
REGULAR PAPER

Analysis and verification of SMIL documents

Ombretta Gaggi • Annalisa Bossi

Received: 3 December 2009 / Accepted: 25 March 2011

� Springer-Verlag 2011

Abstract In this paper, we consider the problem of

automatic verification of SMIL documents and present a

tool which can assist the user in the complex task of

authoring a multimedia presentation. The tool is based on a

formal semantics defining the temporal aspects of SMIL

elements by means of a set of inference rules. The rules, in

the spirit of Hoare’s semantics, describe how the execution

of a piece of code changes the state of the computation of a

player. If any temporal conflict is found, the system returns

a message to the user pointing out the element which

contains the conflict and its motivation. This helps the user

to develop robust and clear code.

Keywords SMIL � Authoring multimedia presentations �
Verification � Consistency checking

1 Introduction

The authoring and design of a multimedia presentation is a

complex and error-prone activity, especially when the

temporal structure of a multimedia document increases in

complexity thus increasing the possibility to introduce a

temporal conflict in the synchronization constraints.

Moreover, the playback of the media objects may be

completely changed by the user, who can follow a link,

click on an image, or even simply move the mouse over or

out of an item.

Many researchers have proposed different solutions for

this problem, by defining models (e.g., temporal relations

[1], AHM [13]), languages (e.g., SMIL [7]) and tools (e.g.,

[6]). Despite these efforts, the authoring of a complex

multimedia presentation is far away from being considered

as easy as using a word processor or a drawing program.

A step towards a solution was the introduction of the

standard language SMIL for the output. SMIL greatly helps

the author to develop structured and clear code. Unfortu-

nately, it admits the presence of double inconsistent defi-

nitions inside a multimedia document. For example,

consider the element \text id=‘‘txt01’’ begin=

‘‘3s’’ end=‘‘5s’’ dur=‘‘5s’’/[which displays a

text at time instant 3 and removes it after 2 s even if its

defined duration is equal to 5. Another example is the

sequence:

which describes a sequence of two images, each one

visualized for 5 s when the overall sequence, according to

its attribute dur, lasts for only 5 s, i.e., image img02 is

not displayed at all. Possibly, this is exactly what the author

expects but, if not, it is important to individuate the exis-

tence of the conflict: we think that the author would not

have included img02 in the presentation if her/his real

intention is not to display it, and we are not sure that 2 s are

sufficient to read the text message in the first example.

Communicated by Dick Bulterman.

O. Gaggi (&)

Deparment of Pure and Applied Mathematics,

University of Padua, via Trieste, 63, 35121 Padua, Italy

e-mail: gaggi@math.unipd.it

A. Bossi

Department of Computer Science, University Ca’ Foscari

of Venice, via Torino, 155, 30172 Mestre, Venice, Italy

e-mail: bossi@dsi.unive.it

123

Multimedia Systems

DOI 10.1007/s00530-011-0233-1

We call a semantic error the presence of a temporal

conflict in the definition of elements and attributes, like

double inconsistent definition of attributes of the same

object or wrong definition of the temporal structure of the

document, like in the above examples. This is indeed a very

common type of error, difficult to find out and to be fixed

when the complexity of the presentation increases [11]. We

must note here that, according to the SMIL specifications,

these are not errors, and semantic rules, that govern the

behavior in this case, exist. However, in a hand-authored

document the presence of such a statement is due to a

mistake in most cases. Therefore, a tool which points out

this situation is useful. It is important to note that we do not

consider the partial playback of a (group of) media

item(s) as an error, but only a double, inconsistent, defi-

nition of its duration by the definition of, at least two,

attributes.

Semantic mistakes are particular dangerous, because

they usually cannot be automatically correct because they

point out a contradiction in the definition of the behavior of

media items, and require a user decision to be solved. We

think that a good authoring system should also point out

semantic mistakes and assist the user while fixing them.

This paper presents a tentative approach to the formu-

lation of an axiomatic semantics for the verification of

SMIL 3.0 elements. On this basis, we have developed a

tool for the automatic analysis and verification of SMIL

documents. We do not aim at creating a new authoring tool,

but a module, which can be used both in conjunction with

an authoring system, and as the basis for the development

of an efficient player, since our tool allows also to find out

the begin and end times of media items as discussed in

Sect. 3.

Three classes of users may take advantage from the

introduction of our semantics:

• web multimedia designers, who can check if their

presentations contain mistakes or investigate the reason

for unexpected behaviors;

• developers of SMIL player, who can use the semantics

as a complement to the standard specification to check

the correctness of the player with respect to the

sequence of playback of media items returned by our

tool. At the current state of implementation, some

players do not follow the correct interpretation of the

semantics of SMIL elements, therefore, in the presence

of temporal conflicts, even simple multimedia docu-

ments may have different behaviors according to the

chosen player. This situation does not help the authors

because it is not always clear if the misbehavior is due

to a semantic conflict or to a bug [11]. This means that

in case of semantic mistakes, the final behavior is

almost unpredictable [15, 18, 20] and the above

examples show that built-in decisions, performed by

some authoring systems [19], are not always a good

solution;

• developers of visual authoring system for SMIL, who

can use the correct sequence of start and end times

generated by our tool to implement a preview window.

Moreover, our Semantic Validator Module detects the

presence of conflicts in a presentation and points out the

wrong values. This information allows an authoring

system to help the user while correcting it. We must

note here that the implementation of the Semantic

Validator Module as a separated module offers a helper

to be used if the presentation does not play as expected

and avoid forcing the users to change their preferred

interface for authoring.

The use of the tool as basis for a player is particularly

interesting since most available players are often unstable

or not free of charge as reported by Eidenberg [11]. The

major problem is a robust resolution of start and end times

of elements, which is exactly the output generated by our

tool for consistent documents. Moreover, the a priori

detection of a mistake allows the player to avoid playing

wrong presentations.

Our formal semantics for the SMIL language is defined

by means of a set of inference rules inspired by Hoare logic

[14]. The central feature of Hoare logic is the Hoare triple

which describes how the execution of a piece of code

changes the state of the computation. This choice carries

the advantage that the SMIL structure can be enriched by

assertions, expressing the temporal properties, which can

be used during the authoring phase when media items are

collected in more complex constructs. For example, our

tool can verify the consistency of a multimedia presenta-

tion resulting from a context adaptation process. In this

case, the document is dynamically built up by selecting

media items compatible with many different situations in

which a multimedia presentation can be played, in terms of

availability of resources (e.g., network bandwidth, CPU

time), device type (e.g., desktop, laptop, cell phone) and

properties (e.g., screen size, number of colors). This pro-

cess often generates conflicts which must be solved to

guarantee the playback.

Because we compose a multimedia presentation by

nesting an SMIL element into another, our rules allow us to

compose the semantics by evaluating a single element

inside a more complex nesting. In other words, the pro-

posed semantics is compositional and helps the author to

modularize her/his work, thus mastering the complexity of

the verification of a multimedia presentation consistency.

We must note here that this paper does not aim at aug-

menting or correcting the SMIL specification. It aims at

offering a formal semantics which can guide SMIL

A. Bossi, O. Gaggi

123

developers, thus improving the standard specification. An

initial subset of the semantics was presented at the ACM

Multimedia Conference [4].

The paper is organized as follows. In the next section,

we describe the background and provide few preliminary

definitions. Section 3 presents the axiomatic semantics for

SMIL language which is at the basis for development of the

verification tool described in Sect. 4 We conclude in

Sect. 5.

2 Background and definitions

Since SMIL’s first appearance, many authoring tools and

players have been implemented [7] offering their users

different facilities like visual editors or preview windows.

Bulterman and Hardman [6] discuss the issues to be con-

sidered by authoring environments in general and conclude

that one of the reason of the lower than hoped diffusion of

the SMIL standard is ‘‘. . . the high complexity of authoring

interactive multimedia in a more abstract, transformable

manner’’.

In most cases, the available tools completely lack the

presence of a helper to discover and find mistakes: they

usually validate only the syntactic correctness of the doc-

ument, and do not check its temporal consistency. We think

that this problem is partially due to the lack of a formal

semantics for the SMIL language, which can be interpreted

differently from different developers. Moreover, as repor-

ted by Muriel Jourdan, one of the editors of the SMIL 2.0

Timing and Synchronization Module [17], ‘‘. . . SMIL 2.0

complexity is so great that rejecting the use of formal

supports gives rise to a difficult-to-read specification that

cannot be free from inconsistency’’ [15].

The problem of finding out temporal conflicts into SMIL

documents has been already considered in literature.

Sampaio et al. describe RT-LOTOS [18, 19, 20], a formal

description of SMIL elements, based on automata, which

enables the generation of a valid scheduling for its ren-

dering, considering QoS problem. Unlike our approach, the

authors do not define a semantics for SMIL language, but

compare different players’ behaviors which are still

implementation dependent. This formal representation of

SMIL documents can find out temporal inconsistencies, but

it does not help the author to fix them. Moreover, the

approach is not extensible: the automaton which describes

the obtained behavior needs to be re-built after any

changes.

Jourdan [15] presents the first attempt to define a formal

semantics for SMIL. This approach is based on the use of

timed automata and has been used during the design of

SMIL 2.0 to improve specification. This paper mainly

focuses on SMIL 1.0 and takes into consideration only two

new features of SMIL 2.0. Unfortunately, the adopted

formalism does not appear to be scalable to easily cover all

the features of the third version of the standard and does

not help the user to fix mistakes.

Other authors propose the use of Petri Nets to describe

the temporal evolution of an SMIL document. All the

approaches translate the SMIL synchronization elements

into transitions and places, therefore they are required to

re-built the net after each change in the presentation. The

Real Time Synchronization Model (RTSM) [21] tries to

detect possible temporal conflicts but it is limited to SMIL

1.0 features. The work proposed by Mazouz et al. [16] is

able to find out a more complete set of inconsistencies and

the presence of non-reachable media and such information

is useful to correct mistakes in SMIL documents, but the

system does not show the author where the error is.

Moreover, the approach suffers from the explosion prob-

lem: the computation time increases exponentially with the

document size. More recently, Bouyakoub et al. [2, 5] treat

also some spatial elements (the area element) with Petri

Nets. Despite the implementation of an authoring tool for

correct SMIL documents, the set of behaviors that can be

produced is still limited, since they do not consider sig-

nificant SMIL features, like the excl element. Differently

from other approaches, Yu et al. [22] defines a formalism

based on the Petri Nets named SAM (Software Architec-

ture Model), which does not check the presence of

semantic conflicts but the satisfiability of QoS properties.

The Petri Net is translated into a set of axioms which are

used to prove the logical formulas which express the QoS

requirements.

Summing up, as illustrated in Table 1, all the approa-

ches described are limited to a small subset of SMIL ele-

ments, require to translate them into a specific formalism

and, even if they allow to discover time conflicts, they do

not always help the user to correct them. Our approach

aims to overcome these limitations by defining a semantics

inspired by the Hoare logic. This choice in fact allows to

analyze the SMIL elements without any translation and to

suggest a correction for discovered mistakes. Moreover,

our semantics covers a broad set of SMIL 3 elements and

attributes, and is easily scalable since, due to the com-

positionality of the approach, support to other elements or

attributes can be obtained, in the future, by adding new

rules, without reconsidering the entire system.

2.1 A definition of an abstract player

The inference rules defining the formal semantics describe

how the execution of a piece of SMIL code changes the

state of the playback of a multimedia presentation. The

notion of state of a player (or of the presentation’s play-

back) underlying our model is determined by a set of

Analysis and verification of SMIL documents

123

particular values describing significant aspects of media

items. Because we are interested in describing only those

aspects that might influence temporal consistency, a state

describes significant time instants: the start and end time

instants of all SMIL elements contained in the presentation

as well as the duration of each continuous object and the

user interaction captured by the player.

Most of this information can be retrieved directly from

the SMIL documents. The only useful information which is

missing concerns the natural duration of each continuous

media and the events due to user interactions. More pre-

cisely, by natural duration we mean the number of time

instants for which a continuous media item plays in

absence of user interaction or other temporal specifications.

A player enters into a new state in response to an event.

The SMIL specification considers two types of events,

interactive events, i.e., the user interactions like a click on

an image or the movement of the mouse, and non-inter-

active events, i.e., events due to SMIL synchronization,

e.g., the start or the end of a media object. The state of a

player must record all this information.

Definition 1 (State of a player) The state r of an abstract

player is a triple hc; d; si where

• c is a clock, i.e., a value that records time progression;

• d is the function ‘‘description’’ which maps an

identifier id to a triple, i.e., dðidÞ ¼ hbid; eid;

duridiwhere bid, eid, and durid are real numbers denot-

ing the start time, the end time and the natural duration

of the element identified by id;

• s is the function ‘‘event time’’ which records the last

instant in which an event occurred.

The state of the player does not contain the actual

duration of a media item since it can be calculated as

difference between its start and end time. This is not pos-

sible for the natural duration.

We note here that the function s records only the

interactive events and not the begin and end of elements

and media (non-interactive events) which are fully descri-

bed by the function ‘‘description’’ d. Interactive events

may involve a media item, like a click on an item or the

movement of the mouse over it, but there are also user

interactions which are not related to a specific item like the

user keying a key in the keyboard. In the first case, the

function requires as input the type of the event and the id of

the item, in the second case, the id is absent. A partial list

of supported events can be found in Table 2.

As described below, interactive events may occur sev-

eral times, e.g., a user may click at different moments on a

button. Therefore, a media item can be played several

times in response to a user interaction. To represent this

fact, we could have associated with each identifier a

sequence of tuples representing its various executions. We

choose a different solution, i.e., to create a new name each

time a media item is played. This means that we can have

multiple identifiers referring to different activations of the

same item: they refer to the same file but are considered

completely different from the synchronization point of

view. The new names are generated by the function m; thus

if c identifies a media item then mðcÞ; mðmðcÞÞ; . . .miðcÞ; . . .

are different identifiers for different executions of the same

media item c.

Table 1 Comparison of the related work with our approach

Formalism Error detection Help to correct Need translation Scheduling as output

RT-Lotos Automata Y (SMIL 2) N Y Y

Jourdan Automata Y (SMIL 1??) N Y N/A

RTSM Petri Nets Y (SMIL 1) Y Y Y

Mazouz, Bouyakoub Petri Nets Y (SMIL 2, no excl) P Y Y

SAM Petri Nets N N Y N/A

Our approach Axioms Y (SMIL 3) Y N Y

Y yes, N no, P partially, N/A no information available

Table 2 List of SMIL elements, attributes and abbreviations used in

this work

SMIL elements text, img, video, audio, animation,

brush, ref

par, seq, excl

Attributes begin, end, dur

Admitted Values begin: a positive time value t,

an event ev, ev?t, list-of-values

end: a positive time value t,

an event ev, ev?t, indefinite, list-of-values

dur: a positive time value t, indefinite

Abbreviations media
def
= cont | static | ref;

cont
def
= video | audio | animation;

static
def
= text | img | brush;

cmd
def
= media | par | seq | excl;

m
def
= id=‘‘m’’

ev
def
= id.begin/end, id.activateEvent/click,

id.mouseover/mouseout, accesskey(‘c’), etc.

A. Bossi, O. Gaggi

123

Our framework supports all the three time container

par, seq and excl, and attributes begin (negative

offsets are not allowed), end and dur as reported in

Table 2. Currently, our framework does not cover the

whole SMIL language but, compared with the related

work, it is the most complete and the only one to support

the third version of the language (see Table 1). Moreover,

the attributes which are missing can be easily added since

the framework is built to be scalable. Since we are

interested in the synchronization of multimedia presenta-

tions, we do not consider SMIL elements for layout,

transitions, etc.

2.2 The assertion language

The rules provide an axiomatic semantics for the temporal

aspects of SMIL elements in the spirit of Hoare logic. They

allow us to derive judgements in the form of triplets:

fPg c fQg

where P and Q are assertions, respectively, the precondi-

tion and the postcondition, and c is an SMIL element.

The assertion language used to express pre/post condi-

tions includes a set of basic functions representing the

significant temporal aspects of the media. Assertions are

formed by sets of constraints on values returned by these

functions. Table 31 lists all the functions and abbreviations

used in the assertions. For instance, we write beginðcÞ ¼
10 to mean that the media c starts its execution at clock

time 10. Given an assertion B which contains the equality

beginðcÞ ¼ t (or endðcÞ ¼ t), we use also the notation

beginBðcÞðor endBðcÞ) to denote the time instant

t occurring in the corresponding equality.2 We note here

that the SMIL language allows multiple formats of legal

clock values, e.g. the values 00:02:33, 2:33 and 153 s

represent the clock value 2 min and 33 s. Since they can be

easily translated in the real number representing the num-

ber of seconds, we suppose that all our functions return a

real value.

The assertion language contains also the functions tcr(id)

that represents the current time instant in which the SMIL

element id is evaluated, i.e., the clock of the state in which,

considering a player executing the presentation, the player

evaluates that command. The SMIL Specifications call this

time the implicit syncbase. We use it in the precondition.

The occurrence of user interactions is represented in the

precondition of a element by equalities in the form

timesðeventÞ ¼ ðt1; . . .; tnÞ where t1; . . .; tn are the next time

instants in which the event will occur. The time instant in

which an event occurs is the value of the clock when the

player registers the occurrence of that event. We use also

the functions time(event) to represent just the next occur-

rence of the event, that is, the first element in the sequence

ðt1; . . .; tnÞ:
Let r be a state and A an assertion, we say that r satisfies

the assertion A, and write r � A, if the constraints on real

values obtained by applying to A the following transfor-

mations hold:

• each occurrence of begin(id), end(id), dur(id) and

tcr(id) is replaced by the corresponding component of

the state of the player;

• each occurrence of timesðeventÞ ¼ ðt1; . . .; tnÞ is

replaced by rc B t1
3;

• each occurrence of time(event) = t is replaced by

rc B t.

Table 3 List of functions and notations used in the definition of the proof rules

Function Pre/post

condition

Description

tcr : I! R Pre returns the current time instant in which the SMIL element id is evaluated

dur : I! R Pre returns a real value representing the time interval for which a continuous media item plays

times : ðE � ðI [f?gÞÞ ! R
� Pre returns the sequence of all the time instants in which an event occurs

time : ðE � ðI [f?gÞÞ ! R
? Pre returns the time instant of the next occurrence of an event

begin : I! R Post returns the time instant media item id starts

end : I! R Post returns the time instant media item id ends

Abbreviation Description

beginBðcÞ denotes t if fbeginðcÞ ¼ tg � B

endBðcÞ denotes t if fendðcÞ ¼ tg � B

1 We denote by R
? the set of positive, computer representable, real

numbers augmented with the special symbol ?; the ‘‘undefined’’

value. The value ? is used to represent the absence of information,

either because it is not yet available or because it does not exist, like

the duration of a static object.

2 In the state of the player these values are denoted, respectively, by

bid and eid.
3 We denote by rc the component c of the state r ¼ hc; d; si:

Analysis and verification of SMIL documents

123

A state satisfies the equality timesðeventÞ ¼ ðt1; . . .; tnÞ if

it enables the first occurrence of that event, i.e., if the value

of its clock is less or equal to t1. Since the player enters a

new state in response to an event, for each time instant ti,

1 B i B n there exists a state ri such that rc
i = ti.

The triple {P} c {Q} can be read as: whenever the

evaluation of the SMIL command c starts in a state r0

which satisfies the assertion P, i.e., r0 � P, then it termi-

nates in a state rf which satisfies the assertion Q, i.e., rf �
Q. According with this interpretation, the following rule of

consequence holds:

CONSEQUENCE
P1) PfPg c fQgQ) Q1

fP1g c fQ1g

As a general remark, in the triple {P} c {Q} the pre-

condition P contains the current time instant of the com-

mand c, the natural duration of media items which it

defines (if applicable) and the occurrence of events. The

postcondition Q contains the definition of the time instants

in which the elements defined in c begin and/or end. Media

items definitions are evaluated through axioms, while for

par, seq and excl container more complex rules are

needed.

2.3 Notational conventions

In the following section, we use a number of special

notational conventions to introduce the set of inference

rules describing the semantics of the SMIL elements.

Table 2 lists a set of abbreviations used for the repre-

sentation of the SMIL elements. For instance \cmd c[
stands for any SMIL element with the attribute id = ‘‘c’’.

Moreover, we use the general form end=‘‘k’’ and

dur=‘‘k’’ to represent the attributes of an element where

the meta-variable k is either any of the admitted values for

the particular attribute, or the special value void. The value

void represents the absence of that attribute in the element

and allows us to introduce only one general rule for each

SMIL container. With regards to the attribute begin, we

assume it is always defined since its absence can be repre-

sented by the value k=‘‘0’’. For instance, \video
id=‘‘v’’begin=‘‘0’’dur=‘‘5’’end=‘‘void’’/

[is considered as a synonymous of \video id=

‘‘v’’dur=‘‘5’’/[.

The advantage of this representation is that of avoiding

repetition of very similar rules, but we need a set of

predicates to check the existence of an attribute’s value

before using it. We need also to classify the elements

which occur in an SMIL document with respect to the

values of their attributes dur and end. Hence we intro-

duce some auxiliary predicates and sets whose description

can be found in Table 4.

3 Inference rules for SMIL language

The SMIL language definition provided by Bulterman

et al. [8, 9] does not contain a formal presentation of the

semantics of elements and attributes. SMIL recommenda-

tion is divided into sections, some of which are defined

‘‘normative’’. To clarify the meaning of particular values

for attributes, an algorithm is provided to better explain

how significant time instants are computed in that case, but

neither a formal definition nor verification tools have been

implemented by Synchronized Multimedia Working Group

of W3C to check the semantic correctness of SMIL

elements.

In this section, we define a formal system which is able

to find out temporal conflicts of a multimedia presentation

defined using SMIL. The system provides a Hoare-like

logic for SMIL by a set of inference rules describing how

the execution of a piece of code changes the state of the

playback. Since the SMIL specification lacks a formal

operational semantics, the soundness and completeness of

our approach cannot be formally proved, but we consider

that our semantics is correct according to any operational

semantics which formalizes the changes in the state of a

player described in the SMIL recommendation.

Our rules aim at discovering semantic conflicts which

can be the cause of unexpected behaviors even if they are

often not considered errors by SMIL recommendation.

Therefore, our rules may not validate multimedia presen-

tations which contain some conflicts, even if they are

correct according to the standard specification. We note

here that we do not restrict the set of behaviors which can

be described through SMIL, but only the set of documents

which describe those behaviors, thus helping the user to

develop robust and clear code. In fact, the presence of

conflicts, besides being the main cause of unexpected

behavior [11, 18], greatly affects the future maintainability

of the code.

Table 4 List of predicates and sets used in the definition of the proof

rules

Name Description

finite(k) holds if k is a real value

indefinite(k) holds if k is equal to ‘‘indefinite’’

defined(k) holds if k is not equal to ‘‘void’’

NotDur contains all the statements withattributes

dur and end equal to void

ClosureðcÞ contains c and all the statements defined

inside the element c, at any level of nesting

Indef ðcÞ holds if in ClosureðcÞ there are elements

with attribute end (or dur) equal to

‘‘indefinite’’

A. Bossi, O. Gaggi

123

We start by considering self-contained elements, i.e.,

SMIL commands whose synchronization does not refer to

other media items or elements. The axioms which verify

the correctness of statements defining media items are

listed in Table 5. The use of interactive events is discussed

in Sects. 3.2 and 3.3.

Assume, we want to verify the triple:

where the precondition P is fdurðvÞ ¼ 5; tcrðvÞ ¼ 0g and

the postcondition Q is fbeginðvÞ ¼ 2; endðvÞ ¼ 7g: We

can prove its correctness since we can instantiate the axiom

CONT?BEGIN using the values start = 2, k1 = 2 and

stop = 7.

The system can also be used to find the begin and end

times of media items, i.e., as the basis for the implemen-

tation of a player. In this case, the axiom CONT?BEGIN

describes the transformation of the state of the player: if the

player starts in a state r0 � P, i.e., r0 ¼ h0; rd; rsi such

that rdðvÞ ¼ h?;?; 5i; our rules show that it ends in a state

rf � Q, i.e., rf ¼ h7; rf
d; r

f
si such that rf

dðvÞ ¼ h2; 7; 5i:
Thus, we get the values used to start and stop the video.

Our rules allow us to describe also elements where

media items are terminated before their natural duration

due to the definition of an end, or dur, attribute. As an

example, consider the triple:

where fQg ¼ fbeginðvÞ ¼ 2; endðvÞ ¼ 3g.

We can instantiate the rule MEDIA?BEGIN?END?DUR with

the values start = 2, k1 = 2, k2 = 3 and k3=void. The

applicability condition holds since k2 is finite, and

k3 = void. In this case, according to the SMIL recom-

mendation, if the player starts in a state r which satisfies

the precondition, i.e., such that rc = 0, then the final state

reached by the player is rf ¼ h3; rf
d; r

f
si where rf

dðvÞ ¼
h2; 3; 5i and thus rf � Q.4

Note, in Table 5, that the rule MEDIA?BEGIN?END?DUR

defines the end time of a media item m only if both k2 and

k3 are not equal to ‘‘indefinite’’. Moreover, the defi-

nition of media items does not lead to temporal conflicts

unless the author defines both the dur and the end attri-

butes. The applicability condition does not allow the

application of the rule in presence of incorrect values of

these attributes; for instance, when both the attributes dur

and end are finite, the relation k3 = k2 - k1 must hold;

otherwise, the applicability condition points out the tem-

poral conflict to the user.

3.1 Rules for parallel and sequential composition

When media definitions are nested into parallel and

sequential composition, the evaluation of these structures

requires the definition of more complex rules.

Because the flexibility of SMIL elements allows us to

describe the same temporal behavior using both a par or a

seq element, we base the discussion of this section mainly

on the description of the rules for the parallel composition.

Table 5 Proof rules for media

items definitions

4 According to Definition 1, the third component of rf
dðvÞ describes

the natural duration of v and not the actual time for which it remains

active on the user screen.

Analysis and verification of SMIL documents

123

The sequential composition is discussed at the end of this

section.

We start our analysis by considering the parallel com-

position expressed by the element par when the attribute

dur is not present (i.e., dur=‘‘void’’), the attribute

begin is present (possibly with zero value) and the

attribute end is void, indefinite or holds a real

number. The PAR?BEGIN?END rule described in Table 6

defines the semantics of the parallel composition in these

cases. In the postcondition, we distinguish the components

B1. . .Bn to make it clear that the postcondition contains

information about each ci, be it a media object or a syn-

chronization structure.

To prove the correctness of the element \par c[
c1. . .cn \/par[, each ci must be proved to be correct by

assuming as its current time instant, the current time instant

of the parallel element plus the offset given by the attribute

begin , i.e., if ðtcrðcÞ ¼ initÞ is contained into the pre-

condition of the element c, the precondition of each ele-

ment ci must contain ðtcrðciÞ ¼ init þ k1Þ where k1 C 0 is

the value of the attribute begin and init is the time instant

at which the statement par is evaluated.

The evaluation of the end time instant of a par element

is not always possible since it is not possible to calculate

the end time of a media element in two cases: if it is a static

object without an attribute end or dur defined, or if one of

these attributes is equal to ‘‘indefinite’’. In the same

way, the ending time of a par statement cannot be cal-

culated if its attribute end (or dur) is equal to

‘‘indefinite’’, or if it contains a child with this value

for the attribute end (or dur). In these cases, the element

ends together with the overall presentation.

Once we are able to decide whether a parallel compo-

sition terminates, we must calculate the time instant stop. If

the element c does not contain the definition of attribute

end (i.e., end = ‘‘void’’) then c ends when all its

children, which are not static objects, end their playbacks,

i.e., at time instant stop ¼ maxci
fendBi

ðciÞg: Otherwise the

element c ends at time instant stop = init ? k2, with one

exception: we do not assign a stop value when some items

defined inside c have a longer duration than c, defined with

an attribute dur or end. In this case, the author gives a

double, and contradictory, definition of the duration of the

involved elements, thus generating a temporal conflict.

Note that there is a temporal conflict even when the parallel

composition has a finite duration, but contains some chil-

dren with an indefinite duration, which is, by definition,

longer than any other finite value.

The applicability condition prevents us to apply the

PAR?BEGIN?END rule in these cases. In particular, the condi-

tion finiteðk2Þ) :Indef ðcÞ ^ k2� k1 states that in presence

of a finite value of k2, the rule can be applied to the statement

c only if it does not contain, at any level of nesting, an item

with an indefinite duration. Moreover, the element must end

after its beginning, i.e., k2 C k1. The applicability condition

Indef ðcÞ) ð:definedðk2Þ _ indefiniteðk2ÞÞ states that the

attribute end must be equal to ‘‘indefinite’’, or

‘‘void’’ if the statement does not end. Finally, the con-

dition 8cibeginBðciÞ� init þ k1 expresses the fact that all

children of c must start together with c or after it.

Table 6 Proof rule for the

parallel composition when the

attribute dur is equal to void

A. Bossi, O. Gaggi

123

Let us illustrate with a simple example how our rules

find out these conflicts. Let us consider the following

parallel composition:

Even if the temporal conflict is evident since the element

is simple (text page tx lasts longer than the element in

which it is contained), we try to check the semantic cor-

rectness of this statement to show how the system works.

We would like to prove that

where Q � fbeginðiÞ ¼ 0; endðiÞ	 5; beginðtxÞ ¼ 0;

endðtÞ	 5; beginðpÞ ¼ 0; endðpÞ ¼ 5g but statement p is

not correct since rule PAR?BEGIN?END (see Table 6) cannot

be applied. In fact, since both tx and i do not belong to

the set NotDur, to apply the rule we would have to prove

the premises:

Si � ftcrðiÞ ¼ 0gifbeginðiÞ ¼ 0; endðiÞ ¼ 5g
Stx � ftcrðtxÞ ¼ 0gtxfbeginðtxÞ ¼ 0; endðtxÞ ¼ 5g

The first triple Si is valid and we can prove it by the

axiom MEDIA?BEGIN?END ?DUR, but we cannot prove the

triple Stx which is not valid. Therefore the PAR?BEGIN? END

rule cannot be applied since the premise Stx cannot be

verified. In this case, the answer of our tool is that the

presentation contains a semantic conflict since media item

tx ends at time instant 7 while its father ends at time

instant 5 (see Fig. 2).

The rule which describes the semantics of the sequential

composition is very similar to the PAR?BEGIN?END rule

since the two elements can express the same synchroni-

zation if the values of the attributes are properly defined.

There are only two differences: first, the current time

instant of each child is equal to the end time instant of the

previous child, and not to the current time instant of the

seq element. Second, the seq statement imposes a dura-

tion equal to zero to static media items which have not a

defined duration, i.e., beginBðciÞ ¼ handendBðciÞ ¼ hifci

is a static media contained in NotDur. This means that they

are never played in the user screen. In this case, our tool

displays a warning to the user which can be considered or

not. The complete definition of the rule for the seq

statement can be found in [4].

So far we considered only the use of attributes begin

and end, but, as already discussed for media item defini-

tion, statements can also contain an attribute dur whose

semantics is very similar to the end attribute and therefore

an easy translation can be obtained with the rule CMD?BE-

GIN?END? DUR illustrated in Table 7.

3.2 User interactions in the attributes begin and end

SMIL language permits also the use of events as possible

values for the attributes begin and end of the elements

(see Table 2). Let us consider first the case in which the

start (or the end) of a media, or a group of media items,

occurs as a result of an user interaction, e.g. when the user

keys in a character, say ‘s’, in the keyboard as described by

the following element:

where accesskey(s) means that the user has to key in

the character ‘s’ and k C 0 represents a number of

seconds.

The correctness of this statement can be proven only if

we already know the instant in which the event

accesskey(s) takes place. According to Sect. 2.1, the

player recorded the last occurrence of an interactive event

in the state through the function rs which records the time

instant in which an event occurs. Since the player enters a

new state in response to an event, for each occurrence of an

event, there exists a state such that the clock value is equal

to the time instant recorded from the function rs. An

interactive event may involve a single media item, or the

global environment, as in the case of a digit on the key-

board. In the precondition of a statement, we use the

Table 7 Proof rules for a

general composition of elements

when the attribute dur is

defined

Analysis and verification of SMIL documents

123

functions times(event) and time(event), to constraint

the input events. For instance the precondition {time

(event) = n} states that the initial state in which the ele-

ment is evaluated should enable the event event, i.e., its

clock should be Bn. The occurrence of the event changes

the current time instant of the element, which is now equal

to the time instant in which the event takes place.

Table 8 shows the rules to deal with statements with a

begin or an end attribute which is bound to an interac-

tive event. Let us consider again the example of an input

from the keyboard:

where A0 ¼ fA [ftcrðcÞ ¼ initg [ftimeðaccesskeyðsÞÞ
¼ keyingg:

These rules state that the element must be evaluated

with reference to the time instant in which the event occurs,

i.e., if ðtimeðaccesskeyðsÞÞ ¼ keyinÞ 2 A0; we can prove

the correctness of the element c if we can prove that

holds. The input from the keyboard must occur after

the evaluation of the statement, represented by the value

init, or after its beginning if accesskey is defined in the

end attribute of a statement.

The correctness of this rule derives from the following

considerations: consider an initial state r0 such that

the precondition A0 holds: r0 � fA [ftcrðcÞ ¼ initg[
ftimeðaccesskeyðsÞÞ ¼ keyingg: Therefore, r0

c = init,

init B keyin and it exists an intermediate state c such that

cc = keyin and csðaccesskeyðsÞÞ ¼ keyin: Hence, by

monotonicity, c � fA [ftcrðcÞ ¼ keyingg and then, by the

correctness of the premises, we have that the player reaches

a final state rf which satisfies the postcondition B. In this

particular case, fbeginðcÞ ¼ keyinþ k1g
 B; which

means that c starts exactly k1 time instants after the

occurrence of the event accesskey(s), i.e., our rule

respects the standard specifications (see Table 8).

Note that all other interactive events supported by the

SMIL specifications (a partial list can be find in Table 2)

could be addressed in the same way since the player

records the time instant in which the event occurs by means

of the function rs. As an example, the activateEvent

represents the time instant in which a user clicks on a

media item and, from our point of view, it is not different

from the user clicking on the keyboard. Also, in this case,

the only constraint is that the event must occur after the

evaluation of the statement to be useful.

An interactive event may occur more than once, e.g., the

user may click several times on a button. This means that

an object which binds its start to this event may play more

than once. As discussed in Sect. 2.1 to record all the

Table 8 Proof rules for SMIL

statements with an interactive

event in the definition of the

begin or the end attribute

A. Bossi, O. Gaggi

123

executions of an item, we consider multiple playbacks of

the same item as new objects with new names. The rule

BEGIN?MULTIPLE-PLAYBACKS
5 (see Table 9) models this sit-

uation: multiple executions of the same item are correct as

soon as each single playback is correct. We note that if an

event occurs before the end of the media then it is imme-

diately stopped and restarted.6 In this case, we do not need

to show the end time instant of the playback in the premises

as stated by the rule.

Let us consider the previous example where the user keys

in the digit ‘s’ twice, at time instants start1 \ start2 and let

A0 ¼ fA [ftimesðaccesskeyðsÞÞ ¼ ðstart1; start2Þgg: We

can apply the rule BEGIN?MULTIPLE-PLAYBACKS to prove

if we can prove the correctness of both the executions of

the element c

where mðcÞ is a new name for the second execution

of c, A1¼fA[ftcrðcÞ¼ start1gg;A2¼fA[ftcrðmðcÞÞ¼
start2gg:

If the interactive event appears in the definition of the

end attribute, we need different considerations. Differently

from the case of an event defined in the begin attribute,

multiple occurrences of an event defined in the end attri-

bute do not cause multiple playbacks of a element: the

player will end the element as soon as the ending event

occurs for the first time, subsequent occurrences of the

same event are ignored. The rule END?USER-INTERACTION

(Table 8) can be used in this case, since any state which

satisfies the first element of a sequence of event times

satisfies, by definition, also the sequence. The correctness

of the rule derives from the fact that subsequent occur-

rences of the same event must be ignored.

A particular case regards media items which contain

interactive events both in the begin and in the end

attributes. Rule BEGIN?END?MULTIPLE-PLAYBACKS (see

Table 10) extends the case when the begin attribute has a

unique event, and could be used to prove the correctness of

each single execution of the item. The only relevant dif-

ferences are contained in the applicability condition: the

two sequences must be ordered and the sequence of starts

must have a length equal or greater than the sequence of

ends. Moreover, the last event must be a stop event.

3.3 Management of non interactive events

Another possibility offered by the SMIL standard is to bind

the begin (or end) event of a (group of) media item m with

the begin (or end) event of another (group of) media item

n. As already discussed in Sect. 2.1, non-interactive events

are recorded differently in the state of the player, since they

are not traced by the function rs but by function rd. As an

example, consider the elements

in case (1), the whole par statement ends when media item

au ends; in case (2) media item m begins 5 s after the

beginning of n.

Table 9 Proof rule for multiple

executions of the same element

5 We consider only positive offsets since the rule deals only with

interactive events.
6 We suppose that the attribute restart assumes the default value

always.

Analysis and verification of SMIL documents

123

Element (1) can be treated similarly to the case of

interactive events: if we already know (from the premise)

the end point of au, i.e., end(au) = stop, then we can

analyze the element \par id=‘‘p’’ end=‘‘-

stop’’[. . .\/par[. Therefore, the following rule can

be applied to case (1).

The situation is more complex in case (2), which cannot be

analyzed singularly since its evaluation needs information

about the begin attribute of media item n. For this reason,

we must consider a set of media items as shown by the

following rule:

where ci, cj and c0j are related as follows: there exist

n, m such that

cj is obtained from cj by replacing m with

A particular attention is required if there are multiple

executions of the media item n due to user interactions. For

example, consider a video v activated by a click on an

image i and its associated soundtrack a:

In this case, even the soundtrack a must be played several

times. If we try to prove the correctness of this parallel

composition, we need to analyze any single component. In

particular, by applying the rule BEGIN?MULTIPLE-PLAYBACKS

to video v, we obtain the set fv; mðvÞ; . . .mhðvÞg of activa-

tions of the same video v, but we have to consider also the

Table 10 Proof rule for media

items which contain an

interactive events both in the

begin and in the end
attributes

A. Bossi, O. Gaggi

123

set of associated executions of a, fa; . . .; mhðaÞg: To obtain

that, we must refine the BEGIN?EVENT rule by requiring that

c0j is obtained from cj by expanding m with all its execu-

tions miðmÞ: Each

is associated with a playback of n, as stated in the post-

condition: 8ifbeginðmiðnÞÞ ¼ valueig 2 B:

3.4 Multiple values for the attributes begin or end

The SMIL standard allows us to define an unordered list

of value for the attribute begin and end. This list may

contain, separated by a semicolon, a list of events, or a

time instant. In this case, the element starts or ends,

respectively, as soon as one of the events contained in the

list occurs or the player’s clock reaches the defined time

instant. Then, each time an event in the list occurs (or the

time instant is reached), it is restarted. Rule CMD?BEGIN-

VALUE-LIST?END (see Table 11) describes the behavior of

an element with a list of values for the attributes begin.

This rule simply states that, if the element c can be

formally proved to be correct for each possible occurred

event in the list, or for the time instant when defined, then

it is correct also for the entire list. The postcondition

B records all the executions.

3.5 The excl element

The SMIL language also provides a container for the

exclusive composition of media items, i.e., the element

excl, whose semantics states that only one of its children

is active at any given time instant. This is very similar to

the sequential composition where only one child is active at

any time, but excl does not impose any order in the

visualization of the children. This means that each child

may contain the attribute begin in the definition, or may

be activated by the user, e.g. following a link. Let us

consider the following example:

in this case, the user chooses a video clip by clicking on an

image button chosen between media items a, b and c. The

corresponding video is activated by the proper activate-

Event. The excl element simply states that only one video

clip plays at a time: in fact, the video currently playing is

stopped when the user clicks on another image, choosing

another video clip.

Table 11 Proof rule for SMIL

elements containing multiple

values in the begin attribute

Analysis and verification of SMIL documents

123

The example shows how the excl container does not

deal with the activation of its children but with their

deactivation; in fact, the playback order of the video clips

completely depends on the user choices and not on the

elements’ definitions.

The semantics of the excl element is described in

Table 12 by rule EXCL?BEGIN?END. Like elements par and

seq, the excl element begins at its current time instant,

or after k1 time instants if the attribute begin is finite, and

ends when there are no children playing. This means that, it

can have an instantaneous duration if no child starts toge-

ther with it. For this reason the attribute end of this

statement usually does not contain the special value

‘‘void’’.

The EXCL?BEGIN?END rule is very similar to the rule

which describes the semantics of parallel composition,

therefore we do not repeat here the problem of the termi-

nation of the element. Even in this case, to prove the cor-

rectness of the statement\excl[c1. . .cn \/excl[each

ci must be proven to be correct, assuming the time instant

of its parent element as its current time instant. Because the

exclusive container may impose a premature stop of the

playback of its children, we do not require to know in

advance the time instant in which the child ci ends:

1. when ci ends together with excl because it does not

contain the attribute end or dur in its definition (i.e.,

k2 is finite and ci 2 NotDur) or

2. when the playback of ci is stopped before its termi-

nation due to the user interaction or some other

external event (i.e., 9jjbeginBðcjÞ ¼ ti).

The applicability condition prevents the application of

the rule in presence of temporal conflicts. Among the con-

ditions already discussed for the parallel composition, the

condition 8ci; cjðbeginBðciÞ	 beginBðcjÞÞ) ðendBðciÞ	
beginBðcjÞÞ states that only one child plays at any given

time instant, i.e., if child ci begins before cj; it also ends

before cj’s beginning.

We note here that each child can be played several

times, since their executions are usually driven by user

interaction, e.g., in the previous example, the user may

click more than once on the images a, b and c. This

situation is solved by applying the rule BEGIN?MULTIPLE-

PLAYBACKS (see Table 9) to the repeating media item.

4 Prototype implementation

Based on the formal semantics described in the previous

section, we have implemented a tool for the analysis of an

SMIL document. Our tool allows us to check consistency

during all the authoring phases, whenever the author asks it

or saves her/his work.7

Section 4.1 describes the system architecture and

implementation, and a user test case are reported in

Sect. 4.2.

Table 12 Proof rule for the

exclusive composition when the

attribute dur is equal to void

7 We do not consider dynamic checking a good solution since

temporary inconsistencies, due to the work-in-progress, should be

allowed. This choice is also cost effective.

A. Bossi, O. Gaggi

123

4.1 The semantic validator

The semantic validator implemented has two goals: first, it

assists the user in the complex task of authoring a multi-

media presentation, automatically finding temporal incon-

sistencies and helping their correction. Secondly, it

produces the sequence of begin and end times of media

items contained in an SMIL file to be used for the playback

of the presentation. For this reason, our implementation

keeps separated the semantic validator module (SVM in

Fig. 1), which is the engine that can be used both by a

player and by an authoring system, from the interface for

the automatic verification of SMIL files. We note again that

we do not want to realize a new authoring system (a

number of them has been implemented offering different

useful facilities like visual editors, preview window, etc.)

but a new tool to help the user to discover and fix authoring

mistakes, since this facility is still absent.

Figure 1 shows the system architecture: the tool has

been implemented to be used in combination with any

authoring interface to avoid forcing designers to change

their preferences. Moreover, it can be part of an automated

pipeline for the generation of SMIL documents. As an

example, consider documents automatically build up on the

base of the user context. The adaptation process can select

different combinations of media items, e.g. a video can be

replaced by a set of images due to low network bandwidth.

If the document structure is complex, it could be very

difficult for the author to consider all the possible choices

and their combinations in the overall structure. In this case,

our tool can be used to check the correctness of the final

result.

If the document is correct, the validation process returns

as output the correct sequence of start and stop events of all

media items involved in the presentation. This information

can be used by a player for the playback of the presenta-

tion, or to implement a preview window in an authoring

system. We note here that the use of our semantic validator

in conjunction with an authoring system is particularly

important since the composition of a SMIL document

driven by the rules is correct by construction. Finally, since

the tool does not allow the presence of temporal conflicts, it

helps to design robust and clear code, thus improving

maintainability of the SMIL documents.

The interface has been implemented using the Java

language with the goal to test the engine, realized with the

Prolog language, and to support multimedia authoring by

pointing out conflicting values in the document. Figure 2

shows a screenshot of the tool. The user selects an SMIL

file to be evaluated and the semantic validator checks its

syntactic correctness and displays the code emphasizing

elements and attributes. In a second step,8 the tool asks the

user to input the precondition, i.e., the natural duration of

continuous objects, the user interactions, and the element to

evaluate. The user can ask the analysis of a single selected

element or that of the entire document, by selecting the first

element of the document; in any case, she/he must give as

input the time instant in which the element should be

evaluated. Then, the validation process can be initiated

and, once concluded, it returns the correct begin and end

time of selected element and its content. If any temporal

inconsistency is found, the tool prompts a message con-

taining the element with the mistake and its motivation (see

Fig. 2). Usually this information is sufficient to help the

user to easily detect and correct the error. However, the

tool provides also a ‘‘step by step’’ modality by clicking on

the ‘‘Step Into’’ button, which shows, for each interaction, a

single step of the process, displaying in the source code

(respectively before and after the element itself) the pre-

condition and the postcondition of each analyzed element

(Fig. 3 shows the final result).

This second modality allows a better understanding of

the overall process and of the context in which a single

element is evaluated. For example, this is particularly useful

in the case of SMIL elements which refer to user interaction

in their definition: in this case only events that occur after

their evaluation should be considered. Moreover, the eval-

uation discussed in Sect. 4.2 revealed that this feature helps

the designers to clearly state the cause–effect relationships

between SMIL elements and the corresponding scheduling

sequence for media items. Therefore, it represents an help

for non-expert designer to learn the language.

A panel, positioned below the SMIL code, contains the

tool’s messages to the user, i.e., errors or warnings (e.g., a

element with a duration equals to zero), and the last used

rule. Expert users can visualize the last used rule by

clicking on the button ‘‘Show Rule’’ which shows the

corresponding table of this paper.

If the document contains a conflict, the construction of

the proof fails because one of the needed premises cannot

Fig. 1 Architecture of a general authoring system in which our tool

can be integrated

8 The interface buttons are activated/deactivated in order to guide the

user to a correct sequence of interactions.

Analysis and verification of SMIL documents

123

be proved or the applicability conditions are not satisfied.

The compositionality of our approach helps the user to

correct the mistake and to incrementally continue the

analysis.

The Semantic Validator Module has been implemented

using the Prolog language. This choice allows us to use the

Prolog search engine to verify the correctness of an SMIL

element. Moreover, since SMIL scripts are XML files, a

parser which translates an SMIL script into the text file

defining the Prolog database is very easy to implement (e.g.

using an XSLT stylesheet).

We associate a fact which describes the type and the

attribute id to each element: img(id), text(id),

brush(id), audio(id), video(id), or anima-

tion(id), for media objects, where id is the identifier

of the object and the chosen predicate depends its type, and

par(id,L), seq(id,L) and excl(id,L), for syn-

chronization containers where L is the list of SMIL ele-

ments nested into that container. The list of attributes of an

element is described by attr(id,LoA) where LoA is a

list of pairs [attribute, value].

All the semantic rules introduced in the previous

sections are translated into Prolog clauses which describe

how the precondition is modified to obtain the postcon-

dition. Precondition and postcondition are sets of facts

like begin(id,bm) and end(id,em), which trans-

late the assertion begin(id) = bm and end(id) =

em, respectively. The fact time(event,k), used in

the precondition, succeeds if the event event occurs at

time instant k and the fact times(event,L) suc-

ceeds if L is the list of time instants in which the event

occurs.

The proof rules are implemented using Prolog clauses of

two possible types: the first one, applicable, translates

both the applicability condition for the rules and the con-

straint due to the structure of the element, and the second

one, apply, describes how the postcondition is obtained

Fig. 2 In this screenshot

eSMIL points out to the user the

existence of a temporal conflict

between the end time of a text

element and the end time of par

element containing it

Fig. 3 Pre/post condition of an element inserted by eSMIL in the

source code

A. Bossi, O. Gaggi

123

by the applying the rule to the precondition. As an exam-

ple, let us consider the CONT?BEGIN rule. The Prolog clause:

describes the constraints on the structure of the element, in

this case it must be a continuous object with an attribute

begin, and the applicability conditions which are the

presence of the facts tcurr(M,_) and dur(M,_) in the

database. The Prolog clause:

describes how the pre/post condition are modified by the

CONT?BEGIN rule. The system removes the fact tcurr, so

that no other rule can be applied to the same command, and

inserts adequate begin and end facts. As a result, the

execution of the prolog program becomes deterministic and

thus its complexity is linear with respect to the number of

elements in the SMIL script.

This structure allows us to easily add new rules or

modify an existing one without affecting the others or to

degrade an error to a warning and vice versa.

The correctness of a SMIL script is evaluated by

resolve(c). It succeeds if:

• there exists a fact tcurr(c,_) and an applicable rule

for c which succeeds. If c is not a media item, it

enables the verification of the children by inserting, in

the database, a fact tcurr(ci,t), with the suitable

value t for each ci nested in c.

• no tcurr(c,_) exists. In this case, all the elements

have already been evaluated.

If any temporal inconsistency is found, the computation

fails and the system returns the element which contains the

mistake and gives suggestions on how to correct it.

4.2 Evaluation and test of the prototype

The tool has been developed in an academic environment

and has been tested in two ways. First of all, the correctness

of the output has been successfully tested with the W3C

SMIL Testsuite [10], and provided positive results. Next,

we tested and evaluated the effectiveness of our prototype

with the help of our students. We assigned to two groups of

students of a course on Hypermedia Systems of the second

level degree in Computer Science the task of creating a

complex SMIL multimedia presentation. Only one group

could use our tool during the authoring activity.

The test consisted in the analysis of the performance of

the two groups of students. This experience, spreaded over

3 years, has been very positive. First of all, the use of the

tool reduced to zero the number of delivered homeworks

still containing temporal conflicts: this number ranged from

20 to 30% without our tool. We also noted that the average

time needed to produce the final presentation decreased by

about 15%. This percentage was calculated for students of

average ability, since it obviously decreased for excellent

students. Moreover, the code developed by the students

improved its quality with respect to the previous years,

since we noted that the use of the tool encouraged a better

use of the attributes, e.g., it helps to understand that a

begin attribute in a par element is better than to assign

the same attribute to all its children. In fact, the code is

more maintainable if it contains the minimum number of

attributes.

In the last year we also submitted a questionnaire to a

group of 10 users, in the range of 20–30 years, to collect

their feedbacks. The questionnaire consisted of multiple

choice questions which asked to the users theirs degree of

expertise in SMIL, the number of conflicts discovered by

the tool and the overall experience using it. The users rated

the answers on a scale from 0 to 5. A last open question

gave the possibility to express additional remarks.

The questionnaires revealed the following insights. The

users declared to have a good knowledge of the SMIL lan-

guage (mean 4.1, standard deviation 1.01) and judged pos-

itively the usefulness of the tool (mean 3,5, SD 0.9). About

40% of the users reported that the number of discovered

errors ranged between 20 and 40% while for another 40% of

them, the discovered mistakes ranged from 40 to 60% (see

series ‘‘Q3’’ in Fig. 4)9. We also noted a correlation between

the degree of user expertise and the number of mistakes

found by the tool, which was higher for less skilled users.

The students reported good comments on the use of the

tool since it helped to solve problems due to unexpected

behavior of the presentations without requiring a big effort

to learn to use it. On an average, they evaluated their

experience to 3, 6 (series ‘‘Q4’’ in Fig. 4), with a standard

deviation of 0.7 and a most frequent value equal to 4. Even

the relationship between the help given by the tool during

the authoring and the effort to learn to use it was consid-

ered good (mean 3, 7, SD 0.7, complete distribution

depicted by series ‘‘Q5’’). Moreover, in the additional

remarks, some users reported that they especially appre-

ciated the simplicity of use of the tool and gave some

suggestions to improve it when the SMIL fragment

9 The possible answers for series ‘‘Q3’’ are: 0 = 0%, 1 =

0–20%, 2 = 20–40%, 3 = 40–60%, 4 = 60–80%, 5 = 80–100%.

Analysis and verification of SMIL documents

123

contains events. If the presentation changes its behavior

according to user interaction, the tool must know when it

occurs, therefore it asks it to the user. The students reported

that the tool should be improved in order to suggest this

input, otherwise difficult to be calculated.

Summing up, the lessons learned from this experience

are

• the use of a validating tool, like eSMIL, allows to

eliminate 20 - 30% of the mistakes usually present in

the delivered homeworks;

• many students considered the prototype, beyond an

almost complete SMIL validator, also a good tool to

improve their knowledge about SMIL since it clearly

explains the effect of the definition of elements and

attributes and the origin of the mistakes. This means

that the tool deeply helps the authoring activity;

• the tool may reduce the time required to create a

multimedia presentation and improves the quality of the

SMIL code;

• the tool must be user-friendly in order to be useful.

The last point should be carefully taken into account in

future developments. As an example, some user reported

that the tool can help to discover the wrong definition of

events in the attributes begin or end, e.g., a video ends

when a user clicks on a image, but this event cannot occur

because that image is not active during the video playback.

A future improvement is to calculate the time interval in

which each event can occur, and to find out possible mis-

takes like the one described above. Actually, the user dis-

cover this mistake when she/he try to figure out a time

instant for that event to input the preconditions. This

operation may sometimes require a big effort, that may

prevent the user to validate that code.

5 Conclusions

In this paper, we have considered the problem of the

complexity of multimedia authoring and we have presented

a tool to assist the user to produce SMIL documents with

robust and clear code. The tool verifies the presence of

temporal conflicts and, in the case of correct documents,

produces as output a valid sequence for scheduling.

Therefore, it can be used both as a basis for the imple-

mentation of a player and as a component of an authoring

environment to assist the user to correct mistakes or for the

implementation of visualization plug-ins like a timeline

view or a preview window.

The tool is based on a formal semantics defining the

temporal aspects of SMIL by means of a set of inference

rules which describe how the execution of a piece of code

changes the state of the computation of a player.

We remark that we do not aim at implementing a new

authoring system, but a module which automatically finds

temporal conflicts in SMIL documents and helps the user to

fix them by providing useful messages. Although many

tools have been implemented since SMIL first definition,

these facilities are usually still absent. The tool has been

tested in an academic environment with positive results.

It is worth noting that all the inference rules can be used

both for a top-down construction of a correct playback

sequence of the media items involved in the multimedia

presentation and for a bottom-up analysis of the SMIL

document. This second feature is particularly useful during

the context adaption of a document to find out a suitable

candidate for substitution or, more in general, during the

authoring of the document by composition of elements.

Moreover, our rules help in discovering the weakest pre-

condition, i.e., the minimal set of requirements needed to

evaluate an element. In our system, this set contains the

natural duration of continuous media, the syncbase of the

element, which is equal to zero by standard convention for

the outer-most element, and information about user

interactions.

The soundness and completeness of our approach has

been discussed according to an operational semantics

which formalizes the changes in the state of a player

described informally in the SMIL recommendation.

Indeed, the tool passed the test provided by W3C in the

SMIL Testsuite [10].

Summing up, the main advantages with respect to the

other works addressed in Sect. 2 are the following:

• the definition of a semantics for the standard SMIL 3.0

which covers all the synchronization elements and their

most important attributes, while other works consider

SMIL 1.0 or a very limited set of elements and

attributes of SMIL 2.1 and therefore cannot be of any

practical use;

• the proposed semantics allows both the discovery of

temporal conflicts and the generation of a valid

scheduling for rendering;

Fig. 4 Answers to question Q2 (‘‘How do you evaluate the useful-

ness of eSMIL?’’), Q3 (‘‘What is the percentage of errors detected by

eSMIL?’’), Q4 (‘‘Please assess the user experience with eSMIL’’) and

Q5 (‘‘How do you rate the relationship between the help given by the

tool during the authoring and the effort to learn to use it?’’) of the

questionnaire

A. Bossi, O. Gaggi

123

• the tool helps the author to fix the mistakes and does not

require to change the preferred interface or to know any

formalism;

• the users reported that the tool can help improving the

user knowledge about the SMIL standard;

• the tool allows a modular evaluation of the elements

nested in a SMIL document;

• the compositionality of the approach allows an easy

extension of considered SMIL features;

• all the works addressed here require to translate the

SMIL document into another formalism, e.g., temporal

constraints or a Petri Net, in order to check its temporal

consistency. This operation is not always cost-effective,

especially when the complexity of the input increases

and a non compositional approach is used.

Most of the advantages discussed above derives from

the choice of a semantics inspired by the Hoare logic as

basis for the formalism. In fact, it allows us to incremen-

tally extend the subset of SMIL features implemented. New

features are easily added by defining new rules to describe

the semantics of a particular element or attribute, or by

defining a translation to a more simple situation, e.g. the

CMD?BEGIN?END?DUR translates an element containing all

the attributes begin, end and dur into an equivalent

element without the attribute dur. As a second example,

let as consider a parallel container with an attribute

endsync equal to first.10 The rule PAR?END-

SYNC = FIRST in Table 13 translates the par element to the

same composition with a correct value of the attribute end,

i.e., the earliest time instant in which a child ends. More-

over, our semantics does not need any translation into a

new formalism and allows an easily implementation of the

rules using the Prolog language as discussed in Sect. 4.1.

Finally, since most available authoring systems adopt

‘‘. . . SMIL language for building the final representation

scheme’’ [3], we argue that a formal semantics for this

language is needed.

In the future works, we plan to extend the set of attri-

butes covered by the semantics and to improve the user

interface of the tool in order to suggest time interval in

which the user interactions must occur. Moreover, the tool

must be able to automatically generate sequences of user

events to test the SMIL documents.

Currently, the tool verifies only documents for which all

information about timing, i.e., the duration of included

media, are available. This is not true in all situations, e.g.,

e-learning where the video of a lesson is streamed in real

time, and it could be useful to know, during the lifetime of

the presentation, when some time conflicts are generated. It

is important to note that we do not need to change the

formal semantics to support this possibility, but only the

implementation of the tool. One solution can be to check

the document more than once, at pre-defined time intervals.

The tool will records which media item are finished, and

which are still playing. For this second group, the tool can

check if the duration accumulated so far exceeds the

assigned time interval, e.g., a media is playing longer than

its parent element and reports it to the author. A second

solution can be the use of parameters, i.e., like in the case

of the interval for user interactions, the tool can provide as

output an interval for the duration of media items to pre-

vent that their playback will be truncated. This result could

be obtained using the constraint logic programming (CLP)

[12], which extends logic programming to include con-

straints propagation and solving. CLP allows us to give as

result not a single value, but a set of constraints on the

expected values. Future work will better investigate this

issue.

Acknowledgments The authors would like to thank Mattia Boldrin

for his support in the development of the tool and the anonymous

referees for the useful suggestions.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals.

Commun. ACM 26(11), 832–843 (1983)

2. Belkhir, A., Bouyakoub, S.: Formal design of smil documents. In:

Proceedings of WEBIST, 2007

10 Other values for this attribute are last, the default behavior, a

media object, that is deprecated since the same behavior con be

described with the use of events, and all, which is used in the excl
element.

Table 13 Proof rule for the

parallel composition when the

attribute endsync is equal to

first

Analysis and verification of SMIL documents

123

3. Bertino, E., Ferrari, E., Perego, A., Santi, D.: A constraint-based

approach for the authoring of multi-topic multimedia presenta-

tions. In: ICME, pp. 578–581, July 2005

4. Bossi, A., Gaggi, O.: Enriching SMIL with assertions for tem-

poral validation. In: Proceedings of ACM MM, pp. 107–116,

September 2007

5. Bouyakoub, S., Belkhir, A.: H-SMIL-Net: a hierarchical Petri Net

Model for SMIL documents. In: Proceedings of International

Conference on Computer Modeling and Simulation, pp. 106–111

(2008)

6. Bulterman, D.C.A., Hardman, L.: Structured multimedia author-

ing. ACM Trans. Multimedia Comput. Commun. Appl. 1(1),

89–109 (2005)

7. Bulterman, D.C.A., Rutledge, L.W.: SMIL 3.0, flexible multi-

media for web, mobile devices and daisy talking books, 2nd edn.

Springer, Berlin (2009)

8. Bulterman, et al.: Synchronized multimedia integration language

(SMIL) 2.1 specification, December 2005

9. Bulterman, et al.: Synchronized multimedia integration language

(SMIL) 3.0 candidate recommendation, January 2008

10. Chang, W., Michel, T.: SMIL 2.0 Testsuite

11. Eidenberger, H.: SMIL and SVG in teaching. In: Internet imaging

V, vol. 5304, pp. 69–80 (2003)

12. Frhwirth, T., Herold, A., Kchenhoff, V., Le Provost, T., Lim, P.,

Monfroy, E., Wallace, M.: (1992) Constraint logic programming.

In: Comyn, G., Fuchs, N., Ratcliffe, M. (eds) Logic Programming

in Action, vol. 636. Lecture Notes in Computer Science.

Springer, Berlin, pp. 3–35

13. Hardman, L., Bulterman, D.C.A., van Rossum, G.: The Amster-

dam hypermedia model: adding time, structure and context to

hypertext. Commun. ACM 37(2), 50–62 (1994)

14. Hoare, C.A.R.: An axiomatic basis for computer programming.

Commun. ACM 12(10), 576–585 (1969)

15. Jourdan, M.: A formal semantics of SMIL: a web standard to

describe multimedia documents. Comput. Standards Interfaces

23(5), 439–455 (2001)

16. Mazouz, S., Dahamani, D., Kaddouri, L.: Formal approach for the

coherence control of SMIL documents. Int. J. Comput. Sci. Appl.

3(2), 126–144 (2006)

17. Schmitz, Patrick, et al.: The SMIL 2.0 Timing and Synchroni-

zation Module (2001)

18. Sampaio, P., Santos, C., Courtiat, J.-P.: About the semantic

verification of SMIL documents. In: ICME, pp. 1675–1678.

New York, USA, August 2000

19. Sampaio, P.N.M., Courtiat, J.-P.: An approach for the automatic

generation of RT-LOTOS specifications from SMIL 2.0 docu-

ments. J. Braz. Comput. Soc. 9(3), 39–51 (2004)

20. Valente, P., Sampaio, P.: TLSA Player: a tool for presenting

consistent SMIL 2.0 documents. In: Proceedings of ICEIS2007,

Madeira, Portugal, June 2007

21. Yang, C.: Detection of the time conflicts for smil-based multi-

media presentations. In: Workshop on Computer Networks,

Internet, and Multimedia, pp. 57–63 (2000)

22. Yu, H., He, X., Gao, S., Deng, Y.: Modeling and analyzing SMIL

documents in SAM. In: MSE, pp. 132–135. Newport Beach,

California, December 2002

A. Bossi, O. Gaggi

123

	Analysis and verification of SMIL documents
	Abstract
	Introduction
	Background and definitions
	A definition of an abstract player
	The assertion language
	Notational conventions

	Inference rules for SMIL language
	Rules for parallel and sequential composition
	User interactions in the attributes begin and end
	Management of non interactive events
	Multiple values for the attributes begin or end
	The excl element

	Prototype implementation
	The semantic validator
	Evaluation and test of the prototype

	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

