
ClimbTheWorld: Real-time stairstep counting to increase
physical activity

Fabio Aiolli, Matteo Ciman, Michele Donini and Ombretta Gaggi
Department of Mathematics

Via Trieste, 63
University of Padua, Italy

{aiolli, mciman, mdonini, gaggi}@math.unipd.it

ABSTRACT
The increasing number of people that are overweight due
to a sedentary life requires persuasive strategies to convince
people to change their behaviors. In this paper, we present
a machine learning based technique to recognize and count
stairsteps when a person climbs or descends stairs. This
technique has been used as part of ClimbTheWorld, a real-
time smartphone application that aims at persuading peo-
ple to use stairs instead of elevators or escalators, since an
engaging activity has more chance to change people’s life
habits. We perform a fine-grained analysis by exploiting
smartphone sensors to recognize single stairsteps. Data-
dependent sliding windows are used facilitating the learn-
ing process and reducing the computational cost. Finally,
energy consumption is widely investigated to optimize the
trade-off between classification precision and battery usage,
to avoid exhausting smartphone battery.

General Terms
activity recognition, energy consumption, mobile comput-
ing, ubiquitous applications.

1. INTRODUCTION
In the last few decades the technological progress has com-
pletely changed people’s lifestyle, making everyday activities
much easier. Unfortunately, this progress also moved peo-
ple to a sedentary lifestyle, thus increasing the occurrence
of some diseases, like obesity (both in adults and children),
heart diseases, diabetes, cancer etc., and the medical costs
for their treatment. According to the World Health Organi-
zation, there are at least 3.2 million people per year dying for
these diseases [14]. On the other hand, the widespread pres-
ence of smartphone in people pockets offers the possibility
to use these devices for health support and health-associated
activity recognition.

In this paper we present ClimbTheWorld, a smartphone seri-
ous game aiming at incentivize people to use stairs instead

of elevators or escalators. ClimbTheWorld implements a
new method for stairsteps recognition and counting. In or-
der to increase people engagement and, consequently, the
real chance to change their behaviors, the game requires a
fine-grained classification, that is a real-time counting of the
number of stairsteps along with a real-time feedback.

The advantages of ClimbTheWorld over other solutions are:

• it provides an online, fine-grained classification, i. e.,
it is able to recognize a single stairstep vs. a simple
step, during the activity itself,

• no restrictions on the smartphone orientation,

• it does not require people to buy expensive tools (e.
g., the Nike+ FuelBand bracelet1) but it uses only the
smartphone sensors, and

• energy consumption has been considered during the
development of the serious game.

Several studies have shown that energy consumption is a
critical aspect for mobile applications [8, 10] and can influ-
ence performance on some user experience metrics [4]. In
particular, battery lifetime is one of the most important as-
pects considered by users when dealing with applications
on mobile devices. For this reason, applications developers
must avoid to waste energy since this can require a user a
too frequent recharge of the smartphone. This means that,
for example, data acquisition frequency must be carefully
considered since it is an extremely energy consuming task.
Similarly, our approach gathers strictly necessary informa-
tion only from data, avoiding the use of a high number of
features computations that could lead the final classification
to become too expensive. To the best of our knowledge, this
is the first tentative to consider energy consumption as a key
aspect in a classification problem.

Our approach also proposes a new solution to deal with the
change of the smartphone position. Since accelerometer data
is influenced by the rotation and the position of the smart-
phone, a new method is introduced to translate data received
from the accelerometer to a fixed coordinate system. We use
the standard built-in rotation sensor providing information
about the rotation of the device and a time fixed buffer to
eliminate the influence of the gravity on data we gather.

1http://www.nike.com/us/en_us/c/nikeplus-fuelband

1

http://www.nike.com/us/en_us/c/nikeplus-fuelband


Other works in literature propose solutions for activity recog-
nition, e. g., running, walking or driving. These approaches
collect data for an interval of time, and, after another inter-
val of time for calculation, guess which activity is performed
by the user in that period. Our approach is different since we
aim at counting the number of stairsteps, which is a more dif-
ficult task than recognizing an activity during a longer time
interval. This means that we need a more fine-grained clas-
sification. As we discuss in Section 4, to recognize stairsteps
from steps is a very difficult task since data retrieved from
accelerometer are similar. Moreover, stairsteps recognition
and counting is performed in real time.

Since the needed frequency of data analysis is extremely
high (each stairstep requires about 500ms to be completed),
we implemented a data-dependent window, instead of the
traditional sliding window with a fixed time duration, and
we apply classification only if that window is suitable to
represent a stairstep. In this way we reduce the number of
windows to analyze and hence the computational cost.

2. RELATED WORKS
Before the usage of smartphone sensors to perform activity
recognition (and in particular step counting), an analysis of
performances reached by pedometer during stair climbing
was made by Ayabe et al. [3]. The purpose of their ex-
periments was to understand how well pedometers perform
during stair climbing and descending. They evaluate three
different commercial pedometers and different stepping rate
(from 40 to 120 steps·min−1). Although they do no dis-
tinguish between steps and stairsteps, results show that pe-
dometer can assess stairstep counting within an error rate of
±5%, being a great tool to count number of stairsteps (and
steps) made by each user.

Thanks to the increasing performances of smartphones and
their ability to acquire lot of data from the surrounded envi-
ronment, mobile applications that use data from sensors for
activity recognition and to promote better lifestyle received
considerable interest from the research community.

Anjum and Ilyas [2] develop an application for online ac-
tivity recognition like walking, running, climbing stairs, de-
scending stairs, cycling, driving and remaining inactive. They
provide an analysis of 5 seconds length windows using sev-
eral classification algorithms like KNN, Naive Bayes, Deci-
sion Trees and Support Vector Machines. They collect data
from the accelerometer, the gyroscope and the GPS. The
precision of the results ranges between 79% (using Support
Vector Machine) and 94% (Decision Tree). Their analysis
also shows that data retrieved from gyroscope do not pro-
vide any useful information, therefore they remove all the
features coming from this sensor. Moreover, they stated
that the recognition of stairs climbing and descending is a
really difficult task, achieving a much more lower precision,
and often stair climbing is confused with walking (precision
of 84.6% for going upstairs, 90,5% for going downstairs).

Shoaib et al. [12] analyze activity recognition using ac-
celerometer, gyroscope and magnetometer, alone or com-
bined together at a frequency of 50Hz. They consider four
different positions of the smartphone (arm, belt, pocket and
wrist). They showed that the magnetometer, both alone

A
u
t
h
o
r
s

U
s
e

o
f
c
e
ll

p
h
o
n
e

R
e
a
l-
t
im

e

S
e
n
s
o
r
s

O
r
ie
n
t
a
t
io

n

W
in

d
o
w

A
c
t
iv

it
y

S
t
a
ir
s
t
e
p

c
o
u
n
t
in

g

[3] No Yes Acc.,
Gyr.

1 - stairs Yes

[2] Yes Yes Acc.,
Gyr.,
GPS

4 5 s stand,
walk,
run,
cycle,
stairs

No

[12] Yes Yes Acc. 1 4 s stand,
walk,
cycle,
drive,
run

No

[5] Yes No Acc. 6 (*) Walking No
[15] No No Acc.,

Gyr.
1 2 s Stand,

walk,
run,
stairs

No

Our
solu-
tion

Yes Yes Acc.,
Rot.

Free
(**)

(***) Stairstep Yes

(*) [5] allows different window sizes
(**) The only constraint is not to use the trouser pocket
(***) Our solution uses a data dependent window size

Table 1: Resume of the different approaches presented in
Section 2 compared with our solution

or in combination with other sensors, performs poorly since
it causes overfitting for the classifier. Moreover, they found
that the accelerometer performs better than the gyroscope in
recognizing the six different activities, but, in contrast with
the results provided by Anjum and Ilvas, this work showed
that the combination of accelerometer and gyroscope data
performs better than the individual performances.

Brajdic and Harle [5] discuss about walk detection and step
counting algorithms with data acquired from a smartphone;
the user can choose to carry the smartphone in six differ-
ent positions. This work discusses some issues in common
with our approach, but in our case we count stairsteps (so
we need to discriminate between steps and stairsteps which
is a more difficult task). The authors evaluate several algo-
rithms using a dataset of 130 walks traces from 27 different
users, getting that most of the algorithms are able to detect
walking within a trace that contains only walking and idle
periods, with a best median error of 1.3 using thresholding
technique, but no one of the algorithms is 100% reliable.

Wu et al. [15] analyze activity recognition using an iPod
Touch, acquiring data from the accelerometer and the gyro-
scope. They recognize activity like sitting, walking, jogging,
going upstairs and downstairs. They extract both time, fre-
quency and Fast Fourier Transform. They made data anal-
ysis offline, using 2-second window size with data acquisi-
tion at 30Hz. They achieved the best results using kNN.
When sitting, walking and jogging, the accuracy was very
high (90,1%-94,1%), while up and down stair walking was
classified with lower precision (52.3%-79.4%).

2



Figure 1: Three screenshots of ClimbTheWorld

HealthyLife [6] is a smartphone application that automat-
ically recognizes users activities. It recognizes activities like
walking, running, driving and staying-still. They use the ac-
celerometer data and the GPS signal. Moreover, they apply
Ambiguity reasoning to increase classification results and to
disambiguate data. The idea is to apply a set of weak con-
straints that attaches to any possible answer of the classifier
a violation cost that depends on the number and type of vio-
lated constraints. The right classification answer will be the
one with violation cost equals to 0. The final precision of the
system ranges from 100% (staying-still) to 73% (walking).

The analysis of the related works reveals several open is-
sues that need further analysis. First of all, since we are
pursuing a smartphone based real time recognition, energy
consumption is a fundamental aspect, never considered be-
fore. For example, the usage of multiple sensors at the same
time (accelerometer, gyroscope, magnetometer and GPS)
will rapidly drain the battery, causing lot of stress to the
user. For this reason, we will rely on the accelerometer and
the rotation sensor only, avoiding the usage of much more ex-
pensive sensors. Moreover, differently from other solutions
that recognize an activity over a large window of time, we
aim at recognizing each single stairstep, and distinguish it
from a simple step. As shown in Figure 3, this is not an easy
task, since the signal obtained by a stairstep and a step has
a similar behavior. Finally, all the previously proposed ap-
proaches impose a set of fixed positions for the smartphone
and the training of a different classifier for each supported
position. As we will see, we do not impose any position of
the smartphone, we only ask to avoid the trousers pocket.
Table 1 provides a comparison of our approach against the
ones presented in this section.

3. GAME DESCRIPTION
ClimbTheWorld is a serious game developed as a smart-
phone application that aims to incentivize people to take
stairs instead of elevators or escalators. The use of mobile
technologies in real time persuasive solutions is a very good
combination since smartphones are commonly available in
the users pocket and can invisibly work and help people to
change their unhealthy behavior.

The idea underlying the game is simple: the user has to
climb real world buildings, e. g., the Empire State Building
or the Eiffel Tower, making stairs during his/her everyday
life. Once started, the game records and analyzes data from

Figure 2: Pipeline overview of the system

the accelerometer and count the number of stairsteps made
by the user, even when the application goes in background.

The game proposes different difficulty levels: easier levels
correspond to a lower number of stairsteps necessary to reach
the top of the building. Each stairstep in real life corre-
sponds to one (or more) stairstep in the game. Once the
user reaches the top of the building, a slideshow of pictures
is displayed, showing the view from the top of the build-
ing. Different difficulty levels also bring different quality
and number of provided photos.

To increase the engagement of the user, the game provides
a set of bonuses, depending on the performance of the user.
For example, if the user improves his/her performance with
respect to the day before, he/she gets a 10% increase on the
total number of stairsteps made. These bonuses are used
to constantly encourage and help the user. For the same
reason, we aims at designing a non-invasive application, so
we do not fix the smartphone orientation and we consider
energy consumption issues.

Finally, the game gives the possibility to a user to share
his/her performance with friends through Facebook to fur-
ther increase the user engagement. Figure 1 shows some
screenshots of the final application, i. e., the user interface
during stairstep counting, the photo gallery, and the user
interface to post an achievement in Facebook.

4. PIPELINE OVERVIEW
In this section, we give a broad overview of the our system for
recognition and counting of stairsteps. The system modules
will be discussed in detail in the following sections. The
main application and its pipeline is shown in Figure 2.

The overall system continuously acquires data from the sen-
sors of a smartphone. This information is elaborated by the
system to recognize time segments when the user is climb-
ing or descending stairs. Finally, the system will return the
counting. Since we want to provide real-time feedback to
the user, and reduce the delay of the response of the ap-
plication, all data elaboration is made on the smartphone
and not on a server. This avoids problems of network avail-
ability, network delay or server overload, making the system

3



more responsive and interactive.

The first step of the pipeline is data acquisition. This is
performed by the smartphone that, through its sensors, ac-
quires data about the movements of the device.

The following module of the pipeline takes raw data acquired
by sensors and standardize it. We need of this step because
of the requirement to not fix the smartphone orientation
and, as we will see in Section 5, raw data acquired by sensors
can change a lot depending on the smartphone orientation.
Thus, to overcome this problem, raw data is translated into
a predefined and fixed coordinate system. In this way, data
recording the same type of activity more likely corresponds
to the same behavior, independently from the orientation of
the smartphone.

Then, it follows the segmentation step, where the standard-
ized data is split into consecutive segments or windows.
In this module, in order to reduce the computational cost
and improve the accuracy, a window segmentation technique
based on data analysis (without fixing lasting time) is intro-
duced. The proposed method allows to consider the time
as additional information, then allows to introduce a simple
filter which is able to immediately discard those windows
that clearly have a duration unsuitable for a stairstep.

After segmentation, the extraction and standardization of
the features for the classifier is performed.

We cast the stairstep recognition task in a classification
setting where we have two possible labels (“STAIR” and
“NO STAIR”) and the examples consist of vector represen-
tations of segmented windows. Note that, the training of
the model is performed off-line only once (one single model
shared by all different users), while the recognition phase
have to be made in real time. This implies that the classifi-
cation outputs must be promptly provided to the user with-
out delays. We must note here that a simple high-pass filter
or a peak detection algorithm would not be sufficient in our
context. In fact, as it is shown in Figure 3, a stairstep and
a step have almost the same shape, that is, a data peak on
one axis. For this reason, we need a more complex method
able to distinguish between this two different activities.

In the following sections, we provide a deep analysis of the
main modules that compound the complete system. Finally,
we present the results of the classification algorithms in a
simulation of the system and an analysis of all the issues
related to energy consumption.

5. SUPPORT TO THE
ORIENTATION-INDEPENDENCE

The smartphone orientation is one of the first crucial issues
to consider, since data recorded from the accelerometer dur-
ing any activity is deeply affected by the device orientation.
Requiring a user to keep the smartphone in a particular
position is uncomfortable and thus not desirable, the ap-
plication would not be pervasive anymore and this would
likely lead the user to delete or misuse the application. For
this reason, we propose a method that does not make any
restrictive assumption about the smartphone position, in a
way to enforce the pervasiveness of the application.

(a) Example of a step (b) Example of a stairstep

Figure 3: Comparison between a step and a stairstep: the
signal behavior is almost the same

Figure 4a reports data recorded during the same walking
activity while keeping the phone in a hand. The three lines
represent signals recorded by the accelerometer for the X, Y
and Z-axis, during a short interval of time (represented by
the horizontal axis in the figure). The figure shows how data
significantly varies due to a different orientation (rotation) of
the device. In particular, we observe a clear switch of those
signals that represent the acceleration on the axes involved
in the rotation. This variation dramatically increases the
difficulty of the following learning task since, in this case,
the classifier is required to be trained on every possible ori-
entations. Clearly, this approach is not reasonable, so we
need to study how to standardize the signal such to enforce
invariance with respect to orientation. Specifically, we would
like the values read by the accelerometer to be referred to a
fixed coordinate system, so that each activity will be repre-
sented by a similar signal behavior, independently from the
position of the smartphone. In this way, how the user carries
the smartphone becomes an insignificant problem, and the
task to train an accurate classifier becomes easier.

One method to solve the problem above was previously pro-
posed by Mizell [9]. The idea is the following: given a sam-
pling interval, the gravity component g = (gx, gy, gz) ∈ R3

on each axis can be estimated by averaging over data read
on each axis. When an accelerometer produces the original
signal a = (ax, ay, az) ∈ R3, it is possible to calculate the so
called dynamic component of a as d = (ax−gx, ay−gy, az−
gz) where the influence of the gravity is eliminated. Finally,
the vertical part p of the dynamic component d (parallel
to the gravity) is computed as p = ( d·m

m·m )m, and the hor-
izontal part (orthogonal to the gravity) as h = d − p. As
a positive aspect, we note that this method only requires
the usage of the accelerometer, and this makes it less expen-
sive in terms of energy consumption. On the other hand, it
may loose relevant information since it translates a three-
dimensional coordinate system (the one of the device) into
a two-dimensional one (vertical and horizontal directions).

Here, we propose a new method to increase the precision of
the transformation and preserving the orientation-invariance
property. How this method works and how it changes the
signal acquired by the accelerometer is shown in Figure 4b.

4



(a) Raw data acquired from the ac-
celerometer: same activity but different
axis values after rotation of the smart-
phone

(b) Our method applied to a walking ac-
tivity while rotating the smartphone

(c) Native linear acceleration plus rotation
method

Figure 4: The comparison among the raw signal (a) and the signal from the methods for the orientation-independence: our
method (b), Linear (c). The instant in which the rotation takes place is denoted by the letter “R”. Each line represents data
acquired with reference to one axis X, Y and Y

The fixed target coordinate system is the following: the X
axis is defined as the one tangential to the ground pointing
approximately toward East. The Y axis is tangential to the
ground pointing toward the geomagnetic North. Finally,
the Z axis is orthogonal to the ground plane and points
toward the sky2. To implement our method, we need the
rotation vector sensor in addition to the accelerometer of
the smartphone, and a buffer used to estimate the gravity
component acting on each axis.

Firstly, we remove the gravity component from the accelerom-
eter signal using a buffer which stores data acquired during
the last 500ms, and averaging over the axes. The vector
g = (gx, gy, gz) is used to compute the dynamic component
vector d = (ax − gx, ay − gy, az − gz) where a = (ax, ay, az)
is the original accelerometer reading. Once the vector d has
been computed, it is rotated to the fixed coordinate system
using information coming from the rotation vector sensor.
This sensor provides information about the current orien-
tation of the device with a three-component vector, where
each component represents a rotation angle around an axis.
Now, we can apply a three dimensional rotation to the vec-
tor d = (dx, dy, dz) to obtain a new vector d′ = (d′x, d

′
y, d
′
z)

representing the real movement of the user with respect to
our target coordinate system. As we can see in Figure 4b,
the signal remains affected from the rotation for a very short
interval of time only which is bounded by the buffer size.

Android natively supports the automatic gravity removal us-
ing the linear acceleration sensor that directly retrieves the
dynamic component vector d. Starting from this vector and
using the rotation data as described above, linear accelera-
tion readings can be rotated to our fixed coordinate system.
An illustration of the rotation-sensor based method applied
on the Android native solution is provided in Figure 4c. As

2http://developer.android.com/guide/topics/
sensors/sensors_overview.html

we will see in Section 8.1 and in Section 8.2, our method
performs better that the native solution both in terms of
precision and energy consumption.

A positive aspect of our approach is that, using a buffer to
calculate and remove gravity, data from the accelerometer
can be represented as a smoothed line which permits us to
avoid the problem of sensitivity and calibration of different
smartphone sensors, which varies on different models. With
our approach this error is smoothed. We made several tests
with a Samsung Galaxy i9250, acquiring data from the ac-
celerometer and then applying our approach, and from the
linear sensor. The smartphone was placed with the screen
pointing to the sky. Data acquired at 125Hz for 5 min-
utes, and the readings averaged on each axis. Since the
smartphone was not moving, the theoretical result is At =
(0.0, 0.0, 0.0). As mentioned before, this is only a theoretical
result since every sensor has its own noise. The final average
values obtained were Al = (−0.04869, 0.01913, 0.62103) us-
ing the linear sensor and Ao = (0.03083,−0.01564, 0.42016)
using our method. As we can see, even if we were not able to
completely remove the noise from the accelerometer sensor,
its influence on the final data is reduced.

6. SEGMENTATION WITH
DATA-DEPENDENT WINDOW

The standard method to perform activity recognition is by
classification of sliding windows. This approach is simple:
since during data acquisition we do not know when a par-
ticular activity starts, a window is defined as the set of tem-
poral consecutive data that lasts a fixed amount of time.
When this maximum amount of time is reached, all data
belonging to the window is analyzed and classified. With
this approach, activities which start in the middle of a par-
ticular window can be missed. A natural extension is to
consider overlapping sliding windows. In this case, windows
are built of the same duration and overlap. In this way, it

5

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html


(a) Sliding windows using time (b) Data-dependent sliding windows

Figure 5: The comparison between the segmentation in windows of possible stairsteps obtained from the time-driven sliding
windows (a) and the data-dependent sliding windows (b)

is possible to reduce the number of missing activities due
to unknown starting time. Figure 5a gives an example of a
segmentation of sliding windows with overlapping of 50%.

This kind of approach has shown nice results in different
contexts. However, it is not suitable for fine-grained classi-
fication problems as recognizing single stairsteps which last
for very short intervals of time. The first problem is related
to the presence of different user behaviors. Since every user
is different from an other, how a person makes a particular
activity, e.g., a stairstep, can have different duration and
frequency. Within a fixed sliding window approach, it is not
possible to manage this variability, i.e., a window could be
too short, or too long, to give good results for a particular
user. Moreover, an initial calibration step which asks the
user to perform a particular activity, at his/her speed, to
calibrate the size of the window, could decrease the predis-
position of the user to use the application.

Another problem of the fixed overlapping sliding window is
related to the training phase and involves the input data for
the classifier: if we use examples of positive elements, i.e.,
stairsteps, which perfectly fits inside a single window, the
training set is no longer adherent to reality. If we use exam-
ples which do not fit into a single window, it is more difficult
to discriminate between positive and negative instances.

Finally, the overlapping sliding window approach brings a
problem concerning energy consumption. In fact, since data
is analyzed twice, due to the overlapping, then the total
number of analyzed windows increases and this negatively
affects the duration of the battery.

In order to reduce the input errors and the computational
cost required by classification on a smartphone, we decided
to change the way windows are segmented from a time-based
segmentation to a data-based segmentation. In particular,
we consider the typical behavior of the signal when a user
climbs a stairstep. As shown in Figure 3b, the movement
is characterized by a positive local maximum followed by
a negative local minimum for the Z-axis, while the X-axis
and the Y -axis get a much lower variation. Note that, with
our method, this pattern is invariant to device orientation.

Hence, our assumption is that a window which is suitable
to be a stairstep always presents data with this particular
pattern. An example illustrating how windows are built is
presented in Figure 5b.

Using the approach described above, the duration of a win-
dow becomes an important additional feature that gives fur-
ther information and can also be used during classification.
A simple filter is defined discarding all the windows that do
not respect a predefined time interval, i.e., the time neces-
sary to perform a particular activity (in our case, to make
a stairstep). In order to fix this time interval, we have
roughly analyzed our training set and obtained that making
a stairstep without running requires at least 300ms, and at
most 2 seconds. Empirically, the adoption of this simple fil-
ter reduced significantly the number of windows to consider,
thus saving energy.

Summing up, the proposed solution has several advantages
with respect to the time-based sliding window. The first
one is that we are sure that each stairstep will fit in a win-
dow and this makes the learning task much more easier.
Moreover, it reduces the possible errors in the training set.
The second advantage is that just the windows suitable for
stairsteps are taken into account for the analysis, reducing
the total computational cost for the smartphone. Finally,
this approach allows to deal with user variability. In fact,
even if different users require different amount of time to
complete a stairstep, the window will be appropriately re-
sized to contain it without the need of calibration.

7. REPRESENTATION AND FEATURES
STANDARDIZATION

In the representation phase, the dynamic window resulting
from the segmentation phase is transformed into a vector of
real values representing the information obtained by the de-
vice sensors contained in that particular time window. This
mapping will permit a natural application of standard ma-
chine learning methods to our task of recognizing whether
the user is climbing stairs or not. The way data are repre-
sented is crucial for the effectiveness of a learning algorithm.
Specifically, a good representation method will be able to
maintain the information which is really relevant for the

6



task and reduce the noise in the data as much as possible.

In the following we formally describe our choices for the
representation module. In particular, let the frequency of
sampling be fixed. Then, each window obtained by the
segmentation step will consist of a sequence of n vectors,
vi = (xi, yi, zi) ∈ R3, i ∈ {1, .., n}, each one consisting of
the standardized values of acceleration with respect to the
three axes.

We also consider two additional computed values that, in our
opinion, can carry precious information. Firstly, we consider
the norm of the vector vi which well represents the global
amount of activity being performed and, secondly, the av-
erage value of horizontal accelerations, namely xi+yi

2
which

combines the horizontal activities in our fixed coordinate
system in a single value.

More formally, for any single standardized vector vi of a dy-
namic window, a new vector si ∈ R5 can be built as follows:

vi = (xi, yi, zi) 7→ si = (xi, yi, zi, ‖vi‖2,
xi + yi

2
)

Now, the entire sequence of observations in a window can
be represented in the matrix S ∈ R5×n where the vectors si
are accommodated in columns. Finally, the representation
of the sequence corresponding to the entire dynamic window
is obtained by applying a simple transformation Φ : R5×n →
R74, by evaluation of different statistical estimates over the
rows of S.

Specifically, the 74 dimensions of Φ(S) are created evalu-
ating standard statistics (i.e. average, standard deviation,
variance and difference between minimal and maximal val-
ues) which are very common in time series analysis or evalu-
ating the ratio among the statistical features above and the
correlations from different sources [13, 11].

Table 2 presents a detailed description of the entire set of
features we decided to compute in order to represent a se-
quence of acceleration measures in a dynamic window. The
first set of 20 features considers standard statistics computed
over the rows Sj of the sequence matrix S. The next group
of 40 features considers the ratio of the same statistics com-
puted on different rows. An additional group of 4 features
(61-64) takes in account the ratio between S3 and S5 statis-
tics (the ratio between vertical and horizontal activities),
and two other features, the Magnitude Area (MA) and the
Signal Magnitude Area (SMA) of {S1,S2,S3}. Finally, the
last 10 features correspond to the value of the correlation
between pairs of rows. For reason of computational com-
plexity and energy consumption we didn’t use the features
in the Fast Fourier Transform (FFT) family.

In order to fairly compare our orientation-independence sup-
porting method with other methods presented earlier in this
paper, we used a similar representation mapping. In par-
ticular, exactly the same mapping is used for the Linear
method. Concerning the Mizell method, that returns two
measurements vectors instead of one, we have considered
the natural extension of the function Φ applied to the two
vectors independently and concatenating the resulting vec-
tors, thus obtaining a new vector of dimension 74×2 = 148.

Features No. Description
1− 5 Ave(Sj), j ∈ {1, . . . , 5}
6− 10 Std(Sj), j ∈ {1, . . . , 5}
11− 15 V ar(Sj), j ∈ {1, . . . , 5}
16− 20 Max(Sj)−Min(Sj), j ∈ {1, . . . , 5}
21− 30

Ave(Sj)

Ave(Sh)
, j, h ∈ {1, . . . , 5}, j > h

31− 40
Std(Sj)

Std(Sh)
, j, h ∈ {1, . . . , 5}, j > h

41− 50
V ar(Sj)

V ar(Sh)
, j, h ∈ {1, . . . , 5}, j > h

51− 60
Max(Sj)−Min(Sj)

Max(Sh)−Min(Sh)
, j, h ∈ {1, . . . , 5}, j > h

61 Max(S3)
Max(S5)

62 |Min(S3)
Min(S5)

|
63

√
Ave(S1)2 +Ave(S2)2 +Ave(S3)2

64 Ave(|S1|+ |S2|+ |S3|)
65− 74 Corr(Sj ,Sh), j, h ∈ {1, . . . , 5}, j > h

Table 2: 74 features extracted from dynamic windows

Finally, it’s well-known that the classification algorithms are
badly influenced by features with different orders of magni-
tude. For this reason, we have rescaled all the features from
the dynamic windows used to train the classifiers between
[−1, 1] with a linear transformation, in order to improve the
classification results from the classifiers. The linear trans-
formations (that are fixed and different for each feature)
are applied to all the features before the classification takes
place in order to improve the classification performance.

8. EXPERIMENTS AND RESULTS
In this section, we present experimental results we have ob-
tained with a simulation of our system, with respect both
to classification and energy consumption.

8.1 Classification setting and results
First, we have created a dataset with raw information cap-
tured from device sensors for any of the three methods se-
lected: Mizell, Linear and our method. The dataset is com-
posed by a total of 8000 windows with 1500 stairsteps. This
information was acquired through direct data collection from
seven different users (five adults and two children) using dif-
ferent smartphones. We recorded this data keeping the de-
vices consistently with the body movements, e. g., hand
held, in a backpack or in a handbag. The users hadn’t other
constraints with respect to where or how to keep the de-
vice when the data was collected. From this raw data, the
methods presented in Section 7 have been used to compute
a features vector for each dynamic window contained in the
datasets. Data has been then manually labeled in order to
use it with the supervised learning algorithms.

Several different algorithms are available in the machine
learning literature to tackle this task. For the experiments
presented in this paper we use algorithms from three dif-
ferent families: decision trees (DT), K-nearest neighbors
(KNN) and a kernel-based SVM-like algorithm, namely KOMD
[1] (Kernel Optimization of the Margin Distribution). We
used our implementation of the KOMD algorithm, while for
the decision trees and the k-nearest neighbors we used the
Weka [7] implementation.

7



Frequency 20Hz
Mizell Linear Our method

Precision Recall F1 Precision Recall F1 Precision Recall F1

DT 0.741±0.050 0.728±0.027 0.735 0.720±0.033 0.737±0.054 0.729 0.750±0.040 0.753±0.038 0.751
KNN 0.758±0.021 0.725±0.052 0.741 0.740±0.036 0.722±0.035 0.731 0.746±0.036 0.719±0.049 0.733

KOMD 0.797±0.017 0.794±0.028 0.796 0.808±0.016 0.796±0.018 0.802 0.811±0.029 0.800±0.013 0.806

Frequency 30Hz
Mizell Linear Our method

Precision Recall F1 Precision Recall F1 Precision Recall F1

DT 0.767±0.022 0.765±0.035 0.766 0.740±0.035 0.744±0.032 0.742 0.759±0.043 0.762±0.030 0.760
KNN 0.766±0.055 0.783±0.032 0.774 0.769±0.038 0.741±0.031 0.755 0.789±0.019 0.737±0.053 0.762

KOMD 0.798±0.044 0.801±0.031 0.800 0.832±0.033 0.832±0.033 0.832 0.859±0.034 0.860±0.023 0.860

Frequency 50Hz
Mizell Linear Our method

Precision Recall F1 Precision Recall F1 Precision Recall F1

DT 0.753±0.050 0.736±0.042 0.744 0.718±0.055 0.742±0.030 0.730 0.761±0.071 0.747±0.029 0.754
KNN 0.794±0.052 0.772±0.023 0.783 0.802±0.051 0.768±0.033 0.784 0.812±0.025 0.772±0.026 0.792

KOMD 0.806±0.025 0.803±0.034 0.804 0.850±0.024 0.854±0.033 0.852 0.864±0.033 0.872±0.039 0.868

Table 3: Experimental results of Precision and Recall with standard deviation and F1 score for the algorithms and methods
used with frequency of sampling of 20Hz, 30Hz and 50Hz. The result highlighted has the largest value of F1

Raw data was originally sampled with a frequency of 50Hz
but since we are interested in finding the best trade-off be-
tween performance and energy consumption, we have also
created two different datasets with sub-sampled frequencies
of 20Hz and 30Hz. A higher frequency corresponds to a
more accurate information given to the system, but obvi-
ously, it also corresponds to a higher energy consumption
for the devices.

In our binary classification task, the distribution of the labels
is greatly imbalanced since we have far more negative exam-
ples than positive ones. For this, we evaluated Precision and
Recall (instead of accuracy) to obtain a more proper per-
formance estimation for the different experimental settings.
Then, we used the Fβ-score (with β = 1.0) to combine recall
and precision in a single effectiveness score. The precision
(or positive predictive value) is calculated as TP/(TP+FP ),
the recall (or sensitivity) as TP/(TP + FN) while the F1-
score as 2(Precision · Recall)/(Precision + Recall), where
TP stand for True Positives, FP as False Positives and FN
as False Negatives.

Starting from the original datasets with manually assigned
labels for each dynamic window, each obtained dataset has
been split randomly in three independent subsets: Training
set (80% of the examples, used to train the supervised algo-
rithm), Validation set (10% of the examples of the original
dataset, used to find the best parameters for the algorithms)
and the Test set (10% of the examples, used to evaluate the
algorithms performance).

We repeated several times the same type of simulation with
different randomly splits (training, validation and test sets)
and averaged the results. The obtained results over the test
set are summarized in Table 3.

These results clearly show that the proposed method for
the support to the orientation-independence combined with
the KOMD classification algorithm obtains the best perfor-

mance against all the other combination of methods and al-
gorithms. The results are satisfactory considering the high
difficulty of the classification task, with the few samples
contained in each single dynamic window. Also, we were
interested in finding the best trade-off between energy con-
sumption and performance. For this, we can see that the
best compromise is obtained at 30Hz, as we can notice that
the difference in performance between 50Hz and 30Hz is not
statistically significant considering the standard deviation.
Moreover, our method with KOMD shows an higher F1 score
at 30Hz than the other classifiers at 50Hz.

8.2 Energy consumption results
When working with mobile devices, and in particular with
smartphones, energy consumption is an issue to consider
very carefully. In fact, if an application wastes a lot of en-
ergy, requiring a lot of computational resources, the user
may need to recharge the smartphone very often, in the
worst case, more than once a day. As already discussed,
waste of energy can be one of the reasons for users to re-
move an application from the smartphone.

Therefore, a deep analysis of how an application uses re-
sources, and which are the computationally expensive tasks,
is a fundamental requirement during development. In par-
ticular, the accelerometer and the rotation sensor can re-
trieve data at different frequencies, with different costs in
terms of energy consumption. Different frequencies lead to
different classification precision, so it is necessary to find
the right trade-off between classification precision and en-
ergy consumption.

Several applications and tools to measure energy consump-
tion on smartphone were proposed in literature [8, 10]. Some
of them must be installed on the smartphone and work, in
background, analyzing the power consumption of running
applications [16]. Even if this information could provide an
idea of how much expensive is a particular application, the
data provided cannot be considered too precise, since the

8



inevitable overhead introduced by this applications is un-
known, and not fixed.

For this reason, to measure the energy consumption we de-
cided to use a tool, that differently from the other software
solutions, do not require to be installed on the smartphone
but measures the energy that is “requested” by the smart-
phone to the battery. In this way, it is possible to measure
the real requested energy without overhead. The tool is the
Monsoon Power Monitor3, i. e., an hardware device with a
software for remote data reading. This tool allows to ana-
lyze data of energy consumption of any device that uses a
single lithium battery. The information retrieved are “En-
ergy Consumption”,“Average power”and“Average current”,
“Expected battery life” etc. This information are extremely
important, since it is possible to evaluate how energy is used,
for how much time, which are the tasks that are more ex-
pensive etc. Therefore, we can compare the three different
methods for data acquisition and standardization, i. e., the
Mizell’s method, the linear sensor and our method to elimi-
nate gravity information and translate each data to a fixed
coordinates system, to understand which is the best method,
in terms of classification precision and energy consumption.

We use a Samsung Galaxy i9250, with a theoretical bat-
tery capacity of 1750mAh, as test smartphone. Even if this
smartphone is not up to date, we do not want to consider
absolute values of energy consumption, but we want to de-
termine which is the less expensive method, and this infor-
mation is independent from the chosen smartphone.

Our results are presented in Table 4. The considered metric
is “Consumed Energy”, which is the energy necessary to ac-
quire data from the smartphone and apply one of the three
methods for two minutes. We tested the three methods with
the three target frequencies of data acquisition (20Hz, 30Hz
and 50Hz), and we repeated the experiments several times
to get a mean final value.

Energy consumption (µAh)
Frequency Mizell Linear Our method

20Hz 7852±34 8726±3 8695±8

30Hz 7930±16 8802±28 8713±27

50Hz 8094±30 8884±12 8871±25

Table 4: Energy consumption analysis for the three orienta-
tion methods

As it is easy to see, the Mizell method is the less consum-
ing one because, differently from the other two methods,
it requires only data acquired from the accelerometer, thus
reducing the total amount of consumed energy. Unfortu-
nately, this method has low performance, since it performs
worse than the other two methods for every data acquisition
frequency, with the higher precision equal to 80%, while the
other two methods can reach 86%.

Comparing together the other two methods, we can see that
our method is slightly less expensive compared to the use
of the linear acceleration sensor. This is an extremely good
result, since we are able to reach higher precision at every
acquisition frequency, consuming less energy. For the final

3http://www.msoon.com/LabEquipment/PowerMonitor/

application, we decided to use the KOMD algorithm and our
method at a frequency of 30Hz, since with the higher value
(50Hz) the reached precision is not significantly better, but
the energy consumption is higher.

Another key aspect introduced by our approach is the data-
driven window (segmentation) instead of time-based win-
dows. Beyond the simplification of the learning and the clas-
sification task, we want to compare these two kind of win-
dow definition in terms of energy consumption. We tested
both approaches in our application acquiring data at 30Hz,
and using KOMD as classification algorithm. For the time-
based windows, we tested the overlapping sliding windows
approach with a duration of 500ms and an overlapping of
50%. The final results are reported in Table 5.

Segmentation approach
Time-based Data-driven

window window
Energy

consumption 14535±17 12554±14

(µAh)

Table 5: Energy consumption comparison between time-
based and data-driven windows

As we can see from this result, the data-driven approach
lets save more energy (more than 15%) with respect to the
time-based sliding windows. This comes from the fact that
the number of windows built using the data-driven approach
that are classified using the KOMD classifier are much lower,
since only those with a suitable pattern and duration are
further analyzed. With time-based windows, this first filter
is not applied, and so the classifier has to classify all the
possible windows, that means more energy consumption.

8.3 Counting task results
In this section, the best trade-off between classification and
energy consumption has been selected to simulate the real
task that our algorithm has to tackle, i.e. counting stairsteps.
As quality measure for this task we have evaluated the aver-
age of the stairsteps counted by the algorithm with respect
to the real number of stairsteps climbed by the user. The
combination of KOMD with our orientation-independence
method has been chosen as classifier. We have selected
the frequency of 30Hz for sampling the raw signals from
the sensors as a trade-off between performance and energy
consumption. We have evaluated the average of the perfor-
mance using different random splits of the training set (80%)
and the test set (20%) in order to obtain significant results
from the dataset used in Section 8.1. The counting average
that we have obtained from this experiments is 99.4%±4.1.
This result is evaluated over approximately 1600 windows
and 300 stairsteps (that are not used in the training part).
So, our algorithm counted in average about 298 stairsteps
(over 300) and 1302 other windows (over 1300). In order to
complete the analysis of the performance of our algorithm,
in the same experiments we have obtained an Area Under
Curve (AUC) of 93.2%±1.3 and an Accuracy of 86.3%±1.7.

9. CONCLUSIONS AND FUTURE WORKS
In this paper, we have presented a new method for real time
stairsteps recognition and counting. Our proposal is inde-
pendent from the orientation of the smartphone and from

9

http://www.msoon.com/LabEquipment/PowerMonitor/


the walking speed of the users, since it is based on a self-
adjusting size of the window for the analysis of data.

We reported experiments showing that using our orientation-
invariant method to translate data from sensors into a fixed
coordinates system and a data-driven window segmentation,
we are able to obtain a very accurate recognition, com-
parable or even better than the one obtained with more
time-demanding methods. In particular, using a state-of-
the-art kernel method (KOMD) we obtain the best perfor-
mance against all the other combination of methods and
algorithms, with a precision of 86% and a recall of 87%,
with a sampling rate of 50Hz.

The goal of this study was the use of the classification algo-
rithm inside ClimbTheWorld, a real time smartphone appli-
cation that aims at persuading people to use stairs instead
of elevators or escalators. For this reason, key aspects as
battery lifetime and low resources of the device have been
taken into account. Our experiments have shown that the
proposed method performs better than the native Android
solution in terms of consumed energy. The best trade-off
between energy saving and precision is reached with KOMD
classification algorithm combined with our method for data
acquisition, using a sampling rate of 30Hz (in this case, the
obtained precision is 85%, recall is equal to 86%). To the
best of our knowledge, this is the first work that deals with
energy consumption issues in a classification problem. Fi-
nally, we have obtained a counting performance of 99.4%
using this configuration.

Although precision and recall (and consequently the count-
ing performance) obtained by our solution are not affected
by the smartphone orientation, we noticed a performance
degradation when the user is carrying the smartphone on
his/her trouser pocket.

Future works will be dedicated to solve this problem. A
possible approach could be to recognize this case using in-
formation from proximity or light sensors. Another solution
could be to analyze the user movement to find out when
he/she puts the smartphone on his/her trouser pocket.

Another issue we would like to investigate in the future is the
refinement of the output from the classification algorithm
using data history. For instance, if the classifier recognizes a
stairstep, the following window has a good chance to contain
a stairstep too.

10. REFERENCES
[1] F. Aiolli, G. D. S. Martino, and A. Sperduti. A kernel

method for the optimization of the margin
distribution. In ICANN, pages 305–314, 2008.

[2] A. Anjum and M. Ilyas. Activity recognition using
smartphone sensors. In IEEE Consumer
Communications and Networking Conference (CCNC
2013), pages 914–919, Jan 2013.

[3] M. Ayabe, J. Aoki, K. Ishii, K. Takayama, and
H. Tanaka. Pedometer accuracy during stair climbing
and bench stepping exercises. Journal of sports science
& medicine, 7(2):249, 2008.

[4] L. Bloom, R. Eardley, E. Geelhoed, M. Manahan, and
P. Ranganathan. Investigating the relationship

between battery life and user acceptance of dynamic,
energy-aware interfaces on handhelds. In in Proc. Int.
Conf. Human Computer Interaction with Mobile
Devices & Services, pages 13–24, 2004.

[5] A. Brajdic and R. Harle. Walk detection and step
counting on unconstrained smartphones. In
Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing
(UbiComp ’13), pages 225–234.

[6] T. M. Do, S. W. Loke, and F. Liu. Healthylife: An
activity recognition system with smartphone using
logic-based stream reasoning. In Mobile and
Ubiquitous Systems: Computing, Networking, and
Services, pages 188–199. Springer, 2013.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[8] R. Mittal, A. Kansal, and R. Chandra. Empowering
developers to estimate app energy consumption. In
Proceedings of the 18th annual International
Conference on Mobile Computing and Networking
(MobiCom ’12), pages 317–328.

[9] D. Mizell. Using gravity to estimate accelerometer
orientation. In Proceedings of the 7th IEEE
International Symposium on Wearable Computers
(ISWC’03), page 252.

[10] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: Fine grained energy
accounting on smartphones with eprof. In Proceedings
of the 7th ACM European Conference on Computer
Systems (EuroSys ’12), pages 29–42.

[11] S. Pirttikangas, K. Fujinami, and T. Nakajima.
Feature selection and activity recognition from
wearable sensors. In H. Youn, M. Kim, and
H. Morikawa, editors, Ubiquitous Computing Systems,
volume 4239 of Lecture Notes in Computer Science,
pages 516–527. Springer Berlin Heidelberg, 2006.

[12] M. Shoaib, H. Scholten, and P. Havinga. Towards
physical activity recognition using smartphone
sensors. In Ubiquitous Intelligence and Computing,
2013 IEEE 10th International Conference on and 10th
International Conference on Autonomic and Trusted
Computing (UIC/ATC), pages 80–87, Dec 2013.

[13] P. Siirtola and J. Röning. Recognizing human
activities user-independently on smartphones based on
accelerometer data. International Journal of
Interactive Multimedia and Artificial Intelligence,
1(5):38–45, 06/2012 2012.

[14] World Health Organization. Physical Inactivity: A
Global Public Health Problem
http://www.who.int/dietphysicalactivity/
factsheet inactivity/en/.

[15] W. Wu, S. Dasgupta, E. E. Ramirez, C. Peterson, and
G. J. Norman. Classification accuracies of physical
activities using smartphone motion sensors. Journal of
medical Internet research, 14(5):e130, 2012.

[16] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha.
Appscope: Application energy metering framework for
android smartphones using kernel activity monitoring.
In Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, USENIX ATC’12.

10


	Introduction
	Related Works
	Game description
	Pipeline overview
	Support to the orientation-independence
	Segmentation with data-dependent window
	Representation and features standardization
	Experiments and results
	Classification setting and results
	Energy consumption results
	Counting task results

	Conclusions and Future works
	References

