
Ubiquitous Social Cams

O. Gaggi, N. Moretti, C. E. Palazzi
University of Padua, Padua – Italy
{gaggi | cpalazzi}@math.unipd.it

Abstract—Web 2.0 is evolving and offering services based on the
wide popularity of smartphones and the possibility of gathering
data ubiquitously from these mobile devices; this new paradigm
is often referred to as Web2. In this paper, we hence present and
discuss a Web2 application designed to enable users to interact
with remote smartphones’ cameras to receive a video generated
in real time. In essence, users can individuate on a map which
mobile cameras are available in a location of interest and request
the remote user to generate and send back a short video of the
surrounding environment or event. We discuss technical issues
related to implementing such a service and the solutions we
devised to address them. Finally, we also present experimental
results we obtained from a preliminary testbed evaluation that
encourages the prosecution of this work.

Keywords-Camera Sharing; Mobile Application, Smartphone;
Web Squared

I. INTRODUCTION
The Web 2.0 paradigm fostered the creation of applications

based on collective knowledge and intelligence. Systems such
as YouTube, Facebook, Twitter, Wikipedia, Amazon,
Foursquare, Flickr and Picasa allowed users to share a huge
amount of information in real time. One of the fundamental
principles of Web 2.0 is that the service improves its quality
with the growth of the number of people using it [1]. A little
part of value is explicitly added to Web 2.0; rather, Web 2.0
systems allow the aggregation of users’ data by default as an
effect of the normal application uses. Therefore, users can use
selfish Web 2.0 applications for their own purposes but they
automatically add a collective value.

The Web is now moving from Web 2.0 toward different
possible evolutions [2]-[4]. One of the most interesting is
certainly represented by Web2 (Web Squared), which derives
from the exponential growth of the Web based on the
integration between the collective intelligence of Web 2.0 and
the use of new interconnected, sensor-equipped mobile devices
[5]. Indeed, any object can be associated with some data
(location deriving from the GPS, properties associated to its
barcode, etc.) creating what is called the information shadow of
the object. Through the Web2 paradigm, sensors on mobile
devices (e.g., smartphones) allow the combination of the real
world with objects’ information shadow so as to generate new
information and foster innovative services.

The Web2 paradigm is based on the mobile revolution,
which has made smart mobile devices ubiquitously present in
our cities (and pockets). Popular technological devices such as
smartphones, tablets and netbooks have digital sensors

allowing to easily determine their position and to retrieve
useful position-related information from the Internet.
Furthermore, they have cameras and microphones which
enhanced the development of new form of interaction with the
Internet collective intelligence.

Even if potentially powerful, the ideas at the basis of Web2
need to be supported by practical solutions and
implementation. This requires the testing of the technological
devices in order to verify the feasibility of these paradigms
with current technology.

We present Kweekpeek, a Web2 camera sharing application
that enables users to interact with the smartphone cameras of
other remote users. Different from other similar applications
(e.g., Ustream [6]), Kweekpeek allows video consumers to
request in real time a live video streaming from a specific
location. In essence, Kweekpeek keeps track of the position of
registered smartphones through GPS (of course the anonymity
of the data provider has to be preserved). Users can check on a
map which mobile cameras are available in a location of
interest and request to generate and send back a short video of
remote environment or event.

The main contributions of this work are hence both the
presentation of a novel Web2 proof-of-concept application and
the discussion of related technical criticalities and solutions.

The rest of this manuscript is organized as follows.
Section II describes two possible case studies. Kweekpeek and
its development are explained in Section III and Section IV,
respectively. Section V discusses preliminary experiments we
run and Section VI concludes this paper.

II. CASE STUDIES
We briefly discuss two possible scenarios where a camera

sharing application could be employed.

Scenario #1: Leisure. Humans are social beings; they
generally enjoy the interaction with each other [7]. For
instance, they tend to choose shops, bars, clubs and restaurants
that are popular. To avoid the disappointment of having chosen
the wrong destination to go out, people would like to use an
application able to provide them a glance of the remote location
they are interested in through a short video generated by
somebody already there. Similar, people may want to take a
look at concerts or sport matches to see in real time, for
instance, the supporters scenography. These are two simple but
meaningful examples; there is a huge number of possible cases
where people may be interested in receiving a short video from
a remote location related to leisure activities [8]-[11].

Scenario #2: Safety. Consider a crisis scene in a city, e.g., a
street accident or a terrorist attack. In this scenario, it would be
useful to provide first responders with real-time pictures/videos
of the emergency while still driving toward the crisis area.
Devices utilized for this purpose could be security cameras in
the area or any other camera-endowed device (e.g., a
smartphone) handled by people in proximity of the emergency
area. Both commands to activate the device and generated
pictures/videos can be sent through the vehicular network
directly to the vehicle of first responders, or reach them
through the Internet and the cellular network [12]-[15]. In any
case, elements that are typically considered of disturbance in
emergency situations e.g., people stopping by to see the
accident and even take pictures at it, can turn out to be of help.

III. KWEEKPEEK: A CAMERA SHARING APPLICATION
Kweekpeek aims at enabling users to share oneself

smartphone camera and to use cameras of other remote users. It
represents the union between four different technologies:
webcams, social networks, mobile devices and geo-
localization. Kweekpeek provides a Web server that shows a
map of the geo-localized available devices (see Fig. 1); the user
chooses one on the devices on the map to receive video data
from the camera of that remote device. In essence, the system
embodies a cam social network, made of mobile smartphones
registered for the service.

Figure 1. Available cams geolocalized and displayed on map.

Every kweekpeeker (i.e., a system user) can choose any
registered smartphone from a map by sending a share request.
If the request is accepted the chosen kweekpeeker records
his/her surroundings with the camera on his/her smartphone
and shares it.

Finally, we are aware that the success of Kweekpeek also
depends on features we have partially addressed in this work
and are going to deeply investigate in future extensions:

 the system must be multiplatform (to cover the highest
number of possible users);

 there must be a set of rules to encourage and reward
users to accept cam sharing requests;

 the system must prevent incorrect behaviors such as
inappropriate or offensive videos;

 the system have to implement efficient anonymity and
authentication policies;

 the system must pay attention to the trade-off between
video quality and network usage.

IV. APPLICATION DEVELOPMENT
Kweekpeek is a distributed system in which a user can use

his/her phone to capture, send and receive video streams. For
this reason, the system is based on a Web server to control and
maintain the system. The domain kweekpeek.com has been
registered for later implementation of the possibility to share
webcam streams even directly from the Web site.

The Web site is based on HTTP Web 2.0 Server Meteor
[16] that allows push notifications using the Comet Model
Long Polling technique that allows a server to hold a client
request until data for a response is available instead of having a
client periodically sending the same request, with the server
responding even if no data is available, until satisfying data are
received [17]. Moreover it uses the open source framework
concrete5 [18] as Content Management System. The result is
shown in Fig. 2.

Figure 2. Web site accessed from a mobile device.

Figure 3. Client-server communication.

The communication between the Web server and the
mobile devices is managed by an API package, specifically
developed for kweekpeeker, that uses the standard JSON
encoding to handle mobile requests. A connection between two
nodes is established in 5 steps (see Fig. 3):

1. the user chooses a node from the map depicted in Fig. 1
and send a share request to the server;

2. the server forwards the request to the chosen node, using
long polling;

3. the chosen node receives the notification and, if
accepted, sends a confirmation to the server;

4. the server forwards the request to the chosen node, using
long polling;

5. two connections are separately established between the
two nodes and the server using Web sockets.

For all the duration of the video stream, the server behaves
as a proxy to the requesting node. On first connection, each
smartphone receives from the server an identifier that will be
used in all following connections. This identifier will never be
revealed to other nodes. The server visualized position of the
available cams into a map (see Fig. 1).

The utilization of a central server has been preferred to a
P2P solution directly connecting nodes as a server ensures the
possibility to address in an easier and more efficient way to

provide anonymity and authentication. Moreover, through the
utilization of a set of local servers controlled by a central one,
the system results scalable while preserving the complete
control over the whole system.

As already discussed in Section III, one of the important
factors for the success of this project requires that the mobile
interface must be available in all platforms, i.e., iOS
(Apple),Android OS (BlackBerry), WebOS (HP), WP7
(Microsoft), Symbian and Bada (Samsung), to allow to share
the major number of mobile cams. For this reason the client
was implemented using PhoneGap [19] an open source mobile
framework, that allows to deploy part of the code,
independently from the final platforms, using Web standards.

In order to manage requests from a big number of users, the
system organizes users into different levels according to the
number of requests they have accepted (and served) or asked,
i.e., the more requests a user has served, the more requests
he/she can made. The system uses the ratio (requests made/
requests accepted) to move a user up and down through
different levels. Every level allows a maximum of weekly
requests (increasing level by level).

Finally, we ask users that have made a request a feedback at
the end of each shared stream share, so that the receiver of the
stream can leave a positive or negative mark. In case of
multiple negative reviews for requests served by a single node,
the system blocks that node for a short period of time.

A. PhoneGap
PhoneGap is a framework that allows the creation of mobile

applications from Web applications, i.e., using Web standards
like HTML5, CSS3 and JavaScript. PhoneGap does not
translate the code into the native language of the platform for
which the application is compiled, but encapsulates it together
with the Web engine webkit so that it can be executed without
the help of a browser [20].

Moreover, PhoneGap provides some APIs to access the
device features, e.g., accelerometer, wireless connection, media
playback, notifications, storage system, etc.

In essence, PhoneGap is a wrapper: it requires resource to run
the webkit engine in addition to the resources needed for the
application itself. On the other hand, it has the advantage of
supporting almost all mobile platforms, i.e., Android, iPhone
OS, BlackBerry, WebOS, Symbian, WindowsPhone 7 and
Bada, without requiring to know in advance which platform
will be used, but exploiting all the new features offered by
HTML5 and CSS3. In addition, well known JavaScript
libraries, like jQuery, can be used without any problem.

Moreover, PhoneGap also permits the integration of native
code for unsupported features. In this project, PhoneGap was
used to develop the user interface, in particular:

 to integrate the visualization of the available cameras
into the Google Maps service;

 to manage the playback of received movies (see Fig. 4);

 to develop menus, settings and information.

B. Android Development
Since the current state of implementation of the PhoneGap

framework does not cover all the features offered by our
system, the development of Kweekpeek has required the
writing of some modules, coded separately for each platform,
to manage video recording and data transmission. We discuss
here the implementation for the Android platform, which is the
only one complete at the moment.

Each time a user accepts a request, he/she has to record a
video of the situation in which he/she is present. We set the
duration of this video to 20 s, since we noted that this is a good
trade-off between the need to show the surrounding in detail
and the amount of time asked to the user to serve a request.

Figure 4. Screenshot of a video shared through Kweekpeek.

Figure 5. Android OS Fragmentation [21].

Once the recording ends, the user sends the movie to the
server. Future developments will provide the possibility, for the
user that serves the request, to autonomously choose the
duration of the recording.

The recorded video stream is then compressed using the
codec H264 on MPEG4 format. The current system provides
20 s of video at 15 fps with a resolution of 320 x 240 px. In this
way the size of the video is generally less than 1MB.

We did not adopt a tool like Sipdroid [22] to generate a
real-time streaming of recorded video for its compatibility only
with Android 2.3 or higher, whereas many available devices
still use previous versions of this platform (see Fig. 5).
Furthermore, we realized that the average connection speed is
insufficient for the video codec required by Sipdroid, while
H.264 allows better performance, i.e., video of low quality (but
clearly understandable) and low bandwidth.

To further reduce bandwidth consumption, the generated
video has been compressed before transmission. Clearly, the
higher the compression ratio, the lesser the bandwidth required,
but also the more computational and energy power is needed.
Current standards for vide compression such as H.264 and VP8
provide both efficient compression and low bit rates. In our
experiment we preferred H.264 for its lower bandwidth usage
and better video quality compared to VP8 [23]. Moreover,
H.264 is the default codec for video recording in Android, thus
simplifying Kweekpeek implementation.

Finally, the current position of each node on the Web site is
maintained updated with two Web services which send and
receive push notifications about nodes positions.

V. EXPERIMENTAL ASSESSMENT
To test its feasibility, Kweekpeek was implemented and

tested on a Motorola Milestone 2 A953 with Android v2.3.4
operating system, 1 GHz clock rate and 512 MB of RAM. As
anticipated, even if the device allows a maximum video
recording resolution of 1280 x 720 px, the experiments were
run using a video recording resolution of 320 x 240 px encoded
with H.264 to reduce the video size.

The fps rate that has to be generated also depends on the
video purpose. For instance, when a video is created for
communication via sign language, it is recommended to have at
least 21 fps, whereas 5 fps would be enough to perceive audio

and video synchronization in regular situations [24]. In our
experiments we have chosen to use 15 fps as this represent a
possible tradeoff solution between to ensure low bandwidth
requirement without compromising the video quality.
However, nothing impedes to use different settings for the fps
or to let users chose their preferred configuration.

Tests provided a positive feedback on the deployment of
Kweekpeek: the application actually allows to identify
smartphones with cameras on a map and to receive back videos
from the chosen remote location. Video duration can be
modified; clearly the video duration impacts on the video size.
In our experiments, we have considered different video size
durations (i.e., 10 s, 30 s, 60 s, 150 s) and recorded 10 different
sample videos for each of them. For each of these videos, we
have measured the resulting video size and corresponding
statistical values. We report measured values, classified by
video duration, in Table I. Video sizes go from a minimum of
circa 390 KB (for a 10 s video) to a maximum of circa
6334 KB (for a 150 s video). Both are acceptable values for
Internet transmission.

TABLE I. VIDEO FILE SIZE (KB) DEPENDING ON ITS DURATION

Video Duration

10s 30s 60s 150s

Min 390.06 1178.50 2358.71 5896.73

Max 444.35 1284.83 2541.97 6333.94

Avg 412.00 1227.35 2445.45 6179.28

St.dev 14.94 44.13 89.91 245.06

VI. CONCLUSION AND FUTURE WORK
We presented and discussed a Web2 application, named

Kweekpeek, designed to enable users to individuate and use
smartphones’ cameras to receive a video from a remote
location. Kweekpeek keeps track of the position of registered
smartphones through GPS data (of course the anonymity of the
data provider has to be preserved). In essence, users can check
on a map which mobile cameras are available in a location of
interest and request the remote user to generate and send back a
short video of the surrounding environment or event.

Beside, architectural extensions discussed in Section III, in
the future we also aim at improving the client application in
several directions:

 improving the usability of the user interface;

 allowing the user to save the videos received in
chronological order;

 adding requests auto-acceptance functionality for
permanent webcams.

ACKNOWLEDGMENT
Partial financial support for this work is provided by the

MIUR/PRIN ALTER-NET and the UNIPD/PRAT Web
Squared projects.

REFERENCES
[1] T. O'Reilly, What is Web 2.0?

www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-Web-
20.html?page=1

[2] T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web”, Scientific
American, 279, 2001.

[3] S. Ferretti, M. Furini, C. E. Palazzi, M. Roccetti, P. Salomoni, “WWW
Recycling for a Better World”, Comunications of the ACM, ACM,
vol. 53, no. 4, Apr 2010.

[4] T. O'Reilly, J. Battelle, Web Squared: Web 2.0 Five Years On. Web 2.0
summit (2009).

[5] G. Calma C. E. Palazzi, A. Bujari, “Web Squared: Paradigms and
Opportunities”, in Proc. of the International Workshop on DIstributed
SImulation & Online gaming (DISIO 2012) - ICST SIMUTools 2012,
Desenzano, Italy, Mar 2010.

[6] Ustream,You’re On, www.ustream.tv/
[7] C. E. Palazzi, “Buddy-Finder: A Proposal for a Novel Entertainment

Application for GSM”, in Proc. of the 1st IEEE International Workshop
on Networking Issues in Multimedia Entertainment (NIME'04),
GLOBECOM 2004, Dallas, TX, USA, Nov 2004.

[8] M. Roccetti, G. Marfia, A. Semeraro, “Playing into the Wild: A Gesture-
based Interface for Gaming in Public Spaces”, Elsevier Journal of Visual
Communication and Image Representation, Elsevier, vol. 23, n. 3,
Mar 2012.

[9] S. D. Fuhrman, “Beyond Webcams: An Introduction to Online Robots”,
Presence, MIT Press, vol. 11, n. 5, Oct 2002.

[10] I. Smith, “Social-Mobile Applications”, IEEE Computers, IEEE
Computer Society, vol. 38, n. 4, Apr 2005.

[11] S. Ahmed, A. Khan, I. Babar, “Monitoring Detection and Security
Maintenance using WMS-Webcam Mobile Surveillance”, in Proc. of 3rd
IEEE International Conference on Emerging Technologies (ICET 2007),
Islamabad, Pakistan, Nov 2007.

[12] C. E. Palazzi, “Interactive Mobile Gaming over Heterogeneous
Networks”, in Proc. of the 5th IEEE/ITI International Conference on
Information and Communications Technology (ICICT 2007), Cairo,
Egypt, Dec 2007.

[13] M. Roccetti, G. Marfia, A. Amoroso, “An Optimal 1D Vehicular
Accident Warning Algorithm for Realistic Scenarios”, in Proc. of IEEE
Symposium on Computers and Communications (ISCC'10), Riccione,
Italy, Jun 2009.

[14] A. Amoroso, G. Marfia, M. Roccetti, “Going Realistic and Optimal: A
Distributed Multi-Hop Broadcast Algorithm for Vehicular Safety”,
Computer Networks, Elsevier, vol. 55, n. 10, Jul 2011.

[15] G. Marfia, M. Roccetti, “Vehicular Congestion Detection and Short-
Term Forecasting: A New Model with Results”, IEEE Transactions on
Vehicular Technology, IEEE Vehicular Technology Society, vol. 60,
n. 7, Sep 2011.

[16] Meteor Web 2.0 Server, http://meteorserver.org/
[17] G. Wilkins, Comet Is Always Better than Polling,

http://cometdaily.com/2007/11/06/comet-is-always-better-than-polling/
Nov 2007.

[18] CMS Concrete5, http://www.concrete5.org/
[19] Phone Gap Framework, http://phonegap.com/
[20] The WebKit Open Source Project, http://webkit.org/
[21] Gadget Venue, http://gadgetvenue.com/
[22] Sipdroid, Free SIP/VoIP client for Android, http://sipdroid.org/
[23] P. Seeling, F. H. P. Fitzek, G. Erli, A. Pulipaka, M. Reisslein, “Video

Network Traffic and Quality Comparison of VP8 and H.264 SVC”, in
Proc. of the 3rd ACM Workshop on Mobile Video Delivery
(MoViD 2010), Florence, Italy, Oct 2010.

[24] J. Scholl, P. Parnes, J. D. McCarthy, A. Sasse, “Designing a Large-Scale
Video Chat Application”, in Proc. of the 13th annual ACM International
Conference on Multimedia (Multimedia 2005), Singapore, Nov 2005.

