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Abstract. In this paper we address the problem of comparing multimedia docu-
ments, which can be described according to different reference models. If we consider
presentations as collections of media items and constraints among them, expressed
according to their reference model, they must be translated to a common formalism
in order to compare their temporal behavior and detect if they have a common com-
ponent (i.e., intersection), if one of them is included in another one (i.e., inclusion),
or if they have the same temporal evolution along time (i.e., equivalence).

In this paper, we propose the use of automata, to describe the temporal evolution
of a document, and the SMIL language as a case study, since this standard allows
to describe the same behavior with different sets of tags. In case of behaviorally
equivalent SMIL documents, we propose an algorithm to extract the canonical form
that represents this behavior.

1. Introduction

A multimedia presentation can be defined as a collection of different
types of media items and a set of spatial and temporal constraints
among them. Authoring such complex documents is more difficult when
they are interactive, since unexpected user interaction can alter the
correct timing relationships between media objects. In literature, many
design models [1, 6, 8] have been proposed to address this problem.
Among them, SMIL [9], Synchronized Multimedia Integration Lan-
guage, is a W3C standard markup language to describe multimedia
presentations.

The variety of reference models available for multimedia documents
provides great expressiveness, but also some problems in the manage-
ment of such documents, since it is very difficult to compare multimedia
presentations designed with different reference models. In particular it
is not possible to state when they have the same temporal behavior
unless the playback. Sometimes, the same problem could arise even
if the documents use the same reference model: as an example, we
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consider SMIL presentations, in which different sequences of tags (and
then, different scripts) can describe the same temporal behavior.

Consider for instance, the following SMIL document:

〈par id=“par1” dur=“60s”〉
〈video id=“intro” end=“20s”/〉 (1)
〈audio id=“artwork” begin=“intro.end” dur=“30s”/〉
〈img id=“picture” begin=“artwork.begin+5”/〉

〈/par〉

Intuitively, its temporal behavior is described in Figure 1: the video
starts with the script, the audio starts when the video ends (as specified
by the value of the begin attribute) and the image starts five seconds
after the audio. After the end of media artwork, picture is rendered
until the termination of the whole script.

t

intro artwork

picture

2520 50 60

Figure 1. Timeline of the SMIL documents.

The same behavior is also obtained in a different way, since the use
of attributes begin, end and dur can deeply modify the behavior of the
corresponding media items, as described by the following SMIL script:

〈seq id=“seq2”〉
〈video id=“intro” dur=“20s”/〉
〈par id=“par2”〉
〈audio id=“artwork” end=“30s”/〉 (2)
〈img id=“picture” begin=“5s” dur=“35s”/〉

〈/par〉
〈/seq〉

In fact, at the end of the media intro, the audio starts, followed by
picture after five seconds. These two documents are, therefore, behav-
iorally equivalent.

The notion of behavioral equivalence is particular important when we
do not deal with single presentations but with database of multimedia
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documents. In this case, we need a formalism to compare them in order
to avoid redundancy (i.e., the same presentation expressed through
different reference models) and to express queries. In particular, we
aim at defining a formalism able to describe documents’ behavior in-
dependently from the design model. This can be used to formulate an
example presentation to query (by example) the heterogenous database
on the base of the multimedia content, but also of the overall behavior of
the document (e.g., a sequence of images regarding the Pacific Ocean).

Since the behavioral equivalence finds out only exact matches in
the behavior of the multimedia presentations, two more useful notions
are also discussed in this paper: the notion of inclusion, i.e., when a
document is a section of a second one, and the behavioral intersection,
i.e., when two documents share a common section, both in term of
media items and temporal relations.

If we consider presentations as collections of media items and tempo-
ral and spatial constraints among them, in order to detect equivalence,
inclusion or intersection in their behavior, we need to compare only
their temporal evolution. For this reason, we consider only the tempo-
ral relationships of the document and we do not address the spatial
constraints.

In this paper we use the automata as a general formalism to de-
scribe the temporal evolution of multimedia documents independently
from the original design models: two documents can be compared, with
respect to the notion of equivalence, inclusion and intersection, as long
as their behaviors can be described by an automaton.

In the rest of the paper, we propose the SMIL language as a case
study, since this standard allows to describe the same behavior in more
than one script. In case of behaviorally equivalent SMIL documents,
we propose an algorithm to extract the canonical form that represents
this behavior.

2. Related work

2.1. The notion of equivalence

The notion of equivalence is not new in the context of multimedia
documents, but other works use this concept in different contexts and
with different meanings and purposes.

In [4], Boll et al. define a notion of semantic equivalence in the
context of the adaptation of multimedia presentation: in order to deliver
multimedia information to the user, media elements can be replaced
(i.e., adapted) by other media elements of different quality and type,
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to be playable in the user context, but with the same content, i.e.,
semantic equivalent alternatives. Therefore, Boll et al. do not compare
different documents, but redundant media alternatives inside the same
adaptive presentation. Different from our approach, the authors define
an equivalence only with respect to the content of the presentation
fragment, and does not consider in details the temporal structure.

Another work [7] focuses its attention on the temporal evolution
of multimedia applications and presents a semantics for UML mod-
els incorporating temporal information. Instead of automata, the dy-
namic behavior is specified by transformation of timed graphs. The
authors discuss the equivalence of graph transformation rules: if it is
not possible to distinguish different interleavings of concurrent actions,
the sequences of transformation steps are equivalent. In other words,
Hausmann et al. do not compare different documents, but sequences
of events, i.e., different behaviors, of the same document, that are
equivalent if they lead to the same result.

In [10], Lo Presti et al. propose a similar approach to the one defined
in this paper, but they are able to compare only documents using the
TAO (Temporal Algebraic Operators) reference model. TAO is a for-
mal language to describe temporal composition of multimedia objects.
using well-defined operators which can be composed. Two terms (i.e.,
TAO programs) are equal if the semantics of their operators are equal.
Different from our approach, equivalence can be decided on the base of
a static analysis on the program structure.

2.2. Modelling multimedia documents with automata

Other works in literature propose a model to describe the behavior of a
multimedia presentation but does not exist an agreement on an abstract
representation of the dynamics of a multimedia document which is
independent from the design model it adopts.

In particular, Yang [13] studies the SMIL language to find out pos-
sible errors, resulting in temporal conflicts, in the definition of the
document. He proposes a conversion of SMIL 1.0 documents in the
Real Time Synchronization Model (RTSM). Yang uses a model based
on Petri Nets and converts the synchronization elements in SMIL into
transitions and the related attributes are associated with places. Unfor-
tunately Yang’s approach applies only to SMIL documents and requires
to convert every single SMIL element.

In [11] Sampaio et al. present a formal approach to design an Inter-
active Multimedia Document (IMD) and to perform the schedule of a
presentation, if the temporal constraints are satisfied. In this case, the
document can be described using any design model (SMIL or others);
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then the created document is translated into RT-LOTOS specification;
from RT-LOTOS, the reachability graph is obtained and it is used
to verify consistency property. The scheduling graph is derived from
the consistent reachability graph and it is called Time Labeled Au-
tomaton (TLA): at every state in the automaton is associated a clock
(timer), that measures the time during which the automaton remains
in that state; at every transition are associated some conditions, i.e.,
the constraints that have to be satisfied for the firing of the transition.

In [12] Stotts et al. use an automaton to describe hyperdocuments,
that is, interactive documents characterized by dynamic properties. An
automaton describes the document from the point of view of the process
of browsing within it: the linked structure can be seen as a state transi-
tion diagram of a finite state machine. In this case, the automaton is not
used to represent the temporal evolution of a multimedia presentation
but the browsing strategy adopted by the user, i.e., which link he, or
she, followed, and at what time.

Automata with temporal characteristics to model the behavior of
real-time systems are also used in [2]: the authors define timed au-
tomata which are able to express timing delay in real-time systems. A
timed automaton has a set of real-valued clocks: they can be reset with
a transition and constraints over the clocks control the firing transition,
that is, a transition takes place if the associated clocks constraints are
satisfied. In this case, the clocks control if an event occurs in the right
time instant.

3. The SMIL language

In this paper we use SMIL [9] language as a case study, since it is
a W3C standard and it allows to define the same temporal behavior
through different sets of tags and attributes (see script 1 and 2).

A SMIL file is divided in two sections: the layout section defines the
regions, i.e., rectangular areas on the user screen in which media items
are visualized, and the body section contains the definitions of me-
dia items involved in the presentation, and the temporal relationships
among them. The language SMIL also allows to define transitions, i.e.,
visual effects between two objects, and animations, i.e., modifications
to the value of some attributes (e.g., the color, the size, the position,
etc.) of a media item.

SMIL does not define a reference model for the data structure, but
only tags for describing media objects behavior. Synchronization is
achieved essentially through two tags: seq to render two or more objects
sequentially, one after the other, and par to play them in parallel.
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Using attributes begin, end, and dur it is possible to fix the start
and the end time of a media item. Consider a media item inside a
par block. If its attributes begin, end or dur are undefined, the media
item starts at the beginning of the par block and ends with its natural
termination. Otherwise it begins (ends) a certain amount of time after
the beginning of the par block, given by the corresponding attribute
value. In script 1, the attribute begin = ‘‘intro.end’’ makes audio
artwork start when video item intro ends. Therefore, the beginning and
the end of a media item can be defined with reference to the tag in which
it is contained, or according to a particular event, even completely
changing the semantics of tags par and seq, as in the case of script 1.
The attribute dur defines the duration of an object.

The tag excl is used to model some user interactions. It provides a
list of children elements, and only one of them may play at any given
time. We refer to [9] for more details about this standard.

4. A formal description of the temporal evolution of a
multimedia document

In order to compare the behaviors of different multimedia documents,
we need a common formalism, which is independent from the reference
model of the document.

Several aspects must be taken into account: first of all, a presenta-
tion is characterized by the set of media items presented to the user;
secondly, we consider a set of events, i.e., the “registration” of some
changes in the situation of the components of the document, and,
accordingly, to the document itself. These changes are due to some
properties of the objects, like their duration, to temporal constraints of
the document, and to user interactions. Using SMIL, the temporal con-
straints are defined by the tags par and seq and the attributes begin,
end, and dur. Such elements provide an intensional representation of
the evolution of the presentation in time.

A critical aspect when comparing the evolution of multimedia docu-
ments concerns user interaction, since different models allows different
types of interactions (e.g., only to pause/resume the presentation play-
back or also to fast forward/rewind it, etc.) which can also be influenced
by the interface which can allow to interact only with whole document
rather than with each single media item.

Moreover, in some particular contexts, we are not interested in the
response to the user, but in the natural evolution of the document.
This is the case of database of multimedia presentations: if we query
for a particular sequence of media items, we can neglect the documents’
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evolution in case of user interaction. For these reasons, in this paper we
consider only the natural evolution of a multimedia document. In this
case our events “register” the beginning of a presentation (event start)
and the natural termination of media items (event end(m), where m is
a media).

Beside media items, events and temporal constraints, our formalism
also introduces the concept of timer to better specify synchronization
relationships among objects. A timer is a dynamic object with a speci-
fied duration, that can represent offset between media items playback,
or constraints on their duration. As an example, if a media must start
twenty seconds after another one, a timer is initialized to twenty; this
value is decremented according to the system clock and when the timer
expires, i.e., its value becomes zero, the constrained media can start.
Therefore, according to temporal constraints in a document, a timer
is initialized to a value that represents its duration: adding this value
to the time instant in which t is initialized, we obtain the time instant
n ∈ N in which t will expire.

Therefore, the role of the timers is to mark the meaningful time
instants for the evolution of the presentation, i.e., the instants in which
synchronization takes place; then another possible event, recorded by
the system, is the expiration of a timer (event end(t), where t is a
timer), that causes the start and the end of a set of objects. The set
of timers used by a multimedia presentation is defined on the base
of the temporal constraints of the document itself. We also need a
mapping, formalized in the following, which identifies the set of objects
that depends on a timer (i.e., they are waiting for its expiration).

A formal definition of a multimedia document is as follows:

Definition 4.1. (Multimedia Document) A multimedia document is a
4–tuple D = 〈MI, T S, E , T C〉 where

− MI is a set of media items {m0,m1, . . . ,mn};

− T S is a set of timers t(n) where n ∈ N indicates the time instant
in which t expires;

− E is a set of events ev ∈ ({start , end} ×(MI ∪ T S)×N), where
i ∈ N is the time instant in which an event occurs; 1

1 Since we describe only the natural evolution of the document, there is only a
start event, corresponding to the start of the presentation, and then a sequence of end
events of timers and media items. Moreover, the beginning of the whole document
corresponds to the start of the first media.
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− T C is a set of temporal constraints representing the synchroniza-
tion relationships among the objects, described according to the
reference model of the document.

For the sake of readability we shall denote event instances by pairs
of the form 〈e(m), i〉 where e is an event type (i.e., start or end), m is
a media item or a timer, and i is the time instant in which the event
occurs.

If we observe a multimedia document evolution along time, it can be
divided into a number of time intervals in which some conditions hold,
e.g., some media are active, while others are waiting for a specific time
instant. IfMI is the set of media components that play a role in a pre-
sentation, we can describe the presentation evolution in terms of active
media at any given time instant. We assume that time is discrete, and
marked by a variable i ranging over N which is updated by a clock. The
actual time resolution is not important as long as it allows the capture
of all the events related to media execution and it is possible to observe
the effect of time distinct events as distinct effects. Two or more events
are contemporary if they occur at times denoted by the same value of
the variable i. In this case, the instances with the same i are denoted
by a unique complex event in the form 〈{e1(m1), . . . , en(mn)}, i〉, where
{e1(m1), . . . , en(mn)} is the set of events that occur at the same time
instant i. In practise, a complex event is a more compact form for the
list of contemporary events 〈e1(m1), i〉, . . . , 〈en(mn), i〉.

We define a mapping function waiting: T S → 2MI which returns,
for each timer, the list of media items that are waiting for it, i.e.,
media items whose start is triggered by a timer expiration, or which
are currently playing and the expiration of the timer will trigger their
forced end. For example, since video intro (script 1) has an attribute
end = ‘‘20s’’, once started, it will be inserted into a list of items
waiting for the expiration of a timer which lasts for twenty seconds
(see t2 in Table II).

We introduce also the two functions begin, stop: MI → N which
return, for each element contained in the document, the time instant
in which it starts or ends, respectively, according to the temporal
constraints defined in the presentation.

Considering the SMIL language as a case study, since we are inter-
ested in the behavior of the document, it is sufficient to investigate
only the section body which contains the synchronization tags among
the objects: in this case the set T C of temporal constraints is equal to
the set T ag of tags contained in the SMIL script. For the same reason,
we do not consider transition effects.
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Each tag tg ∈ T ag has three attributes which we denote by tg.begin,
tg.end and tg.dur, which contain the values of the corresponding
attributes in the SMIL document (zero if undefined). The function
parent(tg) returns the tag in which tg is contained, and children(tg)
returns the list of tags defined inside the considered tag; first(tg)
returns the first child. A succ() function is also available that, given
a tag in the list of children, gives as output the next element in that
list2.

Tables I and II show how timers and functions are applied to the
script 1 introduced in Section 1.

Table I. Values of attributes and functions for the tags in script 1.

par1 intro artwork picture

attribute begin 0 0 intro.end artwork.begin+5
attribute dur 60 0 30 0
attribute end 0 20 0 0

parent() null par1 par1 par1
children() intro, artwork, null null null

picture
first() intro null null null
succ() null artwork picture null
begin() 0 0 20 25
stop() 60 20 50 60

Table II. Timers and function waiting() applied to script 1.

timer associated constraints waiting()

t1(60) dur=‘‘60s’’ {intro, artwork, picture}
t2(20) end=‘‘20s’’ {intro}
t3(20) begin=‘‘intro.end’’ {artwork}
t4(25) begin=‘‘artwork.begin+5’’ {picture}
t5(50) dur=‘‘30s’’ {artwork}

2 The children list is ordered with the same order in which the media items (or
tags) appear in the SMIL file.
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4.1. Evolution of a multimedia document

At any time instant, the document behavior is completely described by
the set of media and timers that are active at that time. This informa-
tion is captured by the notion of state of the presentation. Before the
presentation starts, no media item or timer is active, thus no media item
is waiting for a timer expiration, and the variable i, that represents the
time progress of the system clock, is equal to 0. When an event occurs,
the state of the presentation changes: some items that were not active
become active, some active items naturally end, some timers expire and
force the starting or the interruption of a list of items.

Definition 4.2. (State) The state of a multimedia presentation is a
5–tuple S = 〈AM, T , Bg, End,W〉, where

− AM is the set of active media;

− T is the set of timers whose expiration denotes an instant in
which some objects start or end;

− Bg and End are the set of pairs 〈m, i〉 where m is a media item
and i is the time instant in which the item m begins or ends,
respectively, according to the temporal constraints;

− W is the set of pairs 〈t,mi〉 where t is a timer and mi is a set of
media items which are waiting for the timer t.

For clarity, in the following of the paper we shall refer to the asso-
ciation between media items and time instants with begin(m) = i if
〈m, i〉 ∈ Bg, and stop(m) = i if 〈m, i〉 ∈ End. Similarly, we will use the
functional notation waiting(t(i)) = mi if 〈t(i),mi〉 ∈ W, to denote
the association between timers and media items.

All the possible evolutions along time of a multimedia document D
can be described by a finite state automaton, defined as follows.

Definition 4.3. (Automaton) Let D = 〈MI, T S, E , T C〉 be any mul-
timedia document. Its associated finite state automaton is the 5–tuple
AUT (D) = 〈S, E , s0, next, Final〉, where

− S is the set of possible states for the document D;

− E is the set of possible event instances in the form
〈{e1(m1), . . . , en(mn)}, i〉, ej ∈ {start, end} ∀j = 1 . . . n , m ∈
MI ∪ T S, i ∈ N;
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− s0, the initial state, is 〈AM0, T0, begin0, end0, waiting0〉, where
AM0 = T0 = ∅, begin0(el) = end0(el) = null for all el ∈ MI and
waiting0(t) = ∅, for all t ∈ T S;

− the transition function next : S × E → S is the mapping that
deterministically associates any state s to the state s′ in which s
is transformed by an event ev ∈ E ;

− Final = {sf , serr} is the set of states which correspond
to the end of the presentation playback. The state sf is
〈AMf , Tf , beginf , endf ,waitingf 〉, where AMf = Tf = ∅ and
waitingf (t) = ∅, for all t ∈ T S. The state serr is equal to
〈AMerr, Terr, beginerr, enderr,waitingerr〉, where AMerr = ∅,
Terr = T S, beginerr(el) = enderr(el) = null for all el ∈ MI and
waitingerr(t) = ∅, for all t ∈ T S.

The state sf corresponds to the natural termination. If the document
evolution reaches the state serr, then the presentation contains some
time conflicts.

The automaton describes the evolution of the system as consequence
of a particular event. A word of an automaton is a sequence of events
in the form 〈e0(el0), ist0〉 . . . 〈em(elm), istm〉. An accepted word is a
word that allows to reach a final state sf . Since we consider only the
natural evolution of the document, a word always begins with a start
event, corresponding to the start of the first media of the presentation,
followed by a sequence of end events of timers and media items. More-
over, there can be contemporary events whose effects apply after an
unique step.

We note here that, if the sets of media itemsMI and timers T S of
the document D are finite, also AUT (D) is finite, even if it can contain
infinite paths, as for example for a forever looping presentation.

Figure 2 depicts the evolution of script 1. Initially both AM0 and
T0 are empty, neither any media nor any timers are active. Then, the
activation of the par block causes the activation of the video intro, while
the other media are not activated because of their begin attributes.
Four timers are inserted in T1 (the associated media that wait for their
expiration are showed in Table II): t1 controls the termination of par1,
t2 the termination of media intro, t3 and t4 the beginning of artwork
and picture, respectively, according to the attributes in the script. The
obtained time instants for the begin and the end of the media are stored
in the sets Bg and End. At time instant 20, timers t2 and t3 expire:
as a consequence, media intro ends and media artwork becomes active
(adding in T2 timer t5 that controls its termination). After five seconds,
the expiration of t4 forces the beginning of media picture. At time
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instant 50, when corresponding timer t5 expires, media artwork ends
and, finally, the expiration of the last timer t1 forces the termination of
all active media contained in the par block which are active and then
of the whole script.

s0

<start(par1),0>AM T B

E W

0= = =

= =O

g

nd

0 0

0 0

s1

AM T1={ }, ={
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intro t (60),
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1 1

2 3 4
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A

T

f=O

=O
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Figure 2. The evolution of script 1.

5. Studying the behavior of multimedia documents

The automaton defined in Section 4 completely describes the behavior
of a multimedia document independently from the reference model used
to define the synchronization relationships it contains. Therefore, it can
be used to infer some properties of a presentation, e.g., if the presenta-
tion naturally ends or loops infinitely, or to compare the evolution of
different documents, even if they are modelled using different reference
models.

In the following, in order to compare multimedia presentations, we
define the notion of inclusion, intersection and equivalence, based on
the comparison of automata.

5.1. Inclusion

From the users point of view, the only relevant modifications in the
state of a presentation are obtained from the set of media items which
are active during the playback. Therefore, we must check the set of
active media AM of each state, to find out possible common paths in
the automata. For example, the automata describing the evolution of
two multimedia documents can be compared to decide if one of them
has the same behavior of a section of the other one: in this case, the
first document is a component of the second one, therefore it is included
in the bigger document.

More formally:
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Definition 5.1. (Inclusion) Let D and D′ be two multimedia docu-
ments, D = 〈MI, T S, E , T C〉, D′ = 〈MI ′, T S ′, E ′, T C′〉 and MI ′ ⊆
MI. D′ is included in D, denoted by D′ ⊆ D, iff:

− for each word w′ = 〈e′0(el′0), ist′0〉 . . . 〈e′p(el′p), ist′p〉, accepted by
AUT (D′), there exists a word w = 〈e0(el0), ist0〉 . . . 〈eq(elq), istq〉
accepted by AUT (D) where ∃j, ε, hop 0 ≤ j ≤ q, ε ≥ 0, hop ≥ 0
such that ∀i, k 0 < i < p, j ≤ k < j + p − 1 + hop, and if
ist′i = istk + ε then if el′i ∈MI ′ then el′i = elk;

− for each pair of words w,w′ satisfying the above condition, if
sq = s0 . . . sk . . . sq+1 and sq′ = s′0 . . . s′i . . . s

′
p+1 are the sequences

of states reached by AUT (D) and AUT (D′), respectively, and sk =
〈AMk, Tk,Bgk, Endk,Wk〉 and s′i = 〈AM′i, T ′i ,Bg′i, End′i,W ′i〉 then
∀i, k 0 < i ≤ p, j ≤ k ≤ j + p− 1 + hop and if ist′i = istk + ε then
AM ′i ⊆ AMk and (AM′i \ AM′i−1) ∩ (AMk \ AM′i−1) = ∅.

Considering two multimedia documents D and D′, D′ is included in
D if, for the sequence of states and events which describes the natural
evolution of D′, a corresponding sequence of states and events can be
found in the automaton of D in which the sets of active media items
AMk contains the corresponding AM′i and the events are equal3. If
media items contained in the bigger document, i.e., in AMk, but not
in AM′i (AMk \ AM′i), start or end at different time instants, these
events are not considered; the number of this type of events is equal to
hop. As an example, if media items B and C play in sequence during the
playback of A in D (see Figure 3(a) for the automaton) and D′ contains
only the sequence B and C (see Figure 3(b) for the automaton), then
D′ ⊆ D.

5.2. Behavioral Intersection

We can extend Definition 5.1 to a more general definition of inter-
section, which finds out possible intersections of the behaviors of the
documents. Given two documents, D and D′, the behavior of D′ in-
tersects the behavior of D if a common (sub)path exists in the two
automata.

More formally:

Definition 5.2. (Behavioral Intersection) Let D and D′ be two mul-
timedia documents, D = 〈MI, T S, E , T C〉, D′ = 〈MI ′, T S ′, E ′, T C′〉
and MI ∩MI ′ 6= ∅. D intersects D′, denoted by D ∩D′, iff:

3 We do not consider the first and the last event because we are not interested
in which is the media that starts the presentation and in the subsequent evolution
of D. Moreover we do not consider timers since their names are arbitrary.
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s1

sf

<end(C),3>
<end(B),2>

<start(A),0>

A, B

Bs1a

A, Cs2
s0

Cs2a

...

<end(A),1>
<end(C),2>

<end(B),1>

<end(A),2>

(a)

s1 s3

<start(B),0>

B Cs2
s0

<end(B),1> <end(C),2>

(b)

Figure 3. The automaton for D (a) and D′ (b) where D′ ⊆ D.

− for each word w′ = 〈e′0(el′0), ist′0〉 . . . 〈e′p(el′p), ist′p〉, accepted by
AUT (D′), there exists a word w = 〈e0(el0), ist0〉 . . . 〈eq(elq), istq〉
accepted by AUT (D) where ∃i, j, δ, ε, hop 0 ≤ i ≤ p, 0 ≤ j ≤
q, δ ≥ 0, ε ≥ 0 and hop ≥ 0, such that ∀h, k i ≤ h < i + δ, j ≤
k < j+δ+hop and if ist′h = istk+ε and el′i ∈MI ′ then el′h = elk;

− for each pair of words w,w′ satisfying the above condition,
if sq = s0 . . . sk . . . sk+δ . . . sq and sq′ = s′0 . . . s′h . . . s

′
h+δ . . . s

′
p

are the sequences of states reached by AUT (D) and AUT (D′),
respectively, and sk = 〈AMk, Tk,Bgk, Endk,Wk〉 and s′h =
〈AM′h, T ′h,Bg′h, End′h,W ′h〉 then ∀h, k i ≤ h ≤ i + δ, j ≤ k ≤
j + δ + hop and if ist′h = istk + ε then AM′h ⊆ AMk and
(AM′i+1 \ AM′i) ∩ (AMk \ AM′i) = ∅.

Two sub-paths of length δ, in which we do not consider hop events
involving media items in AMk\AM′i, define the same behavior (and so
can be considered a common sub-path of the automata) if, for the set
of the active media items, respectively, for each pair of states (sk, s′h) in
the sequences, AMk and AM′h, AM′h ⊆ AMk holds and the events,
involving media items, are equals 4. In this case the sequences of events
and states do not need to cover the entire evolution of the documents.
As an example, if D contains the sequence of media items A,B,C
during the playback of E (see Figure 4(a) for the automaton) and
D′ contains the sequence of media B,C, F during the playback of G

4 As in Definition 5.1, we do not consider the first and the last event for the same
reason.
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as illustrated in Figure 4(b), D ∩ D′ since they share the common
(sub)path which describes the sequence of media items B and C.

s1

sf

<end(C),4>

<end(A),2>

<start(A),0>

A, E

As1a

C, Es3
s0

Cs3a

...

<end(E),1> <end(C),3>

<end(A),1>

Bs2a

B, Es2

<end(E),2> <end(E),3>

<end(B),3>

<end(B),2>

(a)

s1

sf

<end(F),4>

<end(B),2>

<start(B),0>

B,G

Bs1a

F, Gs3
s0

Fs3a

...

<end(G),1> <end(F),3>

<end(B),1>

Cs2a

C,Gs2

<end(G),2> <end(G),3>

<end(C),3>

<end(C),2>

(b)

Figure 4. The automaton for D (a) and D′ (b) where D ∩D′.

We define intersection using a common path and not a sequence of
states because both the multimedia documents can also contain other
media items (in the previous example E in D and G in D′): in this
case, the set of active media in the automata’s states are different.

5.3. Behavioral Equivalence

Given Definition 5.1 we can check if a multimedia presentation is in-
cluded into another document by considering the automata which de-
scribe their behavior. In the same way we can decide if two documents,
possibly described using different reference models, have the same play-
back, i.e., two documents share the same behavior when the states of
the respective automata, after the same event, contain the same set of
active media. More formally:

Definition 5.3. (Behavioral Equivalence) Let D and D′ be two mul-
timedia documents, D = 〈MI, T S, E , T C〉, D′ = 〈MI ′, T S ′, E ′, T C′〉
and MI = MI ′. D and D′ are behaviorally equivalent, denoted by
D ∼ D′, iff:

− for each word w = 〈e0(el0), ist0〉 . . . 〈ei(eli), isti〉 . . . 〈eq(elq), istq〉,
where ∀i isti ≤ isti+i, accepted by AUT (D) there exists a
word w′ = 〈e′0(el′0), ist′0〉 . . . 〈e′i(el′i), ist′i〉 . . . 〈e′q(el′q), ist′q〉
where ∀i ist′i ≤ ist′i+i, accepted by AUT (D′) such that
∀i = 0 . . . q isti = ist′i and if eli ∈MI then eli = el′i;
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− for each pair of words w,w′ accepted by the automata, if sq =
s0 . . . sj . . . sq and sq′ = s′0 . . . s′k . . . s′q are the sequences of
states reached by AUT (D) and AUT (D′), respectively, and si =
〈AMi, Ti,Bgi, Endi,Wi〉 and s′i = 〈AM′i, T ′i ,Bg′i, End′i,W ′i〉 then
∀i = 0 . . . q + 1 AMi = AM′i.

Intuitively, the documents have the same behavior if the automata
accept the same sets of words and, for each possible path in the au-
tomata, the resulting states contain always the same set of active
media.

The relationship of behavioral equivalence (∼) is an equivalence re-
lation. Indeed, it directly follows from the definition that it is reflexive
(every document is behaviorally equivalent to itself:D ∼ D), symmetric
(if D is behaviorally equivalent to D′, then D′ is behaviorally equiv-
alent to D: D ∼ D′ ⇒ D′ ∼ D), and transitive (if D is behaviorally
equivalent to D′ and D′ is behaviorally equivalent to D′′, then D is
behaviorally equivalent to D′′: D ∼ D′ and D′ ∼ D′′ ⇒ D ∼ D′′).

Figure 5 depicts the evolution of script 2. The activation of the
presentation forces the activation of media intro and timer t′1, that
controls its termination, is inserted in T ′1 . At time instant 20, this
timer expires: media artwork becomes active, while media picture is
not activated because of its begin attribute (the corresponding timers
t′2 and t′3, that control the termination and the beginning of artwork
and picture, respectively, are inserted in T ′2 ). After five seconds, the
expiration of timer t′3 forces the activation of media picture and timer
t′4 for its termination is inserted in T ′3 . At time instant 50, timer t′2
expires and artwork ends; finally, the last timer t′4 expires and forces
the termination of picture and of the whole document.

s’0

<start(seq2),0>AM T B

E W

’ = = =

= =O

0 g

nd

’ ’

’ ’

0 0

0 0

s’1

AM

T

1={ },

={ }

intro

t (20)

’

’ ’1 1

s’2

AM

T

2={ },

={ }

artwork

t (50),t (25)

’

’ ’ ’2 2 3

s’3

AM

T

3={ },

={ }

artwork,picture

t (50),

’

’ ’ ’3 2 4t (60)

s’4

AM

T

4={ },

={ }

picture

t (60)

’

’ ’4 4

<end(t (20)),20>1’

<end(t (25)),25>3’

<end(t (50)),50>2’

<end(t (60)),60>4’

s’f
A

T

f=OM’

’f=O

Figure 5. The evolution of script 2.

Let D and D′ the multimedia documents corresponding to script 1
and script 2, respectively. Figures 2 and 5 represent the finite state au-
tomataAUT (D) andAUT (D′) where the word w = 〈 {start(par1)}, 0 〉,
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〈 {end(t2(20)), end(t3(20))}, 20 〉, 〈{end(t4(25))}, 25〉, 〈{end(t5(50))}, 50〉,
〈{end(t1(60))}, 60〉 is accepted by AUT (D) with ist1 = 0, ist2 = 20,
ist3 = 25, ist4 = 50 and ist5 = 60 and the word w′ = 〈{start(seq2)}, 0〉,
〈{end(t′1(20))}, 20〉, 〈{end(t′3(25))}, 25〉, 〈{end(t′2(50))}, 50〉,
〈{end(t′4(60))}, 60〉 is accepted by AUT (D′) with ist′1 = 0, ist′2 = 20,
ist′3 = 25, ist′4 = 50 and ist′5 = 60.

Therefore we have ∀i = 1...5, isti = ist′i and at every instant the
events do not involve any element inMI since no media items sponta-
neously end, but they are controlled by a timer expiration; moreover,
for each word accepted by the AUT (D′), the corresponding word in
AUT (D) is accepted, and viceversa. Then the first step of Definition
5.3 is verified.

Given w and w′ accepted by the automata, we obtain the sequences
of states sq = sos1s2s3s4s5 and sq′ = s′os′1s′2s′3s′4s′5 reached by AUT (D)
and AUT (D′) (detailed in Figure 2 and 5) such that ∀i = 0...5, AMi =
AM′i: the second step is verified therefore the two SMIL documents are
behaviorally equivalent w.r.t. Definition 5.3.

6. A case study: building the automata for SMIL documents

Definition 4.3 can describe the behavior of multimedia documents de-
signed with any synchronization model, provided the next function is
properly defined.

In this paper we provide the definition of the next function needed
to describe the behavior of SMIL scripts. SMIL functionalities are very
complex and some of them do not change the temporal behavior of
media items. For this reason, the proposed algorithms do not deal
with transitions and animations. Moreover, the automaton does not
capture the difference between the effective end of an element and the
result of the fill attribute and its values freeze or hold. The same
problems arise with the excl whose behavior, in some case, cannot be
distinguished from a sequence (tag seq).

In order to define the state transformation function we need to define
a set of auxiliary functions: for the lack of space, the algorithms are
not complete, and the reader is referred to [3] for the missing code.
Moreover, the following algorithms make use of the functions defined
in Section 4 and resumed in Table I.

First of all, we need two functions ChkBEGIN and ChkEND
which calculate the start and the end time of an element, and activate
the suitable timers, updating the mapping functions begin, stop and
waiting, following the W3C specification and algorithms for SMIL
documents [9].
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Another useful function is NextEL which, given a tag as input,
returns the next element to playback, according to the synchronization
constraints contained in the SMIL script.

The ACTIVATE function checks if a media item can start or if it
must wait for a delay. In the first case it starts the element (function
ActEL), otherwise it simply activates a timer (function ChkBEGIN).

The function ActEL adds the element to be activated to the set
of active media AM, if it is a media item; otherwise, it starts all its
children (if such element is a par block), or only its first child (if it is
a sequence of items).

ActEL (x: a SMIL Tag; T S, T : set of timers; tcurr: time instant;
AM: set of media items; begin, stop: item-time mapping;
waiting: timer-media mapping)

begin
y = first(x);
if y = null then // x is a media item

if ChkEND(x, T S, T , tcurr,AM, begin, stop, waiting) then exit ;
else AM = AM∪ {x};

else
begin

if x = “seq” then
if ChkEND(x, T S, T , tcurr,AM, begin, stop, waiting) then exit ;
else ACTIVATE (y, T S, T , tcurr,AM, begin, stop, waiting)

if x = “par” then
if ChkEND(x, T S, T , tcurr,AM, begin, stop, waiting) then exit ;
else for all child ∈ children(x) do

ACTIVATE(child,T S, T , tcurr,AM, begin, stop, waiting);
end

end.

The function DeACTIVATE stops a single media object if it is
contained in the set of active media AM using the function StopME-
DIA. When applied to a par or a seq block, if this block was waiting
for a timer, the next element, according to the synchronization rules,
is started, otherwise all active elements in the block are deactivated.

The function StopMEDIA deactivates a media item removing it by
the set AM. If the media item is contained in a par block, the function
checks if the block ends with this media (e.g., when its attribute end is
equal to the end event of this media), and in this case it stops the whole
block and activates the next element. If the media item is contained
in a seq block, the function starts the next element according to the
SMIL script.

StopMEDIA(x: a SMIL Tag; T S, T : set of timers; tcurr: time instant;
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AM: set of media items; begin, stop: item-time mapping;
waiting: timer-media mapping)

begin
AM = AM\ {x};
y = parent(x);
if y = null then exit ;
if y = “par” then

if y.end = “first” or y.end = x then
begin

DeACTIVATE(y,T S, T , tcurr,AM, begin, stop, waiting);
y =NextEL(y);
if y 6= null then

ACTIVATE(y,T S, T , tcurr,AM, begin, stop, waiting);
end

else
if children(y) ∩ AM = ∅ and

(stop(y) = null or stop(y) = tcurr) then
begin
y =NextEL(y);
if y 6= null then

ACTIVATE(y,T S, T , tcurr,AM, begin, stop, waiting);
end

else //y = “seq”
begin

if succ(x) 6= null or (stop(y) = null or stop(y) = tcurr) then
begin
y =NextEL(x);
if y 6= null then

ACTIVATE(y,T S, T , tcurr,AM, begin, stop, waiting);
end

end
end.

Definition 6.1. (State transition function) The state transition func-
tion next : S × E → S, where S is the set of all possible states, and
E is the set of events, is the function that, given a state s and
a complex event ev(i) = 〈{ek}, i〉 at the time instant i, returns
the state s′ = next(s, ev(i)) at the time instant i + 1 where s′ =
〈AM′, T ′,Bg′, End′,W ′〉, and AM′, T ′, Bg′, End′, W ′ are defined ac-
cording to the following process, in which ev = {ek} is set of occurring
events, processed one at time, el the element to which the event applies
and i is the current time instant:

for all e ∈ ev do
case e = start(el):

if el /∈ AMn then
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ACTIVATE (el, T S, T , i,AM, begin, stop, waiting);
case e = end(el):

begin
if el ∈ AM and (stop(el) = null or stop(el) = i) then

begin
StopMEDIA (el, T S, T , i,AM, begin, stop, waiting);
stop(el) = i;

end
if el ∈ T then

begin
if stop(m) = i for some m ∈ T ag5 then

for all item ∈ waiting(el) do
begin

DeACTIVATE (item, T S, T , i,AM, begin, stop, waiting);
stop(item) = i;

end
if begin(m) = i for some m ∈ T ag5 then

for all item ∈ waiting(el) such that begin(item) = i do
ActEL (item, T S, T , i,AM, begin, stop, waiting);

waiting(el) = ∅;
T = T \ {el};

end

7. A canonical form for SMIL documents

In Section 5, we study the evolution of multimedia documents in the
absence of user interactions. Considering the relation of behavioral
equivalence (∼) (Definition 5.3), we can classify multimedia documents
according to their behavior along the time.

We can refer to the classes of equivalence induced by the relation ∼6,
in order to define a canonical form, i.e., a document which can be used
as a “representative” for all the documents with the same temporal
behavior.

If we call AUT (DC) the set of automata describing the behavior of
all possible multimedia documents DC, we can consider these functions:

5 Since in SMIL language also media items are defined using appropriate tags
(img, video, or audio according to the object’s type), media items are contained
also in T ag and MI ⊂ T ag.

6 Let DC be the set of all multimedia documents. Every element in the set
Q = DC/∼ = {Q1, . . . , Qn} is a class of equivalence such that ∀i = 1 . . . n we have:

Qi = {D1i, . . . , Dki | Dji ∼ Dri, j = 1 . . . k, r = 1 . . . k}.
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− Automaton : DC → AUT (DC), which returns the automaton
describing the behavior of a multimedia document;

− Representative : AUT (DC) → DC, which extracts the representa-
tive of a class of multimedia documents.

In our case study, the SMIL language, function Automaton is im-
plemented, event by event, by the next function defined in Definition
6.1.

Definition 7.1. (Canonical Form) Let D be a multimedia document
∈ DC. The canonical form of D is the document D′ such that:

Representative(Automaton(D)) = D′.

A document D is in the canonical form iff D =
Representative( Automaton(D)). If two documents have the same
canonical form, they are equivalent since their behaviors are described
by the same automaton.

The algorithm for the extraction of a SMIL script, which can be
considered the representative of an equivalence class, is very complex
and cannot be entirely presented here due to space constraints. The
reader is referred to [3] for the complete discussion about the algorithm.

This algorithm needs some auxiliary functions which allow to create
a new SMIL tag (CreateELEM), defining a single media with its
attribute (e.g., begin, src, etc.), and to insert a set of media items
into a new parallel (CreatePAR) or sequential (CreateSEQ) block.
A media item can also be inserted into an already existing block using
the function Insert: if media items are inserted into a par block of
already active media, an offset must be defined, otherwise the tag is
inserted in the last position of the given sequence block.

A SMIL script, which is in the canonical form, contains a dur or
an end attribute for each media item defined: the algorithm does not
distinguish between continuous media, i.e., media items with a natural
evolution, and static media like images and text files which need a du-
ration, because this information is not deducible from the automaton.
Function DefStopAttr is used to insert the appropriate attributes end
and dur to each media item, according to the event of the timer which
causes its termination.

Let us consider the graph representing the automaton of a multime-
dia presentation and the shortest path on it, connecting the initial state
s0 to the final state sf 7. Given two states, si and si+1, they are con-
nected by the edge labelled with the event 〈{e1(m1), . . . , en(mn)}, i〉,
where i represents the time instant in which the event occurs.

7 If more than one path have the same length, the choice is made randomly.
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For each transition, we can define the following sets:

− Started = AMi \ AMi−1, containing the media activated by the
events which cause the transition;

− Stopped = AMi−1 \ AMi, containing the media that are stopped
by the transition;

− Inv = AMi−1 \Stopped, containing the media that remain active.

Different combinations of the status of these sets represent the dif-
ferent situations that have to be dealt with to create a correct SMIL
script. We define a function that, given an automaton representing
the evolution of a document, builds the SMIL script representing the
canonical form for the desiderate behavior: the algorithm calculates, for
each transition, the sets introduced previously, in order to characterize
the different situations, and afterwards creates the corresponding SMIL
tags.

Given the sequence s0 . . . si . . . sf which represents the states in the
shortest path of the automaton, where s0 and sf are empty states, i.e.,
states in which neither media items nor timers are active, we have to
apply the following algorithm:

si = s0; k = 0;
//next returns the next state in the sequence and k is a counter
repeat

sf = si.next;
//definition of the time instant

if ∃ev|si ev→ sf and ev = 〈e(m), ist〉 then
time = ist; //time is the instant in which the event occurs

//definition of the media sets
Started = AMf \ AMi; //Started contains the started media
Stopped = AMi \ AMf ; //Stopped contains the stopped media
Inv = AMi \ Stopped; //Inv contains the already active items
if Started 6= ∅ then

if Stopped = ∅ then
if Inv = ∅ then

Case 1: Started 6= ∅ and Stopped = ∅ and Inv = ∅
there exist only started media, i.e., the document
begins; a parallel block is created containing media
items in Started (CreatePAR(Started,k,NULL,time))
or a single tag if |Started| = 1 (CreatELEM(m, NULL,
time))

else
Case 2: Started 6= ∅ and Stopped = ∅ and Inv 6= ∅
some media items are already active, while others are
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beginning; two parallel blocks are created, CreatePAR(
Started,k,NULL,time) (if |Started| 6= 1) and CreatePAR(
Inv,k,NULL,time) (if it does not already exist); par block
containing Started, or the single media item, is inserted
into the par block containing Inv with an appropriate offset

else
Case 3: Started 6= ∅ and Stopped 6= ∅ and (Inv = ∅ or Inv 6= ∅)
some media items start, while others end; a sequence is created
by function CreateSEQ(m,k,parent(m),begin(n)) containing
first media items in Stopped (eventually in a par block) and
then media items in Started

else
if Stopped = ∅ then

Case 4: Started = ∅ and Stopped = ∅ and Inv 6= ∅
this transition does not affect the set of active media items;
an attribute “repeat” is added to media item which
causes the transition

else
Case 5: Started = ∅ and Stopped 6= ∅ and Inv 6= ∅
some media end, while others stay active; the function
DefStopAttr defines the attributes “end” or “dur”
of ended media items
if Inv = ∅ then

Case 6: Started = ∅ and Stopped 6= ∅ and Inv = ∅
there exist only terminating media, i.e., the document
ends; the function DefStopAttr defines the attributes
“end”or “dur” of ended media items

si = sf ;
until si ∈ Final

We now introduce an example to show how these algorithms are
used. Let us consider a multimedia presentation available at the web
site of a company to give some information about it. The SMIL script 3
is divided in three sections: an introduction, a little guide tour through
the company, and the conclusion.

The introduction contains some news about the company presented
with a video, vIntro, and a caption, cIntro, and another video (vLoc)
with its caption (cLoc) that show how to reach the company. While
these media are active, a soundtrack (sound) plays.

Figure 6 describes the temporal behavior of the presentation. After
the introduction, the user is guided through the departments of the
company by a video clip and an audio comment (respectively vManuf
and aManuf for the manufacturing department and vAcc and cAcc for
the accounting department). At the end, an image (iConcl) and an
audio track (aConcl) give the contact information.
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The same behavior can be expressed in a different manner even using
the SMIL language. For example, script 4 describes the same temporal
execution depicted in Figure 6.

More formally, we can apply our definition of behavioral equiva-
lence to check if both the scripts 3 and 4 belong to the same class of
equivalence.

t

sound

vIntro vLoc

cIntro cLoc

aManuf

vManuf

aAcc

vAcc

aConcl

iConcl

240120 420 600 660

Figure 6. Timeline of the presentation about a company.

The evolution of script 3 is represented by means of the automaton
depicted in Figure 7: from the initial state, in which neither media nor
timers are active, the activation of the seq block causes the activation of
the audio sound, the video vIntro and the text cIntro, while the media
vLoc and cLoc are not activated because of their begin attributes.
Five timers are inserted in T1: t1 controls the termination of media
sound, t2 and t3 the termination of vIntro and cIntro, respectively,
and, finally, t4 and t5 control the beginning of vLoc and cLoc. At time
instant 120, timers t2, t3, t4 and t5 expire: as a consequence, media
vIntro and cIntro end and media vLoc and cLoc become active. At
time instant 240 the expiration of t1 forces the termination of all active
media items; par1 ends and the sequence activates par2, i.e., the video
vManuf and the audio cManuf start, (activating timer t6 that controls
their termination). At time instant 420, when timer t6 expires, media
vManuf and cManuf end, while vAcc and cAcc begin (activating timer
t7 that controls their termination). At time instant 600, the expiration
of t7 forces the termination of the two active media and the beginning
of aConcl and iConcl : t8 is inserted in T5 and, after 60 seconds, its
expiration causes the termination of the whole document.
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Script 3 Script 4

〈 seq id=“seq0” 〉 〈 par id=“par0” 〉
〈 par id=“par1” end=”sound.end” 〉 〈 seq id=“seq4” 〉
〈 audio id=“sound” dur=“240s”/ 〉 〈 audio id=“sound” dur=“240s”/ 〉
〈 video id=“vIntro” dur=“120s”/ 〉 〈 par id=“par5” dur=“180s” 〉
〈 text id=“cIntro” end=“vIntro.end”/ 〉 〈 video id=“vManuf” dur=“180s”/ 〉
〈 video id=“vLoc” begin=“vIntro.end”/ 〉 〈 text id=“aManuf” dur=“180s”/ 〉
〈 text id=“cLoc” begin=“vIntro.end”/ 〉 〈 /par 〉
〈 /par 〉 〈 par id=“par6” dur=“180s” 〉
〈 par id=“par2” dur=“180s” 〉 〈 video id=“vAcc” dur=“180s”/ 〉
〈 video id=“vManuf”/ 〉 〈 text id=“aAcc” dur=“180s”/ 〉
〈 audio id=“aManuf”/ 〉 〈 /par 〉
〈 /par 〉 〈 par id=“par7” dur=“60s” 〉
〈 par id=“par3” dur=“180s” 〉 〈 audio id=“aConcl” dur=“60s”/ 〉
〈 video id=“vAcc”/ 〉 〈 image id=“iConcl” dur=“60s”/ 〉
〈 audio id=“aAcc”/ 〉 〈 /par 〉
〈 /par 〉 〈 /seq 〉
〈 par id=“par4” dur=“60s” 〉 〈 seq id=“seq2” 〉
〈 audio id=“aConcl”/ 〉 〈 par id=“par1” dur=“120s” 〉
〈 image id=“iConcl”/ 〉 〈 video id=“vIntro” dur=“120s”/ 〉
〈 /par 〉 〈 text id=“cIntro” dur=“120s”/ 〉
〈 /seq 〉 〈 /par 〉

〈 par id=“par3” 〉
〈 video id=“vLoc” dur=“120s”/ 〉
〈 text id=“cLoc” dur=“120s”/ 〉
〈 /par 〉
〈 /seq 〉
〈 /par 〉
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Figure 7. Automaton representing the evolution of script 3.
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Figure 8. Automaton representing the evolution of script 4.

The evolution of script 4 is represented by means of the automaton
depicted in Figure 8. If we consider the sequences of events which build
up the accepted words of the automata depicted in Figures 7 and 8,
we note that the automata step to another state at the same time
instants, i.e., ist0 = 0, ist1 = 120, ist2 = 240, ist3 = 420, ist4 = 600
and ist5 = 660.

Therefore we have ∀i = 1...5, isti = ist′i and at every instant the
events do not involve any element inMI since no media items sponta-
neously end, but they are controlled by a timer expiration; moreover,
for each word accepted by the AUT (script 4), the corresponding word
in AUT (script 3) is accepted, and viceversa. Then the first step of
Definition 5.3 is verified.

Given w and w′ the words accepted by the two automata, we obtain
the sequences of states sq = sos1s2s3s4s5s6 and sq′ = s′os′1s′2s′3s′4s′5s′6
reached, respectively, by AUT (script 3) and AUT (script 4), such that
∀i = 0...6, AMi = AM′i: the second step is verified and the two
documents are behaviorally equivalent w.r.t. Definition 5.3.

Scripts 3 and 4 are contained in the same class of equivalence, since
they have the same natural evolution: then we can build the canonical
form, SCF , which can be used as the representative for the behavior of
both the SMIL scripts.

Consider the automaton in Figure 7; for every edge in AUT (script
3) we apply the algorithm defined in this section.

The first event, 〈start(seq0), 0〉, represents the beginning of the pre-
sentation (case 1): the three starting media (sound, vIntro, cIntro) are
nested in a parallel block (par0). Then four timers end at time instant
120. Case 3 is verified since media items vIntro and cIntro end while
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vLoc and cLoc start: two different parallel blocks are created (par1
and par3) and inserted into a sequence (seq2). In the same way, the
algorithm build three other par blocks containing media items playing
in parallel (vManuf and aManuf , vAcc and aAcc, and iConcl and
aConcl) and put them into a sequence seq4.

At the last event 〈{end(t9)}, 660〉, the algorithm defines the termi-
nation attributes for the ending media (case 6). The resulting script is
equal to script 4, i.e., 4 is in the canonical form.

8. Conclusion

In this paper we study the problem of comparing the evolution along
time of multimedia documents and we define the notions of temporal
inclusion, intersection and equivalence.

Although other works in literature address similar problems, our
approach is interesting since it defines a general formalism, independent
from the design model, to describe the temporal behavior of multimedia
presentations in absence of user interactions. Using this approach, two
documents can be compared as long as their behaviors can be expressed
through an automaton. We can argue that this is always possible: some
examples are commented in Section 2 and in [5], the authors propose
the use of automaton to describe the temporal evolution of a document
to build up a complete fragment to be returned as result of a query.
In the future, we plan to better investigate this issue, defining suitable
transition functions for different kinds of multimedia reference models.

In this paper we adopt the SMIL language as a case study and we
provide the algorithms to build up the automaton of a SMIL document
and, if two SMIL scripts have the same behavior, i.e., they belong to the
same equivalence class, to extract the canonical form which represents
the evolution of that class of scripts. Due to space constraints, the paper
presents only a rough sketch of the proposed algorithms; a complete
description can be found in [3].

In this paper, we propose a set of definitions that can be useful
to compare multimedia documents, but we do not discuss the cost of
this operation. Since the automaton which represents the evolution of a
multimedia document can be considered as a particular type of oriented
and labelled graph, the study of the complexity of this operation can be
reduced to a graph matching problem, for which, well-known algorithms
exist in literature, which can be easily adapted to our automata.

In the future we plan to extend our definition of intersection con-
sidering a notion of maximality: actually, two documents intersects
as long as they share a pair of media items played in sequence. Our
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notion of intersection, in fact, aims at discovering a minimal set of
common components and behavior, and do not investigate any more.
The documents, however, could have other common components. Our
future goal is the definition of an algorithm to identify the maximum
intersection between two multimedia presentations.
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