar to the rule
which describes the semantics of parallel composition, there-
fore we do not repeat here the problem of the termination
of the tag. Even in this case, to prove the correctness of the
statement <excl> c1 . . . cn </excl>, each ci must be proven
to be correct, assuming as its current time instant the cur-
rent time instant of its father. Since the exclusive tag may
impose a premature stop of the playback of its children, in
some cases, we do not require to know the time instant in
which the child ci ends in the premises, i. e.:

1. when ci ends together with excl (i.e. k2 is finite)
if it does not contain the attribute end or dur in its
definition (i.e ci ∈ NotDur);

2. when the playback of ci is stopped before its natural
termination due to the user interaction or some other
external event (i. e. ∃j |beginB(cj) = ti).

The applicability condition prevents the application of the
rule in presence of temporal conflicts. Among the conditions
already discussed for the parallel composition, the condi-
tion ∀ci, cj (beginB(ci) ≤ beginB(cj)) =⇒ (endB(ci) ≤
beginB(cj)) states that only one child plays at any given
time instant, i. e., if child ci begins before child cj , it also
ends before cj ’s beginning.

4. EQUIVALENCE OF SMIL TAGS
In this section we introduce two notions of equivalence

between SMIL tags: an observable equivalence, ≈, and a
strong equivalence, ≈S . The first one formalizes the informal
idea that two tags are equivalent if a user cannot distinguish
them just by observing the playback of the various media
items in her/his screen. The second one is stronger because
it specifies when two tags can be substituted each other. For
this reason it also asks the same time reference for the two
tags, i. e., the same value for the function tcr.

First we introduce an equivalence on assertions. We say
that two assertion P1 and P2 are player equivalent, and write
P1 ∼m P2, if they contain the same constraints on media
items. More formally:

Definition. Let P1 and P2 be assertions. P1 ∼m P2 if for
every function f ∈ {dur, begin, end} and media m:

(f(m) = k) ∈ P1 ⇔ (f(m) = k) ∈ P2.

Then we can introduce the notion of observable equivalence
between tags.

excl+begin+end

{A ∪ {tcr(ci) = initci}} ci {B′
i} ∀i 1 ≤ i ≤ n

{A′} <excl c attribute-list> c1 . . . cn </excl> {B}
where
attribute-list = begin=‘k1’ end=‘k2’dur=‘void’

A′ =
⋃n

i=1 Ai ∪ {tcr(c) = init}
initci = init + k1

B =
⋃n

i=1 Bi ∪ {begin(c) = init + k1} ∪ End

stop =

{
init + k2 if finite(k2)

maxci{endBi(ci)} if ¬defined(k2)

End =

{ {end(c) = stop} if ¬Indef(c)

∅ otherwise

B′
i =

Bi \ {end(ci) = ti} if ∃j beginB(cj) = ti

∨(finite(k2)
∧ ci ∈ NotDur)

Bi otherwise
applicability condition:
finite(k2) =⇒ ¬Indef(c)
∧ Indef(c) =⇒ (¬defined(k2) ∨ indefinite(k2))
∧ finite(k2) =⇒ ∀ci (endB(ci) ≤ stop ∨ ci ∈ NotDur)
∧ ∀ci beginB(ci) ≥ init + k1
∧ ∀ci, cj (beginB(ci) ≤ beginB(cj))

=⇒ (endB(ci) ≤ beginB(cj))

Table 10: Proof rule for the exclusive composition
when the attribute dur is equal to void

Definition (Observable Equivalence). Let c1 and c2 be
SMIL tags. Then c1 ≈ c2 if

• for any pair P1, Q1 such that ` {P1}c1{Q1} there ex-
ist P2, Q2 such that P1 ∼m P2, Q1 ∼m Q2 and `
{P2}c2{Q2};

• for any pair P2, Q2 such that ` {P2}c2{Q2} there ex-
ist P1, Q1 such that P1 ∼m P2, Q1 ∼m Q2 and `
{P1}c1{Q1},

As an example, consider the following commands:
c1 ≡

c2 ≡.
We can prove {P1}c1{Q1} only if P1 = A ∪ {tcur(im2) =

start− 10} and Q1 = A∪ {begin(im2) = start, end(im2) =
start + 5}, for some assertion A; similarly, we can prove
{P2}c2{Q2} only if P2 ≡ A ∪ {tcur(im2) = start}, Q2 ≡
A ∪ {begin(im2) = start, end(im2) = start + 5}, for some
assertion A. Hence c1 and c2 are observable equivalent.

The notion of observable equivalence correctly captures
the behavior of the overall execution of a SMIL tag but it
is not sufficiently strong to induce a substitution property.
Consider for instance the following tags:

d1 = <seq id="s" >

</seq>

d2 = <seq id="s" >

</seq>

They are clearly not equivalent even if they differ only for
the replacement of the tag c1 with the observable equivalent
tag c2.

The problem depends on the fact that the notion of ob-
servable equivalence does not impose a fixed “starting” time
instant for a SMIL tag, that depends on the time in which
it is analyzed. The function tcr sets the “starting” time of
a SMIL tag when it is nested into another tag. Therefore a
tag can be replaced with another one, only if their tcr-values
are equal.

Hence we need a stronger notion of equivalence if we want
to prove a substitution property.

Definition (Strong Equivalence). Two tags c1 and
c2 are strong equivalent, c1 ≈S c2, if they are observable
equivalent, c1 ≈ c2, and they are ”time coherent”:

(tcr(c1) = init) ∈ P1 ⇔ (tcr(c2) = init) ∈ P2 and for all
f ∈ {begin, end} (f(c1) = k) ∈ P1 ⇔ (f(c2) = k) ∈ P2.

Note that, in the definition of strong equivalence the con-
dition, for all f ∈ {begin, end}, (f(c1) = k) ∈ P1 ⇔ (f(c2) =
k) ∈ P2 seems to be pointless since Q1 ∼m Q2. This is true
when tags c1 and c2 start and end with a media item. This
is not true when there are time intervals in which no media
items are played at the beginning or ending of the tag, or
when ¬Indef(c1)∧¬Indef(c2). Consider as an example the
tag:

<seq id="s" begin="10" >

</seq>

where no media item plays for the first ten seconds. In this
case, the condition {begin(c1) = bc, end(c1) = ec} ⊆ Q1 ⇔
{begin(c2) = bc, end(c2) = ec} ⊆ Q2 must hold to find out
a strong equivalent tag.

We can now prove the following theorem.

Theorem. Let d be a SMIL tag in which the sub-tag c
occurs, nested at some level inside d, i. e., c ∈ Closure(d),
and d′ be the tag obtained from d by replacing the sub-tag
c with c′. Then:

c ≈S c′ =⇒ d ≈S d′.

Proof. The proof of the theorem follows by induction on
the depth of the nesting of c in d. Let us assume there exists
a proof for {A}d{B}.

Base case: d = c. It is trivial.
Inductive step: c ∈ Closure(di), and di is one of the

children of d.
All the rules of our proof system have a similar shape: if

the conclusion is {A}d{B} and di is one of the children of d,
then in the premises we find {Ai∪{tcr(di) = initi}} di {Bi}.
Moreover, A = Ā ∪ Ai ∪ {tcr(d) = init} and B = B̄ ∪ Bi ∪
{begin(d) = begin} ∪ End.

Let d′i be obtained from di by replacing the sub-tag c with
c′. By inductive hypothesis di ≈S d′i. Hence there exist A′i
and B′

i such that ` {A′i ∪ {tcr(d
′
i) = initi}} d′i {B′

i} where
A′i ∼m Ai, B′

i ∼m Bi and {begin(d′i) = starti} ⊂ B′
1 if and

only if {begin(di) = starti} ⊆ Bi and {end(d′i) = stopi} ⊆
B′

i if and only if {end(di) = stopi} ⊆ Bi .
We can substitute this premise in the proof of {A}d{B},

thus obtaining a proof for ` {A′}d′{B′} where A′ = Ā∪A′i∪
{tcr(d

′) = init} and B′ = B̄ ∪ B′
i ∪ {begin(d′) = begin} ∪

End. Hence d ≈S d′.

5. CONCLUSIONS AND RELATED WORK
This paper presents a formal semantics for the temporal

aspects of SMIL documents. We start by defining a set of
inference rules inspired by the Hoare triples which describe
how the execution of a piece of code changes the state of the
computation. A prototype implementation of a computer-
aided authoring system, including the Semantic Validator
Module based on the proposed semantics, is currently under
development.

This paper mainly focuses on SMIL 2.1 features but since
SMIL 3.0 specification leaves the basic syntax and semantics
of the SMIL 2.1 timing model unchanged [3], it also applies
to the latest version.

The main advantages of this work are the following:

• it allows the author to check the consistency of a mul-
timedia presentation based on the SMIL standard and
not on a proprietary format;

• it assists multimedia authoring by pointing out con-
flicting values in the document;

• it allows for a modular evaluation of the tags nested
in a SMIL document and helps the context adaption
process;

• it minimizes the set of preconditions needed to eval-
uate a SMIL tag, i. e., the natural duration of the
continuous objects, if present, and

• the compositionality of the approach allows for an easy
extension of SMIL features actually considered.

Note here that all the rules of the proof system can be
used both for a top-down construction of a correct play-
back sequence of the media items involved in the multime-
dia presentation and for a bottom-up analysis of the SMIL
document. This second feature is particularly useful during
the context adaption of a document to find out a suitable
candidate for substitution or, more in general, during the
authoring of the document by composition of tags. More-
over, it is useful to find out the weakest precondition, i.e.,
the minimal set of requirements needed to evaluate a tag.
In our system this set contains the natural duration of the
continuous media items and the current time instant of the
outer-most tag, equal to zero by standard convention.

We note also that a composition of a SMIL document
driven by the rules is correct by construction. The analysis
of a tag finds out a temporal conflict, if the construction of
the proof fails because one of the needed premises cannot
be proved or the applicability conditions are not satisfied.
In this case, the prototype system returns a message which
shows the inconsistent values, e.g., a child which ends after
its father. The compositionality of our approach helps the
user to correct the error and to incrementally continue the
analysis.

The choice of Hoare logic as basis for the formalism al-
lows us to incrementally extend the subset of SMIL features
implemented. New features are added by defining new rules
to describe the semantics of a particular tag or attribute, or
by defining a translation to a more simple situation, e.g. the
cmd+begin+end+dur translates a tag containing all the
attributes begin, end and dur into an equivalent tag with-
out the attribute dur. This second approach can be used to
support some particular values for an attribute, e.g. mul-
tiple values for the attribute begin or end: it is sufficient

to translate the tag to an equivalent one which chooses the
minimum value for the attribute. This also means that our
approach is open to future modifications of SMIL.

Other works in literature study a way to find out temporal
conflicts into SMIL documents. In [17, 16, 19], Sampaio et
al describe RT-LOTOS, a formal description of SMIL tags
which enables the generation of a valid scheduling for its
rendering, considering QoS problem. The authors do not
aim at defining a semantics for SMIL language, but compare
different players’ behaviors which are still implementation-
dependent.

Yang [20] and Yu [21] proposes the use of Petri Nets to
describe the temporal evolution of a SMIL document. Yang
translates the SMIL synchronization tags into transitions
and places of the Real Time Synchronization Model (RTSM)
and tries to detect possible temporal conflict, but this work
is limited to the features of SMIL 1.0. Yu defines a formal-
ism based on Petri Nets named SAM (Software Architecture
Model) which aims to check if QoS properties, expressed
through logical formulas, are satisfied, and not to the veri-
fication of the semantic correctness of the SMIL document.

The only real attempt to define a formal semantics for
SMIL is presented in [10] by Jourdan. This approach is
based on the use of timed automata and has been used dur-
ing the design of SMIL 2.0 to improve specification, since
the author was a co-editor of the document which describes
timing and synchronization features of this language. The
work presented in this paper mainly focuses on SMIL 1.0
and take into account only two new features of SMIL 2.0.

Other works address the problem of temporal consistency
of multimedia documents not described with SMIL language.
Among others, Elias [6] presents an algorithm, based on the
graph theory, which is able to dynamically maintain a con-
sistent and complete set of constraints during the authoring
phase. Other works address the same problem with con-
straints solver techniques. Differently from our approach,
all the works addressed here require to translate the SMIL
document into another formalism, e.g., a set of temporal
constraints or a Petri Net, in order to check its temporal
consistency. This operation is not always cost-effective, es-
pecially when the complexity of the input file increases and
a non compositional approach is used.

Finally, since most available authoring systems adopt “. . .
SMIL language for building the final representation scheme”
[4], we argue that a formal semantics for this language is
needed.

6. ACKNOWLEDGMENTS
The authors would like to thank Maria Luisa Sapino and

the anonymous referees for their helpful suggestions.

7. REFERENCES
[1] J. F. Allen. Maintaining knowledge about temporal

intervals. Comm. ACM, 26(11):832–843, Nov. 1983.

[2] D. C. A. Bulterman, L. Hardman, J. Jansen, K. S.
Mullender, and L. Rutledge. GRiNS: A GRaphical
INterface for Creating and Playing SMIL documents.
In WWW Conference, volume 30(1-7), pages 519–529,
Brisbane, AU, Apr. 1998.

[3] Dick Bulterman et al. Synchronized Multimedia
Integration Language (SMIL) 3.0 Working Draft,
December 2006.

[4] E.Bertino, E. Ferrari, A. Perego, and D. Santi. A
Constraint-Based Approach for the Authoring of
Multi-Topic Multimedia Presentations. In ICME,
pages 578–581, July 2005.

[5] H. Eidenberger. SMIL and SVG in teaching. In
Internet Imaging V, volume 5304, pages 69–80, Dec.
2003.

[6] S. Elias, K. S. Easwarakumar, and R. Chbeir.
Dynamic consistency checking for temporal and
spatial relations in multimedia presentations. In SAC,
pages 1380–1384, April 2006.

[7] L. Hardman, D. Bulterman, and G. van Rossum. The
Amsterdam Hypermedia Model: Adding Time,
Structure and Context to Hypertext. Comm. of the
ACM, 37(2):50–62, Febr. 1994.

[8] C. A. R. Hoare. An axiomatic basis for computer
programming. Comm. of the ACM, 12(10):576–585,
1969.

[9] Jeff Ayars et al. Synchronized Multimedia Integration
Language (SMIL) 2.0 Specification, January 2005.

[10] M. Jourdan. A formal semantics of SMIL: a web
standard to describe multimedia documents. Computer
Standards & Interfaces, 23(5):439–455, 2001.

[11] M. Jourdan, N. Layäıda, C. Roisin, L. Sabry-Ismail,
and L. Tardif. Madeus, an Authoring Environment for
Interactive Multimedia Documents. In ACM
Multimedia 1998, pages 267–272, Bristol, UK, Sept.
1998.

[12] Oratrix. GRiNS. http://www.oratrix.com.

[13] Patrick Schmitz and Jeff Ayars and Bridie Saccocio
and Muriel Jourdan. The SMIL 2.0 Timing and
Synchronization Module, March 2001.

[14] F. Paulo, P. Masiero, and M. F. de Oliveira.
Hypercharts: Extended Statecharts to Support
Hypermedia Specification. IEEE Trans. on Software
Engineering, 25(1):33–49, Jan. 1999.

[15] RealNetworks. RealPlayer 10.5.
http://www.real.com/.

[16] P. Sampaio and J.-P. Courtiat. An Approach for the
Automatic Generation of RT-LOTOS Specifications
from SMIL 2.0 Documents. Journal of the Brazilian
Computer Society, 9(3):39–51, Apr. 2004.

[17] P. Sampaio, C. Santos, and J.-P. Courtiat. About the
Semantic Verification of SMIL Documents. In ICME,
pages 1675–1678, New York, USA, Aug. 2000.

[18] L. F. G. Soares, R. F. Rodrigues, and D. C. M. Saade.
Modeling, authoring and formatting hypermedia
documents in the HyperProp system. Multimedia
Systems, 8(2):118–134, 2000.

[19] P. Valente and P. Sampaio. TLSA Player: A tool for
presenting consistent SMIL 2.0 documents. In Proc. of
ICEIS2007, Madeira, Portugal, June 2007.

[20] C. Yang. Detection of the time conflicts for smil-based
multimedia presentations. In Workshop on Computer
Networks, Internet, and Multimedia, pages 57–63,
2000.

[21] H. Yu, X. He, S. Gao, and Y. Deng. Modeling and
Analyzing SMIL Documents in SAM. In MSE, pages
132–135, Newport Beach, California, Dec. 2002.

